
 1

Model-Driven Development:
A Metamodeling Foundation

Colin Atkinson
University of Mannheim

68161 Mannheim, Germany
atkinson@informatik.uni-mannheim.de

Thomas Kühne

Darmstadt University of Technology
64283 Darmstadt, Germany

kuehne@informatik.tu-darmstadt.de

KEYWORDS
model driven development requirements, metamode-
ling, language definition, domain meta concepts

ABSTRACT
There is general agreement that metamodeling is an
essential foundation for model driven development,
but there is less consensus on the precise form it
should take and role it should play. In this article we
first analyze the underlying motivation for model-
driven development and then derive a concrete set of
requirements that a supporting infrastructure should
satisfy. In particular, we discuss why the traditional
“language definition” interpretation of metamodeling
is not a sufficient foundation, and explain how it can
be extended to unlock the full potential of model
driven development.

1 INTRODUCTION
Ever since human beings started to program
computers, software engineers have been working to
raise the level of abstraction at which this activity
takes place. The first FORTAN compiler was a major
milestone in computer science since, for the first
time, it allowed programmers to specify what the
machine should do rather than how it should do it.
The raising of programming abstraction levels has
continued apace since then, and today’s object-
oriented languages enable programmers to tackle
problems of a complexity undreamt of in the early
days of programming.

Model driven development (MDD) [1, 2] can be
regarded as a natural continuation of this trend.
Instead of requiring developers to use a programming
language spelling out how a system is implemented, it
allows them to use models to specifying what system
functionality is required and what architecture is to be
used.

This move to yet higher-levels of specification holds
the potential to drastically reduce the complexity of
problems considered to be hard by today’s standards.
Issues like object allocation, method lookup,
exception handling, etc. which had to be programmed
manually in the past are nowadays handled
automatically by compilers behind the scenes. The
aim of MDD is to achieve the same degree of
automation for issues which today are very complex
when dealt with manually, such as system
persistence, interoperability, distribution, etc.

Because of its potential, many MDD initiatives are
underway and companies are already trying to deliver
supporting technology. However, there is no
universally accepted definition of precisely what
MDD is and what support for MDD entails. In
particular, many requirements for MDD support—
where they have been identified—remain implicit. In
this article we therefore first review the underlying
motivations for MDD and then derive a concrete set
of requirements that MDD infrastructures should
support. We finally analyze the technical implications
of these requirements and discuss some of the basic
principles by which they can be supported.

2 REQUIREMENTS FOR MODEL DRIVEN
DEVELOPMENT
The underlying motivation for model-driven
development is to improve productivity—that is, to
increase the return that a company derives from its
software development effort. It delivers this benefit in
two basic ways—

1. by improving the short-term productivity of
developers—that is, by increasing the value of
primary software artifacts in terms of how
much functionality they deliver.

 2

2. by improving the long-term productivity of
developers—that is, by reducing the rate at
which primary software artifacts become
obsolete.

The level of short-term productivity depends on how
much functionality can be derived from a primary
software artifact. The more executable functionality
that can be generated, the higher the productivity. To
date, most tool support for MDD is centered around
this form of productivity, i.e., most tool vendors have
focused their efforts on automating the production of
code from visual models. However, this only tackles
one of the two main aspects of MDD.

The level of long-term productivity depends on the
longevity of a primary software artifact. The longer
an artifact remains of value, the greater the return
derived from the effort that went into the creation of
that artifact. Thus, a second and strategically even
more important aspect of MDD is reducing the
sensitivity of primary artifacts to change. Four main
fundamental forms of change (I)-(IV) are of particular
importance:

I) Personnel
As long as certain vital development knowledge
is stored only in the minds of developers, such
information will be lost in the all too frequent
event of personnel fluctuations. To ensure that
software artifacts outlive the tenure of their
creator it is, therefore, essential that they be made
accessible and useful to as wide a range of people
as possible. In addition to being presented in as
concise a way as possible, they should also take a
form which maximizes the ease with which they
can be understood by all interested stakeholders
(including customers). The implication for the
technical level is that primary software artifacts
can be expressed using a concise and tailorable
presentation.

II) Requirements
Changing requirements have always been a big
problem in software engineering, but never more
so than today. Not only must new features and
capabilities be supplied at an ever increasing rate,
but the impact of these changes on existing parts
of the system must be low in terms of both
maintenance efforts and in terms of disrupting
online-systems. Today’s enterprise applications
cannot simply be taken offline for extended
periods of time in order to be extended. Instead,
changes must be realized while a system is
running. At a technical level, this implies the
need to support the dynamic addition of new
types at runtime.

III) Development Platforms
Development platforms are also in a state of
constant evolution. Yet, primary software
artifacts are dependent on the particular tool that
created them, i.e., their lifetime is limited by the
corresponding tool lifetime. This strongly
suggests that artifacts should be decoupled from
their development tools. Consequently, another
technical requirement is that tools should store
artifacts in formats that can be used by other
tools, in other words, they should support high-
levels of interoperability.

IV) Deployment Platforms
Yet another growing problem for software
organizations is keeping up with the rate of
platform evolution. No sooner have developers
mastered one new platform technology then
another one comes along to take its place1. To
increase the lifetime of primary software artifacts
it is therefore necessary to shield them from
changes at the platform level. Technically this
means that it is necessary to automate (to the
greatest extent possible) the process of obtaining
platform specific software artifacts from platform
independent ones through the application of user
definable mappings.

All these different forms of change can occur concur-
rently, so the techniques used to accommodate them
must be at least compatible with one another, and at
best complement each other synergistically. However,
before one proceeds to pick and enhance existing
techniques for this purpose, it is useful to summarize
which technical requirements they should support.

The need for concise models (I) can be addressed by
providing a visual modeling language (see bullets (1)-
(3) below). Requiring models to be tailorable (I) and
to enable the addition of new types at runtime (II)
implies that the modeling language needs to be
dynamically extensible (see (4) below). Finally,
interoperability between tools (III) and user definable
mappings from models to other models or code (IV)
must be supported (see (5) & (6) below).

In summary, a model driven development supporting
infrastructure must define:

1. the concepts that are available for the creation
of models and the rules governing their use.

2. the notation to be used in the depiction of
models.

1 This is the form of change which is usually
associated with the MDD/MDA approach.

 3

3. how the elements of a model relate to (i.e.,
represent) real world elements, including
software artifacts.

4. concepts to facilitate dynamic user extensions to
(1) and (2), and models created from them.

5. concepts to facilitate the interchange of (1) and
(2), and models created from them.

6. concepts to facilitate user defined mappings
from models to other artifacts (including code).

Having clarified what capabilities we would like an
MDD infrastructure to provide, we can turn our
attention to how these requirements can be satisfied.
In particular, we identify what approaches need to be
integrated and what basic form they should take.

3 TOWARDS AN MDD INFRASTRUCTURE
As established above it is clear that visual modeling is
one of the technological foundations for a
technological MMD support, addressing requirements
(1)-(3). It has a long record of success in engineering
disciplines, including software engineering, since it
makes effective use of human visual perception.

The technology which has the best track record at
supporting the flexible choice of modeling concepts
(1) and extendable languages (4) (in its static form) is
object-orientation. Object-oriented languages enable
language users to extend the set of available types.
Thus, object-orientation is generally accepted as one
of the other key foundations of model driven
development.

Finally, the approach which has been the most
effective at addressing the issues defined by
requirements (5)-(6) is the use of metalevel
descriptions. Beyond that, metalevel descriptions are
also vital for supporting both static and dynamic
aspects of requirement (4). Only with a metalevel
above user types can models be fully customized to a
certain domain or class of stakeholders, and only with
a metalevel above classes is it possible to add new
types dynamically at runtime2. Thus, all four forms of
change essentially call for a descriptive metalevel
which can be systematically accessed and
manipulated by humans and tools.

The challenge that we face in creating an
infrastructure for model driven development is
therefore to optimally integrate visual modeling,
object-orientation, and metalevel description. In the
following we first analyze the existing approach for
doing this and then suggest some enhancements that

2 Not counting techniques that emulate this effect.

better address the complete list of technical
requirements (1)-(6).

3.1 Traditional MDD Infrastructure
Figure 1 illustrates the traditional four layer
infrastructure that underpins the first generation of
MDD technologies–namely the UML [3] and the
MOF [4].

instance_of

instance_of

instance_of

MOF

User Data

User Concepts

UML Concepts

M0

M1

M2

M3

Figure 1 Traditional OMG Modeling
Infrastructure

This infrastructure consists of a hierarchy of model
levels, each (except the top) being characterized as
“an instance” of the level above. The bottom level,
also referred to as M0 is said to hold the “user data”,
i.e., the actual data objects the software is designed to
manipulate. The next level, M1, is said to hold a
“model” of the M0 user data. This is the level at which
user models reside. Level M2 is said to hold a
“model” of the information at M1. Since it is a model
of a (user) model, it is often referred to as a
metamodel. Finally, level M3 is said to hold a model
of the information at M2, and hence is often
characterized as the meta-metamodel. For historical
reasons it is also referred to as the MOF (Meta Object
Facility).

This venerable four layer architecture has the
advantage of easily accommodating new modeling
standards (e.g., the CWM) as instances of MOF at the
M2 level. MOF aware tools can thus support the
manipulation of new modeling standards and enable
information interchange across MOF compatible
modeling standards.

Although it has been a successful foundation for the
first generation of MDD technologies, this traditional
infrastructure does not scale up well to handle all
technical requirements (1)-(6). In particular, four key
problems can be identified.

a) There is no explanation of how entities within the
infrastructure relate to the real world. Are the real

 4

world elements accommodated within the
infrastructure or do they lie outside?

b) There is an implication that all instance-of
relationships between elements are of
fundamentally the same kind. Is this a valid
approach or should one be more discriminating?

c) There is no explicit principle for judging at
which level a particular element should reside.
Using a single instance-of relationship to define
the metalevels3 always seems to introduce
inconsistencies in one way or the other. Is it at all
possible to use instantiation to define metalevel
boundaries and if so how?

d) There is a preference for the use of metalevel
description (sometimes in the form of
stereotypes) to provide predefined concepts. How
can the other way of supplying predefined
concepts—libraries of (super)-types, to be used
or specialized—be integrated within the
architecture?

To address these problems it is necessary to adopt a
more sophisticated view of the role of metamodeling
in MDD and to refine the simple “one-size-fits-all”
view of instantiation. Regarding all instance-of
relationships as being of essentially the same form
and playing the same role does not scale up well for
all requirements (1)-(6). Instead, it is helpful to
identify two separate orthogonal dimensions of
metamodeling, giving rise to two distinct forms of
instantiation [6, 7]. One dimension is concerned with
language definition and hence makes use of linguistic
instantiation. The other dimension is concerned with
domain definition and thus uses ontological
instantiation. Both forms occur simultaneously, and
serve to precisely locate a model element with the
language-ontology space.

3.2 Linguistic Metamodeling
As stated before, technical requirements (1)-(3)
essentially state the need for a language definition
capability (see Table 1). Much of the recent work on
enhancing the infrastructure has therefore focused on
the use of metamodeling as a language definition tool.
With this emphasis, the linguistic instance-of
relationship is viewed as being dominant, and levels
M2 and M3 are essentially viewed as being language
definition layers.

This approach relegates ontological instance-of

3 Sometimes know as the strictness condition for
metamodelling.

concept purpose UML solution

abstract
syntax

the concepts from
which models are
created à (1)

class diagram at
level M2

concrete
syntax

concrete
rendering of these
concepts à (2)

UML notation,
informally
specified

well-
formed-
ness

rules for the
application of the
concepts à (1)

constraints on
the abstract
syntax (e.g.,
using OCL)

semantics
description of the
meaning of a
model à (3)

natural
language
specification

Table 1 Language Definition

relationships, which relate user concepts to their
domain types, to a secondary role. In other words,
whereas linguistic instance-of relationships cross (and
in fact form the basis for) linguistic metalevels,
ontological instance-of relationships do not cross
such levels, but relate entities within a given level.
Figure 2 shows this latest interpretation of the four
layer architecture as embraced by the forthcoming
UML 2.0 and MOF 2.0 standards. Although the
latter take a predominantly linguistic view, it is very
useful to nevertheless let ontological (intra-level)
instantiation establish its own kind of ontological
(vertical) meta level boundaries, as indicated by the
different shades within level M1 in Figure 2.

As well as making the existence of two orthogonal
metadimensions explicit, Figure 2 also illustrates the
relationship between model elements and
corresponding real world elements. The M0 level is
no longer inhabited by user objects, but rather by the
real world elements that they model4. Note that the
real Lassie is said to be represented by object Lassie,
i.e., “instance-of” is no longer used to characterize the
real Lassie as an instance of Collie5. User objects
(i.e., model representatives of real world objects6)
now occupy the M1 level, along with the types of

4 The lightbulb is meant to denote the mental concept
“Collie”.
5 It is possible to make such a statement, but it
remains a derived property of the real Lassie (via
object Lassie).
6 Note that user data is also considered to be part of
the real world, even though it is artificial and may
even represent other real world elements.

 5

which they are (ontological) instances. From level M1
on, every level is regarded as a model expressed in
the language defined at the level above.

M1

ontological
instance-of

Collie Lassie

Class Object

linguistic
instance-of

linguistic
instance-of

M0

M2

M3

type

Class

linguistic
instance-of

linguistic
instance-of

instance

O1 O0

representsrepresents

instance-of

Figure 2 Linguistic Metamodeling View

3.3 Ontological Metamodeling
Although linguistic metamodeling7 addresses many of
the technical requirements, it is not sufficient on its
own. In particular, requirement (4) requires the
capability to dynamically extend the set of domain
types available for modeling, and this in turn requires
the capability to define domain metatypes (i.e., types
of types). We refer to this form of metamodeling as
ontological metamodeling since it is concerned with
describing what concepts exist in a certain domain
and what properties they have.

Figure 2 actually already contains an example of
ontological instantiation. The model element Lassie is
an ontological instance of Collie, and thus resides at a
lower ontological level than Collie. This expresses
the fact that in the real world, the mental concept
Collie is the logical type of Lassie.

Figure 2 only contains two ontological model levels
(O0 & O1) both contained within the linguistic level
M1, but this dimension can be naturally extended to
give further ontological levels. Figure 3 features

7 Previously also referred to as „physical“
metamodeling [EssenceReference].

another ontological level (O2), showing that Collie
can be regarded as an instance of Breed. An
ontological metatype such as Breed not only
distinguishes types like Collie and Poodle from other
types—such as CD and DVD—but can also be used
to define breed properties, for example, where a
particular breed first originated or from what other
breed it was developed.

L1

O1

O0

Collie Class

linguistic
instance-of

Lassie Object

linguistic
instance-of

type

O2

Breed Metaclass

linguistic
instance-of

type

ontological
instance-of

ontological
instance-of

instance

instance

L0

represents

represents

represents

O2

Figure 3 Ontological Metamodeling View

Figure 2 also makes another very important point
regarding the relationship of the two meta dimensions
(linguistic and ontological), since it is in fact a 90
degree clockwise rotation of Figure 2 (with level O2
added). Instead of arranging the linguistic metalevels
horizontally, so as to suggest that the metalevels of
the traditional infrastructure are linguistic, Figure 3
arranges the ontological metalevels horizontally so as
to suggest that the traditional metalevels are
ontological. Both arrangements are equally valid
because the traditional infrastructure made no
distinction between ontological or linguistic
instantiation, and thus made no choice about the
meaning of its metalevels.

Not only are both arrangements (or viewpoints)
equally valid, they are equally useful. Just as
ontological metmodeling is relegated to a secondary
role when the linguistic viewpoint is emphasized, the
linguistic metmodeling is relegated to a secondary
role when the ontological viewpoint is emphasized.
Ideally, therefore, ontological and linguistic
metamodeling should be given equal importance in an
MDD infrastructure, and neither should be
subservient to the other. Unfortunately this is not the
case in most of the recent infrastructure proposals.

In the case of the UML2.0/MOF2.0 it is the linguistic

 6

dimension which is emphasized. Levels Oo & O1 exist
within M1 but are not explicitly separated by a
metalevel boundary. Ontological metamodeling is not
excluded per se, but the encouraged mechanisms for
enabling it—profiles and stereotypes—have known
limitations. While it is possible to express that Collie
is an instance of Breed (see Figure 4), the full arsenal
of M1 modeling concepts is not available for
stereotype modeling, e.g., a visual model of
associations and generalization relationships between
metaconcepts.

Collie
«Breed»

Figure 4 Ontological metamodeling through

stereotypes

However, being able to freely model with
metaconcepts (i.e., make full use of an O2 level) has
long been recognized as being useful. Being able to
make use of metaconcepts such as TreeSpecies [5] or
Breed is a big advantage. Figure 5 shows perhaps one
of the most mature and established examples of
ontological metamodeling, the biological taxonomy
for living beings. Metaconcepts such as Breed,
Species, etc. serve to allow new classes of creatures
to be added to the taxonomy. In a software system,
they would facilitate the dynamic addition of new
types at runtime. Note that it is not possible to cast
Breed, Species, etc. as supertypes at the O1 level.
While it makes sense to say that Lassie is a Collie,
Dog, etc. it does not make sense to say that Lassie is a
Breed, Species, etc. Also, it is not a problem to
accommodate level O3 (see Figure 5) within the
ontological meta-dimension, while stereotypes are not
designed to support this.

Animal

Lassie

Biological
Rank

Chordate

Mammal

Carnivore

Canine

Dog

Collie

Kingdom

Phylum

Class

Order

Genus

Species

Breed

O0O1O2O3

Figure 5 Ontological Metamodel of Biological
Classification

Ontological metamodeling is particularly important
for model driven development because it is explicitly
called for in two of the main strategies for model
transformation defined in the MDA Users guide [8].
First, it is the basis for the marking mechanism which
is envisaged as one of the key ways to support the
user-driven definition of model transformation, that
is, to enable the use of technical requirement (6).
Second, it serves as the basis for defining mappings
in the “framework-based” version of type level
transformation [8]. This assumes the existence of an
ontologically predefined set of superclasses (with
associated predefined mappings) which users
specialize with their own application classes.

4 FINAL REMARKS
In this article we have defined a concrete set of
requirements that an ideal MDD infrastructure should
support, and have argued that the explicit distinction
of two orthogonal forms of metamodeling—linguistic
and ontological—is the key to fixing some of the
problems in the first generation MDD infrastructure
and to scaling it up to satisfy all of the identified
requirements.

The forthcoming revision of the OMG’s MDD
infrastructure in the UML2.0/MOF2.0 standards
represents a significant step forward in this regard in
that for the first time it accommodates two distinct
forms of instantiation. However, two significant
problems remain.

First, although the distinction is present, it is not
made explicit enough. For instance, while linguistic
metalevel boundaries are recognized, ontological
boundaries do not exist. Moreover, when coupled
with the fact that stereotypes are the strongly
preferred mechanism for metamodeling, there is a
strong suggestion linguistic metamodeling is the only
meaningful form of metamodeling.

Second, in the current profile mechanism there is still
a major bias in favor of defining predefined concepts
at the meta-level (i.e. as part of the modeling
language, given the current infrastructure
preoccupation with linguistic metalevels) rather than
as regular user types at the M1 level. This is despite
the fact that libraries or frameworks at the M1 level
have established a strong track record for making
predefined concepts available for direct use or
specialization by users. In fact, this form of reuse and
predefinition is explicitly exploited in the MDA User
Guide as a means for defining reusable type
mappings.

Despite this reservation, the new OMG MDD
infrastructure does represent a significant step

 7

forward and provides most of the identified technical
capabilities. We hope that the discussion in this paper
might help improve subsequent versions of the
infrastructure in the future.

4 REFERENCES
1. J. Mukerji & J. Miller (ed), Model Driven

Architecture, http://www.omg.org/cgi-
bin/doc?ormsc/2001-07-01, July 2001.

2. David S. Frankel, Model Driven Architecture:
Applying MDA to Enterprise Computing, OMG
Press, 2003

3. Object Management Group, Unified Modelling
Language 1.5 specification,
http://doc.omg.org/formal/03-03-01, March 2003

4. Object Management Group, Meta-Object Facility
1.4 specification, http://doc.omg.org/formal/02-
04-03, April 2002

5. J. Odell, Power Types, Journal of Object-
Oriented Programming, May 1994.

6. Colin Atkinson and Thomas Kühne,
Rearchitecting the UML Infrastructure
ACM journal "Transactions on Modeling and
Computer Simulation", Vol. 12, No. 4, 2002.

7. Jean Bézivin and Richard Lemesle, Ontology-
Based Layered Semantics for Precise OA&D
Modeling, Proceedings of the ECOOP'97
Workshop on Precise Semantics for
Object-Oriented Modeling Techniques, editors
Haim Kilov and Bernhard Rumpe, 1997.

8. OMG, MDA Guide V1.0,
http://doc.omg.org/formal/03-05-01, May 2003.

