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Abstract

Using data from computer databases of scientific papers in physics, biomed-
ical research, and computer science, we have constructed networks of collab-
oration between scientists in each of these disciplines. In these networks two
scientists are considered connected if they have coauthored one or more papers
together. We have studied many statistical properties of our networks, including
numbers of papers written by authors, numbers of authors per paper, numbers
of collaborators that scientists have, typical distance through the network from
one scientist to another, and a variety of measures of connectedness within a
network, such as closeness and betweenness. We further argue that simple net-
works such as these cannot capture the variation in the strength of collaborative
ties and propose a measure of this strength based on the number of papers coau-
thored by pairs of scientists, and the number of other scientists with whom they
worked on those papers. Using a selection of our results, we suggest a variety
of possible ways to answer the question “Who is the best connected scientist?”

1 Introduction

A social network is a set of people or groups each of which has connections of some
kind to some or all of the others (Wasserman and Faust, 1994; Scott, 2000). In the
language of social network analysis, the people or groups are called actors and the
connections ties. Both actors and ties can be defined in different ways depending on
the questions of interest. An actor might be a single person, a team, or a company.
A tie might be a friendship between two people, a collaboration or common member
between two teams, or a business relationship between companies.

Social network analysis has a history stretching back at least half a century, and
has produced many results concerning social influence, social groupings, inequality,
disease propagation, communication of information, and indeed almost every topic
that has interested twentieth century sociology. In the last few years, it has become
the focus of considerable attention in the applied mathematics and statistical physics
communities as well (Strogatz, 2001; Barabdsi, 2002; Watts, 2003; Newman, 2003).
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Traditional investigations of social networks have been carried out through field
studies. Typically one looks at a fairly self-contained community such as a business
community (Mariolis, 1975; Galaskiewicz and Marsden, 1978; Padgett and Ansell,
1993), a school (Rapoport and Horvath, 1961; Fararo and Sunshine, 1964), a religious
or ethnic community (Bernard et al., 1988), and so forth, and constructs the network
of ties by interviewing participants, or by circulating questionnaires. A study will
ask respondents to name those with whom they have the closest ties, often ranked by
subjective closeness, and may optionally call for additional information about those
people or about the nature of the ties.

Studies of this kind have revealed much about the structure of communities, but
they suffer from two substantial problems that make them poor sources of data for
the kinds of quantitative approaches to network analysis that have been developed in
physics and mathematics. First, the data they return are not numerous. Collecting
and compiling data from these studies is an arduous process and most data sets
contain no more than a few tens or hundreds of actors. It is a rare study that
exceeds a thousand actors. This makes the statistical accuracy of many results poor,
a particular difficulty for the large-system-size methods adopted in statistical physics.
Second, they contain significant and uncontrolled errors as a result of the subjective
nature of respondents’ replies. What one respondent considers to be a friendship or
acquaintance, for example, may be completely different from what another respondent
does. In studies of school-children, for instance (Rapoport and Horvath, 1961; Fararo
and Sunshine, 1964; Moody, 2001), it is found that some children will claim friendship
with every single one of their hundreds of schoolmates, while others will name only
one or two friends. Clearly these respondents are employing different definitions of
friendship.

In response to these inadequacies, many researchers have turned instead to other,
better documented networks, for which reliable statistics can be collected. Examples
include the Internet (Faloutsos et al., 1999; Chen et al., 2002), the world wide web
(Albert et al., 1999; Broder et al., 2000), email networks (Ebel et al., 2002; Newman
et al., 2002a), peer-to-peer networks (Adamic et al., 2001; Ripeanu et al., 2002), power
grids (Watts and Strogatz, 1998), telephone call graphs (Abello et al., 1998), and train
routes (Sen et al., 2002). These graphs are certainly interesting in their own right,
and furthermore might loosely be regarded as social networks, since their structure
clearly reflects something about the structure of the society that built them. However,
their connection to the “true” social networks discussed here is tenuous at best and
so, for our purposes, they cannot offer a great deal of insight.

A more promising source of data is the affiliation network. An affiliation network is
a network of actors connected by common membership in groups of some sort, such as
clubs, teams, or organizations. Examples studied in the past include women and the
social events they attend (Davis et al., 1941), company directors and the boards of di-
rectors on which they sit (Mariolis, 1975; Davis and Greve, 1997), company CEOs and
the clubs they frequent (Galaskiewicz and Marsden, 1978), and movie actors and the
movies in which they appear (Watts and Strogatz, 1998; Amaral et al., 2000). Data
on affiliation networks tend to be more reliable than those on other social networks,
since membership of a group can often be determined with a precision not available
when considering friendship or other types of acquaintance. Very large networks can
be assembled in this way as well, since in many cases group membership can be ascer-
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tained from membership lists, making time-consuming interviews or questionnaires
unnecessary. A network of movie actors, for example, has been compiled using the
resources of the Internet Movie Database,! and contains the names of nearly half a
million actors—a much better sample on which to perform statistics than most social
networks, although it is unclear whether this particular network has any real social
interest.

In this article we study in detail another affiliation network, one which is a true
social network, for which excellent data are available, and which furthermore will be
of interest to readers for personal as well as scientific reasons. In this article, we study
networks in which the actors are scientists and the ties between them are scientific
collaborations, as documented in the papers that they write.

2 Coauthorship networks

Here we construct networks of scientists in which a link between two scientists is
established by their coauthorship of one or more scientific papers. These networks
are affiliation networks in which actors are linked by their common membership of
groups consisting of the authors of a paper. They are more truly social networks
than many affiliation networks; it is probably fair to say that most people who have
written a paper together are genuinely acquainted with one another, in a way that,
for example, movie actors who appeared together in a movie may not be. There are
exceptions—some very large collaborations, for example in high-energy physics, will
contain coauthors who have never even met—and we discuss these where appropriate.
By and large, however, the network reflects genuine professional interaction between
scientists, and may be the largest social network ever studied.?

The idea of constructing a network of coauthorship is not new. Many readers
will be familiar with the concept of the Erdés number, named for Paul Erdés, the
Hungarian mathematician, one of the founding fathers of graph theory, among other
things (Hoffman, 1998). At some point, it became a popular cocktail party pursuit for
mathematicians to calculate how far removed they were in terms of publication from
Erdés. Those who had published a paper with Erd6s were given a Erdés number of 1,
those who had published with one of those people but not with Erdés, a number of 2,
and so forth. The present author, for example, has an Erdés number of 3, via Robert
Ziff and Mark Kac (Erdds and Kac, 1940; Ziff et al., 1977; Newman and Ziff, 2000). In
the jargon of social networks, your Erdés number is the geodesic distance between you
and Erdés in the coauthorship network. In recent studies (Batagelj and Mrvar, 2000;
Grossman, 2002), it has been found that the average Erdds number is about 4.7, and
the maximum known finite Erdds number (within mathematics) is 15. These results
are probably influenced to some extent by Erdds’ prodigious mathematical output:
he published at least 1512 papers, more than any other mathematician ever except
possibly Leonhard Euler. However, quantitatively similar, if not quite so impressive,

Thttp://www.imdb.com/ .

21f one considers the world wide web to be a social network (an issue of some debate—see Wellman
et al. (1996)), then it certainly dwarfs the networks studied here, with more than three billion pages
cataloged by the largest search engines at the time of writing.
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results are in most cases found if the network is centered on another mathematician.
(On the other hand, fifth-most published mathematician, Lucien Godeaux, produced
644 papers, on 643 of which he was the sole author. He has no finite Erdés number
(Grossman and ITon, 1995). Clearly sheer size of output is not a sufficient condition
for high connectedness.)

There is also a substantial body of work in bibliometrics (a specialty within infor-
mation science) on extraction of collaboration patterns from publication data (Egghe
and Rousseau, 1990; Kretschmer, 1994; Persson and Beckmann, 1995; Melin and Pers-
son, 1996; Ding et al., 1999; Bordens and Gémez, 2000). However, these studies have
not so far attempted to reconstruct actual collaboration networks from bibliographic
data, concentrating more on organizational and institutional aspects of collaboration.?

In this article, we study networks of scientists using bibliographic data drawn from
four publicly available databases of papers. The databases are:

1. Physics E-print Archive: a database of unrefereed preprints in physics, self-
submitted by their authors, running from 1992 to the present. This database is
subdivided into specialties within physics, such as condensed matter and high-
energy physics.

2. Medline: a database of articles on biomedical research published in refereed jour-
nals, stretching from 1961 to the present. Entries in the database are updated
by the database’s maintainers, rather than papers’ authors, giving it relatively
thorough coverage of its subject area. The inclusion of biomedicine is crucial in
a study such as this one. In most countries biomedical research easily dwarfs
civilian research on any other topic, in terms of both expenditure and human ef-
fort. Any study that omitted it would be leaving out the largest part of current
scientific research.

3. SPIRES: a database of preprints and published papers in high-energy physics,
both theoretical and experimental, from 1974 to the present. The contents of
this database are also professionally maintained. High energy physics is an
interesting case socially, having a tradition of much larger experimental collab-
orations than other disciplines.

4. NCSTRL: a database of preprints in computer science, submitted by partici-
pating institutions and stretching back about ten years.

We have constructed networks of collaboration for each of these databases separately
and analyzed them using a variety of techniques, some standard, some invented for
the purpose.

The outline of the article is as follows. In Sec. 3 we discuss some basic statistics,
to give a feel for the shape of our networks. Among other things we discuss the

3There has been a considerable amount of work on networks of citations between papers, both
in information science (Price, 1965; Egghe and Rousseau, 1990; Seglen, 1992) and more recently
in physics (Redner, 1998). These networks, though often confused with coauthorship networks, are
quite distinct from them; in a citation network the “actors” are papers and the (directed) ties between
them are citations of one paper by another. While citation data are plentiful and many results are
known, citation networks are not really social networks since the authors of two papers need not
be acquainted for one of them to cite the other’s work. On the other hand, citation probably does
imply a certain congruence in the subject matter of the two papers, which although not a social
relationship, may certainly be of interest for other reasons.
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typical numbers of papers per author, authors per paper, and number of collaborators
of scientists in the various disciplines. In Sec. 4 we look at a variety of measures
concerned with paths between scientists in the network. In Sec. 5 we extend our
networks to include a measure of the strength of collaborative ties between scientists
and examine measures of connectedness in these weighted networks. In Sec. 6 we
give our conclusions. This article is an updated and extended version of an earlier
two-part report (Newman, 2001b,c).

3 Basic results

For this study, we constructed collaboration networks using data from a five-year
period from January 1, 1995 to December 31, 1999, although data for much longer
periods were available in some of the databases. There were several reasons for using
this fairly short time window. First, older data are less complete than newer for all
databases. Second, we wanted to study the same time period for all databases, so
as to be able to make valid comparisons between collaboration patterns in different
fields. The coverage provided by both the Physics E-print Archive and the NCSTRL
database is relatively poor before 1995, and this sets a limit on how far back we can
look. Third, the networks change over time, both because people enter and leave
the professions they represent and because practices of scientific collaboration and
publishing change. In this article we do not address time evolution of the network
(though this is done elsewhere—see Newman (2001d) and Barabdsi et al. (2002)). For
our purposes, a short window of data is desirable, to ensure that the collaboration
network is roughly static during the study.

The raw data for the networks described here are computer files containing lists
of papers, including authors’ names and possibly other information such as title,
abstract, date, journal reference, and so forth. Construction of the collaboration
networks is straightforward. The files are parsed to extract author names and as
names are found a list is maintained of the ones seen so far—vertices already in the
network—so that recurring names can be correctly assigned to extant vertices. Edges
are added between each pair of authors on each paper. A naive computer program
implementing this procedure, in which names were stored in a simple array, would
take time O(pn) to run to completion, where p is the total number of papers in the
database and n the number of authors. This however turns out to be prohibitively
slow for large networks since p and n are of similar size and may be a million or more.
Instead therefore, we store the names of the authors in an ordered binary tree, which
reduces the running time to O(plogn), making the calculation tractable, even for the
largest databases studied here.

In Table 1 we give a summary of some of the basic results for the networks studied
here. We discuss these results in detail in the rest of this section.

3.1 Number of authors

The size of the databases varies considerably, from over a million authors for Medline
to about ten thousand for NCSTRL. In fact, it is difficult to say with precision how
many authors there are. One can say how many distinct names appear in a database,
but the number of names is not necessarily the same as the number of authors. A
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Physics E-print Archive
Medline complete  astro-ph  cond-mat hep-th SPIRES NCSTRL

total papers 2163923 98502 22029 22016 19085 66652 13169
total authors 1520251 52909 16706 16726 8361 56627 11994

first initial only 1090584 45685 14303 15451 7676 47445 10998
mean papers per author 6.4(6) 5.1(2) 4.8(2) 3.65(7) 4.8(1) 11.6(5) 2.55(5)
mean authors per paper 3.754(2) 2.530(7) 3.35(2) 2.66(1) 1.99(1) 8.96(18) 2.22(1)
collaborators per author | 18.1(1.3) 9.7(2) 15.1(3) 5.86(9) 3.87(5) 173(6) 3.59(5)
size of giant component 1395693 44337 14845 13861 5835 49002 6396

first initial only 1019418 39709 12874 13324 5593 43089 6706

as a percentage 92.6(4)% | 85.4(8)% 89.4(3) 84.6(8)%  71.4(8)% | 83.7(1.1)% | 57.2(1.9)%
2nd largest component 49 18 19 16 24 69 42
clustering coefficient C' 0.066(7) 0.43(1) 0.414(6) 0.348(6) 0.327(2) 0.726(8) 0.496(6)
mean distance 4.6(2) 5.9(2) 4.66(7) 6.4(1) 6.91(6) 4.0(1) 9.7(4)
maximum distance 24 20 14 18 19 19 31

Table 1: Summary of results of the analysis of seven scientific collaboration networks. Numbers in parentheses give an estimate of the error
on the least significant figures.
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single author may report their name differently on different papers. For example, F.
L. Wright, Francis Wright, and Frank Lloyd Wright could all be the same person. Also
two authors may have the same name. Grossman and Ton (1995) point out that there
are two American mathematicians named Norman Lloyd Johnson, who are known
to be distinct people and who work in different fields, but between whom computer
programs such as ours cannot hope to distinguish. Even additional clues such as home
institution or field of specialization cannot reliably be used to distinguish such people,
since many scientists have more than one institution or publish in more than one field.
The present author, for example, has addresses at the University of Michigan and the
Santa Fe Institute, and publishes in statistical physics, sociology, and epidemiology.
In order to control for these biases, we constructed two different versions of each
of the collaboration networks studied here, as follows. In the first, we identify each
author by his or her surname and first initial only. This method is clearly prone to
confusing two people for one, but will rarely fail to identify two names which genuinely
refer to the same person. In the second version of each network, we identify authors
by surname and all initials. This method can much more reliably distinguish authors
from one another, but will also identify one person as two if they give their initials
differently on different papers. Indeed this second measure appears to overestimate
the number of authors in a database substantially. Networks constructed in these two
different fashions therefore give upper and lower bounds on the number of authors,
and hence also give bounds on many of the other quantities studied here. In Table 1
we give numbers of authors in each network using both methods, but for many of the
other quantities we give only an error estimate based on the separation of the bounds.

3.2 Number of papers per author

The average number of papers per author in the various subject areas is in the range
of around three to six over the five-year period. The only exception is the SPIRES
database, covering high-energy physics, in which the figure is significantly higher at
11.6. One possible explanation for this is that SPIRES is the only database which
contains both preprints and published papers. It is possible that the high figure for
papers per author reflects duplication of papers in both preprint and published form.
However, the maintainers of the database go to some lengths to avoid this (O’Connell,
2000), and a more probable explanation is perhaps that publication rates are higher
for the large collaborations favored by high-energy physics, since a large group of
scientists has more person-hours available for the writing of papers.

In addition to the average numbers of papers per author in each database, it is
interesting to look at the distribution pi of numbers k of papers per author. In 1926,
Alfred Lotka showed, using a dataset compiled by hand, that this distribution followed
a power law, with exponent approximately —2, a result which is now referred to as
Lotka’s Law of Scientific Productivity (Lotka, 1926). In other words, in addition to
the many authors who publish only a small number of papers, one expects to see a
“fat tail” consisting of a small number of authors who publish a very large number
of papers. In Fig. 1 we show on logarithmic scales histograms for each of our four
databases of the numbers of papers published. (These histograms and all the others
shown here were created using the “all initials” versions of the collaboration networks.)
For the Medline and NCSTRL databases these histograms follow a power law quite
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Figure 1: Histograms of the number of papers written by authors in Medline (circles), the
physics archive (squares), and NCSTRL (triangles). The dotted lines are fits to the data as
described in the text. Inset: the equivalent histogram for the SPIRES database.

closely, at least in their tails, with exponents of —2.86(3) and —3.41(7) respectively—
somewhat steeper than those found by Lotka, but in reasonable agreement with other
more recent studies (Voos, 1974; Pao, 1986; Egghe and Rousseau, 1990). For the
physics archive the pure power law is a poor fit. An exponentially truncated power
law does much better:

pr = Ck~Te M/, (1)

where 7 and k are constants and C' is fixed by the requirement of normalization—see
Fig. 1. (The probability py of having zero papers is taken to be zero, since the names
of scientists who have not written any papers do not appear in the database.) The
exponential cutoff we attribute to the finite time window of five years used in this
study which prevents any one author from publishing a very large number of papers.
Lotka and subsequent authors who have confirmed his law have not usually used such
a window.

It is interesting to speculate why the cutoff appears only in physics and not in
computer science or biomedicine. Surely the five-year window limits everyone’s abil-
ity to publish very large numbers of papers, regardless of their area of specializa-
tion? For the case of Medline one possible explanation is suggested by a brief in-
spection of the names of the most published authors. The top ten, for example,
are Suzuki, T., Wang, Y., Suzuki, K., Takahashi, M., Nakamura, T., Tanaka, K.,
Tanaka, T., Wang, J., Suzuki, Y., and Takahashi, T. The predominance of Japanese
names in this list may reflect differences in author attribution practices in Japanese
biomedical research, but more probably these are simply common names, and these
apparently highly published authors are each several different people who have been
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conflated in our analysis. Thus it is possible that there is not after all any fat tail in
the distribution for the Medline database, only the illusion of one produced by the
large number of scientists with commonly occurring names. (This doesn’t however
explain why the tail appears to follow a power law.) This argument is strengthened by
the sheer numbers of papers involved. T. Suzuki published, it appears, 1697 papers,
or about one paper a day, including weekends and holidays, every day for the entire
five-year course of our study. This seems to be an improbably large output.

Interestingly, no national bias is seen in any of the other databases, and the
names that top the list in physics and computer science are not common ones. (For
example, the most published authors in the other three databases are Shelah, S.
(physics archive), Wolf, G. (SPIRES), and Bestavros, A. (NCSTRL).) Thus it is still
unclear why the NCSTRL database should have a power-law tail, though this database
is small and it is possible that it does possess a cutoff in the productivity distribution
which is just not visible because of the limits of the dataset.

For the SPIRES database, which is shown separately in the inset of the figure,
neither pure nor truncated power law fits the data well, the histogram displaying a
significant bump around the 100-paper mark. A possible explanation for this is that a
small number of large collaborations published around this number of papers during
the time-period studied. Since each author in such a collaboration is then credited
with publishing a hundred papers, the statistics in the tail of the distribution can be
substantially skewed by such practices.

In the first column of Table 2, we list the most frequent authors in three subject-
specific subdivisions of the physics archive: astro-ph (astro-physics), cond-mat (con-
densed matter physics), and hep-th (high-energy theory). Although there is only
space to list the top ten winners in this table, the entire list (and the corresponding
lists for the other tables in this article) can be found by the curious reader on the
world wide web.*

3.3 Numbers of authors per paper

Grossman and Ion (1995) report that the average number of authors on papers in
mathematics has increased steadily over the last sixty years, from a little over 1 to
its current value of about 1.5. As Table 1 shows, still higher numbers seem to apply
to current studies in the sciences. Purely theoretical papers appear to be typically
the work of two scientists, with high-energy theory and computer science showing
averages of 1.99 and 2.22 in our calculations. For databases covering experimental or
partly experimental subject areas the averages are higher: 3.75 for biomedicine, 3.35
for astrophysics, 2.66 for condensed matter physics. The SPIRES high-energy physics
database however shows the most startling results, with an average of 8.96 authors
per paper, obviously a result of the presence of papers in the database written by very
large collaborations. (Perhaps what is most surprising about this result is actually
how small it is. The hundreds strong mega-collaborations of CERN and Fermilab are
sufficiently diluted by theoretical and smaller experimental groups, that the number
is only 9, and not 90.)

4Complete tables of results for authors in the Physics E-print Archive can be found on the world
wide web at http://www.santafe.edu/ "mark/collaboration/.
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number of papers number of co-workers betweenness collaboration weight
112  Fabian, A.C. 360 Frontera, F. 2.33  Kouveliotou, C. 16.5 Moskalenko, I.V./Strong, A.W.
101  van Paradijs, J. 353 Kouveliotou, C. | 2.15 van Paradijs, J. 15.0 Hernquist, L./Heyl, J.S.
81 Frontera, F. 329 van Paradijs, J. 1.80 Filippenko, A.V. 14.0 Mathews, W.G./Brighenti, F.
o 80 Hernquist, L. 299  Piro, L. 1.57 Beaulieu, J.P. 13.4 Labini, F.S./Pietronero, L.
&1 79 Gould, A. 296 Costa, E. 1.52  Nomoto, K. 12.2  Piran, T./Sari, R.
E 78  Silk, J. 291  Feroci, M. 1.52 Pian, E. 11.8  Zaldarriaga, M./Seljak, U.
o 78 Klis, M.V.D. 284 Pian, E. 1.49  Frontera, F. 11.4 Hernquist, L./Katz, N.
73 Kouveliotou, C. 284 Hurley, K. 1.35 Silk, J. 11.1  Avila-Reese, V./Firmani, C.
70  Ghisellini, G. 244  Palazzi, E. 1.33 Kamionkowski, M. | 10.9 Dai, Z.G./Lu, T.
66 Piro, L. 244  Heise, J. 1.28 McMahon, R.G. 10.8  Ostriker, J.P./Cen, R.
116  Parisi, G. 107  Uchida, S. 4.11 MacDonald, A .H. 22.3 Belitz, D./Kirkpatrick, T.R.
79  Scheffler, M. 103 Ueda, Y. 3.96 Bishop, A.R. 17.0  Shrock, R./Tsai, S.
75 Das Sarma, S. 96 Revcolevschi, A. | 3.36 Das Sarma, S. 15.0  Yukalov, V.I./Yukalova, E.P.
- 74  Stanley, H.E. 94  Eisaki, H. 2.96 Tosatti, E. 14.7  Martin-Delgado, M.A./Sierra, G.
e 70  MacDonald, A.H. 84  Cheong, S. 2.52  Wang, X. 14.3  Krapivsky, P.L./Ben-Naim, E.
—'g 68 Sornette, D. 83 Isobe, M. 2.38  Revcolevschi, A. 14.1  Beenakker, C.W.J./Brouwer, P.W.
S 60 Volovik, G.E. 78 Stanley, H.E. 2.30  Uchida, S. 13.8  Weng, Z.Y./Sheng, D.N.
56  Beenakker, C.W.J. 76  Shirane, G. 2.21  Sigrist, M. 13.7  Sornette, D./Johansen, A.
53  Dagotto, E. 76  Scheffler, M. 2.19  Cheong, S. 13.6  Rikvold, P.A./Novotny, M.A.
50 Helbing, D. 76  Menovsky, A.A. | 2.18 Stanley, H.E. 13.0  Scalapino, D.J./White, S.R.
78  Odintsov, S.D. 50 Ambjorn, J. 0.98 Odintsov, S.D. 34.0 Lu, H./Pope, C.N.
73  Lu, H. 44  Ferrara, S. 0.88 Ambjorn, J. 29.0 Odintsov, S.D./Nojiri, S.
72  Pope, C.N. 43  Vafa, C. 0.88 Kogan, I.I. 18.7 Lee, H.W./Myung, Y.S.
69 Cvetic, M. 39  Odintsov, S.D. 0.84 Henneaux, M. 18.3  Schweigert, C./Fuchs, J.
? 68 Ferrara, S. 39 Kogan, I.1. 0.73 Douglas, M.R. 14.7  Ovrut, B.A./Waldram, D.
2| 65 Vafa, C. 36 Proeyen, A.V. 0.67 Ferrara, S. 14.7  Kleihaus, B./Kunz, J.
< 65 Tseytlin, A.A. 35 Fre, P. 0.63 Vafa, C. 12.9 Mavromatos, N.E./Ellis, J.
65 Mavromatos, N.E. 35 Ellis, J. 0.60 Khare, A. 12.4  Kachru, S./Silverstein, E.
63 Witten, E. 35 Douglas, M.R. 0.58 Tseytlin, A.A. 11.7 Kakushadze, Z./Tye, S.H.H.
54  Townsend, P.K. 34 Lu, H. 0.58 Townsend, P.K. 11.6  Arefeva, 1.Y./Volovich, I.V.

Table 2: The authors with the highest numbers of papers, numbers of coauthors, and betweenness, and strongest collaborations in astrophysics,
condensed matter physics, and high-energy theory. The figures for betweenness have been divided by 10°. Full lists of the rankings of all the
authors in these databases can be found on the world wide web at http://www.santafe.edu/ mark/collaboration/.



‘WHO IS THE BEST CONNECTED SCIENTIST? 11

£ — R mas 3
E 10" E% 3
10° [© P .
E o o N 2 %
E (©] \\ 10 E OQG ]
[ ~ N £ Q 7
) o \\D ¢} Q o OQGOOO?
5 4 A g \® o SPIRES RN
S 100 = AN S| N - 1 1 o
o £ A 10 B
— F A Bg a1 10 100 ]
o 3 o Q E
) E A SN N 3
€ 10 [ L -
= E NN E
< C N AN ]
e OMedline A \GG\\ —=
E O Physics archive A 0 E
10° L ANCSTRL A W, .
S
L N N AL ]

1 10 100

number of authors

Figure 2: Histograms of the number of authors on papers in Medline (circles), the physics
archive (squares), and NCSTRL (triangles). The dotted lines are the best fit power-law
forms. Inset: the equivalent histogram for the SPIRES database, showing a clear peak in
the 200 to 500 author range.

Distributions of numbers of authors per paper are shown in Fig. 2, and appear to
have power-law tails with widely varying exponents of —6.2(3) (Medline), —3.34(5)
(physics archive), —4.6(1) (NCSTRL), and —2.18(7) (SPIRES). The SPIRES data,
which are again shown in a separate inset, display a pronounced peak in the dis-
tribution around 200-500 authors. This peak presumably corresponds to the large
experimental collaborations which dominate the upper end of this histogram.

The largest number of authors on a single paper was 1681 (in high-energy physics,
of course).

3.4 Numbers of collaborators per author

The differences between the various disciplines represented in the databases are em-
phasized still more by the numbers of collaborators that a scientist has, the total
number of people with whom a scientist wrote papers during the five-year period.
The average number of collaborators is markedly lower in the purely theoretical dis-
ciplines (3.87 in high-energy theory, 3.59 in computer science) than in the wholly or
partly experimental ones (18.1 in biomedicine, 15.1 in astrophysics). But the SPIRES
high-energy physics database takes the prize once again, with scientists having an im-
pressive 173 collaborators, on average, over a five-year period. This clearly begs the
question whether the high-energy coauthorship network can be considered an accu-
rate representation of the social network of the high-energy physics community; it
seems unlikely that an author could know 173 colleagues well.

The distributions of numbers of collaborators are shown in Fig. 3. In all cases
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Figure 3: Histograms of the number of collaborators of authors in Medline (circles), the
physics archive (squares), and NCSTRL (triangles). Inset: the equivalent histogram for the
SPIRES database, which is well fit by a power law (dotted line).

they appear to have long tails, but only the SPIRES data (inset) fit a power-law
distribution well, with a low measured exponent of —1.20. Note also the small peak
in the SPIRES data around 700—presumably again a product of the predominance
of large collaborations.

For the other three databases, the distributions show some curvature. This may,
as we have previously suggested, be the signature of an exponential cutoff, produced
once again by the finite time window of the study (Newman, 2001a). Redner (personal
communication) and Barabdsi et al. (2002) have independently suggested alternative
explanations based on growth models of networks, although the fundamental causative
agent is the same finite time window in these theories also.

Column 2 of Table 2 shows the authors in astro-ph, cond-mat, and hep-th with
the largest numbers of collaborators. The winners in this race tend to be exper-
imentalists, who conduct research within larger collaborations, although there are
exceptions. The high-energy theory database of course contains only theorists, and
the smaller numbers of collaborators reflect this.

3.5 Size of the giant component

In the theory of random graphs (Erdds and Rényi, 1960; Bollobds, 2001) it is known
that there is a continuous phase transition with increasing density of edges in a graph
at which a giant component forms, i.e., a connected subset of vertices whose size
scales extensively. Well above this transition, in the region where the giant component
exists, the giant component usually fills a large portion of the graph, and all other
components (i.e., connected subsets of vertices) are small with mean size independent
of the size of the network. We see a situation reminiscent of this in all of the graphs
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studied here: a single large component of connected vertices that fills the majority
of the volume of the graph, and a number of much smaller components filling the
rest. In Table 1 we show the size of the giant component for each of our databases,
both as total number of vertices and as a fraction of system size. In all cases the
giant component fills around 80% or 90% of the total volume, except for high-energy
theory and computer science, which give smaller figures. A possible explanation of
these two anomalies may be that the corresponding databases give poorer coverage
of their subjects. The hep-th high-energy database is quite widely used in the field,
but overlaps to a large extent with the longer established SPIRES database, and it is
possible that some authors neglect it for this reason (O’Connell, 2000). The NCSTRL
computer science database differs from the others in this study in that the preprints
it contains are submitted by participating institutions, of which there are about 160.
Preprints from institutions not participating are mostly left out of the database, and
its coverage of the subject area is, as a result, incomplete.

The figure of 80-90% for the size of the giant component is a promising one. It
indicates that the vast majority of scientists are connected via collaboration, and
hence via personal contact, with the rest of their field. Despite the prevalence of
journal publishing and conferences in the sciences, person-to-person contact is still
of paramount importance in the communication of scientific information, and it is
reasonable to suppose that the scientific enterprise would be significantly hindered if
scientists were not so well connected to one another.

3.6 Clustering coefficients

An interesting idea circulating in social network theory currently is that of tran-
sitivity, which, along with its sibling structural balance, describes symmetry of
interaction amongst trios of actors. “Transitivity” has a different meaning in sociol-
ogy from its meaning in mathematics and physics, although the two are related. It
refers to the extent to which the existence of ties between actors A and B and between
actors B and C implies a tie between A and C. The transitivity, or more precisely
the fraction of transitive triples, is that fraction of connected triples of vertices which
also form “triangles” of interaction. Here a connected triple means an actor who is
connected to two others. In the physics literature, this quantity is usually called the
clustering coefficient C' (Watts and Strogatz, 1998), and can be written®

3 x number of triangles on the graph

C = 2)

number of connected triples of vertices’

The factor of three in the numerator compensates for the fact that each complete
triangle of three vertices contributes three connected triples, one centered on each
of the three vertices, and ensures that C' = 1 on a completely connected graph. On
unipartite random graphs C' = O(n~1!), where n is the number of vertices, and hence
goes to zero in the limit of large graph size (Watts and Strogatz, 1998; Newman, 2003).
In social networks it is believed that the clustering coefficient will take a non-zero
value even in very large networks, because there is a finite (and probably quite large)

5This is one of two slightly different definitions of the clustering coefficient that are in use. See,
for instance, Newman (2003).
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probability that two people will be acquainted if they have another acquaintance in
common. This is a hypothesis we can test with our collaboration networks. In Table 1
we show values of the clustering coefficient C', calculated from Eq. (2), for each of the
databases studied, and as we see, the values are indeed large—as large as 0.7 in the
case of the SPIRES database and around 0.3 or 0.4 for most of the others.

There are a number of possible explanations for these high values of C. First of
all, it may be that they indicate simply that collaborations of three or more people are
common in science. Every paper that has three authors clearly contributes a triangle
to the numerator of Eq. (2) and hence increases the clustering coefficient. This is, in a
sense, a “trivial” form of clustering, although it is by no means socially uninteresting.

In fact it turns out that this effect can account for some but not all of the clustering
seen in our graphs. One can construct a random graph model of a collaboration
network which mimics the trivial clustering effect, and the results indicate that only
about a half of the clustering we see is a result of authors collaborating in groups of
three or more (Newman et al., 2001). The rest of the clustering must have a social
explanation, and there are some obvious possibilities:

1. A scientist may collaborate with two colleagues individually, who may then
become acquainted with one another through their common collaborator, and
so end up collaborating themselves. This is the usual explanation for transitivity
in acquaintance networks (Wasserman and Faust, 1994).

2. Three scientists may all revolve in the same circles—read the same journals,
attend the same conferences—and, as a result, independently start up sepa-
rate collaborations in pairs, and so contribute to the value of C, although only
the workings of the community, and not any specific person, is responsible for
introducing them.

3. As a special case of the previous possibility—and perhaps the most likely case—
three scientists may all work at the same institution, and as a result may col-
laborate with one another in pairs.

Interesting studies could no doubt be made of these processes by combining our
network data with data on, for instance, institutional affiliations of scientists. Such
studies are, however, perhaps better left to the social scientists who specialize in them.

The clustering coefficient of the Medline database is worthy of brief mention, since
its value is far smaller than those for the other databases. One possible explanation of
this comes from the unusual social structure of biomedical research, which, unlike the
other sciences, has traditionally been organized into laboratories, each with a principal
investigator supervising a large number of postdocs, students, and technicians working
on different projects. This organization produces a tree-like hierarchy of collaborative
ties with fewer interactions within levels of the tree than between them. A tree has no
loops in it, and hence no triangles to contribute to the clustering coefficient. Although
the biomedicine hierarchy is certainly not a perfect tree, it may be sufficiently tree-
like for the difference to show up in the value of C. Another possible explanation
comes from the generous tradition of authorship in the biomedical sciences. It is
common, for example, for a researcher to be made a coauthor of a paper in return for
synthesizing reagents used in an experimental procedure. Such a researcher will in
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many cases have a less than average likelihood of developing new collaborations with
their collaborators’ friends, and therefore of increasing the clustering coefficient.

4 Distances and centrality

The basic statistics of the previous section are certainly of importance, particularly for
the construction of network models (Watts and Strogatz, 1998; Albert et al., 1999;
Kleinberg, 2000; Newman et al., 2001; Krapivsky and Redner, 2001), but there is
much more that we can do with our collaboration networks. In this section, we look
at some simple but useful measures of network structure, concentrating on measures
having to do with paths between vertices in the network. In Sec. 5 we discuss some
shortcomings of these measures, and construct some new and more complex measures
that may better reflect true collaboration patterns.

4.1 Shortest paths

A fundamental concept in graph theory is the geodesic, the shortest path of vertices
and edges that links two given vertices. There may not be a unique geodesic between
two vertices: there may be two or more shortest paths, which may or may not share
some vertices. Or there may be no paths between the vertices at all. The geodesic(s)
between two vertices s and ¢ can be calculated in time O(m), where m is the number
of edges in the graph, using the following algorithm, which is a modified form of the
standard breadth-first search (Cormen et al., 2001).

1. Assign vertex s distance zero, to indicate that it is zero steps away from itself,
and set d = 0.

2. For each vertex i whose assigned distance is d, follow each attached edge to the
vertex j at its other end and then do one of the following three things:

(a) If j has not already been assigned a distance, assign it distance d + 1.
Declare i to be a predecessor of j.

(b) If j has already been assigned distance d + 1, then there is no need to do
this again, but ¢ is still declared a predecessor of j.

(c¢) If 5 has already been assigned a distance less than d + 1, do nothing.
3. Set d — d+ 1.
4. Repeat from step (2) until there are no unassigned vertices left.

Now the shortest path (if there is one) between s and ¢ is the path you get by stepping
from ¢ to its predecessor, and then to the predecessor of each successive vertex until
s is reached. If a vertex has two or more predecessors, then there are two or more
shortest paths, each of which must be followed separately if we wish to know all
shortest paths between s and t.

In Fig. 4 we show the shortest paths of known collaborations between two of the
author’s colleagues, Duncan Watts (Columbia) and Ldszlé Barabési (Notre Dame),
both of whom work on networks of various kinds. It is interesting to note that,
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Watts, D. J.

Garrahan, J. P.

Amaral, L. A. N. Cuerno, R.

Figure 4: The geodesics, or shortest paths, in the collaboration network of physicists between
Duncan Watts and Laszl6 Barabasi.

although the two scientists in question are well acquainted both personally and with
one another’s work, the shortest path between them does not run entirely through
other collaborations in the field. (For example, the connection between the present
author and Juan Pedro Garrahan results from our coauthorship of a paper on spin
glasses.) Although this may at first sight appear odd, it is probably in fact a good
sign. It indicates that workers in the field come from different scientific camps, rather
than all descending intellectually from a single group or institution. This presumably
increases the likelihood that those workers will express independent opinions on the
open questions of the field, rather than merely spouting slight variations on the same
underlying doctrine.

A database that would allow one conveniently and quickly to extract shortest paths
between scientists in this way might have some practical use. Kautz et al. (1997) have
constructed a web-based system which does just this for computer scientists, with the
idea that such a system might help to create new professional contacts by providing a
“referral chain” of intermediate scientists through whom contact may be established.

4.2 Betweenness and funneling

A quantity of interest in many social network studies is the betweenness of an actor i,
which is defined as the total number of shortest paths between pairs of actors that pass
through ¢ (Freeman, 1977). This quantity is one possible indicator of who the most
influential people in the network are. In a network in which information flows entirely
or mostly along the shortest paths between actors, those with highest betweenness
are the ones who control the flow of information between most others. The vertices
with highest betweenness also produce an increase in the geodesic distance between
the largest number of pairs of others when removed from the network (Wasserman
and Faust, 1994).

Naively, one might think that betweenness would take time of order O(mn?) to
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leaves

Figure 5: Calculation of betweenness: (a) When there is only a single shortest path from a
source vertex s (top) to all other reachable vertices, those paths necessarily form a tree, which
makes the calculation of the contribution to betweenness from this set of paths particularly
simple, as described in the text. (b) For cases in which there is more than one shortest path
to some vertices, the calculation is more complex. First we must calculate the number of
paths from the source s to each other vertex (numbers to left of vertices), and then use these
to weight the path counts appropriately and derive the betweenness scores (numbers to right
of vertices).

calculate for all vertices, since there are O(n?) shortest paths to be considered, each
of which takes time O(m) to calculate, and until recently the standard network anal-
ysis packages such as UCInet and Pajek indeed used O(mn?) algorithms. Recently
however, faster algorithms for betweenness have been discovered by the present au-
thor (Newman, 2001c) and independently by Brandes (2001). These algorithms can
perform the same calculation in time O(mn). Here we describe the algorithm of New-
man (2001c), which is fast enough to allow the exhaustive calculation of betweenness
for all vertices in the very large graphs studied here.

We start by performing a breadth-first search to determine the set of shortest paths
from some source vertex s to all other vertices that are reachable from s. Consider
first the simple case of a network in which there is only a single shortest path from the
source vertex to any other. (We will consider other cases in a moment.) The resulting
set of paths then forms a tree as shown in Fig. 5a. We can use this tree to calculate
betweenness as follows. We find first the “leaves” of the tree, i.e., those nodes such
that no shortest paths to other nodes pass through them, and we assign a score of 1
to them—the only path to these vertices is the one that ends there. Then, starting
with those vertices that are farthest from the source vertex s on the tree, i.e., lowest
in Fig. ba, we work upwards, assigning a score to each vertex that is 1 plus the sum
of the scores on the neighboring vertices immediately below it. When we have gone
though all vertices in the tree, the resulting scores are the betweenness counts for the
paths from vertex s. (In our calculation we define paths to include the vertices at
their ends. Sometimes they are defined to exclude these vertices, in which case the
score at each vertex is decreased by 1, except for the source vertex s, which receives
a score of zero.) Repeating the process for all possible vertices s and summing the
scores, we arrive at the full betweenness scores for shortest paths between all pairs.
The breadth-first search and the process of working up through the tree both take
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worst-case time O(m) and there are n vertices total, so the entire calculation takes
time O(mn) as claimed.

This simple case serves to illustrate the basic principle behind the algorithm. In
general, however, it is not the case that there is only a single shortest path between
any pair of vertices. Most networks have at least some vertex pairs between which
there are several geodesic paths of equal length. Figure 5b shows a simple example
of a shortest path “tree” for a network with this property. The resulting structure is
in fact no longer a tree, and in such cases an extra step is required in the algorithm
to correctly calculate the betweenness.

Following Freeman’s original definition of betweenness (Freeman, 1977), we give
multiple shortest paths between a pair of vertices equal weights summing to 1. Note
that some of the paths may run through the same vertices for some part of their
length, resulting in vertices with greater weight. To calculate correctly what fraction
of the paths flow through each vertex in the network, we generalize the breadth-first
search part of our algorithm, as follows.

Consider Fig. 5b and suppose we are starting at vertex s. We carry out the
following steps:

1. Assign vertex s distance zero, to indicate that it is zero steps from itself, and
set d = 0. Also assign s a weight ws = 1 (whose purpose will become clear
shortly).

2. For each vertex i whose assigned distance is d, follow each attached edge to the
vertex j at its other end and then do one of the following three things:

(a) If j has not yet been assigned a distance, assign it distance d+1 and weight
w; = Wi.

(b) If j has already been assigned a distance and that distance is equal to d+1,
then the vertex’s weight is increased by w;, that is w; «— w; + w;.

(¢) If j has already been assigned a distance less than d + 1, do nothing.
3. Set d «— d+1.
4. Repeat from step 2 until there are no vertices that have distance d.

The resulting weights for the example of Fig. 5b are shown to the left of each vertex
in the figure.

Physically, the weight on a vertex i represents the number of distinct paths from
the source vertex to i. These weights are precisely what we need to calculate our
betweennesses, because if two vertices ¢ and j are connected, with j farther than i
from the source s, then the fraction of a geodesic path from j through ¢ to s is given
by w;/wj. Thus, to calculate the contribution to the betweenness from all shortest
paths starting at s, we need only carry out the following steps:

1. Find every “leaf” vertex t, i.e., a vertex such that no paths from s to other
vertices go though t and assign it a score of z; = 1.

2. Now, starting with the vertices that are farthest from the source vertex s—lower
down in a diagram such as Fig. bb—work up towards s. To each vertex ¢ assign
ascorex; =1+ LW Jwj, where the sum is over the neighbors j immediately
below vertex 3.
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3. Repeat from step 2 until vertex s is reached.

The resulting scores are shown to the right of each vertex in Fig. 5b. Now repeating
this process for all n source vertices s and summing the resulting scores on the vertices
gives us the total betweenness for all vertices in time O(mn).

We have applied this algorithm to our coauthorship networks and in column 3
of Table 2 we show the ten highest betweennesses in the astro-ph, cond-mat, and
hep-th subdivisions of the physics archive. While we leave it to the knowledgeable
reader to decide whether the scientists named are indeed pivotal figures in their re-
spective fields, we do notice one interesting feature of the results. The betweenness
measure gives very clear winners in the competition: the individuals with highest
betweenness are well ahead of those with second highest, who are in turn well ahead
of those with third highest, and so on. This same phenomenon has been noted in
other networks (Wasserman and Faust, 1994; Goh et al., 2001).

Strogatz has raised an interesting question about social networks which we can
address using our betweenness algorithm: are all of your collaborators equally impor-
tant for your connection to the rest of the world, or do most paths from others to you
pass through just a few of your collaborators (S. H. Strogatz, personal communica-~
tion)? One could certainly imagine that the latter might be true. Collaboration with
just one or two senior or famous members of one’s field could easily establish short
paths to a large part of the collaboration network, and all of those short paths would
go through those one or two members. Strogatz calls this effect “funneling.” Since
our algorithm, as a part of its operation, calculates the vertices through which each
geodesic path to a specified actor passes, it is a trivial modification to calculate also
how many of those geodesic paths pass through each of the immediate collaborators
of that actor, and hence to use it to look for funneling.

Our collaboration networks, it turns out, show strong funneling. For most people,
their top few collaborators lie on most of the paths between themselves and the rest
of the network. The rest of their collaborators, no matter how numerous, account for
only a small number of paths. Consider, for example, the present author. Out of the
44000 scientists in the giant component of the physics archive collaboration network,
31000 paths from them to me, about 70%, pass through just two of my collaborators,
Chris Henley and Juanpe Garrahan. Another 13000, most of the remainder, pass
through the next four collaborators. The remaining five account for a mere 1% of the
total.

To give a more quantitative impression of the funneling effect, we show in Fig. 6
the average fraction of paths that pass through the top 10 collaborators of an author,
averaged over all authors in the giant component of the Physics database. The figure
shows for example that on average 64% of one’s shortest paths to other scientists pass
through one’s top-ranked collaborator. Another 17% pass through the second-ranked
collaborator. The top 10 shown in the figure account for 98% of all paths.

That one’s top few acquaintances account for most of one’s shortest paths to the
rest of the world has been noted before in other contexts. For example, Stanley Mil-
gram, in his famous “small-world” experiment (Milgram, 1967), noted that most of
the paths he found to a particular target person in an acquaintance network went
through just one or two acquaintances of the target. He called these people “socio-
metric superstars.”
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Figure 6: The average percentage of paths from other scientists to a given scientist that pass
through each collaborator of that scientist, ranked in decreasing order. The plot is for the
physics archive network, although similar results are found for other networks.

4.3 Average distances

Breadth-first search allows to us calculate exhaustively the lengths of the shortest
paths from every vertex on a graph to every other in time O(mn). We have done
this for each of the networks studied here and averaged these distances to find the
average distance between any pair of (connected) authors in each of the subject fields
studied. These figures are given in the penultimate row of Table 1. As the table
shows, these figures are all quite small: they vary from 4.0 for SPIRES to 9.7 for
NCSTRL, although this last figure may be artificially inflated by the poor coverage of
this database discussed in Sec. 3.5. At any rate, all the figures are very small compared
to the number of vertices in the corresponding databases. This “small-world effect,”
famously discussed by Milgram (1967) and by Pool and Kochen (1978), is, like the
existence of the giant component, probably a good sign for science; it shows that
scientific information—discoveries, experimental results, theories—will not have far
to travel through the network of scientific acquaintance to reach the ears of those who
can benefit by it. Even the maximum distances between scientists in these networks,
shown in the last row of the table, are not very large, the longest path in any of the
networks being just 31 steps long, again in the NCSTRL database.

The explanation of the small-world effect is simple. Consider Fig. 7, which shows
all the collaborators of the present author (in all subjects, not just physics), and
all the collaborators of those collaborators—all my first and second neighbors in the
collaboration network. As the figure shows, I have 35 first neighbors, but 891 second
neighbors. The “radius” of the whole network around me is reached when the number
of neighbors within that radius equals the number of scientists in the giant component
of the network, and if the increase in numbers of neighbors with distance continues
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Figure 7: The point in the center of the figure represents the author of the article you are
reading, the first ring his collaborators, and the second ring their collaborators. Collaborative
ties between members of the same ring, of which there are many, have been omitted from
the figure for clarity.

at the impressive rate shown in the figure, it will not take many steps to reach this
point.

This simple idea is borne out by theory. In almost all networks, the average dis-
tance between pairs of vertices ¢ scales logarithmically with the number of vertices n.
In a standard random graph (Erdés and Rényi, 1960; Bollobds, 2001), for instance,
¢ =logn/log z, where z is the average degree of a vertex, the average number of col-
laborators in our terminology. In the more general class of random graphs in which
the distribution of vertex degrees is arbitrary (Bollobds, 1980; Luczak, 1992; Molloy
and Reed, 1995, 1998), rather than Poissonian as in the standard case, the equivalent
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The solid line is the best straight-line fit to the data.

expression is
_ log(n/1)

 log(z2/21) +1 3)

where z; and zo are the average numbers of first and second neighbors of a vertex
(Newman et al., 2001, 2002b). It is widely assumed that this logarithmic behavior
extends to most networks, so the small-world effect is not a surprise to those familiar
with graph theory. However, it would be nice to demonstrate explicitly the presence
of logarithmic scaling in our networks. Figure 8 does this in a crude fashion. In this
figure we have plotted the measured value of ¢, as given in Table 1, against the value
given by Eq. (3) for each of our four databases, along with separate points for nine
of the subject-specific subdivisions of the physics archive. As the figure shows, the
correlation between measured and predicted values is quite good. The correlation
coefficient is R? = 0.86, rising to R?> = 0.95 if the NCSTRL database, with its
incomplete coverage, is excluded (the diamond in the figure).

Figure 8 needs to be taken with a pinch of salt. Its construction implicitly assumes
that the different networks are statistically similar to one another and to the random
graphs with the same distributions of vertex degree, an assumption which is almost
certainly not correct. Nonetheless, the fact that even with such inherent errors the
logarithmic behavior is still clearly visible lends at least some credence to its graph
theoretical basis.

We can also trivially use our breadth-first search algorithm to calculate the average
distance from a single vertex to all other vertices in the giant component. This
average is essentially the same as the quantity known as closeness centrality to
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Figure 9: Scatter plot of the mean distance from each physicist in the giant component of
the physics archive network to all others as a function of number of collaborators. Inset: the
same data averaged vertically over all authors having the same number of collaborators.

social network analysts.® Like betweenness it is also a measure, in some sense, of the
centrality of a vertex—authors with low values of this average will, it is assumed, be
the first to learn new information, and information originating with them will reach
others quicker than information originating with other sources. Average distance is
thus a measure of centrality of an actor in terms of their access to information, whereas
betweenness is a measure of an actor’s control over information flowing between others.

Calculating average distance for many networks returns results which look sensible
to the observer. Calculations for the network of collaborations between movie actors,
for instance, give small average distances for actors who are famous—ones many of
us will have heard of. Interestingly, however, performing the same calculation for our
scientific collaboration networks does not give exactly the results we might expect. For
example, one finds that the people at the top of the list are always experimentalists.
This, you might think, is not such a bad thing: perhaps the experimentalists are better
connected people? In a sense, in fact, it turns out that they are. In Fig. 9 we show
the average distance from scientists in the physics archive to all others in the giant
component as a function of their number of collaborators. As the figure shows, there is
a clear trend towards shorter average distance as the number of collaborators becomes
large. This trend is clearer still in the inset, where we show the same data averaged
over all authors who have the same number of collaborators. Since experimentalists
often work in large groups, it is not surprising to learn that they tend to have shorter
average distances to other scientists.

But this brings up an interesting question, one that we touched upon in Sec. 2:

6Technically, closeness is the reciprocal of the average distance to other vertices (Wasserman and
Faust, 1994).
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while most pairs of people who have written a paper together will know one another
reasonably well, there are exceptions. On a high-energy physics paper with 1000
coauthors, for instance, it is unlikely that every one of the 499 500 possible acquain-
tanceships between pairs of those authors will actually be realized. Our closeness
measure does not take into account the tendency for collaborators in large groups
not to know one another, or to know one another less well. In the next section we
describe a more sophisticated calculation which does do this.

5 Weighted collaboration networks

There is more information present in the databases used here than in the simple
networks we have constructed from them, which tell us only whether scientists have
collaborated or not. In particular, we also know on how many papers each pair of
scientists collaborated during the period of the study, and how many other coauthors
they had on each of those papers.” We can use this information to make an estimate
of the strength of collaborative ties.

First of all, it is probably the case, as we pointed out at the end of the previous
section, that two scientists whose names appear on a paper together with many other
coauthors know one another less well on average than two who were the sole authors of
a paper. The extreme case which we discussed of a very large collaboration illustrates
this point forcefully, but it applies to smaller collaborations too. Even on a paper with
four or five authors, the authors probably know one another less well on average than
authors on a paper with fewer. To account for this effect, we weight collaborative
ties inversely according to the number of coauthors as follows. Suppose a scientist
collaborates on the writing of a paper that has n authors in total, i.e., he or she has
n — 1 coauthors on that paper. Then we assume that he or she is acquainted with
each coauthor 1/(n — 1) times as well, on average, as if there were only one coauthor.
One can imagine this as meaning that the scientist divides his or her time equally
between the n — 1 coauthors. This is obviously only a rough approximation: in reality
a scientist spends more time with some coauthors than with others. However, in the
absence of other data, it is the obvious first approximation to make.

Second, authors who have written many papers together will, we assume, know
one another better on average than those who have written few papers together. To
account for this, we add together the strengths of the ties derived from each of the
papers written by a particular pair of individuals. Thus, if §¥ is one if scientist i
was a coauthor of paper k and zero otherwise, then our weight w;; representing the
strength of the collaboration (if any) between scientists ¢ and j is

sl
wz‘jzznkjl» (4)
k

where ny is the number of coauthors of paper k& and we explicitly exclude from our

"In fact, the full coauthorship pattern is, like all affiliation networks, most properly represented
as a bipartite graph with two kinds of vertices representing scientists and papers, and edges running
between scientists and the papers on which their name appears as a coauthor. We have investigated
this representation elsewhere (Newman et al., 2001, 2002b).
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1 1
3 2

Figure 10: Authors A and B have coauthored three papers together, labeled 1, 2, and 3,
which had respectively four, two, and three authors. The tie between A and B accordingly
accrues weight %, 1, and % from the three papers, for a total weight of %.

sums all single-author papers. (They do not contribute to the coauthorship network,
and their inclusion in Eq. (4) would make w;; ill-defined.) We illustrate this measure
for a simple example in Fig. 10.

Note that the equivalent of vertex degree for our weighted network—i.e., the sum
of the weights for each of an individual’s collaborations—is now just equal to the
number of papers they have coauthored with others:

. QA
Z)wu DD Dy PO (5)

J(# k- 5(#)

In Fig. 11 we show as an example collaborations between Gerard Barkema (one of
the present author’s frequent collaborators) and all of his collaborators in the physics
archive for the five years of our study. Lines between points represent collaborations,
with their thickness proportional to the weights w;; of Eq. (4). As the figure shows,
Barkema has collaborated closely with myself and with Normand Mousseau, and less
closely with a number of others. Also, two of his collaborators, John Cardy and
Gesualdo Delfino, have collaborated quite closely with one another.

In the last column of Table 2 we show the pairs of collaborators who have the
strongest collaborative ties in three subdivisions of the physics archive.

We have used our weighted collaboration graphs to calculate distances between
scientists. In this simple calculation we assumed that the distance between authors
is just the inverse of the weight of their collaborative tie. Thus if one pair of authors
know one another twice as well as another pair, the distance between them is half
as great. Calculating minimum distances between vertices on a weighted graph such
as this cannot be done using the breadth-first search algorithm of Sec. 4.1, since the
shortest weighted path may not be the shortest in terms of number of steps on the
unweighted network. Instead we use Dijkstra’s algorithm (Ahuja et al., 1993; Cormen
et al., 2001), which calculates all distances from a given starting vertex s as follows.
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Figure 11: Gerard Barkema and his collaborators, with lines representing collaborations
whose thickness is proportional to our estimate, Eq. (4), of the strength of the corresponding

tie.

1. Distances from vertex s are stored for each vertex and each distance is labeled ei-

ther “exact,” meaning we have calculated that distance exactly, or “estimated,”
meaning we have made an estimate of the distance, but that estimate may be
wrong. Estimated distances in Dijkstra’s algorithm are always upper bounds
on the exact distance. We start by assigning an estimated distance of oo to all
vertices except vertex s to which we assign an estimated distance of zero. (We
know the latter to be exactly correct, but for the moment we consider it merely
“estimated.”)

. From the set of vertices whose distances from s are currently marked “esti-

mated,” choose the one with the lowest estimated distance, and mark this “ex-
act.”

. Calculate the distance from that vertex to each of its immediate neighbors in

the network by adding to its distance the length of the edges leading to those
neighbors. Any of these distances that is shorter than a current estimated
distance for the same vertex supersedes that current value and becomes the
new estimated distance for the vertex.

4. Repeat from step (2), until no “estimated” distances remain.

A naive implementation of this algorithm takes time O(mn) to calculate distances
from a single vertex to all others, or O(mn?) to calculate all pairwise distances. One
of the factors of n, however, arises because it takes time O(n) to search through
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rank name co-workers | papers

astro-ph 1 Rees, M. J. 31 36
2 Miralda-Escude, J. 36 34

3 Fabian, A. C. 156 112

4 Waxman, E. 15 30

5 Celotti, A. 119 45

6 Narayan, R. 65 58

7 Loeb, A. 33 64

8 Reynolds, C. S. 45 38

9 Hernquist, L. 62 80

10 Gould, A. 76 79
cond-mat: 1 Fisher, M. P. A. 21 35
2 Balents, L. 24 29

3 MacDonald, A. H. 64 70

4 Senthil, T. 9 13

5 Das Sarma, S. 51 75

6 Millis, A. J. 43 37

7 loffe, L. B. 16 27

8 Sachdev, S. 28 44

9 Lee, P. A. 24 34

10 Jungwirth, T. 27 17
hep-th: 1 Cvetic, M. 33 69
2 Behrndt, K. 22 41

3 Tseytlin, A. A. 22 65

4 Bergshoeff, E. 21 39

5 Youm, D. 3 30

6 Lu, H. 34 73

7 Klebanov, I. R. 29 47

8 Townsend, P. K. 31 54

9 Pope, C. N. 33 72

10 Larsen, F. 11 27

Table 3: The ten best connected individuals in three of the communities studied here,
calculated using the weighted distance measure described in the text.

the vertices to find the one with the smallest estimated distance. The speed of this
operation can be improved by storing the estimated distances in a binary heap (a
partially ordered binary tree with its smallest entry at its root). We can find the
smallest distance in such a heap in time O(1), and add and remove entries in time
O(logn). This speeds up the operation of the algorithm to O(mnlogn), making the
calculation feasible for the large networks studied here.

It is in theory possible to generalize any of the calculations of Sec. 4 to the weighted
collaboration graph using this algorithm and variations on it. For example, we can find
shortest paths between specified pairs of scientists, as a way of establishing referrals.
We can calculate the weighted equivalent of betweenness by a simple adaption of
our algorithm of Sec. 4.2—we use Dijkstra’s algorithm to establish the hierarchy of
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predecessors of vertices and then count paths through vertices exactly as before. We
can also study the weighted version of the “funneling” effect using the same algorithm.
Here we carry out just one calculation explicitly to demonstrate the idea; we calculate
the weighted version of the distance centrality measure of Sec. 4.3, i.e., the average
weighted distance from a vertex to all others. In Table 3 we show the winners in this
particular popularity contest, along with their numbers of collaborators and papers
in the database. Many of the scientists who score highly here do indeed appear to
be well connected individuals. For example, number 1 best connected astrophysicist,
Martin Rees, is the Astronomer Royal of Great Britain.® What is interesting to note
however (apart from nonchalantly checking to see if one has made it into the top 10) is
that sheer number of collaborators is no longer a necessary prerequisite for being well-
connected in this sense (although some of the scientists listed do have a large number
of collaborators). The case of D. Youm is particularly startling, since Youm has
only three collaborators listed in the database but nonetheless is fifth best connected
high-energy theorist (out of eight thousand), because those three collaborators are
themselves very well connected, and because their ties to Youm are very strong.
Experimentalists no longer dominate the field, although the well-connected among
them still score highly.

Note that the number of papers for each of the well-connected scientists listed is
high. Having written a large number of papers is, as it rightly should be, always a
good way of becoming well connected. Whether you write many papers with many
different authors, or many with a few, writing many papers will put you in touch with
your peers.

6 Conclusions

In this article we have studied social networks of scientists in which the actors are
authors of scientific papers, and a tie between two authors represents coauthorship
of one or more papers. Drawing on the lists of authors in four databases of papers
in physics, biomedical research, and computer science, we have constructed explicit
networks for papers appearing between the beginning of 1995 and the end of 1999. We
have cataloged a large number of basic statistics for our networks, including typical
numbers of papers per author, authors per paper, and numbers of collaborators per
author in the various fields. We also note that the distributions of these quantities
roughly follow a power-law form, although there are some deviations which may be
due to the finite time window used for the study.

We have also looked at a variety of non-local properties of our networks. We
find that typical distances between pairs of authors through the networks are small—
the networks form a “small world” in the sense discussed by Milgram—and that
they scale logarithmically with total number of authors in a network, in reasonable
agreement with the predictions of random graph models. Using a new algorithm for
counting the number of shortest paths between vertices on a graph that pass through
each other vertex, we have calculated the so-called betweenness measure of centrality

80n being informed of this latest honor, Prof. Rees is reported as replying, “I'm certainly relieved
not to be the most disconnected astrophysicist” (H. Muir, New Scientist, November 25, 2000, p. 10).
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on our graphs. We have also shown that for most authors the bulk of the paths
between them and other scientists in the network go through just one or two or their
collaborators, an effect that Strogatz has dubbed “funneling.”

We have suggested a measure of the closeness of collaborative ties that takes ac-
count of the number of papers a given pair of scientists have written together, as well
as the number of other coauthors with whom they wrote them. Using this measure we
have added weightings to our collaboration networks and used the resulting networks
to find those scientists who have the shortest average distance to others. Generaliza-
tion of the betweenness and funneling calculations to these weighted networks is also
straightforward.

The calculations presented in this article inevitably represent only a small part of
the investigations that could be conducted using large network datasets such as these.
We hope, given the high current level of interest in network phenomena, that others
will find many further uses for collaboration network data.
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