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ABSTRACT 
There is general agreement that metamodeling is an 
essential foundation for model driven development, 
but there is less consensus on the precise form it 
should take and role it should play. In this article we 
first analyze the underlying motivation for model-
driven development and then derive a concrete set of 
requirements that a supporting infrastructure should 
satisfy. In particular, we discuss why the traditional 
“language definition” interpretation of metamodeling 
is not a sufficient foundation, and explain how it can 
be extended to unlock the full potential of model 
driven development. 

1  INTRODUCTION 
Ever since human beings started to program 
computers, software engineers have been working to 
raise the level of abstraction at which this activity 
takes place. The first FORTAN compiler was a major 
milestone in computer science since, for the first 
time, it allowed programmers to specify what the 
machine should do rather than how it should do it. 
The raising of programming abstraction levels has 
continued apace since then, and today’s object-
oriented languages enable programmers to tackle 
problems of a complexity undreamt of in the early 
days of programming.  

Model driven development (MDD) [1, 2] can be 
regarded as a natural continuation of this trend. 
Instead of requiring developers to use a programming 
language spelling out how a system is implemented, it 
allows them to use models to specifying what system 
functionality is required and what architecture is to be 
used.  

This move to yet higher-levels of specification holds 
the potential to drastically reduce the complexity of 
problems considered to be hard by today’s standards. 
Issues like object allocation, method lookup, 
exception handling, etc. which had to be programmed 
manually in the past are nowadays handled 
automatically by compilers behind the scenes. The 
aim of MDD is to achieve the same degree of 
automation for issues which today are very complex 
when dealt with manually, such as system 
persistence, interoperability, distribution, etc.  

Because of its potential, many MDD initiatives are 
underway and companies are already trying to deliver 
supporting technology. However, there is no 
universally accepted definition of precisely what 
MDD is and what support for MDD entails. In 
particular, many requirements for MDD support—
where they have been identified—remain implicit. In 
this article we therefore first review the underlying 
motivations for MDD and then derive a concrete set 
of requirements that MDD infrastructures should 
support. We finally analyze the technical implications 
of these requirements and discuss some of the basic 
principles by which they can be supported. 

2  REQUIREMENTS FOR MODEL DRIVEN 
DEVELOPMENT 
The underlying motivation for model-driven 
development is to improve productivity—that is, to 
increase the return that a company derives from its 
software development effort. It delivers this benefit in 
two basic ways— 

1. by improving the short-term productivity of 
developers—that is, by increasing the value of 
primary software artifacts in terms of how 
much functionality they deliver. 
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2. by improving the long-term productivity of 
developers—that is, by reducing the rate at 
which primary software artifacts become 
obsolete. 

The level of short-term productivity depends on how 
much functionality can be derived from a primary 
software artifact. The more executable functionality 
that can be generated, the higher the productivity. To 
date, most tool support for MDD is centered around 
this form of productivity, i.e., most tool vendors have 
focused their efforts on automating the production of 
code from visual models. However, this only tackles 
one of the two main aspects of MDD. 

The level of long-term productivity depends on the 
longevity of a primary software artifact. The longer 
an artifact remains of value, the greater the return 
derived from the effort that went into the creation of 
that artifact. Thus, a second and strategically even 
more important aspect of MDD is reducing the 
sensitivity of primary artifacts to change. Four main 
fundamental forms of change (I)-(IV) are of particular 
importance: 

I) Personnel  
As long as certain vital development knowledge 
is stored only in the minds of developers, such 
information will be lost in the all too frequent 
event of personnel fluctuations. To ensure that 
software artifacts outlive the tenure of their 
creator it is, therefore, essential that they be made 
accessible and useful to as wide a range of people 
as possible. In addition to being presented in as 
concise a way as possible, they should also take a 
form which maximizes the ease with which they 
can be understood by all interested stakeholders 
(including customers). The implication for the 
technical level is that primary software artifacts 
can be expressed using a concise and tailorable 
presentation. 

II) Requirements  
Changing requirements have always been a big 
problem in software engineering, but never more 
so than today. Not only must new features and 
capabilities be supplied at an ever increasing rate, 
but the impact of these changes on existing parts 
of the system must be low in terms of both 
maintenance efforts and in terms of disrupting 
online-systems. Today’s enterprise applications 
cannot simply be taken offline for extended 
periods of time in order to be extended. Instead, 
changes must be realized while a system is 
running. At a technical level, this implies the 
need to support the dynamic addition of new 
types at runtime.  

III) Development Platforms 
Development platforms are also in a state of 
constant evolution. Yet, primary software 
artifacts are dependent on the particular tool that 
created them, i.e., their lifetime is limited by the 
corresponding tool lifetime. This strongly 
suggests that artifacts should be decoupled from 
their development tools. Consequently, another 
technical requirement is that tools should store 
artifacts in formats that can be used by other 
tools, in other words, they should support high-
levels of interoperability. 

IV) Deployment Platforms  
Yet another growing problem for software 
organizations is keeping up with the rate of 
platform evolution. No sooner have developers 
mastered one new platform technology then 
another one comes along to take its place1. To 
increase the lifetime of primary software artifacts 
it is therefore necessary to shield them from 
changes at the platform level. Technically this 
means that it is necessary to automate (to the 
greatest extent possible) the process of obtaining 
platform specific software artifacts from platform 
independent ones through the application of user 
definable mappings.  

All these different forms of change can occur concur-
rently, so the techniques used to accommodate them 
must be at least compatible with one another, and at 
best complement each other synergistically. However, 
before one proceeds to pick and enhance existing 
techniques for this purpose, it is useful to summarize 
which technical requirements they should support. 

The need for concise models (I) can be addressed by 
providing a visual modeling language (see bullets (1)-
(3) below). Requiring models to be tailorable (I) and 
to enable the addition of new types at runtime (II) 
implies that the modeling language needs to be 
dynamically extensible (see (4) below). Finally, 
interoperability between tools (III) and user definable 
mappings from models to other models or code (IV) 
must be supported (see (5) & (6) below).  

In summary, a model driven development supporting 
infrastructure must define: 

1. the concepts that are available for the creation 
of models and the rules governing their use.  

2. the notation to be used in the depiction of 
models.  

                                                             
1 This is the form of change which is usually 
associated with the MDD/MDA approach. 
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3. how the elements of a model relate to (i.e., 
represent) real world elements, including 
software artifacts.  

4. concepts to facilitate dynamic user extensions to 
(1) and (2), and models created from them.  

5. concepts to facilitate the interchange of (1) and 
(2), and models created from them.  

6. concepts to facilitate user defined mappings 
from models to other artifacts (including code). 

Having clarified what capabilities we would like an 
MDD infrastructure to provide, we can turn our 
attention to how these requirements can be satisfied. 
In particular, we identify what approaches need to be 
integrated and what basic form they should take. 

3  TOWARDS AN MDD INFRASTRUCTURE 
As established above it is clear that visual modeling is 
one of the technological foundations for a 
technological MMD support, addressing requirements 
(1)-(3). It has a long record of success in engineering 
disciplines, including software engineering, since it 
makes effective use of human visual perception.  

The technology which has the best track record at 
supporting the flexible choice of modeling concepts 
(1) and extendable languages (4) (in its static form) is 
object-orientation. Object-oriented languages enable 
language users to extend the set of available types. 
Thus, object-orientation is generally accepted as one 
of the other key foundations of model driven 
development. 

Finally, the approach which has been the most 
effective at addressing the issues defined by 
requirements (5)-(6) is the use of metalevel 
descriptions. Beyond that, metalevel descriptions are 
also vital for supporting both static and dynamic 
aspects of requirement (4). Only with a metalevel 
above user types can models be fully customized to a 
certain domain or class of stakeholders, and only with 
a metalevel above classes is it possible to add new 
types dynamically at runtime2. Thus, all four forms of 
change essentially call for a descriptive metalevel 
which can be systematically accessed and 
manipulated by humans and tools.  

The challenge that we face in creating an 
infrastructure for model driven development is 
therefore to optimally integrate visual modeling, 
object-orientation, and metalevel description. In the 
following we first analyze the existing approach for 
doing this and then suggest some enhancements that 
                                                             
2 Not counting techniques that emulate this effect. 

better address the complete list of technical 
requirements (1)-(6). 

3.1 Traditional MDD Infrastructure 
Figure 1 illustrates the traditional four layer 
infrastructure that underpins the first generation of 
MDD technologies–namely the UML [3] and the 
MOF [4]. 

 

 

instance_of 

instance_of 

instance_of 

MOF 

User Data 

User Concepts 

UML Concepts 

M0 

M1 

M2 

M3 

 

Figure 1 Traditional OMG Modeling 
Infrastructure 

This infrastructure consists of a hierarchy of model 
levels, each (except the top) being characterized as 
“an instance” of the level above.  The bottom level, 
also referred to as M0 is said to hold the “user data”, 
i.e., the actual data objects the software is designed to 
manipulate. The next level, M1, is said to hold a 
“model” of the M0 user data. This is the level at which 
user models reside. Level M2 is said to hold a 
“model” of the information at M1. Since it is a model 
of a (user) model, it is often referred to as a 
metamodel. Finally, level M3 is said to hold a model 
of the information at M2, and hence is often 
characterized as the meta-metamodel. For historical 
reasons it is also referred to as the MOF (Meta Object 
Facility). 

This venerable four layer architecture has the 
advantage of easily accommodating new modeling 
standards (e.g., the CWM) as instances of MOF at the 
M2 level. MOF aware tools can thus support the 
manipulation of new modeling standards and enable 
information interchange across MOF compatible 
modeling standards. 

Although it has been a successful foundation for the 
first generation of MDD technologies, this traditional 
infrastructure does not scale up well to handle all 
technical requirements (1)-(6). In particular, four key 
problems can be identified.  

a) There is no explanation of how entities within the 
infrastructure relate to the real world. Are the real 
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world elements accommodated within the 
infrastructure or do they lie outside? 

b) There is an implication that all instance-of 
relationships between elements are of 
fundamentally the same kind. Is this a valid 
approach or should one be more discriminating?  

c) There is no explicit principle for judging at 
which level a particular element should reside. 
Using a single instance-of relationship to define 
the metalevels3 always seems to introduce 
inconsistencies in one way or the other. Is it at all 
possible to use instantiation to define metalevel 
boundaries and if so how? 

d) There is a preference for the use of metalevel 
description (sometimes in the form of 
stereotypes) to provide predefined concepts. How 
can the other way of supplying predefined 
concepts—libraries of (super)-types, to be used 
or specialized—be integrated within the 
architecture? 

To address these problems it is necessary to adopt a 
more sophisticated view of the role of metamodeling 
in MDD and to refine the simple “one-size-fits-all” 
view of instantiation. Regarding all instance-of 
relationships as being of essentially the same form 
and playing the same role does not scale up well for 
all requirements (1)-(6).   Instead, it is helpful to 
identify two separate orthogonal dimensions of 
metamodeling, giving rise to two distinct forms of 
instantiation [6, 7]. One dimension is concerned with 
language definition and hence makes use of linguistic 
instantiation. The other dimension is concerned with 
domain definition and thus uses ontological 
instantiation. Both forms occur simultaneously, and 
serve to precisely locate a model element with the 
language-ontology space.  

3.2 Linguistic Metamodeling 
As stated before, technical requirements (1)-(3) 
essentially state the need for a language definition 
capability (see Table 1). Much of the recent work on 
enhancing the infrastructure has therefore focused on 
the use of metamodeling as a language definition tool. 
With this emphasis, the linguistic instance-of 
relationship is viewed as being dominant, and levels 
M2 and M3 are essentially viewed as being language 
definition layers. 

This approach relegates ontological instance-of 
 
                                                             
3 Sometimes know as the strictness condition for 
metamodelling. 

concept purpose UML solution 

abstract 
syntax 

the concepts from 
which models are 
created à (1) 

class diagram at 
level M2   

concrete 
syntax 

concrete 
rendering of these 
concepts à (2) 

UML notation, 
informally 
specified  

well-
formed-
ness 

rules for the 
application of the 
concepts à (1) 

constraints on 
the abstract 
syntax (e.g., 
using OCL) 

semantics 
description of the 
meaning of a 
model à (3) 

natural 
language 
specification 

Table 1 Language Definition 

relationships, which relate user concepts to their 
domain types, to a secondary role. In other words, 
whereas linguistic instance-of relationships cross (and 
in fact form the basis for) linguistic metalevels, 
ontological instance-of relationships do not cross 
such levels, but relate entities within a given level. 
Figure 2 shows this latest interpretation of the four 
layer architecture as embraced by the forthcoming 
UML 2.0 and MOF 2.0 standards. Although the 
latter take a predominantly linguistic view, it is very 
useful to nevertheless let ontological (intra-level) 
instantiation establish its own kind of ontological 
(vertical) meta level boundaries, as indicated by the 
different shades within level M1 in Figure 2. 

As well as making the existence of two orthogonal 
metadimensions explicit, Figure 2 also illustrates the 
relationship between model elements and 
corresponding real world elements. The M0 level is 
no longer inhabited by user objects, but rather by the 
real world elements that they model4. Note that the 
real Lassie is said to be represented by object Lassie, 
i.e., “instance-of” is no longer used to characterize the 
real Lassie as an instance of Collie5. User objects 
(i.e., model representatives of real world objects6) 
now occupy the M1 level, along with the types of 
                                                             
4 The lightbulb is meant to denote the mental concept 
“Collie”. 
5 It is possible to make such a statement, but it 
remains a derived property of the real Lassie (via 
object Lassie). 
6 Note that user data is also considered to be part of 
the real world, even though it is artificial and may 
even represent other real world elements. 
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which they are (ontological) instances. From level M1 
on, every level is regarded as a model expressed in 
the language defined at the level above. 

M1

ontological
instance-of

Collie Lassie

Class Object

linguistic
instance-of

linguistic
instance-of

M0

M2

M3

type

Class

linguistic
instance-of

linguistic
instance-of

instance

O1 O0

representsrepresents

instance-of

 

Figure 2 Linguistic Metamodeling View 

3.3 Ontological Metamodeling 
Although linguistic metamodeling7 addresses many of 
the technical requirements, it is not sufficient on its 
own. In particular, requirement (4) requires the 
capability to dynamically extend the set of domain 
types available for modeling, and this in turn requires 
the capability to define domain metatypes (i.e., types 
of types). We refer to this form of metamodeling as 
ontological metamodeling since it is concerned with 
describing what concepts exist in a certain domain 
and what properties they have. 

Figure 2 actually already contains an example of 
ontological instantiation. The model element Lassie is 
an ontological instance of Collie, and thus resides at a 
lower ontological level than Collie. This expresses 
the fact that in the real world, the mental concept 
Collie is the logical type of Lassie.  

Figure 2 only contains two ontological model levels 
(O0 & O1) both contained within the linguistic level 
M1, but this dimension can be naturally extended to 
give further ontological levels. Figure 3 features 

                                                             
7 Previously also referred to as „physical“ 
metamodeling [EssenceReference]. 

another ontological level (O2), showing that Collie 
can be regarded as an instance of Breed. An 
ontological metatype such as Breed not only 
distinguishes types like Collie and Poodle from other 
types—such as CD and DVD—but can also be used 
to define breed properties, for example, where a 
particular breed first originated or from what other 
breed it was developed. 
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Lassie Object

linguistic
instance-of

type

O2

Breed Metaclass

linguistic
instance-of

type

ontological
instance-of

ontological
instance-of

instance

instance

L0

represents

represents

represents
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Figure 3 Ontological Metamodeling View 

Figure 2 also makes another very important point 
regarding the relationship of the two meta dimensions 
(linguistic and ontological), since it is in fact a 90 
degree clockwise rotation of Figure 2 (with level O2 
added).  Instead of arranging the linguistic metalevels 
horizontally, so as to suggest that the metalevels of 
the traditional infrastructure are linguistic, Figure 3 
arranges the ontological metalevels horizontally so as 
to suggest that the traditional metalevels are 
ontological. Both arrangements are equally valid 
because the traditional infrastructure made no 
distinction between ontological or linguistic 
instantiation, and thus made no choice about the 
meaning of its metalevels.  

Not only are both arrangements (or viewpoints) 
equally valid, they are equally useful. Just as 
ontological metmodeling is relegated to a secondary 
role when the linguistic viewpoint is emphasized, the 
linguistic metmodeling is relegated to a secondary 
role when the ontological viewpoint is emphasized. 
Ideally, therefore, ontological and linguistic 
metamodeling should be given equal importance in an 
MDD infrastructure, and neither should be 
subservient to the other. Unfortunately this is not the 
case in most of the recent infrastructure proposals.  

In the case of the UML2.0/MOF2.0 it is the linguistic 
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dimension which is emphasized. Levels Oo & O1 exist 
within M1 but are not explicitly separated by a 
metalevel boundary. Ontological metamodeling is not 
excluded per se, but the encouraged mechanisms for 
enabling it—profiles and stereotypes—have known 
limitations. While it is possible to express that Collie 
is an instance of Breed (see Figure 4), the full arsenal 
of M1 modeling concepts is not available for 
stereotype modeling, e.g., a visual model of 
associations and generalization relationships between 
metaconcepts.  

 

 

Collie 
«Breed» 

 
Figure 4 Ontological metamodeling through 

stereotypes 

However, being able to freely model with 
metaconcepts (i.e., make full use of an O2 level) has 
long been recognized as being useful. Being able to 
make use of metaconcepts such as TreeSpecies [5] or 
Breed is a big advantage. Figure 5 shows perhaps one 
of the most mature and established examples of 
ontological metamodeling, the biological taxonomy 
for living beings. Metaconcepts such as Breed, 
Species, etc. serve to allow new classes of creatures 
to be added to the taxonomy. In a software system, 
they would facilitate the dynamic addition of new 
types at runtime. Note that it is not possible to cast 
Breed, Species, etc. as supertypes at the O1 level. 
While it makes sense to say that Lassie is a Collie, 
Dog, etc. it does not make sense to say that Lassie is a 
Breed, Species, etc. Also, it is not a problem to 
accommodate level O3 (see Figure 5) within the 
ontological meta-dimension, while stereotypes are not 
designed to support this.  
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Figure 5 Ontological Metamodel of Biological 
Classification 

Ontological metamodeling is particularly important 
for model driven development because it is explicitly 
called for in two of the main strategies for model 
transformation defined in the MDA Users guide [8]. 
First, it is the basis for the marking mechanism which 
is envisaged as one of the key ways to support the 
user-driven definition of model transformation, that 
is, to enable the use of technical requirement (6).  
Second, it serves as the basis for defining mappings 
in the “framework-based” version of type level 
transformation [8]. This assumes the existence of an 
ontologically predefined set of superclasses (with 
associated predefined mappings) which users 
specialize with their own application classes.  

4 FINAL REMARKS 
In this article we have defined a concrete set of 
requirements that an ideal MDD infrastructure should 
support, and have argued that the explicit distinction 
of two orthogonal forms of metamodeling—linguistic 
and ontological—is the key to fixing some of the 
problems in the first generation MDD infrastructure 
and to scaling it up to satisfy  all of the identified 
requirements. 

The forthcoming revision of the OMG’s MDD 
infrastructure in the UML2.0/MOF2.0 standards 
represents a significant step forward in this regard in 
that for the first time it accommodates two distinct 
forms of instantiation. However, two significant 
problems remain.  

First, although the distinction is present, it is not 
made explicit enough. For instance, while linguistic 
metalevel boundaries are recognized, ontological 
boundaries do not exist. Moreover, when coupled 
with the fact that stereotypes are the strongly 
preferred mechanism for metamodeling, there is a 
strong suggestion linguistic metamodeling is the only 
meaningful form of metamodeling. 

Second, in the current profile mechanism there is still 
a major bias in favor of defining predefined concepts 
at the meta-level (i.e. as part of the modeling 
language, given the current infrastructure 
preoccupation with linguistic metalevels) rather than 
as regular user types at the M1 level. This is despite 
the fact that libraries or frameworks at the M1 level 
have established a strong track record for making 
predefined concepts available for direct use or 
specialization by users. In fact, this form of reuse and 
predefinition is explicitly exploited in the MDA User 
Guide as a means for defining reusable type 
mappings. 

Despite this reservation, the new OMG MDD 
infrastructure does represent a significant step 
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forward and provides most of the identified technical 
capabilities. We hope that the discussion in this paper 
might help improve subsequent versions of the 
infrastructure in the future. 
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