
Using XML Transformations
for Enterprise Architectures

A. Stam1?, J. Jacob2, F.S. de Boer1,2,
M.M. Bonsangue1??, and L.van der Torre3

1 LIACS, Leiden University, The Netherlands
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

3 University of Luxembourg, Luxembourg

Abstract. In this paper we report on the use of XML transformations
in the context of Enterprise Architectures. We show that XML trans-
formation techniques can be applied to visualize and analyze enterprise
architectures in a formal way. We propose transformational techniques
to extract views from an XML document containing architectural infor-
mation and indicate how to perform a specific form of impact analysis
on this information. The transformations are formally expressed with the
language RML, a compact yet powerful transformation language devel-
oped at CWI, which obtains its power from regular expressions defined
on XML documents. We discuss a tool that has been built on top of
it to visualize the results of the transformations and illustrate the ad-
vantages of our approach: the genericity of XML, the application of a
single technique (namely XML transformations) for various tasks, and
the benefits of having a model viewer which is in complete ignorance of
the architectural language used.

1 Introduction

In this paper, we investigate the use of XML transformation techniques in the
context of enterprise architectures, a field in which much work is currently of-
ten done by hand, like analysis and the time-consuming creation of views for
different stakeholders. The absence of formal methods and techniques hinders
the quality of analyses, the consistency between different views and the agility
with respect to changes in the architecture. Moreover, architects often want to
have their own style of visualization (for cultural and communication reasons
within organizations), without having to conform to a certain standard. Many
architectural tools depend on a specific architectural language and often only
support one visualization style or visual language for it.

In order to overcome these problems, we propose a way of working that in-
troduces flexibility in the architectural language and visualizations used, while

? Corresponding author. Email: astam@liacs.nl
?? The research of Dr. Bonsangue has been made possible by a fellowship of the Royal

Netherlands Academy of Arts and Sciences

adding formality to both the actual creation of views and the analysis of architec-
tures. Our approach is to specify architectural information as XML documents
and use XML transformation techniques for creating views and performing anal-
yses on an architecture. Moreover, we propose to use a visualization tool which
is independent of a specific architectural or visual language.

In particular, within this paper, we focus on three subquestions:

– Given a set of architectural information described in a single XML document.
How can we use XML transformations to select a subset of this information
for a specific architectural view?

– How can we transform an XML document containing architectural informa-
tion into another XML document containing visual information in terms of
boxes, lines, etc.? How can we build a model viewer which interprets this
visual information without having to know anything about the architectural
language used?

– How can we use XML transformations to perform analyses on an archi-
tectural description? We have chosen to focus at a specific form of impact
analysis: given an entity within the architectural description which is con-
sidered to be modified or changed, which other entities in the description
are possibly influenced by this change?

We have carried out the following activities: First, we developed a running
example for verification of our ideas and techniques. Then, we developed an XML
document containing the architectural information of the running example. We
used the ArchiMate language and its corresponding XML Schema, containing
the concepts from the ArchiMate metamodel. After this, we developed an XML
Schema for visualization information and built a model viewer, which is entirely
ignorant of the ArchiMate language, and only interprets visualization informa-
tion and shows this information on the screen. We only used XML transforma-
tion techniques for the actual visualization. Then, we selected an easy-to-use
transformation tool, namely the Rule Markup Language (RML), and built the
transformation rules for selection, visualization and impact analysis.

The layout of this document is as follows: In Section 2, we introduce the
reader to enterprise architecture and ArchiMate. In Section 3, XML and the Rule
Markup Language (RML) are explained. In Section 4 we introduce the running
example: ArchiSurance, a small insurance company which has the intention to
phase out one of its core applications. In Section 5 we show transformation
rules for the creation (selection and visualization) of architectural views, while
in Section 6 we illustrate transformation techniques for analysis by means of
performing a small impact analysis. In Section 7 we conclude.

2 Enterprise Architecture

A definition of architecture quoted many times is the following IEEE definition:
“the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its

design and evolution” [11]. Therefore, we can define enterprise architecture [8]
as the fundamental organization of an enterprise embodied in its components,
their relationships to each other and to the environment and the principles guid-
ing its design and evolution. It covers principles, methods and models for the
design and implementation of business processes, information systems, technical
infrastructure and organizational structure.

Architectural information is usually presented via (architectural) views. With
these views and the information they contain, stakeholders within an organiza-
tion are able to gain insight into the working of the organization, the impact
of certain changes to it, and ways to improve its functioning. Usually, we can
distinguish between architectural information in relation to the as-is situation
of an organization and information in relation to its intended to-be situation.
According to IEEE, views conform to viewpoints that address concerns of stake-
holders.

2.1 ArchiMate

Within the ArchiMate project [10], a language for enterprise architecture has
been developed [7]. This language can be used to model all architectural aspects
of an organization. A metamodel containing the concepts in the ArchiMate lan-
guage is given in Figure 1.

Process

Simple
service

Composite
service

Function

Composite
behaviour

Action

Collaboration/
Connector

Information

Trans -
action

2..*

Composite
actor/

component

Simple
actor/

Component

Data
collection

Data
item

Structure
aspect

Behaviour
aspect

manipulates

perf orms

Document

Information
aspect

Medium Message

contributes to

Actor/
Component

offers

uses

carries

fulfils

Data
object

Role/
Interface

Behaviour
element Service

exchanges

affects

results in

accessible
via

Event

Inter -
action

Fig. 1. The ArchiMate metamodel

As can be seen, the language contains concepts for several aspects of an
organization. The individual concepts can be specialized for multiple domains,
like the business domain, application domain or technical domain. Thus, a Ser-
vice can be a business service, an application service or a technical service, for
example.

3 XML and the Rule Markup Language

In this section we introduce XML and present the Rule Markup Language
(RML), which is the XML transformation language we have used for creating
views and performing analyses of enterprise architectures.

3.1 XML

The eXtensible Markup Language (XML) [4] is a universal format for documents
containing structured information so that they can be used over the Internet for
web site content and several kinds of web services. It allows developers to easily
describe and deliver rich, structured data from any application in a standard,
consistent way.

Today, XML can be considered as the lingua franca in computer industry,
increasing interoperability and extensibility of several applications. Terseness
and human-understandability of XML documents is of minimal importance, since
XML documents are mostly created by applications for importing or exporting
data.

3.2 The Rule Markup Language

In our study, we have used the Rule Markup Language (RML) for the specifi-
cation of XML transformations. From a technical point of view, other transfor-
mation tools like the popular XSLT, RuleML or QVT could have been used as
well for the applications described in this paper. However, RML was originally
designed to make the definition of executable XML transformations possible
for various stakeholders other than programmers, including architects. Thus, in-
stead of creating views and performing analyses by hand, architects can formally
specify transformations of the contents of their own XML documents and ap-
ply these transformations in order to select, visualize and analyze architectural
information.

The Rule Markup Language (RML) [6] consists of a set of XML constructs
which can be added to an existing XML vocabulary in order to define RML
rules for that XML vocabulary. Specific RML tools can execute these rules,
to transform the input XML according to the rule definition. The set of RML
constructs is shown in Table 2 with a short explanation of each construct.

Each RML rule consists of an antecedent and a consequence. The antecedent
defines a pattern and variables in the pattern. Without the RML constructs
for variables, this pattern would consist only of elements from the chosen XML

Elements that designate rules

div class="rule"

div class="antecedent" context="yes"

div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element (and children) at this position to RML
variable X.

rml-list name="X" * Bind a sequence of elements (and their children) to X.
rml-use name="X" * Output the contents of RML variable X at this posi-

tion.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next one with

rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs
somewhere in the current sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the younger sibling of this element is the last

in the current sequence.

A * in the A column means the construct can appear in a rule antecedent. A * in the
C column is for the consequence.

Fig. 2. An overview of the RML constructs

vocabulary. The pattern in the antecedent is matched against the input XML.
RML constructs can contain variables, which are specified in a familiar way, by
using wild-card patterns like * and + and ?. The RML variables also have a name
that is used to remember the matching input. Things that can be stored in RML
variables are element names, element attributes, whole elements (including the
children), and lists of elements.

If the matching of the pattern in the antecedent succeeds, the variables are
bound to parts of the input XML and they can be used in the consequence of
an RML rule to produce output XML. When a rule is applied to the input, one
of the RML tools will by default replace the part of the input that matched

the antecedent, by the output defined in the consequence of the rule; the input
surrounding the matched part remains unchanged.

RML does not define, need, or use another language, it only adds a few
constructs to the XML vocabulary used, like the wild-card pattern matching.

3.3 Comparison with other techniques

XSLT[5] is a W3C language for transforming XML documents into other XML
documents.

The RuleML [3] community is working on a standard for rule-based XML
transformations. Their approach differs from the RML approach: RuleML su-
perimposes a special XML vocabulary for rules, which makes it less suitable to
use in combination with another XML vocabulary.

The Relational Meta-Language [9] is a language that is also called RML,
but intended for compiler generation, which is definitely not suited for rapid
application development like with RML in this paper.

Another recent approach is fxt [1], which, like RML, defines an XML syntax
for transformation rules. Important drawbacks of fxt are that it is rather limited
in its default possibilities and relies on hooks to the SML programming language
for more elaborate transformations.

Other popular academic research topics that could potentially be useful for
rule based XML transformations are term rewriting systems and systems based
on graph grammars for graph reduction. However, using these tools for XML
transformations is a contrived and arbitrary way of doing things. To exploit
these kind of systems successfully in a context where a specific XML vocabulary
is already in use, there has to be first a translation from this specific XML to the
special-purpose data structure of the system. And only then, in the tool–specific
format, the semantics is defined. But the techniques used in these systems are
interesting, especially for very complex transformations.

Compared with the related work mentioned above, a distinguishing feature
of the RML approach is that RML re-uses the language of the problem itself for
matching patterns and generating output. This leads in a natural way to a much
more usable and clearly defined set of rule based transformation definitions, and
an accompanying set of tools that is being used successfully in practice.

4 Running Example

Throughout this paper, we use a running example to illustrate our ideas. Though
our example is small compared to a real-life enterprise architecture, its sole
purpose in this paper is to illustrate the use of XML transformation techniques,
for which it contains sufficient complexity. Analyzing the performance of RML
when applied to larger architectural models is a topic for future research.

A small company, named ArchiSurance, sells insurance products to cus-
tomers. Figure 3 contains a Business View of the company. Two roles are in-
volved, namely the insurance company and the customer, which work together

in two collaborations, namely negotiation, which is the set of activities performed
in order to come to an appropriate insurance for a customer by discussion and
consultation, and contracting, i.e., the set of activities performed in order to
register a new customer and let it sign a contract for an insurance policy.

Customer
Insurance
Company

Negotiation Contracting

Fig. 3. a Business View of ArchiSurance

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Customer
Insurance
Company

Negotiation Contracting

Fig. 4. a Process View of ArchiSurance

Within Figure 4, the business process for selling an insurance product to a
customer is shown in a Process View, together with the roles and collaborations
that are involved in executing the individual steps within the process.

Figure 5, an Application View, shows the software products (components)
that are used within the ArchiSurance company and the services they offer.
ArchiSure is a custom-made software application for the administration of insur-
ance products, customers and premium collecting. PrintWise is a out-of-the-box
tool for official document layout and printing. InterMed is an old application,
originally meant for intermediaries to have the possibility to enter formal re-
quests for insurance products for their customers. The application is now used
by employees of the insurance company, since no intermediaries are involved in
selling insurance products anymore. Actually, the company would like to phase
out this application.

In Figure 6, a Service View is presented: the process for selling products is
shown again, now together with the services that are used within each step.

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Fig. 5. an Application View of ArchiSurance

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Print contractsView requests Edit policiesEdit requests

Fig. 6. a Service View of ArchiSurance

4.1 An XML description of the example

Although the four views (Business View, Process View, Application View, Ser-
vice View) are depicted separately, they are clearly related to each other via the
concepts they contain. In this small example, it is possible to imagine the big
picture in which all ArchiSurance information is contained.

Within the ArchiMate project, an XML Schema has been developed which
can be used for storage or exchange of architectural information. Based on this
Schema, we have created a single XML document that contains all information
about ArchiSurance. The use of a single document is no problem in this small
case, but when architectural models are larger, a single document could be dif-
ficult to maintain. Investigating the use of more XML documents for a single
architectural model is a topic for future research.

For illustration, a fragment of the XML document is shown below. It contains
the XML equivalent of Figure 3.

<role id="002" name="Customer"/>
<role id="003" name="Insurance Company"/>
<collaboration id="004" name="Negotiation"/>
<collaboration id="006" name="Contracting"/>
<composition id="035" name="composition">

<from href="004"/>
<to href="002"/>

</composition>
<composition id="036" name="composition">

<from href="004"/>
<to href="003"/>

</composition>
<composition id="041" name="composition">

<from href="006"/>
<to href="002"/>

</composition>

<composition id="042" name="composition">
<from href="006"/>
<to href="003"/>

</composition>

5 Selection and Visualization

The initial XML document contains the concepts and relations based on the
ArchiMate metamodel. It does not contain information about which concepts
are relevant for which views, nor does it describe how to visualize the concepts.
We can use RML rules to formally define selection and visualization schemes, as
will be illustrated in the following sections.

5.1 Selection

Within a single view, usually a selection of the entire set of concepts is made. For
example, the Business View in our example only contains roles and collaborations
and abstracts from all other related concepts. For this purpose, RML rules have
to filter out all unnecessary information from the XML document and thus create
a new document that only contains those concepts and relations that are relevant
for the view. By writing down the RML rules, we ensure that we do not omit
certain concepts, which often happens when this work is being done by hand.

We have created the following “recipe” for selection:

1. add a specific selection element to the XML document which is going to
contain the selected concepts;

2. iterate over the document and move all relevant concepts into the specific
selection element;

3. iterate over the document and move all relevant relations into the specific
selection element;

4. remove all relations within the selection element that have one “dangling”
end, i.e. that are related at one side to a concept that does not belong to
the selection;

5. remove all elements outside the selection element.

Note that the step for removing relations with one “dangling” end out of the
selection is necessary, because one relation type (e.g. association) can be defined
between several different concept types. Nevertheless, this recipe is fairly easy
to understand and can be specified by architects themselves for any kind of
selection they want to make.

The following RML rule illustrates the way all instances of a specific concept
are included in the selection:

<div class="rule">
<div class="antecedent">

<model>
<rml-list name="list1"/>

<collaboration rml-others="other">
<rml-list name="childs"/>

</collaboration>
<rml-list name="list2"/>
<selection>

<rml-list name="selection"/>
</selection>
<rml-list name="list3"/>

</model>
</div>
<div class="consequence">

<model>
<rml-use name="list1"/>
<rml-use name="list2"/>
<rml-use name="list3"/>
<selection>

<rml-use name="selection"/>
<collaboration rml-others="other">

<rml-use name="childs"/>
</collaboration>

</selection>
</model>

</div>
</div>

5.2 Visualization

One of the research questions is about the creation of a “dumb” model viewer,
i.e., it is ignorant of any architectural language. By this, we can illustrate the way
in which XML transformations can be used for creating several visualizations for
a single XML document.

For this purpose, we made a specific XML schema which can be interpreted by
a model viewer without having to know anything about the ArchiMate language.
The following XML fragment illustrates this language.

<container height="80" id="014" type="interaction" width="100" >
<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />
<label fieldname="name" halign="center" text="register policy" x="50" y="40" z="1" />
<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<container height="80" id="013" type="interaction" width="100" >
<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />
<label fieldname="name" halign="center" text="sign contract" x="50" y="40" z="1" />
<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<arrow from="013" id="020" to="014" type="triggering" >
<line type="solid" width="1" z="0" />
<headarrowtip size="10" type="filledarrow" z="1" />

</arrow>

The intermediate visualization language has two main constructs: containers
and arrows.

Containers are rectangular areas in which several visual elements can be
placed. The exact location of those visual elements can be defined relative to the
size and position of the container. Each container has a unique identifier which
can be used to refer to the original elements in the architectural description.

Arrows are linear directed elements. They have a head and a tail, which both
have to be connected to containers (via their identifiers). They also have unique
identifiers themselves.

In the example above, two containers and one arrow are defined. In Figure 7
the output of the interpretation of this XML fragment by the model viewer is
shown. As can be seen in the XML fragment, some visual elements, like “split
circle”, are built into the model viewer. This has mainly been done for reasons
of efficiency.

Register
policySign contract

Fig. 7. Example of the visualization technique used

For the transformation of the original XML model to the visualization infor-
mation, we have created scripts that transform each concept into its correspond-
ing visualization. An example is given below. This example rule transforms an
interaction concept into a visual representation.

<div class="rule">
<div class="antecedent">

<interaction id="rml-id" name="rml-name" color="rml-color"/>
</div>
<div class="consequence">

<container id="rml-id" type="interaction" width="100" height="80" color="rml-color">
<box x="0" y="0" z="0" width="100" height="80" color="khaki1" type="round"/>
<label x="50" y="40" z="1" halign="center" text="rml-name" fieldname="name"/>
<icon x="75" y="10" z="1" width="15" height="15" type="splitcircle"/>

</container>
</div>

</div>

The technique presented here is quite powerful yet easy to understand: from
the same architectural description, it is possible to define different visualization
styles, like ArchiMate (which is used in the running example), UML[2], etc. In the
context of enterprise architectures, this is especially useful since architects often
want to have their own style of visualization (for cultural and communication
reasons within organizations), without having to conform to a standard defined
outside the organization. They can do this in a formal way by capturing their
visualizations in XML transformation rules.

6 Analysis

Next to selection and visualization, we investigated ways to use XML transfor-
mations for analysis of enterprise architectures. Our aim is to create a technique

for impact analysis, i.e., given an entity within the architectural description
which is considered to change, which other entities are possibly influenced by
this change?

We have created the following recipe for this analysis:

1. add a specific selection element to the XML document which is going to
contain the concepts that are considered to be possibly influenced;

2. add a special attribute to the element describing the entity under consider-
ation, which can be used for, e.g., visualisation (in order to make it have a
red color, for example);

3. make the element describing the entity under consideration a child of the
selection element;

4. iterate over all relations included in the analysis and, if appropriate, add a
special attribute to them and make them a child of the selection element;

5. iterate over all concepts and, if appropriate, add a special attribute to them
and make them a child of the selection element;

6. repeat the previous two steps until the output is stable;
7. remove the selection element, so that we have one list of concepts and rela-

tions, of which some concepts have a special attribute which indicates that
the change possibly has impact on them.

An example of the output of the analysis is given below. The component
“InterMed” is considered to change. It has two new attributes. The selected at-
tribute indicates that it belongs to the entities which are possibly influenced by
the change, while the special attribute indicates that this entity is the unique
entity considered to change. The remaining elements describe concepts and rela-
tions that are all selected, because they are directly or indirectly related to the
“InterMed” component.

<component id="082" name="InterMed" selected="yes" special="yes"/>

<composition id="104" name="composition" selected="yes" >
<from href="082" />
<to href="094" />

</composition>

<interface id="094" name="Interface" selected="yes" />

<assignment id="112" name="assignment" selected="yes" >
<from href="094" />
<to href="090" />

</assignment>

<service id="090" name="edit requests" selected="yes" />

Within Figure 8 and Figure 9, the output of the model viewer is given for
two views. The change of color is done by the visualization rules, based on the
attributes added during the analysis.

By performing impact analysis in the way presented above, we treat the set
of architectural concepts as a graph with nodes and edges and define that a node
A has impact on another node B when A is selected and there is a relation from

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Fig. 8. The Application View with a selected InterMed application

Customer
Insurance
Company

Negotiation Contracting

Fig. 9. The resulting Business View after the impact analysis

A to B. But we could easily change our interpretation of the term “impact”,
for example by introducing several kinds of impact (e.g., extend, replace, delete)
or treating different kind of relations between nodes in a different way. In all
cases, our interpretation of the term “impact” is formally defined in the XML
transformation rules.

7 Conclusions

The research reported on in this paper shows promising results. The use of XML
transformation techniques for selection, visualization and analysis of enterprise
architectures has several benefits: XML is well-known, the transformation tech-
niques are generic and tools for it are improving rapidly. Transformation rules are
well understandable and can be adapted quickly for specific needs or purposes.
The application of XML transformation techniques for enterprise architectures is
a good example of the way in which formal techniques, in this case, formally de-
fined transformation rules, can be applied effectively by end users in the context
of enterprise architecture, i.e. the enterprise architects themselves.

Based on the reported investigations, our answers to the research questions
set out earlier are the following:

Question 1 Given a set of architectural information described in a single XML
document. How can we use XML transformations to select a subset of this in-
formation for a specific architectural view?

This can be done via transformation rules which filter out certain concepts
and create a new XML document containing a selection out of the original doc-
ument. These transformation rules are easy to understand and can be defined
by the architects themselves to create their own selections.

Question 2 How can we transform an XML document containing architectural
information into another XML document containing visual information in terms
of boxes, lines, etc.? How can we build a model viewer which interprets this visual
information without having to know anything about the architectural language
used?

What is needed for this, is a separate “intermediate” language for visual-
ization information. Via XML transformations, we can transform an ArchiMate
XML document into an XML document containing only visual elements. The
latter document can then be interpreted by a model viewer which only has to
know how to interpret the visual elements in this document. By separating the
visualization step from the viewer, architects gain much often demanded flexibil-
ity: they are able to create their own visualizations in a formal way, i.e. defined
in transformation rules.

Question 3 How can we use XML transformations to perform our specific form
of impact analysis?

We can do this analysis by iterative selection of the elements which have a
relation with the “element to be changed”. By including or excluding certain
relation types, architects gain insight in the mutual dependencies between the
entities within an architecture.

Acknowledgments This paper is based on research in the context of the Archi-
Mate4 project, a research initiative that aims to provide concepts and techniques
to support architects in the visualization and analysis of integrated architectures.
The ArchiMate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica Insti-
tute, CWI, University of Nijmegen, and LIACS.

References

1. A. Berlea and H. Seidl. fxt a transformation language for XML documents. Journal
of Computing and Information Technology, 10(1):19–35, 2002.

2. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

3. The Rule Markup Initiative community. URL: http://www.dfki.uni-kl.de/-

ruleml/.
4. World Wide Web Consortium. Extensible markup language (XML). URL:

http://www.w3.org/XML/.
5. World Wide Web Consortium. XSL transformations (XSLT) version 1.0, W3C

recommendation, November 1999. URL: http://www.w3c.org/TR/xslt.

4 (http://archimate.telin.nl)

6. J. Jacob. The rule markup language: a tutorial. URL: http://-

homepages.cwi.nl/̃ jacob/rml.
7. H. Jonkers, R. van Buuren, F. Arbab, F.S. de Boer, M.M. Bonsangue, H. Bosma,

H. ter Doest, L. Groenewegen, J. Guillen-Scholten, S. Hoppenbrouwers, M. Jacob,
W. Janssen, M. Lankhorst, D. van Leeuwen, E. Proper, A. Stam, L. van der Torre,
and G. Veldhuijzen van Zanten. Towards a language for coherent enterprise archi-
tecture description. In M. Steen and B.R. Bryant, editors, Proceedings 7th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2003),
pages 28–39. IEEE Computer Society Press, 2003.

8. James McGovern, Scott W. Ambler, Michael E. Stevens, James Linn, Vikas Sharan,
and Elias K. Jo. A Practical Guide to Enterprise Architecture. Prentice Hall PTR,
2003.

9. M. Pettersson. RML - a new language and implementation for natural semantics.
In M. Hermenegildo and J. Penjam, editors, Proceedings of the 6th International
Symposium on Programming Language Implementation and Logic Programming,
PLILP, volume 884 of LNCS, pages 117–131. Springer-Verlag, 1994.

10. The Archimate Project. URL: http://www.telin.nl/NetworkedBusiness/-

Archimate/ENindex.htm.
11. IEEE Computer Society. IEEE std 1471-2000: IEEE recommended practice for

architectural description of software-intensive systems, Oct. 9, 2000.

