
169
XV Conference on Applied Mathematics
N. Krejić, Z. Lužanin, eds.
Department of Mathematics and Informatics
Novi Sad, 2002, pp. xx-xx

AN IMPLEMENTATION OF LISPKIT LISP IN JAVA1

Miloš Radovanović2, Mirjana Ivanović2

Abstract. Functional programming languages (FPL) and their imple-
mentations are still very interesting topics in the computer community.
Declarative languages are also extremely interesing in the field of inter-
agent communication. Thus it seems that a FPL could be a good starting
point for the implementation of particular Agent Communication Lan-
guages. In this paper a description of a concrete LispKit LISP system is
given. The system is implemented in Java, and consists of a translator
from LispKit LISP to SECD machine code and an interpreter for that
code.

The emphasis of the paper is on simplicity and clarity of underlying
concepts, rather than actual practical use of the system. But, it can be
used as an interesting tool for educational purposes, in the field of func-
tional programming and in the field of compiler construction, as well.
Particular focus is on features of the Java programming language which
are extensively used in the implementation, such as packages, class in-
heritance, interfaces, garbage collection and the standard library. The
implemented LispKit LISP system will be analyzed as a possible core
language for the realization of a concrete ACL.

1. Introduction

The development of programming languages over the years has been marked
by attempts to construct languages that are more similar to human concepts of
abstraction and communication, while preserving efficiency of translation and
execution of programs written in those languages.

An important paradigm of programming is the functional programming style.
In this style, program execution is based on the notion of a function. Basically,
there are only three activities which form the foundation of the whole program-
ming process:

1This work is part of the project Development of (intelligent) techniques based on soft-
ware agents for application in information retrieval and workflow, 2002-2004, supported by
Ministry of Science, Technology and Development (Republic of Serbia), project no. 1844.

2Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića
4, 21000 Novi Sad, Serbia and Montenegro, e-mail: radacha@Eunet.yu (M. Radovanović),
mira@im.ns.ac.yu (M. Ivanović)

170 M. Radovanović, M. Ivanović

• Function definition, that is, assignment of the expression which calculates
the value of the function to the function name.

• Application of a function to a list of arguments.

• Function composition.

One programming language which supports the functional programming
style, and which will be discussed in this paper, is a variant of LISP called
LispKit LISP [6]. It is a small purely functional programming language.

A common trait of all dialects of LISP is the S-expression. It is the basic data
structure and the main building block of all LISP programs. An S-expression
is either:

1. an atom (symbolic or numeric), or

2. a constructed expression (s1.s2), where s1 and s2 denote S-expressions.

The constructed expression is also referred to as the cons expression. The s1 in
the former definition is often called the head, or car part of the expression, and
s2 the tail, or cdr part.

More formally, using the Extended Backus-Naur Form, the S-expression can
be defined as:

<atom> ::= <symbolic> | <numeric>
<symbolic> ::= <letter> { <letter> | <digit> }
<numeric> ::= <integer>
<integer> ::= [’-’] digit { <digit> }
<SExpression> ::= <atom> | ’(’ <SExpressionList> ’)’
<SExpressionList> ::= <SExpression> | <SExpression> ’.’ <SExpression> |

<SExpression> <SExpressionList>

The implementation of a parser for S-expressions in Java will closely follow
this definition. Note that room was left for possible extension of the numeric
atom with other types of numbers.

The rest of the paper is organized as follows. In Section 2 the essence of the
LispKit LISP language is presented. Section 3 outlines the basics of the SECD
machine, while Section 4 gives a description of a LispKit system implemented in
Java. In the last section, a conclusion and some comments on possible further
work are given.

2. The LispKit LISP Language

Programs written in the programming language LispKit LISP are in form of
S-expressions, which have to abide to certain syntactic rules that will briefly be
described in this section.

A LispKit LISP expression, in general, is a list with the first element denoting
the type of the expression, and the following elements being the arguments.
Every expression returns a value.

An Implementation of LispKit LISP in Java 171

The simplest expression is the QUOTE expression, which simply returns
its single argument. Then, there are arithmetic expressions ADD, SUB, MUL,
DIV and REM, that return a numeric atom representing the result of applying
the respective arithmetic operation to their two arguments. Logical expressions
return either T or F, which depict logical values of true and false. The EQ
expression tests whether its two arguments are equal atoms, while the LEQ
expression checks if its first numeric argument is less than or equal to the second.
The ATOM expression returns T if its single argument is an atom. LispKit LISP
expressions that manipulate with the structure of S-expressions include CAR
and CDR, which return the car and cdr parts of their single arguments, together
with CONS, which returns the cons expression of its two arguments. The IF
expression, based on the logical value of its first argument, returns the value
of its second or third argument. The value of the LAMBDA expression is a
function. Formal arguments of this function are given as a list of symbolic
atoms that is the first argument of the LAMBDA expression, and the body
of the function is given in the second argument. A function call expression
enables such a function to be evaluated. LET and LETREC expressions permit
the assignment of symbols to various LispKit LISP expressions. Their first
argument is an expression, and the second is a list of cons pairs whose heads
are symbolic atoms and tails are expressions. The values of LET and LETREC
expressions are values of their first argument, calculated after substitutions of
symbols with approrpiate expressions are made. The main difference between
LET and LETREC is that, with LETREC, the defined symbols are also visible
in the expressions from the list of cons pairs, not just from the main expression.
This permits the definition of recursive functions. A LispKit LISP program is
either a LAMBDA, LET or LETREC expression.

A formal definition of LispKit LISP syntax, using an EBNF-like grammar,
follows.

<symbolicList> ::= NIL | (<symbolic> {<symbolic>})
<exp> ::= <symbolic>|<quoteExp>|<eqExp>|<leqExp>|<carExp>|

<cdrExp>|<atomExp>|<consExp>|<ifExp>|<lambdaExp>|
<letExp>|<letrecExp>|<callExp>

<quoteExp> ::= (QUOTE <SExpression>)
<eqExp> ::= (EQ <exp>)
<aritExp> ::= (<aritOp> <exp> <exp>)
<aritOp> ::= ADD | SUB | MUL | DIV | REM
<leqExp> ::= (LEQ <exp> <exp>)
<carExp> ::= (CAR <exp>)
<cdrExp> ::= (CDR <exp>)
<atomExp> ::= (ATOM <exp>)
<consExp> ::= (CONS <exp> <exp>)
<ifExp> ::= (IF <exp> <exp> <exp>)
<lambdaExp> ::= (LAMBDA <symbolicList> <exp>)
<letExp> ::= (LET <exp> { (<symbolic> . <exp>) })
<letrecExp> ::= (LETREC <exp> { (<symbolic> . <lambdaExp>) })
<callExp> ::= (<function> { <exp> })
<function> ::= <symbolic>|<lambdaExp>|<letExp>|<letrecExp>
<program> ::= <letrecExp>|<letExp>|<lambdaExp>

172 M. Radovanović, M. Ivanović

3. The SECD Machine

The SECD machine, originally intorduced by Landin, is still a useful struc-
ture for implementation of functional programming languages. It consists of
four registers, which hold S-expressions [6]:

s the stack used to hold intermediate and final results
e the environment used to hold the values of variables during

evaluation
c the control list used to hold the machine-language program being

executed
d the dump used as a stack to save values of other registers.

The basic SECD machine language consists of 21 instructions. Execution of
an instruction results in changes to the contents of one or more registers, that
is, in a change of the machine state. This may be denoted as s e c d → s’
e’ c’ d’, where the part left of the arrow represents the machine state before
instruction execution, and the part on the right the state after. Changes to
the SECD machine state, initiated by appropriate instructions, are presented
below.

1 LD s e (LD locate(i , e).c) d → (a.s) e c d
2 LDC s e (LDC a.c) d → (a.s) e c d
3 LDF s e (LDF c’.c) d → ((c’.e).s) e c d
4 AP ((c’.e’) v.s) e (AP.c) d → NIL (v.e) c’ (s e c.d)
5 RTN (a) e’ (RTN) (s e c.d) → (a.s) e c d
6 DUM s e (DUM.c) d → s (Ω.e) c d
7 RAP ((c’.e’) v.s) (Ω.e) (RAP.c) d → NIL rplaca(e’, v) c’ (s e c.d)
8 SEL (a.s) e (SEL cT cF .c) d → s e ca (c.d)
9 JOIN s e (JOIN) (c.d) → s e c d
10 CAR ((a.b).s) e (CAR.c) d → (a.s) e c d
11 CDR ((a.b).s) e (CDR.c) d → (b.s) e c d
12 ATOM (a.s) e (ATOM.c) d → (l.s) e c d
13 CONS (a b.s) e (CONS.c) d → ((a.b).s) e c d
14 EQ (a b.s) e (EQ.c) d → (b = a.s) e c d
15 ADD (a b.s) e (ADD.c) d → (b + a.s) e c d
16 SUB (a b.s) e (SUB.c) d → (b− a.s) e c d
17 MUL (a b.s) e (MUL.c) d → (b · a.s) e c d
18 DIV (a b.s) e (DIV.c) d → (b/a.s) e c d
19 REM (a b.s) e (REM.c) d → (b%a.s) e c d
20 LEQ (a b.s) e (LEQ.c) d → (b ≤ a.s) e c d
21 STOP s e (STOP) d → s e (STOP) d

Function locate returns the element in the environment at the specified 2-
tuple position, while rplaca replaces the head of the given cons expression and
returns the resulting expression. For every LispKit LISP expression there exists
a rule for translating it to a sequence of SECD machine instructions.

An Implementation of LispKit LISP in Java 173

4. An Implementation

This section presents a possible implementation of the described LispKit
LISP system in Java.

4.1. Basic Structure

The system is organized into package lispkit. Subpackage sexp contains
the implementation of the S-expression data type, while subpackage secd im-
plements the registers and instructions of the SECD machine. The input of S-
expressions, LispKit LISP syntax checking, the compiler which translates Lisp-
Kit LISP programs to SECD machine code, the interpreter for SECD machine
code and the facilities for error handling are implemented in the root of package
lispkit.

4.2. S-expressions

The S-expression data type can be naturally represented in an object-oriented
manner with the class hierarchy shown in Figure 1. Class SExp is the root of
the hierarchy, and, theoretically, it is an abstract class. The “leaf” classes are
the ones whose instances may actually appear in a program, while anything else
represents an error. But, class SExp is not implemented as a Java abstract class,
nor as an interface, for that matter. Every method applicable to the leaf classes
is defined in class SExp to simply throw an exception of type SExpException.

SExp

´
´

´
´

´́3

Q
Q

Q
Q

QQk

Cons Atom

¡
¡

¡
¡µ

@
@

@
@I

SymAtom NumAtom

6

IntAtom

Figure 1: S-expression class hierarchy

174 M. Radovanović, M. Ivanović

For instance, class IntAtom has method intValue() which returns the int value
of the integer atom. If this method gets called from, say, an instance of class
Cons, the intValue() from SExp will be executed, indicating an error. The
exception may later be caught and the error treated according to the context in
which it appeared.

The input of S-expressions has been implemented in a straightforward man-
ner using the compiler generator Coco/R for Java [9], with the S-expression
grammar given in Section 1. While performing recursive descent parsing, two
SExps are constructed—one representing the actual S-expression from the in-
put text, and the other having the same structure as the former, but with all
atoms replaced with 2-tuple Conses of IntAtoms, that is, by pairs of integers
representing the line and column numbers of the concerning atom in the input
text. This simple scheme will be an important contribution to error reporting
discussed later.

The output of S-expressions can be done by defining appropriate toString()
methods.

4.3. Syntax Checking

Checking the syntax of a LispKit LISP program, once it has been loaded
into an SExp is relatively simple. A recursive descent parser can be made in
a rather straightforward fashion, using the grammar from Section 2. The one
thing to be kept in mind is that parsing is done through an instance of class
SExp, and not through an input character stream.

For every nonterminal in the grammar, a procedure with the same name is
defined, all being placed in class LispSyntaxChecker. Every such procedure
needs to have three parameters of type SExp: the portion of the input program
to be checked, the current environment, and the “parallel” structure of line
and column numbers. The environment is nothing more than a list of symbols,
organized into sublists, each sublist representing a block. A new block is defined
and a new list of symbols is added to the environment every time a LAMBDA,
LET or LETREC expression is being processed. On completion of the analysis
of the block, the added sublist is removed.

For example, consider the procedure corresponding to the nonterminal
<addExp>:

private static void addExp(SExp e, SExp n, SExp num) {

try {

if (e.car().eq("ADD")) {

exp(e.cadr(), n, num.cadr());

exp(e.caddr(), n, num.caddr());

if (!e.cdddr().eq(SymAtom.NIL))

LispSynError(6, e, num.car()); // invalid ADD expression

}

else

LispSynError(6, e, num.car());

An Implementation of LispKit LISP in Java 175

}

catch (SExpException ex) {

LispSynError(6, e, num);

}

}

In case the S-expression e does not have the expected overall structure, an
SExpException will be caught, and the error will be reported. An error will
also be signaled if e is a longer list than expected, or if e does not begin with
the symbolic atom ADD. In any case, parsing of the remaining LispKit LISP code
will resume normally, making detection of additional errors possible.

4.4. The Compiler

Earlier it was said that there are precise rules for translating valid LispKit
LISP expressions into SECD machine code. If e∗n denotes SECD machine code
that is the result of translating the LispKit LISP expression e with respect to the
environment n, and | denotes a list concatenation operator, then the translation
rules for all LispKit LISP expressions can be written in a simple way. Some of
those rules are given below.

(QUOTE s)∗n = (LDC s)
(ADD e1 e2)∗n = e1∗n|e2∗n|(ADD)
(LAMBDA (x1 . . . xk) e)∗n = (LDF e∗((x1 . . . xk).n)|(RTN))

Implementation of such translation is only a matter of carefully expressing
the translation rules in Java. It is achieved by class Compiler with method

static SExp compile(SExp e);

which, for a given LispKit LISP program e returns the appropriate SECD code.
Method compile, in turn, simply calls

private static SExp comp(SExp e, SExp n, SExp c);

which returns SECD code of the form e∗n|c. Here, c acts as an accumulat-
ing parameter, holding the already translated parts of the expression. As an
example, a portion of method comp implementing the rules mentioned would be

if (e.car().eq("QUOTE"))

return new Cons(2, new Cons(e.cadr(), c));

else if (e.car().eq("ADD"))

return comp(e.cadr(), n, comp(e.caddr(), n, new Cons(15, c)));

else if (e.car().eq("LAMBDA")) {

SExp body = comp(e.caddr(), new Cons(e.cadr(), n),

new Cons(5, SymAtom.NIL));

return new Cons(3, new Cons(body, c));

}

...

176 M. Radovanović, M. Ivanović

where 2, 15, 5 and 3 are numeric codes for approrpiate SECD instructions (see
Section 3).

It is convenient to wrap the body of method comp in a try...catch block,
so that any SExpException may be caught, and the error reported, similarly to
the way it was done in class LispSyntaxChecker. But, such errors should never
occur in practice, so a manifestation of an error at this stage would indicate
a failure on the part of the syntax checker, and compilation would have to
be aborted immediately. After extensive testing, the current implementation
showed no signs of failing in such fashion.

4.5. The Interpreter

The implementation of the “physical” parts of the SECD machine—the “cir-
cuits” which compose the registers and the microcode of the instructions, can
be conveniently grouped into subpackage secd of package lispkit. Within
this subpackage, class Reg contains the registers: public static SExp s, e,
c, d, w; where w is an internal “working register” used for storing temporary
values during execution of some instructions. The instructions themselves are
implemented by an interface Instruction, containing a sole method

public void execute() throws SExpException, STOPException;

For each SECD instruction, a separate class which implements interface Inst-
ruction is defined. For example, the ADD instruction is implemented by the
following class.

public class ADDInstruction implements Instruction {

public void execute() throws SExpException {

Reg.s = new Cons(Reg.s.cadr().intValue()+Reg.s.car().intValue(),

Reg.s.cddr());

Reg.c = Reg.c.cdr();

}

}

Java’s garbage collection prooves handy with such register manipulation, since
there are no worries about the exessive amounts of SExps which may become
unreachable somewhere in memory. A STOPException is explicitly thrown by
method execute of class STOPInstruction:

public class STOPInstruction implements Instruction {

public void execute() throws STOPException {

throw new STOPException();

}

}

to announce the end of program execution. A thrown SExpException, on the
other hand, signals a runtime error, which may be a result of a logical error
in programming—a type mismatch, or some other kind of programming error
which was not anticipated by LispSyntaxChecker.

An Implementation of LispKit LISP in Java 177

The interpreter itself is implemented in a separate class Interpreter, out-
side package secd. Its only method static SExp exec(SExp code, SExp
argList); takes as arguments the SECD machine program to be executed, and
the list of parameters to be passed to it, and returns the result of the program’s
computations. An array of Instructions named instr contains instances of all
instructions from package secd, which are indexed by their respective numeric
codes. Therefore, after the initialization of registers:

Reg.s = new Cons(argList, SymAtom.NIL);

Reg.e = SymAtom.NIL;

Reg.c = code;

Reg.d = SymAtom.NIL;

the main execution loop will simply be

for (;;)

instr[Reg.c.car().intValue()].execute();

This statement needs to be nested inside a try...catch block, handling an
SExpException as a runtime error and a STOPException by returning the top
element of the stack:

return Reg.s.car();

A runtime error may also occur during the execution of this statement, if Reg.s
is not of the expected structure, so a nested try...catch is necessary to handle
a possible SExpException.

5. Conclusion

The purpose of this work was not to create a powerful LISP system applica-
ble in everyday programming, but rather to concentrate on those aspects of the
system which illustrate various implementation techniques, and features of the
programming language Java. An attempt was made to accompany the simplicity
and clarity of LispKit LISP and SECD machine design by an adequate imple-
mentation of a system. Java mechanisms, such as garbage collection, object
oriented facilities (class inheritance, interfaces, method overloading, polymor-
phism), exceptions and the standard library were extensively used where they
seemed a natural choice.

Further work on this implementation may be split in two directions. The first
direction will be concerned with improvements to the language and the imple-
mentation as a programming tool, like adding new LISP expressions, with cor-
responding SECD machine instructions if needed, new types of numeric atoms,
closer linking with Java (perhaps through introduction of object oriented fea-
tures in LispKit LISP), or, in fact, any kinds of extensions which would make
the system more suitable to a specific application in programming.

The second direction of system improvements will be concerned with the area
of Multi-Agent Systems. Agent communication plays an extremely important

178 M. Radovanović, M. Ivanović

role in MASs, and therefore the existence of a suitable Agent Communication
Language is essential. An architecture suitable for building MASs, called AJA
[2, 3], was developed at the Institute of Mathematics in Novi Sad. In [3] several
ACLs for the communication of AJA agents are proposed. It seems that this
LISP system could be a good starting point for the implementation of a useful
KQML-like ACL [8, 1, 7, 5]. It already posesses several advantages:

• Declarative style, with relatively simple, clear and concise language con-
structs.

• Java as the implementation language (of both the LISP system and AJA)
offers a lot of possibilities for further improvements.

The performatives of the ACL could be realized as LISP function calls, where
the functions themselves may be implemented in LISP or some other language.
If necessary, the S-expression parser can be extended to allow the naming of
performative (function call) parameters.

References

[1] ARPA Knowledge Sharing Initiative. Specification of the KQML Agent-Com-
munication Language. ARPA Knowledge Sharing Initiative, External Interfaces
Working Group, 1993.

[2] Badjonski, M., Implementation of Multi-Agent Systems using Java. MSc thesis,
Institute of Mathematics, Faculty of Science, University of Novi Sad, Yugoslavia,
1998.

[3] Badjonski, M., Adaptable Java Agents (AJA)—a Tool for Programming of Multi-
Agent Systems. Draft version of PhD thesis, Institute of Mathematics, Faculty
of Science, University of Novi Sad, 2002.

[4] Budimac, Z., Ivanović, M., An Implementation of Functional Language Using S-
expressions. In Proceedings of 14th Information Technologies Conference “Sara-
jevo 1990”, pp. 111.1–111.8, Sarajevo, 1990.

[5] Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Spec-
ification. Available at http://www.fipa.org/specs/fipa00061/

[6] Henderson, P., Functional Programming—Application and Implementation. Lon-
don: Prentice Hall, 1980.

[7] Labrou, Y., Finin, T., A Proposal for a new KQML Specification. Technical
Report TR-CS-97-03, University of Maryland Baltimore County, 1997.

[8] Labrou, Y., Finin, T., Peng, Y., Agent Communication Languages: The Current
Landscape. IEEE Intelligent Systems, 14(2) (1999), 45-52.

[9] Mössenböck, H., Coco/R for Java, amended by P. D. Terry. Electronic document,
available as http://cs.ru.ac.za/homes/cspt/javacoco.htm

[10] Radovanović, M., Implementacija programskog jezika LispKit LISP u Javi. BSc
thesis, Institute of Mathematics, Faculty of Science, University of Novi Sad, 2001.

