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A Multiscale Retinex for Bridging the Gap Between
Color Images and the Human Observation of Scenes

Daniel J. Jobson,Member, IEEE,Zia-ur Rahman,Member, IEEE,and Glenn A. Woodell

Abstract—Direct observation and recorded color images of
the same scenes are often strikingly different because human
visual perception computes the conscious representation with
vivid color and detail in shadows, and with resistance to spectral
shifts in the scene illuminant. A computation for color images
that approaches fidelity to scene observationmust combine dy-
namic range compression, color consistency—a computational
analog for human vision color constancy—and color and lightness
tonal rendition. In this paper, we extend a previously designed
single-scale center/surround retinex to a multiscale version that
achieves simultaneous dynamic range compression/color consis-
tency/lightness rendition. This extension fails to produce good
color rendition for a class of images that contain violations of
the gray-world assumption implicit to the theoretical foundation
of the retinex. Therefore, we define a method of color restoration
that corrects for this deficiency at the cost of a modest dilution
in color consistency. Extensive testing of the multiscale retinex
with color restoration on several test scenes and over a hundred
images did not reveal any pathological behavior.

I. INTRODUCTION

A COMMON (and often serious) discrepancy exists be-
tween recorded color images and the direct observation

of scenes (see Fig. 1). Human perception excels at constructing
a visual representation with vivid color and detail across the
wide ranging photometric levels due to lighting variations. In
addition, human vision computes color so as to be relatively
independent of spectral variations in illumination [1]; i.e., it is
color constant. The recorded images of film and electronic
cameras suffer, by comparison, from a loss in clarity of
detail and color as light levels drop within shadows, or
as distance from a lighting source increases. Likewise, the
appearance of color in recorded images is strongly influenced
by spectral shifts in the scene illuminant. We refer to the
computational analog to human vision color constancy as color
consistency. When the dynamic range of a scene exceeds
the dynamic range of the recording medium, there is an
irrevocable loss of visual information at the extremes of
the scene dynamic range. Therefore, improved fidelity of
color images to human observation demands i) a computation
that synthetically combines dynamic range compression, color
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consistency, and color and lightness rendition, and ii) wide
dynamic range color imaging systems. The multiscale retinex
(MSR) approaches the first of these goals. The design of
the computation is tailored to visual perception by comparing
the measured photometry of scenes with the performance of
visual perception. This provides a rough quantitative measure
of human vision’s dynamic range compression—approaching
1000 : 1 for strong illumination variations of bright sun to deep
shade.

The idea of the retinex was conceived by Land [2] as a
model of the lightness and color perception of human vision.
Through the years, Land evolved the concept from a random
walk computation [3] to its last form as a center/surround
spatially opponent operation [4], which is related to the
neurophysiological functions of individual neurons in the
primate retina, lateral geniculate nucleus, and cerebral cortex.
Subsequently, Hurlbert [5]–[7] studied the properties of this
form of retinex and other lightness theories and found that they
share a common mathematical foundation but cannot actually
compute reflectance for arbitrary scenes. Certain scenes violate
the “gray-world” assumption—the requirement that the aver-
age reflectances in the surround be equal in the three spectral
color bands. For example, scenes that are dominated by one
color—“monochromes”—clearly violate this assumption and
are forced to be gray by the retinex computation. Hurlbert
further studied the lightness problem as a learning problem
for artificial neural networks and found that the solution had
a center/surround spatial form. This suggests the possibility
that the spatial opponency of the center/surround is, in some
sense, a general solution to estimating relative reflectances
for arbitrary lighting conditions. At the same time, it is
equally clear that human vision does not determine relative
reflectance, but rather a context-dependent relative reflectance
since the same surfaces in shadow and light do not appear
to be the same. Mooreet al. [8], [9] took up the retinex
problem as a natural implementation for analog very large
scale integration (VLSI) resistive networks and found that
color rendition was dependent on scene content—whereas
some scenes worked well, others did not. These studies also
pointed out the problems that occur due to color Mach bands
and the graying-out of large uniform zones of color.

We have previously defined a single-scale retinex [10]
(SSR) that can either provide dynamic range compression
(small scale), or tonal rendition (large scale), but not both
simultaneously. The multiscale retinex with color restoration
(MSRCR) combines the dynamic range compression of the
small-scale retinex and the tonal rendition of the large scale
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Fig. 1. Illustration of the discrepancy between color images and and perception. The right image is a much closer representation of the visual
impression of the scene.

retinex with a universally applied color restoration. This color
restoration is necessary to overcome the problems that the
MSR has in the rendition of scenes that contain gray-world
violations. It merges all the necessary ingredients to approx-
imate the performance of human vision with a computation
that is quite automatic and reasonably simple. These attributes
make the MSRCR attractive for smart camera applications,
in particular for wide dynamic range color imaging systems.
For more conventional applications, the MSRCR is useful
for enhancing 8-b color images that suffer from lighting
deficiencies commonly encountered in architectural interiors
and exteriors, landscapes, and nonstudio portraiture.

Most of the emphasis in previous studies has been on the
color constancy property of the retinex, but its dynamic range
compression is visually even more dramatic. Since we want to
design the retinex to perform in afunctionallysimilar manner
to human visual perception, we begin with a comparison of
the photometry of scenes to their perception. This defines (at
least in some gross sense) the performance goal for the retinex
dynamic range compression.

An apparent paradox has been brought to our attention by a
colleague as well as a reviewer. This paradox is so fundamental
that it requires careful consideration before proceeding. The
question, simply stated, is why should recorded images need
dynamic range compression, since the compression of visual
perception will be performed when the recorded image is
observed? First we must state categorically that recorded
images with significant shadows and lighting variationsdo
need compression. This has been our experience in comparing
the perception of recorded images with direct observation for
numerous scenes. Therefore, we have to conclude that the
dynamic range compression for perception of the recorded
images is substantially weaker than for the scene itself. Fig. 1
is a case in point. There is no linear representation of this

image, such as the viewing of the image on a gamma-corrected
cathode ray tube (CRT) display, which even comes close to
the dynamic compression occurring during scene observa-
tion. The same is true for all scenes we have studied with
major lighting variations. We offer the possible explanation
that weak dynamic range compression can result from the
major differences in angular extent between scene and image
viewing. Image frames are typically about 40in angular
extent for a 50 mm film camera. These same frames are
usually viewed with about a 10display or photographic
print. Furthermore, the original 40frame is taken out of
the larger context, which would be present when observing
the scene directly. The dynamic range compression of human
vision is strongly dependent upon the angular extent of visual
phenomena. Specifically, compression is much stronger for
large shadow zones than for smaller ones. We feel that this
a plausible resolution for this apparent paradox, and are
certainly convinced by considerable experience that recorded
images do need computational dynamic range compression for
scenes that contain significant lighting variations. Likewise,
this explanation applies to color consistency.

Since the nonlinear nature of the MSR makes it almost
impossible to prove its generality, we provide the results of
processing many test images as a measure of confidence in
its general utility and efficacy. Results obtained with test
scenes—i.e., where direct observation of the subject of the
image is possible—are given more weight because the per-
formance of the computation can be compared directly to
observation of the scene.

II. THE PHOTOMETRY OF SCENESCOMPARED TO PERCEPTION

We approached learning more about the dynamic range
compression in human vision by exploring the perceptual and
photometric limits. We did this by selecting and measuring
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TABLE I
PHOTOMETRY OF SCENES

scenes with increasingly emphatic lighting variations and then
examining the point at which dynamic range compression
gives way to loss of visual information. In other words,
we looked for the dynamic range extremes at which human
vision either saturates or clips the signals from very dark
zones in a scene. We used a photographic spotmeter for
the photometric measurements. In addition, we attempted to
calibrate the perceptual lightness difference that occurs when
the same surface is viewed in direct sunlight and in shadow. To
quantify this difference, we compared the perceived lightness
under both conditions to a reference gray-scale in direct sun
and asked the question: Which gray scales match the surface in
sun and shadow? Whereas the extreme measurements provide
information about where dynamic range compression becomes
lossy, the sun/shadow/gray-scale matches give some measure
of the dynamic range compression taking place within more
restricted lighting changes.

The results of the photometric measurements are given in
Table I. The conditions shown are representative of the wide
dynamic range encountered in many everyday scenes. Scene
visibility is good except under the most extreme lighting
conditions. On the low end, visibility is quite poor at 1
candles/m (cd/m ) luminance but improves rapidly as light
levels approach 10 cd/m. Detail and color are quite easily
visible across the range of 10–10 000 cd/m, even when all
occur together in a scene. We can therefore conclude that dy-
namic range compression within a scene can approach 1000 : 1,
but becomes lossy for wider ranges. For low luminance, color
and detail are perceptually hazy with a loss of clarity; and
for extremely low levels of luminance (approaching 10 000 : 1
when compared with direct sunlight), all perception of color
and detail is lost.

We can also quantitatively estimate from this data the
difference between perception and photometry for a very
commonly encountered case: objects in sun and shadow.
The drop in light level usually associated with a shadow
is between 10–20% of the sunlit value, depending on the
depth of the shadow. We compared the perceived drop in

lightness to a reflectance gray-scale and concluded that the
perceptual decrease is only about 50% of the sunlit lightness
value. This clearly demonstrates the large discrepancy between
recorded images and perception, even for conditions that do
not encompass a very wide dynamic range. This data implies
that for 10 : 1 changes in lighting, the perception of these
changes is about 3–5 : 1 to minimize the impact of lighting
on the scene representations formed by consciousness. Hence,
as simple and ubiquitous an event as a shadow immediately
introduces a major discrepancy between recorded images and
visual perception of the same scene. This sets a performance
goal derived from human visual perception with which to test
the retinex. Clearly, a very strong nonlinearity exists in human
vision, although our experiments can not define the exact form
of this neural computation.

III. CONSTRUCTION OF A MULTISCALE

CENTER/SURROUND RETINEX

The single-scale retinex [10]–[12] is given by

(1)

where is the retinex output, is the image dis-
tribution in the th spectral band, “*” denotes the convolution
operation, and is the surround function

where is the Gaussian surround space constant, andis
selected such that

The MSR output is then simply a weighted sum of the outputs
of several different SSR outputs. Mathematically,

(2)

where is the number of scales, is the th component
of the th scale, is the th spectral component of the
MSR output, and is the weight associated with theth
scale. The only difference between and is
that the surround function is now given by

A new set of design issues emerges for the design of the
MSR in addition to those for the SSR [10]. This has primarily
to do with the number of scales to be used for a given
application, and how these realizations at different scales
should be combined. Because experimentation is our only
guide in resolving these issues, we conducted a series of tests
starting with only two scales and adding further scales as
needed. After experimenting with one small scale
and one large scale the need for a third interme-
diate scale was immediately apparent in order to produce a
graceful rendition without visible “halo” artifacts near strong
edges. Experimentation showed that equal weighting of the
scales— —was sufficient for most
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Fig. 2. Components of the multiscale retinex that show their complementary information content. The smallest scale is strong on detail and dynamic
range compression and weak on tonal and color rendition. The reverse is true for the largest spatial scale. The multiscale retinex combines the strengths
of each scale and mitigates the weaknesses of each.

applications. Weighting the smallest scale heavily to achieve
the strongest dynamic range compression in the rendition leads
to ungraceful edge artifacts and some graying of uniform color
zones.

To test whether the dynamic range compression of the MSR
approaches that of human vision, we used testscenesthat we
had observed in addition to test images that we had obtained
from other test sources. The former allowed us to readily
compare the processed image to the direct observation of
the scene. Fig. 2 illustrates the complementary strengths and
weaknesses of each scale taken separately and the strength
of the multiscale synthesis. This image is representative of a
number of test scenes (see Fig. 3) where for conciseness we
show only the multiscale result.

The comparison of the unprocessed images to the perception
of the scene produced some striking and unexpected results.
When direct viewing was compared with the recorded image,
the details and color were far more vivid for direct viewing
not only in shadowed regions, but also in the bright zones

of the scene! This suggests that human vision is doing even
more image enhancement than just strong dynamic range
compression, and the MSR may ultimately need to be modified
to capture the realism of direct viewing. Initially, we tackle the
dynamic range compression, color consistency, and tonal/color
rendition problems, while keeping in mind that further work
may be necessary to achieve full realism.

A sample of image data for surfaces in both sun and shadow
indicates a dynamic range compression of 2 : 1 for the MSR
compared to the 3–5 : 1 measured in our perceptual tests.
For the SSR this value is 1.5 : 1 or less. These
levels of dynamic range compression are for outdoor scenes
where shadows have large spatial extent. Shadows of small
spatial extent tend to appear “darker” and are more likely to
be clipped in recorded images. Fig. 3 shows a high dynamic
range indoor/outdoor scene. The foreground orange book on
the gray-scale is compressed by approximately 5 : 1 for the
MSR while compression for the SSR is only about 3 : 1,
both relative to the bright building facade in the background.
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Fig. 3. Examples of test scenes processed with the multiscale retinex prior to color restoration. While color rendition of the left image is good, the
other two are “grayed” to some extent. Dynamic range compression and tonal rendition are good for all and compare well with scene observation. Top
row: Original. Bottom row: Multiscale retinex.

The compression for human vision is difficult to estimate
in this case, since both the color and texture of the two
surfaces are quite different. Our impression from this analysis
is that the MSR is approaching human vision’s performance
in dynamic range compression but not quite achieving it. For
scenes with even greater lighting dynamics than these, we
can anticipate an even higher compression for the MSR to
match human vision. However, we are currently unable to
test this hypothesis because the conventional 8-b analog-to-
digital converters of both our solid-state camera and slide
film/optical scanner digitizer restrict the dynamic range with
which the image data for such scenes can be acquired. Solid
state cameras with 12-b dynamic range and thermoelectrically
cooled detector arrays with 14-b dynamic range are, however,
commercially available, and can be used for examining the
MSR performance on the wider dynamic range natural scenes.
Even for the restricted dynamic range shown in Fig. 3 (left),
it is obvious that limiting noise has been reached, and that
much wider dynamic range image acquisition is essential for
realizing a sensor/processing system capable of approximating
human color vision.

For the conventional 8-b digital image range, the MSR
performs well in terms of dynamic range compression, but its
performance on the pathological classes of images examined
in previous SSR research [10] must still be examined. Fig. 4
shows a set of images that contain a variety of regional and

global gray-world violations. The MSR, as expected, fails
to handle them effectively—all images possessing notable,
and often serious, defects in color rendition (see Fig. 4,
middle row). We only provide these results as a baseline for
comparison with the color restoration scheme, presented in the
next section, that overcomes these deficiencies of the MSR.

IV. A COLOR RESTORATION METHOD

FOR THE MULTISCALE RETINEX

The general effect of retinex processing on images with
regional or global gray-world violations is a “graying out”
of the image, either globally or in specific regions. This
desaturation of color can, in some cases, be severe (see
Fig. 4, middle). More rarely, the gray-world violations can
simply produce an unexpected color distortion (see Fig. 4,
top left). Therefore, we consider a color restoration scheme
that provides good color rendition for images that contain
gray-world violations. We, of course, require the restoration to
preserve a reasonable degree of color consistency, since that
is one of the prime objectives of the retinex. Color constancy
is known to be imperfect in human visual perception, so
some level of illuminant color dependency is acceptable,
provided it is much lower than the physical spectrophotometric
variations. Ultimately, this is a matter of image quality, and
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Fig. 4. Pathological “gray-world” violations are not handled well by the multiscale retinex alone (middle row), but are treated successfully when color
restoration is added (lower row). Top row: Original.

color dependency is tolerable to the extent that the visual
defect is not visually too strong.

We begin by considering a simple colorimetric transform
[13], even though it is often considered to be in direct
opposition to color constancy models. It is also felt to describe
only the so-called “aperture mode” of color perception, i.e.,
restricted to the perception of color lights rather than color
surfaces [14]. The reason for this choice is simply that it
is a method for creating a relative color space, and in so
doing becomes less dependent than raw spectrophotometry
on illuminant spectral distributions. This starting point is
analogous to the computation of chromaticity coordinates
where

(3)

for the th color band, and is the number of spectral channels.
Generally, using the red–green–blue (RGB) color
space. The modified MSR that results is given by

(4)

where

is the th band of the color restoration function (CRF) in the
chromaticity space, and is the th spectral band
of the multiscale retinex with color restoration. In a purely
empirical manner, we tried several linear and nonlinear color
restoration functions on a range of test images. The function
that provided the best overall color restoration was

(5)

where is a gain constant, and controls the strength of
the nonlinearity. In the spirit of a preserving a canonical
computation, we determined that a single set of values for

and worked for all spectral channels. The final MSRCR
output is obtained by using a “canonical” gain/offset to transi-
tion between the logarithmic domain and the display domain.
Looking at the forms of the CRF of (5) and the SSR of
(1), we conjecture that the CRF represents a spectral analog
to the spatial retinex. This mathematical and philosophical
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TABLE II
LIST OF CONSTANTS USED FORONE PARTICULAR IMPLEMENTATION OF THE

MSRCR ON A DEC ALPHA 3000, USING THE VMS F77 COMPILER

symmetry is intriguing, since it suggests that there may be a
unifying principle at work. Both computations are nonlinear,
contextual, and highly relative. We can speculate that the
visual representation of wide dynamic range scenes must be a
compressed mesh of contextual relationships for lightness and
color representation. This sort of information representation
would certainly be expected at more abstract levels of visual
processing such as form information composed of edges, links,
and the like, but is surprising for a representation so closely
related to the raw image. Perhaps in some way this front-end
computation can serve later stages in a presumed hierarchy of
machine vision operations that would ultimately need to be
capable of such elusive goals as resilient object recognition.

The bottom row in Fig. 4 shows the results of applying the
CRF to the MSR output for pathological images. The MSRCR
provides the necessary color restoration, eliminating the color
distortions and gray zones evident in the MSR output. The
challenge now is to prove the generality of this computation.
Since there is not a mathematical way to do this, we have
tested the computation on several hundred highly diverse
images without discovering exceptions. Unfortunately, space
considerations allow us to present only a very small subset of
all the images that we have tested.

V. SELECTED RESULTS FORDIVERSE TEST CASES

Extensive testing indicates that the gain constantfor
the CRF and the final gain/offset adjustment required to
transition from the logarithmic to the display domain are
independent of the spectral channel and the image content.
This implies that the method is general or “canonical,” and
can be applied automatically to most (if not all) images
without either interactive adjustments by humans or internal
adjustments such as an auto-gain. This final version of the
MSRCR can then be written as

(6)

where and are the final gain and offset values, respec-
tively. The constants and intrinsically depend upon the
implementation of the algorithm in software. Table II gives
a list of the constants used to produce all the outputs in this
paper.

We must again emphasize that the choice of the all constants
merely represents a particular implementation that works well
for a wide variety of images. In no way do we mean to imply
that these constants are optimal or “best case” for all possible
implementations of this algorithm. The choice of the surround
space constants, s, in particular does not seem to be critical.
Instead, the choice seems to only need to provide reasonable
coverage from local to near global. Likewise, the choice of us-
ing three scales was made empirically to provide the minimum
number of scales necessary for acceptable performance.

The test images presented here begin with some test scenes
since we feel it is fundamental to refer the processed images
back to the direct observation of scenes. This is necessary to
establish how well the computation represents an observation.
Clearly, we cannot duplicate human vision’s peripheral vision
which spans almost 180 but within the narrower angle
of most image frames, we would like to demonstrate that
the computation achieves the clarity of color and detail in
shadows, reasonable color constancy and lightness and color
rendition that is present in direct observation of scenes. The
test scenes (see Fig. 5) compare the degree with which the
MSRCR approaches human visual performance. All four of
the MSRCR outputs shown in Fig. 5 are quite “true to life”
compared to direct observation, except for the leftmost, which
seems to require even more compression to duplicate scene
perception. This image was scanned from a slide and digitized
to 8-b/color. The other three images were taken with a Kodak
DCS200C CCD detector array camera. In none of the cases
could a gamma correction produce a result consistent with
direct observation. Therefore, we conclude that the MSRCR
is not correcting simply for a CRT display nonlinearity, and
that far stronger compression than gamma correction is nec-
essary to approach fidelity to visual perception of scenes with
strong lighting variations. We did not match camera spatial
resolution to observation very carefully, so some difference in
perceived detail is expected and observed. However, overall
color, lightness, and detail rendering for the MSRCR is a good
approximation to human visual perception.

The rest of the selected test images (Figs. 6–8) were ac-
quired from a variety of sources (see acknowledgments) and
provide as wide a range of visual phenomena as we felt
could be presented within the framework of this paper. Little
comment is necessary and we will leave the ultimate judgment
to the reader. Some images with familiar colors and no strong
lighting defects are included to show that the MSRCR does
not introduce significant visual distortions into images that are
without lighting variations. The white stripes of the American
flag in Fig. 6(a) show a shift toward blue-green in the MSRCR
output. This is, perhaps, analogous to the simultaneous color
contrast phenomena of human perception. Mooreet al. [8]
noted a similar effect in their implementation of a different
form of the retinex. The Paul Klee painting in Fig. 7(b) is
included as a test of the subtlety of tonal and color rendition.
Some of the test images with strong shadows zones where one
or two color channels are preferentially clipped do exhibit a
color distortion. This is due to the rather limited dynamic range
of the “front-end” imaging/digitization, and is not an artifact of
the computation. Even for these cases, the MSRCR produces
far more visual information and is more “true-to-life” than the
unprocessed image. The set of space images are included to
show the application of the MSRCR to both space operations
imagery and remote sensing applications.

A further test is worthwhile in assessing the impact of the
CRF on color consistency. The CRF, as expected, dilutes color
consistency, as shown in Fig. 9. However, the residual color
dependency is fairly weak and the visual impression of color
shift is minimal especially in comparison with the dramatic
shifts present in the unprocessed images.
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Fig. 5. Test scenes illustrating dynamic range compression, color, and tonal rendition, and automatic exposure correction. All processed images compare
favorably with direct scene observation with the possible exception of leftmost image, which is even lighter and clearer for observation. This scenehas the widest
dynamic range and suggests that even stronger dynamic range compression may be needed for this case. Top row: Original. Bottom row: Multiscale retinex.

Fig. 6. Photographic examples further illustrating graceful dynamic range compression together with tonal and color rendition. The rightmost image
shows the processing scheme handling saturated colors quite well and not distorting an image that is quite good in its original form. Top row: Original.
Bottom row: Multiscale retinex.

VI. DISCUSSION

While we have not yet conducted an extensive performance
comparison of the MSRCR to other image enhancement meth-
ods, we have done some preliminary tests of the MSRCR rel-
ative to the simpler image enhancement methods—histogram
equalization, gamma correction, and gain/offset manipula-

tion [15], and point logarithmic nonlinearity [16]. Overall,
the performance of the retinex is consistently good, while
performance for the others is quite variable. In particular,
the retinex excels when there are major zones of both high
and low light levels. The traditional methods that we have
compared against are all point operations on the image,
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Fig. 7. Miscellaneous examples illustrating fairly dramatic dynamic range compression as well one for subtlety of color rendition (second from
leftmost—painting by Paul Klee). Top row: Original. Bottom row: Multiscale retinex.

Fig. 8. Selection of space images to show enhancement of space operations imagery and remote sensing data. Top row: Original. Bottom row:
Multiscale retinex.

whereas unsharp masking [17] and homomorphic filtering
[17], [18] are spatial operations more mathematically akin to
center/surround operation of the retinex. Unsharp masking is
a linear subtraction of a blurred version of the image from
the original and is generally applied using slight amounts of
blurring. For a given space constant for the surround, we would
expect the retinex to be much more compressive. It is not
clear that unsharp masking would have any color constancy

property, since the subtraction process in the linear domain is
essentially a highpass filtering operation and not a ratio that
provides the color constancy of the retinex.

Homomorphic filtering is perhaps the closest computation
to the MSRCR and in one derivation [19] has been applied
to color vision. Both its original form and the color form rely
upon a highpass filtering operation that takes place after the
dynamic range of the image is compressed with a point log-



974 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 7, JULY 1997

Fig. 9. Toy scene revisited. A test of the dilution of color consistency by the color restoration. While color consistency was shown previously to be near
perfect for the SSR and MSR, some sacrifice of this was necessary to achieve color rendition. While slight changes in color can be seen, color consistency is still
quite strong relative to the spectrophotometric changes seen in the original images (top row). The blues and yellows are in the color restored multiscale retinex
(bottom row) are the most affected by the computer simulated spectral lighting shifts, but the effect is visually weak and most colors are not visibly affected.

arithmic nonlinearity. An inverse exponentiation then restores
the dynamic range to the original display space. The color
vision version adds an an opponent-color/achromatic transfor-
mation after the application of the logarithmic nonlinearity. We
have found that the application of the logarithmic nonlinearity
before spatial processing gives rise to emphatic “halo” artifacts
and have also shown that it is quite different visually and math-
ematically from the application of the log after the formation
of the surround signal [10]. Because of the nonlinearities in
both the MSRCR and homomorphic filtering, a straightforward
mathematical comparison is not possible. We do, however,
anticipate significant performance differences between the two
in terms of dynamic range compression, rendition, and, for the
color vision case, color consistency. Another major difference
between the MSRCR and homomorphic filtering is in the
application of the inverse function in homomorphic filtering.
The analogous operation in the MSRCR is the application of
the final gain/offset. Obviously, the two schemes use quite
different techniques in going from the nonlinear logarithmic
to the display domain. We conjecture that the application of
the inverse function in the retinex computation would undo
some of the compression it achieves.

One of the most basic issues for the use of this retinex is
the trade-off between the advantages versus the introduction
of context dependency on local color and lightness values.
Our experience is that the gains in visual quality, which can
be quite substantial, outweigh the relatively small context
dependency. The context dependencies are perhaps of most
concern in remote sensing applications. The strongest context
dependencies occur for the dark regions that are low because
of low scene reflectances—for example, large water areas in
remote sensing data adjacent to bright land areas. The large
zones of water are greatly enhanced and subtle patterns in
them emerge. The retinex clearly distorts radiometric fidelity
in favor of visual fidelity. The gains in visual information, we
hope, have been demonstrated adequately in our results. Even
for specific remote sensing experiments where radiometric
fidelity is required, the retinex may be a necessary auxiliary
tool for the visualization of overall patterns in low signal
zones. Visual information in darker zones that may not be
detected with linear representations which preserve radiometry
will “pop out” with a clarity limited only by the dynamic range
of the sensor front-end and any intervening digitization scheme
employed prior to the retinex. This may be especially useful
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in visualizing patterns in remote sensing images covering
land and water. Water has a much lower reflectance than
land especially for false-color images including a near-infrared
channel. The ability of the MSRCR to visualize features within
both land and water zones simultaneously should be useful in
coastal zone remote sensing.

The retinex computation can be applied ex post facto on 8-b
color images and all of the results presented here represent this
application. We have noticed only one problem with this—that
the retinex can and will enhance artifacts introduced by lossy
coding schemes, most notably lossy JPEG. Hence, the retinex
is best applied prior to lossy image coding. One obvious
advantage that the MSRCR provides for image compression is
its ability to compress wider dynamic ranges to 8-bit or less
per band color output, while preserving, and even enhancing,
the details in the scene. The overall effect then is a significant
reduction in the number of bits (especially in cases where
the original color resolution is higher than 8-b/band) required
to transmit the original without a substantial loss in spatial
resolution or contrast quality.

The greatest power and advantage of the retinex is as
a front-end computation, especially if the camera is also
capable of wider than 8-b dynamic range. We have seen from
scene photometry that 10–12-b dynamic ranges are required
to encompass everyday scenes. Obviously, the retinex is most
powerful as a front-end computation if it can be implemented
within a sensor or between the sensor and coding/archival
storage. We have not tested this retinex on wide dynamic range
images, since we do not yet have access to an appropriate
camera, therefore for wider dynamic range images some
modifications in the processing may be anticipated. This may
involve adding more scales, especially smaller ones, to provide
a greater but still graceful dynamic range compression.

We have encountered many digital images in our testing that
are underexposed. Apparently even with modern photographic
autoexposure controls, exposure errors can and do occur. An
additional benefit of the MSRCR is it capacity for exposure
correction. Again, this is especially beneficial if it is performed
as a front-end computation.

We do have the sense from our extensive testing thus far
that the MSRCR approaches the high degree of dynamic range
compression of human vision but may not quite achieve a
truly comparable level of compression. Our impressions of
the test scene cases is that direct observation is still more
vivid in terms of color and detail than the processed images.
This could be due to limitations in display/print media, or it
could be that the processing scheme should be further designed
to produce an even more emphatic enhancement. Further
experimentation comparing test scenes to processed images
and an accounting for display/print transfer characteristics will
be necessary to resolve this remaining question and refine the
method if necessary in the direction of greater enhancement
of detail and color intensity. The transfer characteristics of
print/display media deserve further investigation since most
CRT’s and print media have pronounced nonlinear properties.
Most CRT’s have an inverse “gamma” response [17] and
the specific printer that we have used (Kodak XLT7720
thermal process) has a nonlinear response. For the printed

results shown, we used a modest gamma correction
While this does not represent an accurate inverse that

linearizes the printer transfer function, it does capture the
the visual information with a reasonable good and consistent
representation. Obviously no matter how general purpose the
MSRCR is, highest quality results will still need to account
for the specifics of print/display media especially since these
are so often nonlinear.

VII. CONCLUSIONS

The MSR, comprised of three scales (small, intermediate,
and large), was found to synthesize dynamic range compres-
sion, color consistency, and tonal rendition, and to produce
results that compare favorably with human visual perception,
except for scenes that contain violations of the gray-world
assumption. Even when the gray-world violations were not
dramatic, some desaturation of color was found to occur. A
color restoration scheme was defined that produced good color
rendition even for severe gray-world violations, but at the
expense of a slight sacrifice in color consistency. In retrospect,
the form of the color restoration is a virtual spectral analog
to the spatial processing of the retinex. This may reflect some
underlying principle at work in the neural computations of
consciousness; perhaps, even that the visual representation of
lightness, color, and detail is a highly compressed mesh of
contextual relationships, a world of relativity and relatedness
that is more often associated with higher levels of visual
processing such as form analysis and pattern recognition.

While there is no firm theoretical or mathematical basis
for proving the generality of this color restored MSR, we
have tested it successfully on numerous diverse scenes and
images, including some known to contain severe gray-world
violations. No pathologies have yet been observed. Our tests
were, however, confined to the conventional 8-b dynamic
range images, and we expect that some refinements may be
necessary when the wider dynamic range world of 10–12-b
images is engaged.
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