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ABSTRACT - Performance studies of concurrency control 
algorithms for conventional database systems have shown that, 
under most operating circumstances, locking protocols outper- 
form optimistic techniques. Real-time database systems have 
special characteristics - timing constraints are associated with 
transactions, performance criteria are based on satisfaction of 
these timing constraints, and scheduling algorithms are priority 
driven. In light of these special characteristics, results regarding 
the performance of concurrency control algorithms need to be 
re-evaluated. We show in this paper that the following parame- 
ters of the real-time database system - its policy for dealing with 
transactions whose constraints are not met, its lolowledge of tran- 
saction resource requirements, and the availability of resources - 
have a significant impact on the relative performance of the con- 
currency control algorithms. In particular, we demonstrate that 
under a policy that discards transactions whose constraints are 
not met, optimistic concurrency control outperforms locking over 
a wide range of system utilization. We also outline why, for a 
variety of reasons, optimistic algorithms appear well-suited to 
real-time database systems. 

1. INTRODUCTION 

We define a Real-Time Database System (RTDBS) to 
be a transaction processing system which attempts to 
satisfy the timing constraints associated with each incom- 
ing transaction. Typically, a constraint is expressed in the 
form of a deadline, that is, the user submitting the transac- 
tion would like it to be completed before a certain time in 
the future. Thus, greater value is associated with process- 
ing transactions before their deadlines as compared to 
completing them late. How early a transaction completes 
relative to its deadline is not as important as whether or not 
it completes by the deadline. Therefore, in contrast to a 
conventional DBMS where the goal is to minimize 
response times, here the emphasis is on satisfying timing 
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constraints of transactions. 

At any given time, all transactions in the system can be 
divided into two categories: feasible transactions and lute 
transactions. A feasible transaction still has a possibility 
of meeting its deadline. A late transaction has either 
already missed its deadline or has no chance of success- 
fully meeting it. The system executes feasible transactions 
until they either complete before their deadline or are 
detected to be late. Various application-dependent policies 
exist to deal with late transactions. As mentioned earlier, 
satisfaction of transaction timing constraints is the primary 
goal, rather than considerations of fairness. Therefore, the 
algorithms which resolve resource contention and data 
contention can be reasonably expected to be priority- 
driven, with the transaction priority assignment scheme 
being tuned to reducing the number of late transactions. In 
summary, RTDBSs differ from conventional DBMSs in 
that transactions have deadlines, the primary performance 
criterion is number of deadlines met and not response time, 
and the scheduling algorithms are driven by priority con- 
siderations rather than fairness considerations. 

Recent papers by Abbott and Garcia-Molina [Abbo88, 
Abbo891 have addressed the problem of scheduling tran- 
sactions in a RTDBS with the objective of minimizing the 
percentage of late transactions. In their work, they focus 
primarily on the scheduling issue, and use locking as the 
underlying concurrency control mechanism. In this paper 
we shift the focus to studying the relative performance of 
two well-known classes of concurrency control algorithms 
- locking protocols and optimistic techniques - in a 
RTDBS environment’ Earlier studies of these concurrency 
control algorithm classes for conventional DBMSs (e.g. 
[Agra87, Care881) have concluded that, under most 
operating circumstances, locking algorithms outperform 
optimistic algorithms. In light of the significant differ- 
ences between RTDBSs and conventional DBMSs out- 
lined above, it is possible that these previous results will 
not hold true in a RTDBS environment. This possibility 

’ We assume here that serializubili?y [Eswa76] is the required level 
of database correctness. 
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motivated our investigation of the performance of con- 
currency control algorithms in real-time database systems. 

We show in this paper that for a real-time database sys- 
tem, the policy for dealing with late transactions, apriori 
knowledge of transaction resource requirements, and the 
availability of resources, all have a significant impact on 
the relative performance of the concurrency control algo- 
rithms. In terms of the late policy, late transactions may 
either have to be run to completion or alternatively, they 
may be considered as having lost all value and hence be 
discarded from the system. In the former case, the system 
is said to have soft deadlines, and in the latter, we say that 
the system has jirm deadlines.2 Real-world examples of 
systems having these different types of deadlines are given 
in [Abbo88]. Regarding workload information, apriori 
knowledge of individual transaction resource requirements 
can help the algorithms that resolve resource and data con- 
tention to make better decisions. Depending on the nature 
of the application, this information may or may not be 
available. Finally, locking and optimistic algorithms 
behave very differently with regard to resource utilization, 
and hence the availability of resources has an impact on 
their relative behavior. 

The major result of this paper is that in a system with 
firm deadlines, optimistic concurrency control outperforms 
locking over a wide range of system utilization. We also 
show that when transaction resource requirements are 
known in advance, the performance of both algorithms is 
considerably improved and their performance difference 
shrinks significantly. In contrast, for a system with soft 
deadlines, the situation is not as clear-cut, in terms of how 
performance is to be measured, due to the presence of 
more than one performance metric. We provide some 
insight into the issues involved in this scenario. We also 
show that when resources are plentiful, thus making 
resource contention a non-issue, optimistic concurrency 
control performs much better than locking. A detailed 
simulation model of a RTDBS was used to derive the per- 
formance statistics. 

The paper is organized in the following fashion: Sec- 
tion 2 describes the functioning of the concurrency control 
algorithms chosen for study. In Section 3, we provide the 
motivation behind why one might expect optimistic algo- 
rithms to perform better than locking in a RTDBS environ- 
ment. Then, in Section 4, we describe our simulation 
model, while Section 5 highlights the results of our experi- 
ments. Finally, Section 6 summarizes the main conclu- 
sions of the study and outlines future avenues to explore. 

’ A hurd deadline system guarantees satisfaction of all transaction 
deadlines, while afrrm deadline system only guarantees that late transac- 
tions are not provided any further service. 

2. CONCURRENCY CONTROL ALGORITHMS 

Locking and optimistic algorithms both come in several 
flavors. In our study, we will compare a specific locking 
protocol with a specilic optimistic technique. These partic- 
ular instances were chosen because they are well suited to 
the RTDBS environment, are of comparable complexity, 
and are general in their applicability. The details of the 
selected algorithms are explained below. 

In classical two-phase locking (2PL) lEswa761, transac- 
tions set read locks on objects that they read, and these 
locks are later upgraded to write locks for the objects that 
are updated. If a lock request is denied, the requesting 
transaction is blocked until the lock is released. Read locks 
can be shared, while write locks are exclusive. For a 
RTDBS, two-phase locking needs to be augmented with a 
priority scheme to ensure that higher priority transactions 
are not delayed by lower priority transactions. In the High 
Priority scheme [Abbo88], all data conflicts are resolved 
in favor of the transaction with the higher priority. When 
a transaction requests a lock on an object held by other 
transactions in a conflicting lock mode, if the requester’s 
priority is higher than that of all the lock holders, the hold- 
ers are restarted and the requester is granted the lock; if the 
requester’s priority is lower, it waits for the lock holders to 
release the object.3 A secondary benefit of the High Prior- 
ity scheme is that it also serves as a deadlock prevention 
mechanism. We hereafter refer to this scheme as 2PL- 
HP. 

In classical optimistic concurrency control (OPT) 
[Kung81], transactions are allowed to execute unhindered 
until they reach their commit point, at which time they are 
validated. A transaction is restarted at its commit point if 
it fails its validation test. This test checks that there is no 
conflict of the validating transaction with transactions that 
committed since it began execution. For the RTDBS 
scenario, we use the Broadcast Commit variant of this 
algorithm [Mena82, Robi821. Here, when a transaction 
commits, it notifies other currently running transactions 
which conflict with it and these conflicting transactions are 
immediately restarted. Note that there is no need to check 
for conflicts with already committed transactions since any 
such transaction would have, in the event of a conflict, res- 
tarted the validating transaction at its (the committed 
transaction’s) own earlier commit time. This also means 
that a validating transaction is always guaranteed to com- 
mit. The broadcast commit method detects conflicts ear- 
lier than the basic OPT algorithm, resulting in both less 
wasted resources and earlier restarts; this increases the 
chances of meeting transaction deadlines. We hereafter 

’ In addition, a new reader can join a group of read-lockers only if 
its priority is higher than that of all waiting writers. 
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refer to this scheme as OPT-BC. A point to note is that no 
use of transaction priorities is made here in resolving data 
contention. We will return to this issue later in the paper. 

3. ZPL-HP VERSUS OPT-BC 

Locking and optimistic concurrency control represent 
the two extremes in terms of data conflict detection and 
conflict resolution - locking detects conflicts as soon as 
they occur and resolves them using blocking; optimistic 
concurrency control detects conflicts only at transaction 
commit times and resolves them using restarts. Earlier 
comparative studies of locking and optimistic algorithms 
for a conventional DBMS (e.g. [Agra87, CareSSI) have 
shown that, under operating circumstances of limited 
resources, locking provides significantly better perfor- 
mance than optimistic concurrency control. Some fun&- 
mental aspects of the RTDBS world, outlined below, indi- 
cate a potential for these previous results to be altered in 
this unique environment. 

3.1. Blocking 

The main reason for the good performance of locking 
in a conventional DBMS is that its blocking-based conflict 
resolution policy results in’ conservation of resources, 
while the optimistic algorithm with its restart-based 
conflict resolution policy wastes more resources. In a 
RTDBS environment, however, we expect to see a smaller 
difference between the useful resource utilizations of the 
two algorithms, thus reducing the advantage that locking 
has over optimistic algorithms. This is because OPT-BC 
implicitly derives a blocking effect due to resource con- 
tention [Care891 - low priority transactions wait when 
resources are captured by high priority transactions. Low 
priority transactions that may conflict with high priority 
transactions are effectively prevented from making pro- 
gress by the priority-based resource scheduling, thus 
decreasing the chances of data conflicts; if a conflict does 
occur and the low priority transaction has to be restarted, 
the amount of wasted resource utilization is at least 
reduced. Conversely, 2PL-HP loses some of the basic 2PL 
algorithm’s blocking factor due to the partially restart- 
based nature of the High Priority scheme. 

3.2. Restarts 

In locking algorithms, data conflicts are resolved as 
soon as they occur, while in optimistic algorithms, data 
conflicts are resolved only when a transaction attempts to 
commit. In a conventional DBMS, this delayed conflict 
resolution results in optimistic algorithms wasting more 
resources than locking algorithms. Although this is still 
true in the RTDBS scenario, the delayed conflict resolution 
of optimistic algorithms aids in making better decisions, 
since more information about the conflicting transactions 
is available at this later stage. For example, in 2PL-HP, a 

transaction could be restarted by, or wait for, another tran- 
saction which is later discarded. Such restarts or waits are 
useless and cause performance degradation. In OPT-BC, 
however, we are guaranteed the commit, and hence com- 
pletion, of any transaction which reaches the validation 
stage. Since only vaIidating transactions can cause restarts 
of other transactions, all restarts generated by the OPT-BC 
algorithm are useful. 

3.3. Priority Inversions 

In a RTDBS, for certain types of transaction priority 
assignment schemes (e.g. Least Slack [Abbo88]), it is pos- 
sible for a pair of concurrently running transactions to 
have opposite priorities relative to each other at different 
points in time during their execution. This is called “prior- 
ity inversion”[Sha87]. In 2PL-HP, a data conflict between 
such pairs could result in mutual restarts4, as shown in Fig- 
ure 1. There we show the priority profile as a function of 
time for two concurrently executing transactions A and B, 
with deadlines D,, and DB, respectively. From the profiles 
it is evident that, although A initially has higher priority 
than B, with the passage of time, the situation gets reversed 
because B has a higher rate of priority increase. At time 
t = X1, transaction B locks object X. At time t = Xz, transac- 
tion A attempts to access the same object in a conflicting 
mode. Since, at this time, the priority of A is greater than 
that of B, B is restarted and A is granted the lock. B begins 
re-executing with a new priority profile and attempts to 
access object X at time t = X3. At this time, A is still hold- 
ing the lock on object X. However, as B now has a higher 
priority than A, it is A’s turn to be restarted while B is given 
the lock. Finally, B completes at time t = C, before its 

Figure 1: Mutual Restarts with 2PL-HP. 

’ The concept of mutual restaxts between a pair of transactions can 
he extended to cyclic restart8 among a set of transactions. 
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deadline DB, while A misses its deadline DA and is dis- 
carded. Given this final outcome, we observe that the res- 
tart of B at time t =X2 was beneficial to neither transaction 
A nor transaction B. 

Based on the above example, we can envision scenarios 
where, because of dynamically shifting transaction priori- 
ties, mutual restarts take place leading to wasted resources 
and an increased number of late transactions. Also, 
depending on the dynamics of the priority profile, we may 
have to “constantly” poll all locked data objects to check 
that lock holders still maintain higher priority over their 
associated lock waiters.’ If a priority inversion is found, 
the regular High Priority scheme is applied between the 
waiters and the lock holders. Since OPT-BC does not 
make use of priorities in resolving data conflict, such prior- 
ity related problems simply do not arise. 

We have conducted experiments to evaluate the perfor- 
mance effects of the above-mentioned factors, and the fol- 
lowing sections describe our experimental framework and 
the results that were obtained. 

4. MODELING A REAL-TIME DBMS 

We developed a detailed model of a RTDBS for study- 
ing the performance of the aforementioned concurrency 
control algorithms. In our model, the system consists of a 
shared-memory multiprocessor operating on disk resident 
data.6 The database itself is modeled as a collection of 
pages. Transactions arrive in a Poisson stream and each 
transaction has an associated deadline time. A transaction 
consists of a sequence of read and write accesses. A read 
access involves a concurrency control request to get access 
permission, followed by a disk I/O to read the page, fol- 
lowed by a period of CPU usage for processing the page. 
Write requests are handled similarly except for their disk 
I/O - their disk activity is deferred until the transaction has 
committed. The organization of the model is loosely based 
on the design in [Care881 and is shown in Figure 2. 

The model has five components: a sozu-ce that generates 
transactions; a transaction manager that models the execu- 
tion of transactions; a concurrency control (CC) manager 
that implements the details of the concurrency control 
algorithms; a resource manager that models the CPU and 
I/O resources; and a sink that gathers statistics on com- 
pleted transactions. The workload model characterizes 
transactions in terms of the pages that they access and the 

‘This is required not only to ensure that higher priority transactions 
are not held up by lower priority transactions. but also for deadlock 
prevention - the High Priority scheme does not work as a deadlock 
prevention mechanism if priority inversions are possible. 

6 We assume that all data is accessed from disk and ignore buffer 
pool considerations. 
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Figure 2: RTDBS Model Structure 

number of pages that they update. Table 1 summarizes the 
key parameters of the workload model. The ArrivalRate 
parameter specifies the rate of transaction arrivals. The 
DatabaseSize parameter fixes the number of pages in the 
database. The actual number of pages accessed by a tran- 
saction varies uniformly between half and one-and-a-half 
times the value of the PageCount parameter. The page 
requests themselves are generated from a uniform distribu- 
tion spanning the entire database. The WriteProb parame- 
ter gives the probability that a page which is read will also 
be updated. 

In our experiments, we used the following formula for 
deadline assignment : 

where 
D,=AT+SF * RT 

DT = Deadline time of transaction T 
AT = Arrival time of transaction 7’ 
RT = Resource time of transaction T 
SF = Slack factor 

The slack factor is a multiplicative constant greater than 
one, and resource time is the total service time at the 
resources that the transaction requires for its data process- 
ing. The formula is designed to ensure that all transac- 
tions, independent of their service requirement, have the 
same chance of making their deadline. By changing the 
value of the slack factor we can smoothly vary the 
tightness/slackness of deadlines. The SlackFactor parame- 
ter sets this value. The transaction priority assignment 
scheme used for the majority of the study was Earliest 
Deadline - transactions with earlier deadlines have higher 
priority than transactions with later deadlines. For one 
experiment, which was designed to investigate the impact 
of priority inversions, we used the Least SIack priority 
assignment scheme - transactions with smaller slack times 
have higher priority than transactions with larger slack 
times. There the slack time of a transaction T at any time t 
was computed as (DT -1). The PriorityPolicy parameter 
fixes the transaction priority scheme. Finally, the 
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LatePolicy parameter determines whether the system 
operates under soft or firm deadlines. 

The physical resources in our model consist of multiple 
CPUs and multiple disks. There is a single queue for the 
CPUs and the service discipline is preemptive-resume, 
with the preemption being based on transaction priorities. 
Each of the disks has its own queue and is scheduled 
according to the priority-based variant of the elevator disk 
scheduling algorithm described in [Care89]. Table 2 sum- 
marizes the key parameters of the resource model. 
Requests at each disk are grouped into NumDiskPrio prior- 
ity levels and the elevator algorithm is applied within each 
priority level? The requests at a priority level are served 
only when there are no pending requests at higher priority 
levels. The priority levels are periodically reconfigured to 
reflect the change in transaction priorities as a function of 
time. The data itself is modeled as being uniformly distri- 
buted across all the disks and across all tracks within a 
disk, with the number of tracks on each disk being set by 
the NumTracks parameter. The PageCpu, DidDelay and 
SeekFactor parameters capture CPU and disk processing 
lh-xqm-dmp~< atiav&LtaiwLiP Jcad9J 

Parameter Meaning 
ArrivalRate Poisson rate of transaction arrivals 

ggLy 1~~~~~~ 
Table 1 : Workload Model Parameters 

Parameter 

NumCPUs 
NumDisks 
NumDiskPrio 
NumTracks 
PageCpu 
DiskDelay 
SeekFactor 

Meaning 

Number of processors 
Number of disks 
No. of priority levels at each disk 
Number of tracks per disk 
CPU time for processing data page 
Disk rotational + transfer delays 
Factor relating seek time to distance 

Table 2 Resource Model Parameters 

’ The assignment of requests to disk priority levels, for a transac- 
tion T, uses the following mapping : r T 

Di.rkLmvoIT = NumDiskPrio * I Prior 
1 - - 

MaxPti I 
where Prior is transaction Ts current prio&y complted according to the 
transaction priority assignment scheme, and &z&io is a normalizing con- 
stant set equal to the highest possible transaction priority. 

5. EXPERIMENTS AND RESULTS 

In this section, we present performance results for Our 
experiments comparing 2PL-HP and OPT-BC in a real- 
time database system environment.’ The simulator used to 
obtain the results was written in the Modula-Zbased 
DeNet simulation language [Livn88]. We lirst describe the 
performance metrics and then list the baseline values for 
the system parameters. Subsequently, we discuss our 
results with regard to the impact of data contention, 
resource contention, deadline tightness/slackness, priority 
inversions, knowledge of transaction resource require- 
ments, and various deadline policies. All of our experi- 
ments evaluate the system over a wide range of loads. To 
serve as a basis for comparison, the performance levels 
achieveable in the absence of any concurrency conflicts 
are also shown on the graphs, under the title NO-CC. The 
NO-CC curve should be interpreted as the contribution of 
resource contention alone towards performance degrada- 
tion. In the Appendix, we provide a theoretical basis for 
the shapes of the curves seen in our simulation results. 

33, PerkmancelVietks 

The primary performance metric used is MissPercent, 
which is the percentage of transactions that do not com- 
plete before their deadline. MissPercent values in the 
range of 0 to 20 percent are taken to represent system per- 
formance under “normal” loadings, while MissPercent 
values in the range of 20 to 100 percent represent system 
performance under “heavy” loading? A secondary perfor- 
mance metric, MeanLateness, used only when we consider 
soft deadlines, measures the average time by which tran- 
sactions miss their deadlines. The simulations also gen- 
erated a host of other statistical information, including 
CPU and disk utilizations, number of transaction restarts, 
average transaction blocked time, etc. These secondary 
measures help explain the behavior of the algorithms 
under various loading conditions. 

5.2. Parameter Settings 

The ‘&source parameter settings were such that the CPU 
time to process a page was 10 milliseconds while disk 
access times were between 15 and 30 milliseconds, 
depending on the level of disk utilization. These settings 
made the CPU utilization and the disk utilization almost 

8All graphs in this paper show mean values with relative half- 
widths about the mean of less than 10% at 90% confidence interval, with 
each expeximent having been mn until at least 5000 transactions had been 
processed by the system. Only statistically significant differences am dis- 
cussed here. 

gAny long-term operating region where the miss percent is large is 
obviously unrealistic for a viable RTDBS. Exercising the system to high 
miss levels, however, provides valuable infomration on the response of 
the algorithms to brief periods of stress loading. 
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balanced, and in particular, the system was slightly disk- 
bound. We started our experiments by first developing a 
baseline model around which we then constructed further 
experiments by varying a few parameters at a time. The 
settings of the workload parameters and resource parame- 
ters for our baseline model are listed in Tables 3 and 4. 
These settings were chosen with the objective of having a 
high amount of data and resource contention in the system, 
thus helping to bring out the differences between the algo- 
rithms. The baseline model represents a RTDBS system 
that has firm deadlines, and it therefore discards late tran- 
sactions. Also, the system lacks any knowledge of transac- 
tion resource requirements. This implies that a transaction 
is detected as being late only when it actually misses its 
deadline. 

52.1. Baseline Model 

For the baseline model, Figures 3 and 4 show MissPer- 
cent behavior under normal load and heavy load condi- 
tions, respectively. From these graphs, it is clear that for 
very low arrival rates, 2PL-HP and OPT-BC perform 
almost identically, but as the arrival rate increases, OPT- 
BC does progressively better than 2PL-HP. The cause for 
the better performance of OPT-BC is its lower number of 
restarts, as shown in Figure 5.” In OPT-BC, only a com- 
mitting transaction can generate restarts. In 2PL-HP, how- 
ever, a transaction can generate restarts at any time during 
the course of its execution. Therefore, even a transaction 
which is later discarded can cause restarts. At higher 
loads, when many transactions miss their deadline and 
have to be discarded, 2PL-HP has significantly more res- 
tarts than OPT-BC. This is brought out clearly in Figure 5, 

I Parameter I Value I 

1 ii!!ii;;y 1 z;;? 
Table 3 : Baseline Model Workload Settings 

Parameter Value 

NumCPUs 10 
NumLXsks 
NumDiskPrio 
NumTracks 
PageCpu 
DiskDelay 
SeekFactor 

20 
5 
1000 
10 ms 
15 ms 
0.5 ms 

Table 4 : Baseline Model Resource Settings 

where we observe a large difference between the “useful 
restarts” curve for ILPL-HP, which shows the number of 
restarts caused only by eventually committed transactions, 
and the “total restarts” curve for 2PL-HP, which shows the 
total number of restarts caused by all transactions. The 
restarts decrease after a certain load because resource con- 
tention, rather than data contention, becomes the dominant 
reason for transactions getting discarded. 

Figure 6 shows at what stage during their execution, on 
the average, hansactions were restarted due to data 
conflicts. We observe that ILPL-HP consistently detects 
conflicts earlier than OPT-BC. We might therefore expect 
2PL-HP to waste less resources than OPT-BC, but since 
OPT-BC has much fewer restarts, it actually makes better 
overall use of resources than ILPL-HP. This concept is 
quantified in Figure 7, where the total utilization and the 
useful utilization of resources are shown. Useful utiliza- 
tion is computed as the resource usage made by only those 
transactions which eventually met their deadlines. We see 
that OPT-BC makes better use of the resources than 2PL- 
HP. Note that, for a conventional DBMS, this workload 
scenario would result in exactly the opposite results - a 
locking algorithm would do better than an optimistic algo- 
rithm since the useless restarts problem would not exist 
and resources would be better conserved by the locking 
algorithm. 

5.2.2. Data and Resource Contention 

Under conditions of low data contention, we would 
expect performance to primarily be determined by the 
resource scheduling algorithm rather than the concurrency 
control algorithm. This is borne out in Figure 8, where we 
observe that both 2PL-HP and OPT-BC perform almost 
indistinguishably when the number of data pages is 
increased ten-fold from the baseline value of 1000 to 
ltIOO0. Also, their performance comes close to that of 
NO-CC. 

To obtain a condition of high data contention and low 
resource contention, we approximately simulated an 
“infinite” resource situation [Agra87], that is, where there 
is no queueing for resources. This was done by increasing 
twenty-fold the number of processors and the number of 
disks, from their baseline values of 10 and 20 to 200 and 
400, respectively. l1 The performance results for this 
scenario are shown in Figures 9 and 10, where we see that 
OPT-BC does much better than 2PL-HP in terms of both 

lo All “restaxt” graphs in this paper axe nomtaliz.4 on a per- 
transaction basis; that is, they are computed as the number of restarts di- 
vided by the number of processed transactions. 

“These resource levels ensured that the total resource utilization 
did not go beyond 25 percent even at the highest load of 100 
transactionskc. 
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normal load performance and heavy load perf~~~i~%. 

There are two reasons for OPT-BC outperforming 2PL- 
HP: First, the basic useless restarts problem of 2PLHP, as 
outlined before for the baseline model, occurs here too. 
Second, blocking in 2PLHP reduces the number of tran- 
sactions available to run and make progress, whereas in 
OPT-BC, transactions are always trying to move ahead. 
Blocking causes an increase in the number of transactions 
in the system, thus generating more conflicts and more res- 
tarts. Figures 11 and 12 show these effects quantitatively. 
It should be noted that optimistic algorithms perform better 
than locking under inlinite resource conditions in a con- 
ventional DBMS setting too[Fran85, Agra871. 

The baseline model is representative of the high data 
contention and high resource contention scenario, and as 
stated before, we see that OPT-BC does noticeably better 
than 2PL-HP under heavy-load conditions and slightly 
better under normal-load conditions. An interesting obser- 
vation is that although OPT-BC does not make use of 
priorities, leaving the resource scheduler to handle all 
priority-related decisions, it still does better than 2PLHP, 
which uses priorities to “help” transactions make their 
deadlines. Another important point to note here is that 
while resource contention can be reduced by purchasing 
more resources and/or faster resources, there exists no 
equally simple mechanism to reduce data contention. 
While abundant resources are usually not to be expected in 
conventional database systems, they may be more common 
in RTDBS environments since many real-time systems are 
sized to handle transient heavy loading. This directly 
relates to the application domain of RTDBSs, where func- 
tionality, rather than cost, is usually the driving considera- 
tion. 

5.2.3. Deadline Tightness I Slackness 

The next set of experiments examined the effect that 
deadline tightness/slackness had on the relative perfor- 
mance of the algorithms. To do this we varied the Slack- 
Factor from 1 to 10 while keeping all the other parameters 
the same as those of the baseline model. We conducted 
the experiment for arrival rates of 10 and 30 
transactions/set and the corresponding graphs are shown 
in Figures 13 and 14. At low slack factors, both algo- 
rithms show a rapid increase in MissPercent since transac- 
tions are operating under very tight deadlines. OPI-BC is 
slightly more stable than 2PL-HP in terms of the steepness 
of the increase. As the slack factor increases, transactions 
are given more time to complete, and the MissPercent 
decreases sharply. For the arrival rate of 10 
transactions/set, the M&Percent goes down all the way to 
zero. For the arrival rate of 30 transactions/set, however, 
we observe that the MissPercent stays virtually constant 
beyond a slack factor of 5, for both 2PL-HP and OPT-BC. 
This behavior is explained as follows: Since increasing the 

slack factor provides transactions with more time to com- 
plete, it results in more transactions concurrently running 
in the system. As the number in the system increases, the 
resources in the system eventually saturate and the 
MissPercent then becomes constant for a fixed arrival rate. 
Figure 15 shows that the lower number of restarts for 
OPT-BC is again the cause for its better performance when 
compared to 2PLHP. 

Based on the foregoing experiments, we conclude that 
OPT-BC is preferred to ZPL-HP for a RTDBS system that 
has tirm deadlines and no apriori knowledge of transaction 
resource requirements. This is especially true under condi- 
tions of heavy loading, high data contention, or low 
resource contention. We have also studied the effects of 
changes in page write probabilities, transaction sixes and 
database sixes, although space constraints preclude their 
inclusion here. These experiments reinforced the general 
conclusions given above. An interesting observation was 
that when the database size was very large, making data 
conflicts infrequent, basic 2PL did better than both OPT- 
BC and 2PL-HP. This is because, in the absence of 
significant data contention, the concurrency control algo- 
rithm which best conserves resources provides the best 
performance. 

52.4. Priority Inversions 

In order to examine the performance effect of priority 
inversions, we conducted an experiment where Least Slack 
was used as the transaction priority assignment policy, 
while keeping the other parameters the same as those of 
the baseline model. The slack of a transaction was com- 
puted when it arrived, and this remained the transaction’s 
priority as long as it was executing; if the transaction was 
restarted, it’s slack was then recomputed. This slack 
evaluation scheme is called static evaluation in 
[Abbo89].12 Figure 16 shows the results of this experi- 
ment. In the corresponding experiment using the Earliest 
Deadline policy (see Figures 3 and 4), we had observed 
that 2PL-HP had performed comparably to OPT-BC at 
very low and very high loads, and noticeably worse at 
intermediate loads. Here we notice, however, that 2PL-HP 
does significantly worse than OPT-BC over virtually the 
entire range of loadings. The restart curves in Figure 17 
show the reasons for the performance degradation of 2PL- 
HP: it now suffers from not only the useless restarts prob- 
lem but also from the mutual restarts problem. The “NO- 
MUTUAL” curve in Figure 17 shows the total number of 

” The 2F’L-HP algorithm is altered here in the following matmer: 
The priority of the requesting transaction is compared not with the cmxnt 
priority of the lock holders. but with the priority the lock holders would 
have if they were to be restarted. The reason for this change is to prevent 
immediate mutual restatts - a detailed explanation is given in [Abbo89]. 
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restarts discounting those caused due to priority inver- 
sions.13 As we can see, mutual restarts make a perceptible 
contribution to the total number of restarts. A point to note 
is that the static evaluation scheme produces limited 
fluctuation in transaction priorities since these priorities 
are recomputed only at transaction restart times. For 
schemes which generate greater fluctuations in priority 
(e.g. continuous evaluation [Abbo89]), the mutual restarts 
problem could be expected to have a greater impact on the 
performance of 2PL-HP. 

5.3. Knowledge of Transaction Resource Require- 
ments 

Some real-time systems, such as manufacturing plants, 
are characterized by having a few well-defined actions 
which are done repetitively. In such systems, it may be 
possible to have a good knowledge of transaction 
behavior, thus enabling reasonably accurate estimates of 
transaction resource requirements. We conducted experi- 
ments to evaluate the impact of having such knowledge. In 
particular, the estimates were used to aid in early detection 
of transactions that were destined to become late. A tran- 
saction was discarded whenever it was realized that its 
remaining service requirement was larger than the time 
remaining to its deadline. This is because even if the tran- 
saction were to run alone in the system, it is guaranteed not 
to complete before its deadline. This policy for detecting 
late transactions is called Feasible Deadlines in [Abbo88]. 

We conducted an experiment to evaluate the impact of 
the Feasible Deadlines policy, while keeping all the 
parameters the same as those of the baseline model. Fig- 
ure 18 shows the result of this experiment. We observe 
that the performance of both 2PL-HP and OPT-BC is 
much improved when compared to Figures 3 and 4, and 
that the performance difference between them has shrunk 
greatly. The restart curves shown in Figure 19 and the util- 
ization curves shown in Figure 20, when compared to the 
corresponding curves in Figure 5 and Figure 7, highlight 
the cause for the performance improvements. Both OPT- 
BC and 2PL-HP benefit from the savings on wasted 
resource utilization due to the early detection of late tran- 
sactions. In addition, 2PL-HP benefits by the elimination 
of the useless restarts which could otherwise have been 
caused by these “soon-to-be-late” transactions. Figures 20 
and 21 show the MissPercent and restart graphs for the 
infinite resources scenario. Here, since resource utilization 
is not an issue, only 2PL-HP improves its performance due 

“Here we disregard cyclic restarts, and take into account only mu- 
tual restarts. The mutual rcstart counter was incremented whenever a 
transaction A was restarted by another transaction B. with A itself having 
restarted B at an earlier time. 

to the elimination of many useless restarts. 

5.4. Soft Deadline Policy 

All of the previous experiments assumed a firm dead- 
line policy; that is, late transactions were immediately dis- 
carded from the system. In this section, we look into the 
impact of having a soft deadline policy, where all transac- 
tions have to be run ‘to completion. While the single 
metric of MissPercent was sufficient to characterize the 
firm deadline policy, here we need an auxiliary metric - 
MeanLateness, which captures the tardy behavior of late 
transactions. A transaction that commits within its deadline 
has a lateness of zero. A transaction that completes after its 
deadline has a lateness of (C, - &), where C, and DT are 
the transaction’s completion time and deadline time, 
respectively. The presence of two metrics complicates 
matters since we now have to decide upon the relative 
importance of the metrics. For example, is it worthwhile to 
trade a ten percent increase in Mean Lateness for a five 
percent improvement in MissPercent? Also, since 
MissPercent and MeanLateness are adversarial metrics, in 
the sense that a decrease in one will usually result in an 
increase in the other, it is difficult to simultaneously 
improve both metrics. While the tradeoff to be established 
between the two metrics is ultimately completely 
application-dependent, we describe below one possible 
policy, which we will subsequently refer to as LateHigh. 

In the LateHigh policy, late transactions are given 
higher priority than feasible transactions so that, although 
they complete late, they complete with minimum delay. Of 
course, this preferential treatment for late transactions may 
cause some feasible transactions to miss their deadline 
which essentially means that we are willing to trade 
MissPercent for any improvement in MeanLateness. The 
results in [Abbo89] assume such a system. 

We conducted an experiment to investigate the impact 
of a soft deadline policy by using the LateHigh mechanism 
to deal with late transactions, while keeping all the other 
parameters the same as those of the original baseline 
model. An important point to note here is that 2PL-HP no 
longer suffers from the useless restarts problem, as all 
transactions are run to completion. Figures 23 and 24 
show the MissPercent and MeanLateness results for this 
experiment. We see that OPT-BC saturates slightly earlier 
than 2PL-HP and has worse MeanLateness performance. 
Figures 25 and 26 show the same graphs under conditions 
of infinite resources. Here we see the opposite results - 
OPT-BC saturates much later than 2PL-HP and has 
correspondingly better MeanLateness performance. 

Based on these experiments, we conclude that 2PL-HP 
is better than OPT-BC for a soft deadline system with 
finite resources (assuming LateHigh policy), but for sys- 
tems with plentiful resources, OPT-BC is much better. 
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Therefore, the behavior here is similar to that seen in con- 
ventional database systems. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a quantitative study of 
the relative performance of locking and optimistic con- 
currency control techniques in the context of a real-time 
database system (RTDBS). The performance metric used 
here is the percentage of deadlines made, unlike a conven- 
tional DBMS where response time or throughput is the 
performance criterion. In a conventional DBMS, optimis- 
tic algorithms generally perform worse than locking. In a 
RTDBS, however, optimistic algorithms show improved 
performance because they derive a blocking effect from 
the priority-based handling of resource contention. Also, 
their delayed data conflict resolution policy aids them in 
making better decisions. To evaluate the effect of these 
factors, detailed experiments were carried out on a simu- 
lated RTDBS with two representative algorithms: two- 
phase locking with high priority conflict resolution (2PL- 
HP) and broadcast optimistic (OPT-BC). 

We showed that the policy for dealing with late transac- 
tions, knowledge of transaction resource requirements, and 
the availability of resources all have a signilicant impact 
on the relative behavior of the algorithms. In particular, 
for a system where late transactions are discarded, we 
demonstrated that OPT-BC outperforms 2PL-HP over a 
wide range of system loading and resource availability. 
We also showed that 2PL-HP was more sensitive than 
OPT-BC to the dynamics of transaction priority profiles. 
When the system had advance knowledge of transaction 
resource requirements, both OPT-BC and 2PL-HP per- 
formed much better, with their performance difference 
shrinking significantly. Under a policy where late tmnsac- 
tions are run to completion, the picture was not as clear- 
cut; with certain caveats, we showed that when late tran- 
sactions are given higher priority than feasible transac- 
tions, 2PL-HP does better than OPT-BC under finite 
resources, and OPT-BC does better than 2PL-HP when 
resources are plentiful. In conclusion, from a performance 
standpoint, we can say that optimistic schemes appear gen- 
erally better suited than locking to the RTDBS environ- 
ment.14 

OPT-BC does not make use of transaction priorities in 
resolving data conflicts. While this protects it from prob- 
lems related to priority dynamics, it also prevents it Tom 
making smarter decisions which could help in decreasing 
the number of missed deadlines. We are currently 

” Open problems do remain in order to make optimistic schemes 
truly practical. particularly in the areas of recovery methods and index 
management. We hope that our resulta will encourage research in this 
direction. 

working on developing an optimistic algorithm which 
allows for the use of priorities to improve decision making 
but which is yet safeguarded from the problems arising out 
of priority dynamics. We also intend to look into the issues 
involved in the performance of concurrency algorithms in 
a distributed RTDBS environment. 
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APPENDIX 

In this section we try to provide a theoretical basis for 
the observed shapes of the performance curves discussed 
in Section 5. Using the terminology of queueing networks, 
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we can, in a very loose and abstract fashion, compare a 
firm deadline system to a M/M/l/K system, while the soft 
deadline system can be compared to a M/M/l system. The 
M/M/l/K queueing model characterizes a system with 
Poisson customer arrivals, exponential customer service 
times, a single server, and a maximum of K customers in 
the system. A new customer that arrives when there are 
already K customers in the system is thrown away. If we 
take the percentage of customers thrown away to be analo- 
gous to our MissPercent metric, and denote it by a, we 
then have the result (using Jackson’s Theorem [Jack63], 
and assuming a mean customer service requirement of 1 
time unit), 

a=10()* ,-ALL 1 1 p+1 - 1 
where L is the customer arrival rate. A sample graph of a 
versus L for K = 10 is shown in Figure 27 and, as we can 
see, the behavior is very similar to that seen in the perfor- 
mance graphs for a RTDBS with a firm deadline policy. 

The formula for a can be split up in the following 
fashion : 

Forh<l, 
a= lOO* LK. 

For hz+ 1, 

These two formulas give good approximations for the 
basic shape of the curves seen at normal and high loadings, 
respectively. 

The M/M/l system is identical to the M/M/l/K system 
except that customers are never thrown away (i.e. K = -). 
For this system, if we take the percentage of customers 
that have a response time greater than some constant D, to 
be analogous to our MissPercent metric, and denote it by 
p, we then have the result (assuming a FCFS service dis- 
cipline and a mean customer service requirement of 1 time 
unit), 

where k is the customer arrival rate. This result directly 
derives from the fact that the response time distribution for 
an M/M/l system [Klei75] has an exponential distribution 
with parameter (u - h), where u is the mean customer ser- 
vice requirement. A sample graph of g versus L for D = 10 
is shown in Figure 28 and, as we can see, the behavior is 
very similar to that seen in the performance graphs for a 
RTDBS with a soft deadline policy. 
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