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Abstract 

This paper discusses the life of Josef Stefan, namesake of both the Stefan-

Boltzmann constant, used in radiation heat transfer, and the Stefan number, the 

dimensionless variable used in solid-liquid phase change processes. Stefan was also the 

first to accurately measure the thermal conductivity of gases. He was a beloved teacher 

and a mentor to Ludwig Boltzmann. Although Stefan made broad and seminal 

contributions to the thermal sciences, he is not a well-known figure. 

 

Nomenclature 

a – empirical constant 

A – proportionality constant, W/m2 K4 

Ac – cross-sectional area, m2 

B – integration constant 

cp – specific heat at constant temperature, kJ/kgK 

cv – specific heat at constant volume, kJ/kgK 

E – radiative power, W/m2 

f(t) – general temperature variation, K 

h – ice thickness, m 
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k – thermal conductivity, W/mK 

m – mass, kg 

p – pressure, N/m2 

Q – total heat transfer, W 

t – time, sec 

T – temperature, K 

x – distance, m 

Greek 

β – integration constant 

θ – temperature difference, K 

λ – latent heat of fusion, J/kg 

μ – material constant 

ρ – density, kg/m3 

σ – Stefan-Boltzmann constant, W/m2K4 

 

Introduction 

It has been said that, “Eponymity, not anonymity, is the standard of recognition in 

science.” [1] Reynolds and Planck are cases in point. However, one who is multiply 

eponymous, yet virtually anonymous, is the 19th century physicist, Josef Stefan 

(Figure 1). He empirically determined the T4 radiation law, and along with his student, 

Ludwig Boltzmann, who independently determined the law from first principles, lent 

their names to the Stefan-Boltzmann constant. Stefan also studied the moving boundary 

problem, specifically water freezing on the polar ice caps, and from that work his name is 



  

 3 

given to the ratio of sensible heat to the latent heat of fusion, the Stefan number. Despite 

such honors, Stefan remains almost unknown in the scientific community. 

 

Early Life and Education 

 Josef Stefan was born March 24, 1835 in the small village of St. Peter, just 

outside the town of Klagenfurt, in what is now Austria. Although his childhood home has 

been destroyed, there is a plaque commemorating his birth on a home rebuilt on the same 

location at 88 Ebentalerstrasse (Figure 2). Klagenfurt is home to a large ethnic Slovenian 

population, and his parents descended from these peoples. His family was poor growing 

up; his father Aleš worked as a miller and baker, and his mother Marija Startinik was a 

maidservant. Early on he showed great academic talent and wished to study at the local 

gymnasium, but as an illegitimate child was unable to attend, so his parents married when 

Josef was eleven years old. In 1848, the March Revolution heightened awareness of the 

many ethnicities within the Austro-Hungarian empire, and the teenage Stefan began to 

publish poetry and other musings in Slovenian. His poems touched on romantic, patriotic 

and scientific themes. However, the writings were not well-received by some within the 

Slovenian literary community, and by his early twenties he abandoned altogether his 

Slovenian poetry and prose [2, 3].  

 Stefan was an energetic and focused boy, and after completing his studies at the 

gymnasium, he chose mathematics and physics over the Benedictines and enrolled at the 

University of Vienna in 1853. While at the University, he worked with Karl Ludwig, a 

professor of physiology, and began to hone his experimental expertise by studying the 

flow of water in tubes. After graduating in 1857, he taught physics for pharmacy 
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students. During his studies, Stefan realized he had an aptitude for research and began to 

publish his work in the scientific literature. He accepted a position with Ludwig at the 

Physiology Institute at the University of Vienna, where he improved and stengthened his 

experimental skills. Just a year after graduating, he passed his doctoral examination and 

became a Privatdozent (Instructor) in mathematical physics at the University of Vienna.

 Although Stefan found the position at the Physiological Institute rewarding, 

especially given his impoverished childhood and years of study, he desired a more 

physics-related position where he could apply his formal education. Ludwig and a 

colleague, Ernst Brücke, lobbied hard to appoint Stefan a corresponding member of the 

Austrian Academy of Sciences and he was granted this status in 1860. Still, his goal of 

performing physics research seemed distant until events turned in his favor. He was 

offered a full professorship in mathematics and physics at the University of Vienna in 

1863, becoming the youngest to hold that rank in Austria. Then due to an untimely death 

of one of its researchers, a position opened at the University’s Institute of Physics, which 

Stefan immediately accepted. Two years later, in 1865, Andreas von Ettinghausen retired 

as Director of the Institute and Stefan was offered the post. Within the space of a few 

years, Stefan went from being in a fortunate but not wholly satisfactory position in 

physiology to the head of what would become a renowned center for scientific research. 

For the rest of his life, Stefan took advantage of this great opportunity. He began 

publishing in diverse subjects including acoustics, electrodynamics and optics. His peers 

in the scientific community began to recognize his work when he received the inaugural 

Ignaz L. Lieben Prize in 1865, which was awarded every three years to young citizens of 

the Austro-Hungarian empire for the best scientific paper. The Lieben Prize, which has 
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its own fascinating history [4], was discontinued in 1938 because of economic and social 

unrest in Europe, but was revived again in 2004, available for young scientists from all of 

the nations that comprised the former Hapsburg empire. 

 During his lifetime, Stefan ably served the University of Vienna in various 

administrative positions, including Dean of the Philosophical Faculty from 1869-1870, 

and Rector from 1876-1877. He was also the Secretary and Vice President of the 

Austrian Academy of Sciences. In addition to his scientific and administrative talents, 

Stefan was a warm and beloved teacher. He gave very energetic, animated lectures and 

was said to be exhausted upon their completion [5]. His students not only felt 

comfortable around him but were motivated to do high-level scientific research. One of 

his students later remarked on the collegial atmosphere that Stefan maintained at the 

cramped, underfunded Institute on Erdbergstrasse, far from the central campus buildings 

of the University, “Nothing diminishes the excellence of his character, the magic [Stefan] 

worked on the young academics. That magic could only be experienced 

personally…Erdberg stayed with me my whole life as a symbol of serious, inspired 

experimental activity.” [6] That student, who walked into the Institute to complete his 

doctoral studies under Stefan just as he became its Director, was none other than Ludwig 

Boltzmann. 

 

Stefan and Boltzmann 

 Stefan and his star pupil Boltzmann were a study in contrasts. Although he was 

the Director of the Institute, Stefan was only nine years older than Boltzmann. Boltzmann 

grew up in a solid middle-class family, one which valued education; Stefan was born into 
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a peasant family with illiterate parents. Stefan was an outstanding experimentalist and an 

able theoretician; Boltzmann was a talented experimentalist whose genius and fame came 

from his analytical work. Boltzmann was a peripatetic traveler, especially for his time, 

and an active promoter of his ideas, while Stefan preferred sleeping in his lab, sometimes 

not leaving the Institute building for days at a time, and publishing in the local scientific 

journal. Stefan spent his entire academic career at the University of Vienna; Boltzmann 

used his academic success to extract favorable employment terms from universities 

throughout Europe. Boltzmann married soon after receiving his doctorate and had 5 

children; Stefan remained single until almost the end of his life and had no children. He 

was personable and outgoing, a well-liked teacher and administrator, but very focused on 

his work, so much so that he had few friends and almost no social life. Boltzmann, on the 

other hand, enjoyed social settings but lacked interpersonal skills and suffered from 

severe mood swings [7]. Despite these differences in personalities, both were dedicated 

and hard-working physicists. 

 In the collection of his writings, Populäre Schriften, Boltzmann described his 

mentor Stefan: “He used the tools of advanced mathematics and understood how to 

present the most difficult developments in the clearest and most lucid form without ever 

having to resort to mathematical formalism…[he] never tried to flaunt [his] mental 

superiority. [His] uplifting humor, which turned the most difficult discussion into an 

entertaining game for the student, made such a deep impression on me.” [6] 
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The Diathermometer and Thermal Conductivity Measurements of Gases 

 Upon receiving his Ph.D., Stefan embarked on a research program that covered 

many fields. He was instrumental in bringing Maxwell’s electrodynamics and kinetic 

theory to continental Europe and encouraged Boltzmann to improve his English by 

studying Maxwell’s works. One of Stefan’s early, major contributions to the field of heat 

transfer was the first accurate measurement of the thermal conductivity of gases. 

 To put this in context, it must be understood that a great debate was roiling about 

whether or not gases could even conduct heat. In 1780, Priestley performed experiments 

wherein he believed he was measuring a gas’ “power to conduct heat.” However, this 

turned out to be the specific heat, which at the time was a relatively new scientific 

concept. Later, in 1786, Rumsford examined “the conducting power of the artificial airs 

or gases,” and while doing so stumbled on a completely new mode of heat transfer, 

convection. This forced him to conclude in 1799 that a gas was unable to conduct heat, 

despite his own experimental evidence and physical intuition to the contrary. 

Unfortunately, because of Rumsford’s reputation within the scientific community, his 

conclusions were not seriously challenged for many years. It was not until 1861 that 

Magnus used an electrically heated platinum wire surrounded by different gases to show 

conclusively that gases do conduct heat. For an early history of thermal conductivity and 

experimental measurements, see Burr [8].  

At about the same time that Magnus published his results, two greats weighed in 

on the controversy, albeit from the theoretical perspective. Maxwell published in 1860 his 

groundbreaking paper on the dynamical theory of gases and in it calculated a theoretical 

value of the thermal conductivity of a gas and showed its dependence on the temperature 
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and pressure. In it he noted, “It would be almost impossible to establish the value of the 

conductivity of a gas by direct experiment, as the heat radiated from the sides of the 

vessel would be far greater than the heat conducted through the air, even if currents could 

be entirely prevented.”[9] Two years later, Clausius both admired and admonished 

Maxwell. Clausius recognized the work for its “elegance of mathematical developments,” 

but pointed out that Maxwell “has treated the conduction of heat too incompletely.” [10] 

Clausius then showed that the thermal conductivity increased with temperature and was 

independent of pressure when the gas was ideal, and using his own methods calculated 

the thermal conductivity of air to be k = 0.0115 W/mK. Subsequently, Maxwell revised 

his work [11] and rederived relations for the thermal conductivity of a gas and calculated 

its value for air and showed that oxygen, nitrogen and carbon monoxide had about the 

same thermal conductivity, carbon dioxide had a much lower value than the diatomic 

gases, and that of hydrogen to be higher by about a factor of six. Using Maxwell’s 

equation for the thermal conductivity of a gas, the value can be calculated to give k = 

0.0218 W/mK. 

 Not one to back down from the challenge, Stefan brought to bear his enormous 

experimental capabilities and insight to defy Maxwell’s words. He knew of Clausius’ 

conclusions on the behavior of thermal conductivities and was well aware of the 

convincing experimental work of Magnus. Understanding that convection would skew 

the results, Stefan built an apparatus which heated the air at the top and cooled it at the 

bottom. In fulfillment of Maxwell’s words, he abandoned this design because he was 

unable to control the heat loss through the walls. He then constructed a glass bulb to 

contain the air and submerged it in an ice bath. However, for small bulbs, the temperature 
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changes were too small to measure, and for large bulbs convection affected the results. 

 Stefan realized that measuring the thermal conductivity of a stationary gas would 

entail too large a risk of introducing convection effects, so he formulated a way to 

incorporate time-dependency into his measurements. He envisioned placing a gas in the 

gap between two surfaces and equating the total heat transfer by Fourier’s law with the 

change of energy absorbed by the gas [12], 

 c vkA dt dQ mc d
x
θ θ− = =
Δ

 (1) 

After rearranging and integrating, he showed, 

 
0

exp c

v

kA t
mc x

θ
θ

⎛ ⎞
= −⎜ ⎟Δ⎝ ⎠

 (2) 

where θ0 was the initial temperature difference between the two surfaces. For an ideal gas 

at constant volume, the relative change in the temperature is equal to the relative change 

in pressure, so, 

 
0

exp c

v

kAp t
p mc x

⎛ ⎞Δ
= −⎜ ⎟Δ Δ⎝ ⎠

 (3) 

 Stefan then devised an apparatus which he called a diathermometer (Figure 3), 

made of concentric copper cylinders containing the candidate gas in between. A 

manometer was connected to the inside portion of the inner cylinder and the outer 

cylinder was immersed in a constant temperature bath. He measured the change in 

pressure over a given time interval and from Eqn. 3 calculated the thermal conductivity 

of the gas.  

 Using his diathermometer, Stefan calculated the thermal conductivity of air to be 

k = 0.0234 W/mK [2], which is 11% off today’s accepted value of k = 0.0263 W/mK (at 
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300K) [13]. Almost as importantly, his data also conclusively showed that the thermal 

conductivity did not vary with the pressure, verifying the predictions of Maxwell and 

Clausius. Remarkably, Stefan’s value also compared very well (7%) to the theoretical 

value calculated using Maxwell’s model. Later, Stefan [14] used his diathermometer to 

measure the thermal conductivities of hydrogen, nitrous oxide, methane, carbon 

monoxide and carbon dioxide with similar success. The diathermometer which is 

described by Stefan in his first thermal conductivity paper [12], while the diagram 

appeared in his second [14], is one of the very few figures that Stefan published in his 88 

papers. Boltzmann described the diathermometer as “fantastically simple,” and that it not 

only served to measure the thermal conductivity “with an exactness not previously 

thought possible,” but “it proved to lend glowing support to every other prediction of 

kinetic theory.”[6] 

 

The T4 Radiation Law 

 In one of the wonderfully coincidental scientific events, where seemingly 

disparate threads are woven together in one cloth, Stefan’s thermal conductivity 

measurement work helped him determine the law for which he is most recognized. 

Dulong and Petit [15] published in 1817 experimental results from what they considered 

to be purely radiation heat transfer between a spherical bulb and a spherical chamber. 

Both bare and silvered bulbs were tested and heated only up to about 573K, while the 

chamber temperature was kept around 273K. Various gases filled the gap between the 

two, and they measured the rate of change of temperature of the bulb over a range of 

pressures. Their model for the radiative power was, 
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 ( ) TE T aμ=  (4) 

where μ was a constant dependent on the material and size of the body, a was an 

empirical constant for all materials, a = 1.0077, and the temperature T, was given in 

degrees centigrade. By extrapolating the data to zero pressure, they thought that the 

effects due to conduction and convection had been eliminated. However, Stefan 

understood from his previous work that the thermal conductivity of gases was not a 

function of pressure. By lowering the pressure between the two spheres, Dulong and Petit 

managed to eliminate convection effects, but not those of conduction.  

Stefan suspected the accuracy their relation (Eq. 4) and began to reformulate a 

model to better describe the data. He found that the difference of the temperatures raised 

to the fourth power matched the trends of Dulong and Petit’s experimental values and 

gave good agreement [16]. His equations for the radiative power of the two bodies were, 

 4 4
1 1 2 2( ) , ( )E T AT E T AT= =  (5) 

where “A depends on the size and the surface the body,” and importantly the temperature 

was given in absolute values. 

By including a simple conduction term to his radiative model and making some 

straightforward assumptions based on the Dulong and Petit apparatus, Stefan estimated 

that 10-15% of the cooling for the bare bulb and up to 50% of the cooling of the silvered 

bulb was due to conduction. Using his T4 model, Stefan found that he could get slightly 

better agreement with the experimental data than the Dulong and Petit model. The 

question was, how would it perform at higher temperatures? 

It was widely known at the time that the cooling rate was much higher at higher 

temperatures, and Stefan was eager to test his model in that range. He came across the 
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results from Tyndall [17] who reported heat transfer data for a platinum wire over a wide 

temperature range. As stated by Stefan [16], “From weak red heat (about 525°C) to 

complete white heat (about 1200°C) the intensity of radiation increases from 10.4 to 122, 

thus nearly twelvefold (more precisely 11.7). The ratio of the absolute temperature 

273+1200 and 273+525 raised to the fourth power gives 11.6.” (translation from Strnad 

[18]) This observation gave Stefan additional confidence in his T4 model, especially at 

high temperatures. He then applied his T4 model to the experimental results of Provostaye 

and Desains [19], Draper [20], and Ericsson [21] and found much better agreement using 

his model rather than the Dulong-Petit model, especially at higher temperatures. 

After distilling the data from all of the sources, he concluded that for a body at 

373K and another at 273K, the radiative power was 697.8 W/m2, although he was not 

terribly confident in the result. He noted that this analysis had a “hypothetical nature and 

reasoned support for [it] was impossible, so long as measurements are not made of 

radiation to surroundings at absolute zero, or at least a very low temperature” (translation 

from Dougal [22]). Although Stefan himself never computed a value for the 

proportionality between the radiative power and the differences in the temperature to the 

fourth power, based on his deduced heat flux between the two bodies mentioned above, it 

can easily be determined to be 5.056x10-8 W/m2K4. 

 In the last portion of his paper, Stefan used his model to determine the 

temperature of the Sun. He first reviewed the results of the experimenter Pouillet, who 

used the Dulong and Petit model to calculate the temperature of the Sun to be between 

1734-2034K, which was recognized to be low. Using the Pouillet data and his T4 model, 

Stefan estimated the Sun’s temperature to fall between 5859-10420K. Stefan then 
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examined the experimental data of Soret, who measured the radiant energy of the Sun 

and estimated its temperature to be between 2446-2546K. Stefan reevaluated Soret’s data 

using his T4 model and estimated a temperature range of 5580-5838K. Both of his 

estimates, using his model and the experimental data of others gave the first accurate 

calculation of the temperature of the Sun and is in line with the currently accepted value 

of about 5770K.  

Despite the success Stefan had in modeling heat transfer due to radiation, there 

were errors which fortunately balanced out so that his model gave reasonable agreement 

with the data. First, there were mistakes in the experimental data reported by Tyndall, 

over which, of course, Stefan had no control. It has since been shown that for platinum, 

the ratio of temperatures for “radiation increases from 10.4 to 122” is 18.6, and not the 

11.6 as given by Tyndall. In addition, platinum is not a perfect radiator, and the T4 law 

only holds for a blackbody; for real materials, the emissivity must be considered. 

Regardless, Stefan was able to get good agreement using his T4 model with a variety of 

independent data sets. 

 In his defense, Stefan provided some important insights. From his thermal 

conductivity measurements and studies of kinetic theory, he understood the importance of 

using absolute temperature units and not those based on an arbitrary scale to measure the 

radiation heat transfer. This was not well understood in his day. Without his intuition and 

experience of thermal behavior, the T4 law could not have been deduced from 

experimental data. Also, Stefan was able to present a formula which was accurate over a 

wide temperature range, and was valid especially at high temperatures, where the models 

of the day had trouble getting good agreement. 
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 Why a man of Stefan’s technical ability did not simply replicate the experiments 

and check the data himself is not known. Although the Institute produced outstanding 

scientific results, it was not well-supported either financially or politically by the 

University, so there may not have been sufficient funds to carry out the work 

independently. Boltzmann complained about the poor quality of students in Vienna, 

indicating that perhaps there were not enough talented or motivated students to do the 

experiments.  

 Despite the success Stefan had modeling radiation heat transfer data, his results 

were not well accepted until five years later when Boltzmann, while a professor in Graz, 

derived independently an equation with the same temperature dependence using the 

radiation pressure of light [23, 24], 

 4( )E T Tσ=  (6) 

The proportionality constant between the emissive power for a blackbody and T4, 

familiar to us now as the Stefan-Boltzmann constant, is 5.67x10-8 W/m2K4, about 11% 

higher than that estimated by Stefan, and Eqn. 6 is known as the Stefan-Boltzmann law. 

 

The Moving Boundary Problem: Freezing on the Polar Ice Caps 

After publishing his model of the T4 radiation law, Stefan turned his attention to 

heat conduction and diffusion in fluids, as well as phase change problems, including 

evaporation. It is not known precisely why Stefan chose to study this class of problems, 

but certain events occurred that permit an educated guess. From 1872 to 1874, Karl 

Weyprecht helped lead the Austro-Hungarian Polar Expedition, and took many 

meteorological measurements. While their ships were stuck in ice floes during the winter, 
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crew members regularly recorded the ice growth rate and air temperature. In 1876, 

Weyprecht and co-leader Julius von Payer reported their results to the Austrian Academy 

of Sciences. Since Stefan was a member of the Academy he surely was aware of their 

data [25]. 

 A colleague of Stefan’s at the University of Vienna, Julius von Hann, the director 

of the Institute of Meteorology and Geodynamics, alerted Stefan to ice growth and air 

temperature data taken by British and German explorers during earlier expeditions. These 

trips were financed by their respective governments, presumably to find the Northwest 

Passage, allowing easier access to the riches of the Far East [26]. These data provided an 

interesting challenge to Stefan. Instead of calculating the heat transfer across a fixed 

boundary, as he did in the measurement of the thermal conductivity of gases, modeling 

the growth rate of ice had to include a time-dependent or moving boundary. 

Unbeknownst to Stefan, some work on the moving boundary problem had already 

been done. In 1762, Joseph Black, a professor of medicine at the University of Glasgow 

in Scotland, studied the ice-water phase change problem and identified the phenomenon 

of latent heat [27], while Franz Neumann presented solutions to the moving boundary 

problem in a series of lectures given around 1860. However, his work was not published 

until 1901 by Weber [28]. 

 Stefan began his paper [29] by acknowledging the data taken during the British 

and German expeditions, then proceeded to outline his first solution to the moving 

boundary problem. He applied a simple conservation of energy model at the solid-liquid 

interface. As the liquid became solid, it liberated heat per unit area in the amount, λρdh. 

Assuming a linear temperature profile in the ice, Stefan used Fourier’s law to calculate 
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the amount of heat conducted away from the freezing front per unit area, 
( )
Tk dt

h t
Δ , where  

ΔT was the temperature difference within the ice between the water-ice interface, which 

is at the fusion temperature, and the air-ice interface. In the first part of his analysis the 

air-ice interface temperature remained constant. Stefan’s experience measuring the 

thermal conductivity using time-dependent methods served him well in formulating this 

model. The explorers reported the temperature data of the air, so ΔT was readily 

available. By equating the liberation of the latent heat with the amount conducted away 

then integrating, Stefan showed that the square of the ice thickness was a linear function 

of time, 

 2 2( ) k Th t t
ρ λ

Δ
=  (7) 

Stefan realized that this was an oversimplification of the problem, but 

nevertheless compared his model with the experimental data at hand and gave some error 

estimates, showing rough agreement between the ice thickness and the square root of 

time. One of the problems in acheiving agreement between the theory and experimental 

results was obtaining an accurate value for the thermal conductivity of ice. Stefan used an 

average of three quoted values, which turned out to be about 20% smaller than what is 

currently accepted. Also, since Stefan himself did not take the measurements, it was 

impossible to control the experimental parameters or guarantee the accuracy of the 

results. Therefore he used the data at hand and made appropriate assumptions. 

 Knowing that a linear temperature profile in the solid phase gave insufficient 

agreement, Stefan then modeled the air temperature above the air-solid interface as a 
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function of time and assumed this as the interface temperature. When solving for the ice 

thickness using this time varying temperature, Stefan found, 

 2

0

2( )
tkh t Tdt

ρλ
= Δ∫  (8) 

calling the integral term the Kältesumme, or the cold sum. Using this model, he found 

much better agreement with the data taken from both the British and German 

expeditions [26]. Although it is strongly presumed that Stefan was aware of the results of 

the Austro-Hungarian Polar Expedition, for unknown reasons he never mentioned their 

data in his paper. 

 Stefan then outlined the mathematical model of the moving boundary problem, 

now commonly referred to as the Stefan problem, by giving the heat diffusion equation,  

 
2

2

( , ) ( , )

p

T x t k T x t
t c xρ

∂ ∂
=

∂ ∂
 (9) 

He defined the location of the ice-air interface as x = 0, and x = h(t) the location of the 

ice-liquid interface. The temperature at the ice-liquid interface he denoted as zero and at 

the ice-air interface, T = f(t), where f was a general temperature distribution. He then 

wrote the heat balance at the ice-liquid interface, 

 
x h

dh Tk
dt x

ρλ
=

∂
= −

∂
 (10) 

Then, by expressing the temperature, which is a function of both space and time as a total 

differential, 

 0
x h

T T dhdT
t x dt=

∂ ∂
= + =
∂ ∂

 (11) 

he was then able to eliminate the dh/dt term between Eqns. 10 and 11 to get, 
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2

x h

T k T
t xρλ =

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (12) 

which yielded the solution, 

 
2

2

( , )

p

z

x
k t
c

T x t B e dz
β

ρ

−= ∫  (13) 

where B and β were integration constants. 

 By applying the boundary condition, T(x=0,t) = f(t) = ΔT, where ΔT  was the 

constant temperature difference between the ice-liquid/ice-air interface, he obtained, 

 
2

0

zT B e dz
β

−Δ = ∫  (14) 

At the ice-liquid interface, T(x = h(t), t) = 0, he found from Eqn. 13, 

 ( ) 2
p

kh t t
c

β
ρ

=  (15) 

 To eliminate the constant B, Stefan then calculated the space and time derivatives 

of the temperature using Eqn. 13, 

 
( ) ( )

( ) ( )

2

2

exp
4 /4 /

exp
4 /2 /

pp

pp

T B x x
t k c tt k c t

T B x
x k c tk c t

ρρ

ρρ

⎡ ⎤∂ ⎢ ⎥= −
∂ ⎢ ⎥⎣ ⎦

⎡ ⎤∂ − ⎢ ⎥= −
∂ ⎢ ⎥⎣ ⎦

 (16) 

and by inserting these back into Eqn. 12, obtained the transcendental equation, 

 
2 2

0 2
pz c T

e e dz
β

ββ
λ

− Δ
=∫  (17) 

 In a first approximation to the solution of Eqn. 17, he found, 
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 2 2( ) k Th t t
ρλ
Δ

=  (18) 

which is exactly Eqn. 7, calculated earlier using the linear temperature profile. 

 Finally, Stefan attempted to solve Eqns. 9 and 10 for general, time-dependent 

temperatures on the ice-air interface, T = f(t), using series expansion techniques and 

obtained some approximate solutions, but no closed form, exact solution. 

 Because Stefan’s journal of choice, the Sitzungberichte der Kaiserlichen 

Akademie der Wissenschaften of Vienna was not widely distributed and his results were 

considered important, his entire paper was reprinted in the Annalen der Physik und 

Chemie in 1891 [30], which had a higher circulation. For this reason dual references to 

this same work exist. This was one of the last papers that Stefan published, and it wasn’t 

until the mid-1900s that the moving boundary problem began to be seriously studied by 

scientists, mathematicians and engineers.  

 

Epilogue 

 In 1891, at the age of 56, Stefan ended his lifelong bachelorhood and married the 

widow Marija Neumann. About a year later, he suffered a stroke, and after decades of 

service to the University of Vienna and the scientific community, he died on January 7, 

1893. He was buried in Vienna’s famed Zentralfriedhof and although the location is 

known, there is no marker, in contrast to the famous headstone of his student Boltzmann. 

The University of Vienna recognized Stefan’s outstanding contributions by erecting a 

memorial to him in its courtyard arcade (Figure 4), alongside such luminaries as Doppler 

and Schrödinger [31]. Boltzmann delivered the dedicatory address, which is printed as a 

chapter in his Populäre Schriften [6]. Since so little is known about Stefan’s life, most of 
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what we do know comes from a small booklet [32] published just months after his death 

by one of his students, Albert von Obermayer, who rose to the rank of colonel in the 

Austrian army. Obermayer was also the driving force behind the creation of the arcade 

memorial. Recently, a doctoral dissertation about Stefan [33], appropriately enough 

submitted to the University of Vienna, has been written which describes his broad 

scientific contributions. 

 Upon Stefan’s death, Boltzmann became the Director of the Institute of Physics. 

In addition to his theoretical solution of the radiation law, he helped develop kinetic 

theory and spent a good portion of his career and life defending it and its basis, the 

existence of atoms, against Ernst Mach and his followers who argued that atoms did not 

exist since no one had ever seen them [7]. Boltzmann committed suicide on September 5, 

1906, never receiving full credit during his lifetime for the seminal contributions he made 

to science. 

 The thermal conductivity measurements of gases made by Stefan were steadily 

improved upon as experimental techniques became more refined. His experimental 

insight and ability to separate convection and radiation effects from the physical 

mechanism of conduction, as predicted by kinetic theory, provided the first accurate 

benchmark data. Today there are whole scientific fields devoted to measuring 

thermophysical properties. Reproductions of the diathermometer that Stefan invented can 

be used today as an excellent classroom or laboratory demonstration device [34]. 

 Max Planck incorporated the radiation law developed by Stefan and Boltzmann to 

help begin quantum mechanics. It was most likely Planck who named the proportionality 

between the radiant energy and temperature to the fourth power the Stefan-Boltzmann 
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constant. Dougal [22] provides an excellent technical analysis and summary along with 

excerpted translations of Stefan’s landmark paper. 

 The moving boundary problem lay dormant for decades. Brillouin [35] in 1931 

discussed the solution methods of both Neumann and Stefan, then expanded their work 

for various geometries and conditions. In the late 1940s, Soviet scientists Dacev and 

Rubenstein [36] directed serious efforts into solving the moving boundary problem, and it 

appears that they were the first to call this, “the Problem of Stefan.” Later in the west, 

mathematicians began to delve into its rich and complex behavior, exploring existence 

and uniqueness solutions [37]. Carslaw and Jaeger [38] widely disseminated the Stefan 

problem and its solutions to a broader audience in their treatise on heat conduction. Since 

then, the Stefan problem has been a broad field of study. As late as 1966, Catchpole and 

Fulford [39] stated that the Stefan number was the ratio of radiation and conduction heat 

transfer, 
3LT

k
σ , although this usage has virtually disappeared. The commonly used 

definition, pc T
Ste

λ
Δ

= , which is the sensible heat divided by the latent heat was coined 

by Lock in 1969 [40]. Vuik [26] gives an excellent in-depth analysis of Stefan’s paper on 

the freezing of water on the polar ice caps. Unfortunately, it is the inverse problem that 

Stefan studied, melting of the polar icecaps, which garners popular attention today. 

 Both Austria and Slovenia claim Josef Stefan as their own. Austria issued a stamp 

on the 150th anniversary of his birth in 1985, and Slovenia did the same to commemorate 

the 100th anniversary of his death in 1993 [41]. Slovenians, justifiably proud of their 

famous scientific son, named their premier research institute in Ljubljana after Jožef 

Stefan. This humble, hard-working scientist made a permanent impact on the field of heat 
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transfer. It is remarkable that a single figure, about whom so little is known, could make 

such important contributions to conduction, convection and radiation heat transfer. 
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Figures 
Figure 1. Portrait of Josef Stefan, taken around 1880. (Courtesy of the Austrian Academy 
of Sciences) 
 
Figure 2. Plaque commemorating the birthplace of Josef Stefan. It reads, “In this house, 
the physicist Josef Stefan, the discoverer and namesake of the radiation law, was born on 
24 March, 1835.” The plaque is located on 88 Ebentalerstrasse in the District of St. Peter, 
Klagenfurt, Austria. Photo by the author. 
 
Figure 3. This is a reproduction of the original schematic of the diathermometer, used by 
Josef Stefan to make the first accurate measurements of the thermal conductivity of 
gases. The candidate gas is introduced through valve M into gap e, between the 
concentric cylinders ABCD and GHJK. Keeping the gap small minimizes convection 
effects. Manometer E measures the pressure within cylinder GHJK. After ensuring that 
the system is in thermal equilibrium, the concentric cylinders are placed in a constant 
temperature bath, and the change in pressure versus time is measured. Using this data and 
Eq. 3, Stefan calculated the thermal conductivity of the gas between the cylinders. 
(Courtesy of the Austrian Academy of Sciences) 
 
Figure 4. Memorial to Josef Stefan, located in the courtyard arcade of the University of 
Vienna. (Courtesy of B. Jezovnik) 
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