
On Being Optimistic about Real-Time Constraints

Jayant R. Hat-ha
Michael J. Carey

Miron Livny

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT - Performance studies of concurrency control
algorithms for conventional database systems have shown that,
under most operating circumstances, locking protocols outper-
form optimistic techniques. Real-time database systems have
special characteristics - timing constraints are associated with
transactions, performance criteria are based on satisfaction of
these timing constraints, and scheduling algorithms are priority
driven. In light of these special characteristics, results regarding
the performance of concurrency control algorithms need to be
re-evaluated. We show in this paper that the following parame-
ters of the real-time database system - its policy for dealing with
transactions whose constraints are not met, its lolowledge of tran-
saction resource requirements, and the availability of resources -
have a significant impact on the relative performance of the con-
currency control algorithms. In particular, we demonstrate that
under a policy that discards transactions whose constraints are
not met, optimistic concurrency control outperforms locking over
a wide range of system utilization. We also outline why, for a
variety of reasons, optimistic algorithms appear well-suited to
real-time database systems.

1. INTRODUCTION

We define a Real-Time Database System (RTDBS) to
be a transaction processing system which attempts to
satisfy the timing constraints associated with each incom-
ing transaction. Typically, a constraint is expressed in the
form of a deadline, that is, the user submitting the transac-
tion would like it to be completed before a certain time in
the future. Thus, greater value is associated with process-
ing transactions before their deadlines as compared to
completing them late. How early a transaction completes
relative to its deadline is not as important as whether or not
it completes by the deadline. Therefore, in contrast to a
conventional DBMS where the goal is to minimize
response times, here the emphasis is on satisfying timing

This research was partially supported by the National science
Foundation under grant IRI-8657323 and by grants from the Digital
Equipment Corporation and the Microelectronics and Computer Tecbnol-
ogy Consortium @KC).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies a~ not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

constraints of transactions.

At any given time, all transactions in the system can be
divided into two categories: feasible transactions and lute
transactions. A feasible transaction still has a possibility
of meeting its deadline. A late transaction has either
already missed its deadline or has no chance of success-
fully meeting it. The system executes feasible transactions
until they either complete before their deadline or are
detected to be late. Various application-dependent policies
exist to deal with late transactions. As mentioned earlier,
satisfaction of transaction timing constraints is the primary
goal, rather than considerations of fairness. Therefore, the
algorithms which resolve resource contention and data
contention can be reasonably expected to be priority-
driven, with the transaction priority assignment scheme
being tuned to reducing the number of late transactions. In
summary, RTDBSs differ from conventional DBMSs in
that transactions have deadlines, the primary performance
criterion is number of deadlines met and not response time,
and the scheduling algorithms are driven by priority con-
siderations rather than fairness considerations.

Recent papers by Abbott and Garcia-Molina [Abbo88,
Abbo891 have addressed the problem of scheduling tran-
sactions in a RTDBS with the objective of minimizing the
percentage of late transactions. In their work, they focus
primarily on the scheduling issue, and use locking as the
underlying concurrency control mechanism. In this paper
we shift the focus to studying the relative performance of
two well-known classes of concurrency control algorithms
- locking protocols and optimistic techniques - in a
RTDBS environment’ Earlier studies of these concurrency
control algorithm classes for conventional DBMSs (e.g.
[Agra87, Care881) have concluded that, under most
operating circumstances, locking algorithms outperform
optimistic algorithms. In light of the significant differ-
ences between RTDBSs and conventional DBMSs out-
lined above, it is possible that these previous results will
not hold true in a RTDBS environment. This possibility

’ We assume here that serializubili?y [Eswa76] is the required level
of database correctness.

@ 1990 ACM 089791-352-3/90/0004/0331 $1.50 331

motivated our investigation of the performance of con-
currency control algorithms in real-time database systems.

We show in this paper that for a real-time database sys-
tem, the policy for dealing with late transactions, apriori
knowledge of transaction resource requirements, and the
availability of resources, all have a significant impact on
the relative performance of the concurrency control algo-
rithms. In terms of the late policy, late transactions may
either have to be run to completion or alternatively, they
may be considered as having lost all value and hence be
discarded from the system. In the former case, the system
is said to have soft deadlines, and in the latter, we say that
the system has jirm deadlines.2 Real-world examples of
systems having these different types of deadlines are given
in [Abbo88]. Regarding workload information, apriori
knowledge of individual transaction resource requirements
can help the algorithms that resolve resource and data con-
tention to make better decisions. Depending on the nature
of the application, this information may or may not be
available. Finally, locking and optimistic algorithms
behave very differently with regard to resource utilization,
and hence the availability of resources has an impact on
their relative behavior.

The major result of this paper is that in a system with
firm deadlines, optimistic concurrency control outperforms
locking over a wide range of system utilization. We also
show that when transaction resource requirements are
known in advance, the performance of both algorithms is
considerably improved and their performance difference
shrinks significantly. In contrast, for a system with soft
deadlines, the situation is not as clear-cut, in terms of how
performance is to be measured, due to the presence of
more than one performance metric. We provide some
insight into the issues involved in this scenario. We also
show that when resources are plentiful, thus making
resource contention a non-issue, optimistic concurrency
control performs much better than locking. A detailed
simulation model of a RTDBS was used to derive the per-
formance statistics.

The paper is organized in the following fashion: Sec-
tion 2 describes the functioning of the concurrency control
algorithms chosen for study. In Section 3, we provide the
motivation behind why one might expect optimistic algo-
rithms to perform better than locking in a RTDBS environ-
ment. Then, in Section 4, we describe our simulation
model, while Section 5 highlights the results of our experi-
ments. Finally, Section 6 summarizes the main conclu-
sions of the study and outlines future avenues to explore.

’ A hurd deadline system guarantees satisfaction of all transaction
deadlines, while afrrm deadline system only guarantees that late transac-
tions are not provided any further service.

2. CONCURRENCY CONTROL ALGORITHMS

Locking and optimistic algorithms both come in several
flavors. In our study, we will compare a specific locking
protocol with a specilic optimistic technique. These partic-
ular instances were chosen because they are well suited to
the RTDBS environment, are of comparable complexity,
and are general in their applicability. The details of the
selected algorithms are explained below.

In classical two-phase locking (2PL) lEswa761, transac-
tions set read locks on objects that they read, and these
locks are later upgraded to write locks for the objects that
are updated. If a lock request is denied, the requesting
transaction is blocked until the lock is released. Read locks
can be shared, while write locks are exclusive. For a
RTDBS, two-phase locking needs to be augmented with a
priority scheme to ensure that higher priority transactions
are not delayed by lower priority transactions. In the High
Priority scheme [Abbo88], all data conflicts are resolved
in favor of the transaction with the higher priority. When
a transaction requests a lock on an object held by other
transactions in a conflicting lock mode, if the requester’s
priority is higher than that of all the lock holders, the hold-
ers are restarted and the requester is granted the lock; if the
requester’s priority is lower, it waits for the lock holders to
release the object.3 A secondary benefit of the High Prior-
ity scheme is that it also serves as a deadlock prevention
mechanism. We hereafter refer to this scheme as 2PL-
HP.

In classical optimistic concurrency control (OPT)
[Kung81], transactions are allowed to execute unhindered
until they reach their commit point, at which time they are
validated. A transaction is restarted at its commit point if
it fails its validation test. This test checks that there is no
conflict of the validating transaction with transactions that
committed since it began execution. For the RTDBS
scenario, we use the Broadcast Commit variant of this
algorithm [Mena82, Robi821. Here, when a transaction
commits, it notifies other currently running transactions
which conflict with it and these conflicting transactions are
immediately restarted. Note that there is no need to check
for conflicts with already committed transactions since any
such transaction would have, in the event of a conflict, res-
tarted the validating transaction at its (the committed
transaction’s) own earlier commit time. This also means
that a validating transaction is always guaranteed to com-
mit. The broadcast commit method detects conflicts ear-
lier than the basic OPT algorithm, resulting in both less
wasted resources and earlier restarts; this increases the
chances of meeting transaction deadlines. We hereafter

’ In addition, a new reader can join a group of read-lockers only if
its priority is higher than that of all waiting writers.

332

refer to this scheme as OPT-BC. A point to note is that no
use of transaction priorities is made here in resolving data
contention. We will return to this issue later in the paper.

3. ZPL-HP VERSUS OPT-BC

Locking and optimistic concurrency control represent
the two extremes in terms of data conflict detection and
conflict resolution - locking detects conflicts as soon as
they occur and resolves them using blocking; optimistic
concurrency control detects conflicts only at transaction
commit times and resolves them using restarts. Earlier
comparative studies of locking and optimistic algorithms
for a conventional DBMS (e.g. [Agra87, CareSSI) have
shown that, under operating circumstances of limited
resources, locking provides significantly better perfor-
mance than optimistic concurrency control. Some fun&-
mental aspects of the RTDBS world, outlined below, indi-
cate a potential for these previous results to be altered in
this unique environment.

3.1. Blocking

The main reason for the good performance of locking
in a conventional DBMS is that its blocking-based conflict
resolution policy results in’ conservation of resources,
while the optimistic algorithm with its restart-based
conflict resolution policy wastes more resources. In a
RTDBS environment, however, we expect to see a smaller
difference between the useful resource utilizations of the
two algorithms, thus reducing the advantage that locking
has over optimistic algorithms. This is because OPT-BC
implicitly derives a blocking effect due to resource con-
tention [Care891 - low priority transactions wait when
resources are captured by high priority transactions. Low
priority transactions that may conflict with high priority
transactions are effectively prevented from making pro-
gress by the priority-based resource scheduling, thus
decreasing the chances of data conflicts; if a conflict does
occur and the low priority transaction has to be restarted,
the amount of wasted resource utilization is at least
reduced. Conversely, 2PL-HP loses some of the basic 2PL
algorithm’s blocking factor due to the partially restart-
based nature of the High Priority scheme.

3.2. Restarts

In locking algorithms, data conflicts are resolved as
soon as they occur, while in optimistic algorithms, data
conflicts are resolved only when a transaction attempts to
commit. In a conventional DBMS, this delayed conflict
resolution results in optimistic algorithms wasting more
resources than locking algorithms. Although this is still
true in the RTDBS scenario, the delayed conflict resolution
of optimistic algorithms aids in making better decisions,
since more information about the conflicting transactions
is available at this later stage. For example, in 2PL-HP, a

transaction could be restarted by, or wait for, another tran-
saction which is later discarded. Such restarts or waits are
useless and cause performance degradation. In OPT-BC,
however, we are guaranteed the commit, and hence com-
pletion, of any transaction which reaches the validation
stage. Since only vaIidating transactions can cause restarts
of other transactions, all restarts generated by the OPT-BC
algorithm are useful.

3.3. Priority Inversions

In a RTDBS, for certain types of transaction priority
assignment schemes (e.g. Least Slack [Abbo88]), it is pos-
sible for a pair of concurrently running transactions to
have opposite priorities relative to each other at different
points in time during their execution. This is called “prior-
ity inversion”[Sha87]. In 2PL-HP, a data conflict between
such pairs could result in mutual restarts4, as shown in Fig-
ure 1. There we show the priority profile as a function of
time for two concurrently executing transactions A and B,
with deadlines D,, and DB, respectively. From the profiles
it is evident that, although A initially has higher priority
than B, with the passage of time, the situation gets reversed
because B has a higher rate of priority increase. At time
t = X1, transaction B locks object X. At time t = Xz, transac-
tion A attempts to access the same object in a conflicting
mode. Since, at this time, the priority of A is greater than
that of B, B is restarted and A is granted the lock. B begins
re-executing with a new priority profile and attempts to
access object X at time t = X3. At this time, A is still hold-
ing the lock on object X. However, as B now has a higher
priority than A, it is A’s turn to be restarted while B is given
the lock. Finally, B completes at time t = C, before its

Figure 1: Mutual Restarts with 2PL-HP.

’ The concept of mutual restaxts between a pair of transactions can
he extended to cyclic restart8 among a set of transactions.

333

deadline DB, while A misses its deadline DA and is dis-
carded. Given this final outcome, we observe that the res-
tart of B at time t =X2 was beneficial to neither transaction
A nor transaction B.

Based on the above example, we can envision scenarios
where, because of dynamically shifting transaction priori-
ties, mutual restarts take place leading to wasted resources
and an increased number of late transactions. Also,
depending on the dynamics of the priority profile, we may
have to “constantly” poll all locked data objects to check
that lock holders still maintain higher priority over their
associated lock waiters.’ If a priority inversion is found,
the regular High Priority scheme is applied between the
waiters and the lock holders. Since OPT-BC does not
make use of priorities in resolving data conflict, such prior-
ity related problems simply do not arise.

We have conducted experiments to evaluate the perfor-
mance effects of the above-mentioned factors, and the fol-
lowing sections describe our experimental framework and
the results that were obtained.

4. MODELING A REAL-TIME DBMS

We developed a detailed model of a RTDBS for study-
ing the performance of the aforementioned concurrency
control algorithms. In our model, the system consists of a
shared-memory multiprocessor operating on disk resident
data.6 The database itself is modeled as a collection of
pages. Transactions arrive in a Poisson stream and each
transaction has an associated deadline time. A transaction
consists of a sequence of read and write accesses. A read
access involves a concurrency control request to get access
permission, followed by a disk I/O to read the page, fol-
lowed by a period of CPU usage for processing the page.
Write requests are handled similarly except for their disk
I/O - their disk activity is deferred until the transaction has
committed. The organization of the model is loosely based
on the design in [Care881 and is shown in Figure 2.

The model has five components: a sozu-ce that generates
transactions; a transaction manager that models the execu-
tion of transactions; a concurrency control (CC) manager
that implements the details of the concurrency control
algorithms; a resource manager that models the CPU and
I/O resources; and a sink that gathers statistics on com-
pleted transactions. The workload model characterizes
transactions in terms of the pages that they access and the

‘This is required not only to ensure that higher priority transactions
are not held up by lower priority transactions. but also for deadlock
prevention - the High Priority scheme does not work as a deadlock
prevention mechanism if priority inversions are possible.

6 We assume that all data is accessed from disk and ignore buffer
pool considerations.

SOURCE TRANSACllON MANAGER SINK

SwtT- Ed Truylmion

Ruoursc kqwt Semia Dcrc

IULSOURCZ MANAGER CC MANAGER

Figure 2: RTDBS Model Structure

number of pages that they update. Table 1 summarizes the
key parameters of the workload model. The ArrivalRate
parameter specifies the rate of transaction arrivals. The
DatabaseSize parameter fixes the number of pages in the
database. The actual number of pages accessed by a tran-
saction varies uniformly between half and one-and-a-half
times the value of the PageCount parameter. The page
requests themselves are generated from a uniform distribu-
tion spanning the entire database. The WriteProb parame-
ter gives the probability that a page which is read will also
be updated.

In our experiments, we used the following formula for
deadline assignment :

where
D,=AT+SF * RT

DT = Deadline time of transaction T
AT = Arrival time of transaction 7’
RT = Resource time of transaction T
SF = Slack factor

The slack factor is a multiplicative constant greater than
one, and resource time is the total service time at the
resources that the transaction requires for its data process-
ing. The formula is designed to ensure that all transac-
tions, independent of their service requirement, have the
same chance of making their deadline. By changing the
value of the slack factor we can smoothly vary the
tightness/slackness of deadlines. The SlackFactor parame-
ter sets this value. The transaction priority assignment
scheme used for the majority of the study was Earliest
Deadline - transactions with earlier deadlines have higher
priority than transactions with later deadlines. For one
experiment, which was designed to investigate the impact
of priority inversions, we used the Least SIack priority
assignment scheme - transactions with smaller slack times
have higher priority than transactions with larger slack
times. There the slack time of a transaction T at any time t
was computed as (DT -1). The PriorityPolicy parameter
fixes the transaction priority scheme. Finally, the

334

LatePolicy parameter determines whether the system
operates under soft or firm deadlines.

The physical resources in our model consist of multiple
CPUs and multiple disks. There is a single queue for the
CPUs and the service discipline is preemptive-resume,
with the preemption being based on transaction priorities.
Each of the disks has its own queue and is scheduled
according to the priority-based variant of the elevator disk
scheduling algorithm described in [Care89]. Table 2 sum-
marizes the key parameters of the resource model.
Requests at each disk are grouped into NumDiskPrio prior-
ity levels and the elevator algorithm is applied within each
priority level? The requests at a priority level are served
only when there are no pending requests at higher priority
levels. The priority levels are periodically reconfigured to
reflect the change in transaction priorities as a function of
time. The data itself is modeled as being uniformly distri-
buted across all the disks and across all tracks within a
disk, with the number of tracks on each disk being set by
the NumTracks parameter. The PageCpu, DidDelay and
SeekFactor parameters capture CPU and disk processing
lh-xqm-dmp~< atiav&LtaiwLiP Jcad9J

Parameter Meaning
ArrivalRate Poisson rate of transaction arrivals

ggLy 1~~~~~~
Table 1 : Workload Model Parameters

Parameter

NumCPUs
NumDisks
NumDiskPrio
NumTracks
PageCpu
DiskDelay
SeekFactor

Meaning

Number of processors
Number of disks
No. of priority levels at each disk
Number of tracks per disk
CPU time for processing data page
Disk rotational + transfer delays
Factor relating seek time to distance

Table 2 Resource Model Parameters

’ The assignment of requests to disk priority levels, for a transac-
tion T, uses the following mapping : r T

Di.rkLmvoIT = NumDiskPrio * I Prior
1 - -

MaxPti I
where Prior is transaction Ts current prio&y complted according to the
transaction priority assignment scheme, and &z&io is a normalizing con-
stant set equal to the highest possible transaction priority.

5. EXPERIMENTS AND RESULTS

In this section, we present performance results for Our
experiments comparing 2PL-HP and OPT-BC in a real-
time database system environment.’ The simulator used to
obtain the results was written in the Modula-Zbased
DeNet simulation language [Livn88]. We lirst describe the
performance metrics and then list the baseline values for
the system parameters. Subsequently, we discuss our
results with regard to the impact of data contention,
resource contention, deadline tightness/slackness, priority
inversions, knowledge of transaction resource require-
ments, and various deadline policies. All of our experi-
ments evaluate the system over a wide range of loads. To
serve as a basis for comparison, the performance levels
achieveable in the absence of any concurrency conflicts
are also shown on the graphs, under the title NO-CC. The
NO-CC curve should be interpreted as the contribution of
resource contention alone towards performance degrada-
tion. In the Appendix, we provide a theoretical basis for
the shapes of the curves seen in our simulation results.

33, PerkmancelVietks

The primary performance metric used is MissPercent,
which is the percentage of transactions that do not com-
plete before their deadline. MissPercent values in the
range of 0 to 20 percent are taken to represent system per-
formance under “normal” loadings, while MissPercent
values in the range of 20 to 100 percent represent system
performance under “heavy” loading? A secondary perfor-
mance metric, MeanLateness, used only when we consider
soft deadlines, measures the average time by which tran-
sactions miss their deadlines. The simulations also gen-
erated a host of other statistical information, including
CPU and disk utilizations, number of transaction restarts,
average transaction blocked time, etc. These secondary
measures help explain the behavior of the algorithms
under various loading conditions.

5.2. Parameter Settings

The ‘&source parameter settings were such that the CPU
time to process a page was 10 milliseconds while disk
access times were between 15 and 30 milliseconds,
depending on the level of disk utilization. These settings
made the CPU utilization and the disk utilization almost

8All graphs in this paper show mean values with relative half-
widths about the mean of less than 10% at 90% confidence interval, with
each expeximent having been mn until at least 5000 transactions had been
processed by the system. Only statistically significant differences am dis-
cussed here.

gAny long-term operating region where the miss percent is large is
obviously unrealistic for a viable RTDBS. Exercising the system to high
miss levels, however, provides valuable infomration on the response of
the algorithms to brief periods of stress loading.

335

balanced, and in particular, the system was slightly disk-
bound. We started our experiments by first developing a
baseline model around which we then constructed further
experiments by varying a few parameters at a time. The
settings of the workload parameters and resource parame-
ters for our baseline model are listed in Tables 3 and 4.
These settings were chosen with the objective of having a
high amount of data and resource contention in the system,
thus helping to bring out the differences between the algo-
rithms. The baseline model represents a RTDBS system
that has firm deadlines, and it therefore discards late tran-
sactions. Also, the system lacks any knowledge of transac-
tion resource requirements. This implies that a transaction
is detected as being late only when it actually misses its
deadline.

52.1. Baseline Model

For the baseline model, Figures 3 and 4 show MissPer-
cent behavior under normal load and heavy load condi-
tions, respectively. From these graphs, it is clear that for
very low arrival rates, 2PL-HP and OPT-BC perform
almost identically, but as the arrival rate increases, OPT-
BC does progressively better than 2PL-HP. The cause for
the better performance of OPT-BC is its lower number of
restarts, as shown in Figure 5.” In OPT-BC, only a com-
mitting transaction can generate restarts. In 2PL-HP, how-
ever, a transaction can generate restarts at any time during
the course of its execution. Therefore, even a transaction
which is later discarded can cause restarts. At higher
loads, when many transactions miss their deadline and
have to be discarded, 2PL-HP has significantly more res-
tarts than OPT-BC. This is brought out clearly in Figure 5,

I Parameter I Value I

1 ii!!ii;;y 1 z;;?
Table 3 : Baseline Model Workload Settings

Parameter Value

NumCPUs 10
NumLXsks
NumDiskPrio
NumTracks
PageCpu
DiskDelay
SeekFactor

20
5
1000
10 ms
15 ms
0.5 ms

Table 4 : Baseline Model Resource Settings

where we observe a large difference between the “useful
restarts” curve for ILPL-HP, which shows the number of
restarts caused only by eventually committed transactions,
and the “total restarts” curve for 2PL-HP, which shows the
total number of restarts caused by all transactions. The
restarts decrease after a certain load because resource con-
tention, rather than data contention, becomes the dominant
reason for transactions getting discarded.

Figure 6 shows at what stage during their execution, on
the average, hansactions were restarted due to data
conflicts. We observe that ILPL-HP consistently detects
conflicts earlier than OPT-BC. We might therefore expect
2PL-HP to waste less resources than OPT-BC, but since
OPT-BC has much fewer restarts, it actually makes better
overall use of resources than ILPL-HP. This concept is
quantified in Figure 7, where the total utilization and the
useful utilization of resources are shown. Useful utiliza-
tion is computed as the resource usage made by only those
transactions which eventually met their deadlines. We see
that OPT-BC makes better use of the resources than 2PL-
HP. Note that, for a conventional DBMS, this workload
scenario would result in exactly the opposite results - a
locking algorithm would do better than an optimistic algo-
rithm since the useless restarts problem would not exist
and resources would be better conserved by the locking
algorithm.

5.2.2. Data and Resource Contention

Under conditions of low data contention, we would
expect performance to primarily be determined by the
resource scheduling algorithm rather than the concurrency
control algorithm. This is borne out in Figure 8, where we
observe that both 2PL-HP and OPT-BC perform almost
indistinguishably when the number of data pages is
increased ten-fold from the baseline value of 1000 to
ltIOO0. Also, their performance comes close to that of
NO-CC.

To obtain a condition of high data contention and low
resource contention, we approximately simulated an
“infinite” resource situation [Agra87], that is, where there
is no queueing for resources. This was done by increasing
twenty-fold the number of processors and the number of
disks, from their baseline values of 10 and 20 to 200 and
400, respectively. l1 The performance results for this
scenario are shown in Figures 9 and 10, where we see that
OPT-BC does much better than 2PL-HP in terms of both

lo All “restaxt” graphs in this paper axe nomtaliz.4 on a per-
transaction basis; that is, they are computed as the number of restarts di-
vided by the number of processed transactions.

“These resource levels ensured that the total resource utilization
did not go beyond 25 percent even at the highest load of 100
transactionskc.

336

normal load performance and heavy load perf~~~i~%.

There are two reasons for OPT-BC outperforming 2PL-
HP: First, the basic useless restarts problem of 2PLHP, as
outlined before for the baseline model, occurs here too.
Second, blocking in 2PLHP reduces the number of tran-
sactions available to run and make progress, whereas in
OPT-BC, transactions are always trying to move ahead.
Blocking causes an increase in the number of transactions
in the system, thus generating more conflicts and more res-
tarts. Figures 11 and 12 show these effects quantitatively.
It should be noted that optimistic algorithms perform better
than locking under inlinite resource conditions in a con-
ventional DBMS setting too[Fran85, Agra871.

The baseline model is representative of the high data
contention and high resource contention scenario, and as
stated before, we see that OPT-BC does noticeably better
than 2PL-HP under heavy-load conditions and slightly
better under normal-load conditions. An interesting obser-
vation is that although OPT-BC does not make use of
priorities, leaving the resource scheduler to handle all
priority-related decisions, it still does better than 2PLHP,
which uses priorities to “help” transactions make their
deadlines. Another important point to note here is that
while resource contention can be reduced by purchasing
more resources and/or faster resources, there exists no
equally simple mechanism to reduce data contention.
While abundant resources are usually not to be expected in
conventional database systems, they may be more common
in RTDBS environments since many real-time systems are
sized to handle transient heavy loading. This directly
relates to the application domain of RTDBSs, where func-
tionality, rather than cost, is usually the driving considera-
tion.

5.2.3. Deadline Tightness I Slackness

The next set of experiments examined the effect that
deadline tightness/slackness had on the relative perfor-
mance of the algorithms. To do this we varied the Slack-
Factor from 1 to 10 while keeping all the other parameters
the same as those of the baseline model. We conducted
the experiment for arrival rates of 10 and 30
transactions/set and the corresponding graphs are shown
in Figures 13 and 14. At low slack factors, both algo-
rithms show a rapid increase in MissPercent since transac-
tions are operating under very tight deadlines. OPI-BC is
slightly more stable than 2PL-HP in terms of the steepness
of the increase. As the slack factor increases, transactions
are given more time to complete, and the MissPercent
decreases sharply. For the arrival rate of 10
transactions/set, the M&Percent goes down all the way to
zero. For the arrival rate of 30 transactions/set, however,
we observe that the MissPercent stays virtually constant
beyond a slack factor of 5, for both 2PL-HP and OPT-BC.
This behavior is explained as follows: Since increasing the

slack factor provides transactions with more time to com-
plete, it results in more transactions concurrently running
in the system. As the number in the system increases, the
resources in the system eventually saturate and the
MissPercent then becomes constant for a fixed arrival rate.
Figure 15 shows that the lower number of restarts for
OPT-BC is again the cause for its better performance when
compared to 2PLHP.

Based on the foregoing experiments, we conclude that
OPT-BC is preferred to ZPL-HP for a RTDBS system that
has tirm deadlines and no apriori knowledge of transaction
resource requirements. This is especially true under condi-
tions of heavy loading, high data contention, or low
resource contention. We have also studied the effects of
changes in page write probabilities, transaction sixes and
database sixes, although space constraints preclude their
inclusion here. These experiments reinforced the general
conclusions given above. An interesting observation was
that when the database size was very large, making data
conflicts infrequent, basic 2PL did better than both OPT-
BC and 2PL-HP. This is because, in the absence of
significant data contention, the concurrency control algo-
rithm which best conserves resources provides the best
performance.

52.4. Priority Inversions

In order to examine the performance effect of priority
inversions, we conducted an experiment where Least Slack
was used as the transaction priority assignment policy,
while keeping the other parameters the same as those of
the baseline model. The slack of a transaction was com-
puted when it arrived, and this remained the transaction’s
priority as long as it was executing; if the transaction was
restarted, it’s slack was then recomputed. This slack
evaluation scheme is called static evaluation in
[Abbo89].12 Figure 16 shows the results of this experi-
ment. In the corresponding experiment using the Earliest
Deadline policy (see Figures 3 and 4), we had observed
that 2PL-HP had performed comparably to OPT-BC at
very low and very high loads, and noticeably worse at
intermediate loads. Here we notice, however, that 2PL-HP
does significantly worse than OPT-BC over virtually the
entire range of loadings. The restart curves in Figure 17
show the reasons for the performance degradation of 2PL-
HP: it now suffers from not only the useless restarts prob-
lem but also from the mutual restarts problem. The “NO-
MUTUAL” curve in Figure 17 shows the total number of

” The 2F’L-HP algorithm is altered here in the following matmer:
The priority of the requesting transaction is compared not with the cmxnt
priority of the lock holders. but with the priority the lock holders would
have if they were to be restarted. The reason for this change is to prevent
immediate mutual restatts - a detailed explanation is given in [Abbo89].

337

restarts discounting those caused due to priority inver-
sions.13 As we can see, mutual restarts make a perceptible
contribution to the total number of restarts. A point to note
is that the static evaluation scheme produces limited
fluctuation in transaction priorities since these priorities
are recomputed only at transaction restart times. For
schemes which generate greater fluctuations in priority
(e.g. continuous evaluation [Abbo89]), the mutual restarts
problem could be expected to have a greater impact on the
performance of 2PL-HP.

5.3. Knowledge of Transaction Resource Require-
ments

Some real-time systems, such as manufacturing plants,
are characterized by having a few well-defined actions
which are done repetitively. In such systems, it may be
possible to have a good knowledge of transaction
behavior, thus enabling reasonably accurate estimates of
transaction resource requirements. We conducted experi-
ments to evaluate the impact of having such knowledge. In
particular, the estimates were used to aid in early detection
of transactions that were destined to become late. A tran-
saction was discarded whenever it was realized that its
remaining service requirement was larger than the time
remaining to its deadline. This is because even if the tran-
saction were to run alone in the system, it is guaranteed not
to complete before its deadline. This policy for detecting
late transactions is called Feasible Deadlines in [Abbo88].

We conducted an experiment to evaluate the impact of
the Feasible Deadlines policy, while keeping all the
parameters the same as those of the baseline model. Fig-
ure 18 shows the result of this experiment. We observe
that the performance of both 2PL-HP and OPT-BC is
much improved when compared to Figures 3 and 4, and
that the performance difference between them has shrunk
greatly. The restart curves shown in Figure 19 and the util-
ization curves shown in Figure 20, when compared to the
corresponding curves in Figure 5 and Figure 7, highlight
the cause for the performance improvements. Both OPT-
BC and 2PL-HP benefit from the savings on wasted
resource utilization due to the early detection of late tran-
sactions. In addition, 2PL-HP benefits by the elimination
of the useless restarts which could otherwise have been
caused by these “soon-to-be-late” transactions. Figures 20
and 21 show the MissPercent and restart graphs for the
infinite resources scenario. Here, since resource utilization
is not an issue, only 2PL-HP improves its performance due

“Here we disregard cyclic restarts, and take into account only mu-
tual restarts. The mutual rcstart counter was incremented whenever a
transaction A was restarted by another transaction B. with A itself having
restarted B at an earlier time.

to the elimination of many useless restarts.

5.4. Soft Deadline Policy

All of the previous experiments assumed a firm dead-
line policy; that is, late transactions were immediately dis-
carded from the system. In this section, we look into the
impact of having a soft deadline policy, where all transac-
tions have to be run ‘to completion. While the single
metric of MissPercent was sufficient to characterize the
firm deadline policy, here we need an auxiliary metric -
MeanLateness, which captures the tardy behavior of late
transactions. A transaction that commits within its deadline
has a lateness of zero. A transaction that completes after its
deadline has a lateness of (C, - &), where C, and DT are
the transaction’s completion time and deadline time,
respectively. The presence of two metrics complicates
matters since we now have to decide upon the relative
importance of the metrics. For example, is it worthwhile to
trade a ten percent increase in Mean Lateness for a five
percent improvement in MissPercent? Also, since
MissPercent and MeanLateness are adversarial metrics, in
the sense that a decrease in one will usually result in an
increase in the other, it is difficult to simultaneously
improve both metrics. While the tradeoff to be established
between the two metrics is ultimately completely
application-dependent, we describe below one possible
policy, which we will subsequently refer to as LateHigh.

In the LateHigh policy, late transactions are given
higher priority than feasible transactions so that, although
they complete late, they complete with minimum delay. Of
course, this preferential treatment for late transactions may
cause some feasible transactions to miss their deadline
which essentially means that we are willing to trade
MissPercent for any improvement in MeanLateness. The
results in [Abbo89] assume such a system.

We conducted an experiment to investigate the impact
of a soft deadline policy by using the LateHigh mechanism
to deal with late transactions, while keeping all the other
parameters the same as those of the original baseline
model. An important point to note here is that 2PL-HP no
longer suffers from the useless restarts problem, as all
transactions are run to completion. Figures 23 and 24
show the MissPercent and MeanLateness results for this
experiment. We see that OPT-BC saturates slightly earlier
than 2PL-HP and has worse MeanLateness performance.
Figures 25 and 26 show the same graphs under conditions
of infinite resources. Here we see the opposite results -
OPT-BC saturates much later than 2PL-HP and has
correspondingly better MeanLateness performance.

Based on these experiments, we conclude that 2PL-HP
is better than OPT-BC for a soft deadline system with
finite resources (assuming LateHigh policy), but for sys-
tems with plentiful resources, OPT-BC is much better.

338

Therefore, the behavior here is similar to that seen in con-
ventional database systems.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a quantitative study of
the relative performance of locking and optimistic con-
currency control techniques in the context of a real-time
database system (RTDBS). The performance metric used
here is the percentage of deadlines made, unlike a conven-
tional DBMS where response time or throughput is the
performance criterion. In a conventional DBMS, optimis-
tic algorithms generally perform worse than locking. In a
RTDBS, however, optimistic algorithms show improved
performance because they derive a blocking effect from
the priority-based handling of resource contention. Also,
their delayed data conflict resolution policy aids them in
making better decisions. To evaluate the effect of these
factors, detailed experiments were carried out on a simu-
lated RTDBS with two representative algorithms: two-
phase locking with high priority conflict resolution (2PL-
HP) and broadcast optimistic (OPT-BC).

We showed that the policy for dealing with late transac-
tions, knowledge of transaction resource requirements, and
the availability of resources all have a signilicant impact
on the relative behavior of the algorithms. In particular,
for a system where late transactions are discarded, we
demonstrated that OPT-BC outperforms 2PL-HP over a
wide range of system loading and resource availability.
We also showed that 2PL-HP was more sensitive than
OPT-BC to the dynamics of transaction priority profiles.
When the system had advance knowledge of transaction
resource requirements, both OPT-BC and 2PL-HP per-
formed much better, with their performance difference
shrinking significantly. Under a policy where late tmnsac-
tions are run to completion, the picture was not as clear-
cut; with certain caveats, we showed that when late tran-
sactions are given higher priority than feasible transac-
tions, 2PL-HP does better than OPT-BC under finite
resources, and OPT-BC does better than 2PL-HP when
resources are plentiful. In conclusion, from a performance
standpoint, we can say that optimistic schemes appear gen-
erally better suited than locking to the RTDBS environ-
ment.14

OPT-BC does not make use of transaction priorities in
resolving data conflicts. While this protects it from prob-
lems related to priority dynamics, it also prevents it Tom
making smarter decisions which could help in decreasing
the number of missed deadlines. We are currently

” Open problems do remain in order to make optimistic schemes
truly practical. particularly in the areas of recovery methods and index
management. We hope that our resulta will encourage research in this
direction.

working on developing an optimistic algorithm which
allows for the use of priorities to improve decision making
but which is yet safeguarded from the problems arising out
of priority dynamics. We also intend to look into the issues
involved in the performance of concurrency algorithms in
a distributed RTDBS environment.

Acknowledgments

The authors thank Rajiv Jauhari for helpful discussions
and assistance in developing the RTDBS simulator.

REFERENCES

[Abbot@] Abbott, R., and Garcia-Molina. H.. “Scheduling
Real-Time Transactions : a Performance Evaluation,” Proc. of
the 14th Conference on Very Large Database Systems, Aug.
1988.
[Abbo89] Abbott, R., and Garcia-Molina, H., “Scheduling
Real-Time Transactions with Disk Resident Data,” Proc. of the
15th Conference on Very Loge Database Systems, Aug. 1989.
[Agra871 Agrawal, R., Carey, M., and Livny,M., “Concurrency
Control Performance Modeling: Alternatives and Implications,”
ACM Tram on Database Systems, Dec. 1987.
[Caress] Carey, M.. and Livny, M.. “Distributed Concurrency
Control Performance : A Study of Algorithms, Distribution, and
Replication+” Proc. of the 14th Co@erence on Very Large Data-
base Systems, Aug. 1988.
[Care891 Carey, M.. Jauhari. R., and Livny, M., “Priority in
DBMS Resource Scheduling,” Proc. ofthe 15th Conference on
Very Large Database System, Aug. 1989.
[Eswa76] Eswaran, K., Gray. J., Lorie, R., and Traiger, I.. ‘The
Notions of Consistency and Predicate Locks in a Database Sys-
tem,” Communications of the ACM, Nov. 1976.
[KungH] Kung, H.. and Robinson, J., “On Optimistic Methods
for Concurrency Control,” ACM Trans. on Database Systems ,
June 1981.
[Livn88] Livny, M., D&et User’s Guide, Version 1.0, Comp.
Sci. Dept., Univ. of Wisconsin, Madison, 1988.
FIena821 Menasce, D.. and Nakanishi. T., “Optimistic versus
Pessimistic Concurrency Control Mechanisms in Database
Management Systems,” It$ormation Systems , vol. 7-1.1982.
[Robit Robinson, J.. “Design of Concurrency Controls for
Transaction Processing Systems,” Ph.D. Thesis , Carnegie Mel-
lon University, 1982.
[Sha87] Sha, L.. Rajkumar. R.. and Lehoczky, J.. ‘Priority
Inhetitance Protocols: An Approach to Real-Time Synchroniza-
tion,” Tech. Report No. CMU-CS-87-181, Carnegie Mellon
University, Dec. 1987.
[Jack631 Jackson, J.R.. “Jobshoplike Queuing Systems,”
Management Science, No. 10-l. Oct. 1963.
[Klei75] Kleinrock, L.. “Queueing Systems,” Vol. I. John Wiley
8 Sons, New York.

APPENDIX

In this section we try to provide a theoretical basis for
the observed shapes of the performance curves discussed
in Section 5. Using the terminology of queueing networks,

339

we can, in a very loose and abstract fashion, compare a
firm deadline system to a M/M/l/K system, while the soft
deadline system can be compared to a M/M/l system. The
M/M/l/K queueing model characterizes a system with
Poisson customer arrivals, exponential customer service
times, a single server, and a maximum of K customers in
the system. A new customer that arrives when there are
already K customers in the system is thrown away. If we
take the percentage of customers thrown away to be analo-
gous to our MissPercent metric, and denote it by a, we
then have the result (using Jackson’s Theorem [Jack63],
and assuming a mean customer service requirement of 1
time unit),

a=10()* ,-ALL 1 1 p+1 - 1
where L is the customer arrival rate. A sample graph of a
versus L for K = 10 is shown in Figure 27 and, as we can
see, the behavior is very similar to that seen in the perfor-
mance graphs for a RTDBS with a firm deadline policy.

The formula for a can be split up in the following
fashion :

Forh<l,
a= lOO* LK.

For hz+ 1,

These two formulas give good approximations for the
basic shape of the curves seen at normal and high loadings,
respectively.

The M/M/l system is identical to the M/M/l/K system
except that customers are never thrown away (i.e. K = -).
For this system, if we take the percentage of customers
that have a response time greater than some constant D, to
be analogous to our MissPercent metric, and denote it by
p, we then have the result (assuming a FCFS service dis-
cipline and a mean customer service requirement of 1 time
unit),

where k is the customer arrival rate. This result directly
derives from the fact that the response time distribution for
an M/M/l system [Klei75] has an exponential distribution
with parameter (u - h), where u is the mean customer ser-
vice requirement. A sample graph of g versus L for D = 10
is shown in Figure 28 and, as we can see, the behavior is
very similar to that seen in the performance graphs for a
RTDBS with a soft deadline policy.

340

2.0

I

c--+ oPr.ac

- 2PLHp

M
I
I
I

P
e
r
E
e
II
t

l.5.

R
e
s
t
a 1.0.
r
1
I

0.5.

0.0 T
0.0

,I__
20.0 40.0 60.0 80.0 100.0

Arrival Rate

Figure 4: Baseline Model (Heavy Load).

5.0 10.0 1s.o 20.0
Arrival Rate 20.0 40.0 ati. 80.0 100.0

Arrival Rate
Figure 3: Baseline Model (Normal Load). Figure 5: Restarts (Baseline Model).

1.0

R 0.8

e
s

: 0.6
r
t

p 0.4
0
i
n
t

03

0.0

+ . oFT.ac

- ZPLW

\

0.0 20.0 40.0 60.0 80.0 100.0
ArrivalRafe

Figure 6: Restart Point (Baseline Model).

1.0

0 0.8

f
I
i
z

0.5 a
t
I
0
”

0.2

0.0

104

80
M
i
s
8 60

P
e
r
e 4(
e
”
t

2(

o----o NO-CC

, + OFT-SC

- ZFlaP

20.0 40.0 60.0 80.0 100.0
Arrival Rate

- NO.02

20.0 40.0 60.0 80.0 100.0
Arrival Rate

0.0

Figure 7: Utilization (Baseline Model). Figure 8: Database Size = 10000 pages.

c-+ o?Tsc

- 2PLIiP

21

M 15
I
8
s

P
e 10

r
e
e
n
t 5

0

1Ot

80
M
i
1
s 60

P
e
r
c 40

e
”
t

20

a
40.0

40

R

: 3.0

t
a
r
1 2.0

s

l.(

0.f

- NOCt

- OFr-IC

- 2m.w

- NO-CC

10.0 20.0
Arrival Rate

60.0 80.0
Arrival Rate

.
100.0 20.0 40.0 60.0 80.0 100.0

ArrivalRate

Figure 9: Infinite RCSOUKXS (Nomd Load) Figure 10: Infinite ResoumS (Heavy Load). Figure 11: Restarts (Infinite Resources)

341

250

y 200

a
n

p 150
0
P
"
’ 100
a
t
i
0
n SO

0

4 - NO-CC 106

- OPT-ac

80 h--d .?PLw 80
M M
i I
s I
s 60 5 60

P P
e e
r
c 40

r
c 40

e e
” "
t t

20 20

0 0
0.0 20.0 40.0 60.0 80.0 100.0 0.0 2.0

Arrival Rate
s4hoek Fact: 8.0 10.0 (

- N0J.X

- on-ac

- 2Fl.w

SYck FacE
8.0 10.0

Figure 12: Population (Infinite Resources).Figure 13: Slack Factqr (Arrival Rate = 10). Figure 14: Slack Factor (Arrival Rate = 30).

4.0 2.0

3.0

R
e
s

f 2.0

r
t
I

1.0

60

1.5

R
e
s
t
a 1.0
r
t
s

Figure

2.0 4.0 6.0 8.0 10.0
Slack Factor

5: Restarts (Fur. Rate = 30).

0
0.0 20.0 40.0 60.0 80.0 100.0

Arrival Rate

Figure 16: Priority Inversion.

0.0 20.0 40.0 60.0
Arrival Rate

80.0 100.0

100 2.0 - OFT.ac

- KHP

Figure 17: Restarts (Priority Inversion).

80
M
i
s
s 60

P
e
r
e 40

e
n
t

20

1.S

R
e
s
t
a 1.0
r
t
s

0.8 .
u

:

1 0.6.

z
a

f 0.4.

0
n

0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0 40.0 60.0 80.0 100.0
Arrival Rate

0.0 20.0 40.0 60.0 80.0 100.0
Arrival Rate Arrival Rate

Figure 18: Feasible Deadlines Policy. Figure 19: Restarts (Feasible Deadlines). Figure 20: Utilization (Feasible Deadlines).

342

100

80
M
i
s
s 60

P
e
r
c 40

e
n
t

20

40.0 60.0
Arrival Rate

80.0 100.0 0.0 20.0 40.0 60.0
Arrival Rate

80.0 100.0

Figure 21: Inf. Resources (Feasible Deadlines). Figure 22: Restarts (Inf. Resources).

5 - NO.02 loo- - NO-CC

1 * om-ac

80. - ZPLHP
M M 4

e
a
n

3
L
a
t
e 2
”
e
s
s

1

-No-cc

- OPT-K

p--d 2PLHP

0
0.0 10.0 20.0 30.0 40.0 SO.0

Arrival Rate

Figure 24: Lateness (Soft Deadline).

lo(1

80
M
i
s
s 60

P
e
r
e 40

e
n
t

20

5.0

4.0

R

: 3.b

t
a

: 2.0
s

1.0

0.0

i l
s
s 60.

P
e
r
e 40.
e
”
t

20.

0
0.0 20.0 40.0 60.0 80.0 100.0

Arrival Rate

Figure 25: Inf. Resources (Soft Deadline).

0.0 1.0
kkal R%

40 5.0

Figure 27: ALPHA (M/M/l/K Model)

100

80
M

s
s 60

P
e
r
c 40

e
n
t

20

100

80
M
i
s
5 60

P
e
r
c 40
e
”
t

20

0
0.0 10.0 20.0 30.0 40.0 SO.0

Arrival Rate

Figure 23: Soft Deadline Policy.

6.0 - 1 NO-CC

0.0 20.0 40.0 60.0 80.0 100.0
Arrival Rate

Figure 26: Lateness (Inf. Resources).

0.0 0.2 0.4 0.6 0.8 1.0
Arrival Rate

Figure 28: BETA (M/M/l Model).

343

