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A biological community usually has a large number of species with relatively small abundances.
When a random sample of individuals is selected and each individual is classified according to
species identity, some rare species may not be discovered. This paper is concerned with the
estimation of Shannon’s index of diversity when the number of species and the species abundances
are unknown. The traditional estimator that ignores the missing species underestimates when there is
a non-negligible number of unseen species. We provide a different approach based on unequal
probability sampling theory because species have different probabilities of being discovered in the
sample. No parametric forms are assumed for the species abundances. The proposed estimation
procedure combines the Horvitz—Thompson (1952) adjustment for missing species and the concept
of sample coverage, which is used to properly estimate the relative abundances of species discovered
in the sample. Simulation results show that the proposed estimator works well under various
abundance models even when a relatively large fraction of the species is missing. Three real data
sets, two from biology and the other one from numismatics, are given for illustration.

Keywords: biodiversity, entropy, Horvitz—Thompson estimator, jackknife, sample coverage,
species, unequal probability sampling
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1. Introduction

Assume that there are S species in a community and they are labeled from 1 to S. Denote
the probabilities of species discovery (or relative abundance) by (7, 7,, ..., ng) where
Zle n; = 1. A widely used measure of biological diversity is Shannon’s index of
diversity defined by

s
H= —Zn,log(ni). (1)
i=1
This index is also referred to as Shannon’s information measure or entropy in the
literature. Suppose a random sample of # individuals is taken with replacement from the
community and each individual is classified correctly according to species identity. Let
X;,i=1,2,...,S, be the number of individuals of the ith species observed in the sample,
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then (X,,X,,...,Xy) is a multinomial distribution with parameter (n;7,,7,,...,ng),
where Z,S: , X; = n. The missing species are those with zero frequency in the sample. A
principal approach to the related inference problems is to adopt some parametric forms for
(my,7,,...,mg); e.g., see Engen (1978), Magurran (1988), and Bunge and Fitzpatrick
(1993) for a review of various models. In this paper, we consider a non-parametric
approach in the sense that no parametric forms are assumed in our estimation procedure.

When the number of species is known and relatively small, a widely used estimator of H
is the maximum likelihood estimator (MLE) given by

. S 5. X. X,
Hyp = — Zﬁ:i log(#;) = — Zleg (;’)7 (2)
i=1 '

i=1

where 7; = X;/n (sample fraction or sample proportion) is the MLE of =;. It is well known
that the MLE is negatively biased (Basharin, 1959) and
- S—1 _
E(Hyyk) :H—7+0(” ) 3)

The above formula was derived under the assumption that S is known (Pielou, 1975) and
a minimum requirement is n > S (Hutcheson and Shenton, 1974). The bias could be
removed for given n and S by adding (S — 1)/(2n) to the MLE. An alternative method of
reducing bias is the jackknife methodology (Zahl, 1977), which will be discussed later in
the Simulation Section.

In ecological applications, the true number of species is often unknown and some rare
species may not be discovered in a sample of individuals because of the existence of many
rare species. As indicated by Magurran (1988), a more substantial source of error for the
MLE comes from a failure to include all species from the community in the sample. This
error increases as the proportion of species discovered in the sample declines. See also Peet
(1974) for more related discussion. In this case, a bias-corrected estimator can be obtained
by substituting an estimated S in the bias formula, but this involves the estimation of the
number of unseen species. Moreover, using an estimated S results in increased variance, as
will be discussed in the Simulation Section. See Bunge and Fitzpatrick (1993) and Bunge
et al. (1995) for history and developments of species estimation.

Norris and Pollock (1998) recently developed a non-parametric MLE approach under a
mixed Poisson process for species sampling. They presented estimators for species
richness and related parameters including the entropy. Their method will be applied to our
examples in Section 4.

In this paper, we focus on situations in which the true total number of species is
unknown and take unseen species into account in our estimation procedure. We provide a
different approach to the estimation of diversity based on unequal probability sampling
theory because species have different probabilities of being discovered in the sample. The
proposed estimation procedure combines the Horvitz—Thompson estimator and the
concept of sample coverage. The Horvitz—Thompson estimator is used for adjustment of
missing species in an unequal probability sampling scheme. In order to properly estimate
the relative abundance of the discovered species, the concept of sample coverage is used
for adjustment for the sample fraction of unseen species. The Horvitz—Thompson
estimator and the concept of sample coverage will be reviewed in Section 2.1. Our
proposed estimator and its variance estimator are presented in Section 2.2. Simulation
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results are used to examine the performance of the proposed estimator in Section 3. In
Section 4, three real data sets are analyzed for illustration. Some final concluding remarks
and relevant discussion are made in Section 5.

2. Models and estimators
2.1 Horvitz—Thompson estimator

We first briefly review the Horvitz—Thompson estimator (Horvitz and Thompson, 1952) in
an unequal probability sampling scheme; see also Thompson (1992). Consider a finite
population with S units which are indexed from 1 to S. Here S is unknown. Let ¥, be a
measurement associated with the ith unit and the purpose is to estimate the population total
T = ijl Y;. Consider any unequal probability sampling design and let A; be the
probability that the ith unit is included in the sample. Assume this sample results in k
distinct units (k < S), and their corresponding measurements are (¥;,Y;,...,Y; ). An
unbiased estimator for the population total, introduced by Horvitz—Thompson (1952), is

k_y. S_y.
Tyr = Z i'm = ZjI(Ai)a (4)

where A; denotes the event that the ith unit is included in the sample and I(4;) is the usual
indicator function (i.e., I(4;) = 1 when the event 4, is true and I(4;) = 0 otherwise). Note
in Equation (4), the summation is over the distinct units in the sample and the missing units
are not included. Therefore, the value of S is not involved in computing 7, although S
appears as the upper limit in the second summation of Equation (4). Any unit in the
population may be selected several times, but each distinct unit of the sample is utilized
only once. Each distinct unit in the summation is given a weight proportional inversely to
the probability of that unit. In other words, the larger the probability of being included in
the sample, the smaller the weight in the Horvitz—Thompson estimator. The weights are
used for an adjustment of missing units. It is readily seen that the Horvitz—Thompson
estimator is an unbiased estimator of the population total.

We now apply this estimator to the estimation of Shannon’s entropy. Regard any
biological community as a sampling population and regard each species in the community
as a unit in an unequal probability sampling. Let the measurement associated with the ith
species be ¥; = — m; log(7;), then the population total of the measurement is Shannon’s
index. When n individuals have been selected with replacement from the community, the
probability of the ith species not being discovered in any individual is 1 — 7;, thus it is not
discovered in these n individuals is (1 — 7;)". Consequently, the probability of the ith
species being included in the sample, 4;, becomes 4; = 1 — (1 — m;)". Then a Horvitz—
Thompson estimator based on (4) for given species abundance (7, 7,, . .., 7g) is given by

5. 7 log(nm,
[:[HT = _;%I(AJ (5)
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2.2 Proposed estimator

To obtain our proposed estimator, we need to substitute an adequate estimator for the
relative species abundance 7; in Equation (5) for those discovered species. Without any
loss of generality, assume the species counts for the k discovered species are
(X\,X5,...,X;). If we adopt the traditional MLE estimator #; = X,/n, then
Zf;l ;= Zis:l 7l (X; > 0) = 1. This implies that any unseen species has zero
probability of being discovered. Therefore, the missing species are ignored in the
maximum likelihood approach. This is un-reasonable in many applications where rare
species may exist. We will use the concept of sample coverage to modify the traditional
sample proportion. The sample coverage is defined as

S

C=> miX >0, (6)

i=1

which represents the fraction of the total abundances of the discovered species. We can
interpret 1 — C as the conditional (on data) probability of discovering a new species if an
additional observation (i.e., individual) were to be taken. A well known estimator
originally proposed by Turing (see Good, 1953) for this conditional probability is the
proportion of singletons in the sample. This can be intuitively understood because a new
species must be a singleton in the enlarged sample that includes the additional individual.

For notational convenience, define f,, as the number of species with m individuals in the
sample, i.e., f,, = le: X, =m),m=0,1,2,...,n. Note that f;, denotes the number of
missing species and we have Y _(f,, =S, >, _f,, = kand 37} _ | mf,, = n. Using this
notation, the sample coverage is estimated by C = 1 — f; /n. This estimator performs very
well even in highly heterogeneous cases; e.g., see Esty (1986). Therefore, we have the
following approximation

S
C=> milX; >0/ ~C=1-f/n, (7)
i=1

which also intuitively implies that the fraction of the abundances un-represented in the
sample is approximately the proportion of singletons.
Under the model in which species count {(X;,X,,...,Xs); X, =0, i=1,2,...,S}isa

multinomial distribution with parameter (n;7;,7,,...,ng), the distribution of
{(X1,X5,...,X3); X; >0, i=1,2,...,k} conditional on the k observed species is still
multinomial but with parameter (n; nj, 75, ..., 7;) where
* T T
nA = —_— — .
C

by ml(X; > 0)

Therefore, conditional on there being unseen species, #; = X;/n is only a valid estimator
for n¥ = m;/C, which gives a modified estimate 7, = (X;/n)C for m;. Ashbridge and
Gouldie (2000) were the first to propose this modification and further applied it to the
estimation of species richness. Note that for this modified estimator, the approximation in
Equation (7) is satisfied because
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X,
IX; >0/ =C Z; X, >0]=C= 1—]i

i=1 n

©n

I MU)

Thus our proposed estimator that combines the Horvitz—Thompson adjustment and the
concept of sample coverage is

s~ ~ S Aa o
H=— Z%I(A,) =- ;%1(&)- (3)

The proposed estimator is a function of the frequencies (fy,fi,/,---,/,), Which is
approximately a multinomial distribution with parameter S and cell probabilities
(fo/S:f1/S:f2/S, - .. ,f./S). Therefore, a variance estimator of the proposed estimator H
can be obtained by using a standard asymptotic approach. That is, we have the following
variance estimator

“ OHOH .
var(H lelga—fjcov fif), 9)
— =

where cov(f;,f;) = fi(1 —£./S) fori = j and cov(f,f;) = —f,f,/éQ for i #j and S denotes a
proper estimator of the number of species. The estimation of S will be discussed below and
the adequacy of this variance estimator will be shown in Section 3 by numerical results.
When a reliable estimate for species richness is not obtainable, the jackknife technique
(Efron and Tibshirani, 1993, p. 145), as suggested by a referee, provides a convenient
variance estimator and confidence interval. However, our (unreported) simulation results
show that the asymptotic variance estimator with a proper estimate for species richness is
generally less biased than the jackknife method. Therefore, the asymptotic approach is
used in this paper.

Since an estimator of the number of species is needed in the variance estimator and also
in the bias-corrected MLE as will be discussed in later sections, we briefly address the
estimation of species richness. A review on the topic is provided in Bunge and Fitzpatrick
(1993). A computer program EstimateS which calculates various estimators of species
richness is readily available from the website http://viceroy.eeb.uconn.edu/estimates. In
this paper, we adopt the estimator based on the concept of sample coverage (see Chao and
Lee, 1992; Chao et al., 2000); see below. The authors have also developed a program,
which will be discussed in Section 5.

In the sample coverage approach, abundant and rare species are treated separately.
Abundant species are those having more than x individuals in the sample; the observed
rare species are those represented by only one, two, ..., and up to x individuals in the
sample. The estimation of the number of missing species is based entirely on the observed
rare species because abundant species would be discovered in any sample anyway and thus
they do not contain any information about the missing species. Let the total number of
abundant and rare sgemes in the sample be Sy, = > i, afi= ZIS,I [X; > x] and

Srare = i1 fi = >~ 110 < X; < k. Then the estimator of the total number of species
based on the estimated sample coverage Crdre =1- Zi: if; is Chao et al. (2000,
Section 2)

§:Sabun+ rare fl ~2 (10)
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where

Az_mx Srare Z:C:11<l_l)’ —
rem { S Lb S 0} "

denotes the estimated squared coefficient of variation (CV) of the species abundance
{n;,m,,...,mg}. The CV is defined as CV = [Zle (m; — ﬁ)Z/S]l/z/ﬁ, where
= Zf:l 7;/S. The value of CV characterizes the degree of heterogeneity among the
species abundances. The CV is zero if and only if the species have equal abundance. The
larger the CV, the greater the degree of heterogeneity. A value of the cut-off point, k = 10,
is adopted throughout the paper based on empirical experiences (Chao et al., 1993).

It would be interesting to find under what circumstances we can conclude that there are
no missing cells in a sample. Notice that when there are no singletons (i.e., f; = 0) and the
sample size is large enough, the sample coverage is estimated from Equation (7) to be 1,
which means that the probability of finding a new species in an additional draw of any
individual is 0. Based on (10), the estimator of the total number of species is just the
number of observed species. Consequently, if all species are represented by at least two
individuals in the sample, then the species survey is complete. This is intuitively sensible
to biologists and ecologists; see Colwell and Coddington (1994).

3. Simulation study

To examine the performance of the proposed estimator, we present in this section
simulation results based on four types of abundance models. The number of species was
fixed to be 100. Four abundance models for (7, 7,,..., 7 o) were considered and are
given below, where ¢ is a normalizing constant such that Z;iol m; = 1. In Case 1, the
relative abundances are proportional to a sample from a uniform distribution. In Case 2,
the relative abundances are a random sample from a Dirichlet distribution with parameter
1, which is the well-known MacArthur’s broken-stick model (MacArthur, 1957). Cases 3
and 4 consider a model where the abundances are fixed in the special form of a Zipf—
Mandelbrot model (Zipf, 1965; Mandelbrot, 1977). All the simulation results are given in
Tables 1 to 4. We considered three sample sizes (n=250, 75, and 100). For each
combination of abundance model and sample size, 5000 simulated data sets were
generated.

Case 1. (Random uniform model) n; = cq;, where (a;,da,,...,a;y) are a random
sample from a uniform (0, 1) distribution. (The average values of H and CV
over the 5000 trials are 4.412 and 0.58 respectively.)

Case 2. (Broken-stick model) 7; = ca;, where (a;,a,,...,da,y) are a random sample
from an exponential distribution. Or equivalently (7;,7,...,7T o) IS a
Dirichlet distribution with parameter 1. (The average values of H and CV over
the 5000 trials are 4.188 and 1.00 respectively.)

Case 3. (Zipf-Mandelbrot model) n; = c¢/(i +2),i=1,2,...,100. H =4.088 and
CV = 1.34.

Case 4. (Zipf-Mandelbrot model) =n; =c/i,i=1,2,...,100. H =3.681 and
CV =2.25.
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For each generated data, the following four estimators and their estimated standard errors
were calculated:

1. MLE: defined in Equation (2).

2. Bias-corrected MLE (MLE_bc): it is obtained by adding (S — 1)/(2n) to the MLE,
where § is the estimator given in (10).

3. Jackknife: the jackknife estimator proposed by Zahl (1977).

4. Proposed: our proposed estimator given in (8).

The estimated s.e. of the jackknife estimator was calculated using a pseudo-value
approach; see Zahl (1977). For the other estimators, the estimated standard errors were
obtained by an asymptotic method as described in Section 2.2. The associated 95%
confidence interval for each estimator was constructed using the normal critical points.
Although for the jackknife estimator the critical points based on the #-distribution were
suggested in the literature, we used the normal critical points instead because the degrees
of freedoms in our cases were large; thus the critical points for the normal and
t-distribution are almost identical.

The non-parametric MLE proposed by Norris and Pollock (1998) was not included in
our simulation comparison because the computation for a single data set in some cases
took over an hour of computer time. This non-parametric MLE will be discussed for real
data examples in the next section.

The resulting 5000 estimates and their s.e.’s were averaged to give the results in Tables
1-4 under the headings ‘‘Average Estimate’’, ‘‘Average Bias’’ and ‘‘Average Estimated
s.e.”” We also computed for the 5000 entropy estimates the sample s.e. and sample root
mean squared error (RMSE); they are given under the headings ‘‘Sample s.e.”” and
‘“‘Sample RMSE’’. The percentage of data sets in which 95% confidence intervals cover

Table 1. Comparison of estimators, 5000 simulation trials S =100, random uniform
model, CV=0.58, H=4.412.

Size n Average
(Species Average  Average Sample Estimated Sample 95% C. I.
seen) Method Estimate Bias s.e. s.e. RMSE  Coverage
50 MLE 3.517 —0.895 0.084 0.062 0.899 0.0
(37) MLE_bc  4.398 —0.014 0.346 0.324 0.346 90.0
Jackknife 4.163 —0.248 0.143 0.114 0.287 44.0
Proposed  4.405 —0.007 0.239 0.231 0.239*% 935
75 MLE 3.759 —0.652 0.075 0.057 0.657 0.0
(48) MLE_bc 4.327 —0.084 0.171 0.164 0.191 85.1
Jackknife 4.297 —0.115 0.120 0.099 0.166 75.5
Proposed  4.409 —0.002 0.158 0.150 0.158* 94.0
100 MLE 3.902 —0.509 0.067 0.053 0.513 0.0
57 MLE_bc  4.329 —0.082 0.115 0.110 0.142 82.6
Jackknife 4.356 —0.055 0.100 0.088 0.114*  87.7
Proposed 4.416 0.005 0.119 0.114 0.119 94.3

*Denotes the smallest RMSE.
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Table 2. Comparison of estimators, 5000 simulation trials § = 100, broken stick model,
CV=1.00, H=4.188.

Size n Average
(Species Average  Average Sample Estimated Sample 95% C. I.
seen) Method Estimate  Bias s.e. s.e. RMSE  Coverage
50 MLE 3.385 —0.803 0.107 0.073 0.810 0.0
(34) MLE_bc  4.098 —0.090 0.290 0.275 0.303 85.9
Jackknife 3.956 —0.232  0.166 0.126 0.286 54.9
Proposed  4.098 —0.090 0.231 0.215 0.248*  89.5
75 MLE 3.596 —0.592  0.098 0.068 0.600 0.0
(43) MLE_bc  4.091 —0.097 0.175 0.163 0.200 83.7
Jackknife 4.063 —0.125 0.141 0.109 0.189 75.7
Proposed 4.118 —0.070 0.166 0.154 0.180*  90.8
100 MLE 3.720 —0.468 0.091 0.063 0.476 0.0
(50) MLE_bc  4.109 —-0.079 0.134 0.122 0.155 85.3
Jackknife 4.114 —-0.074 0.123 0.097 0.144* 84.8
Proposed  4.136 —0.052 0.136 0.126 0.145 92.5

*Denotes the smallest RMSE.

the true value is shown in the last column of each table. The average of the number of
species seen in the sample is also listed in each table, and the proportion of discovered
species is in the range of 27 to 57%.

As expected, the traditional MLE seriously underestimates in all cases. Although the
MLE exhibits the smallest s.e., it has the largest RMSE due to a large bias. The maximum
coverage probability for the 95% confidence interval is only 2%; thus almost none of the
associated confidence intervals covered the true parameter. Therefore, the MLE cannot
provide a reliable diversity estimate when there are unseen species.

The bias-corrected MLE largely removes the bias, especially when the value of CV is
large. Tables 3 and 4 show that the bias-corrected MLE has the smallest magnitude of bias
in the Zipf—~Mandelbrot models. This bias-corrected estimator not only reduces bias but
also improve the performance of its associated confidence intervals. The average of the
coverage probabilities for 95% confidence intervals is about 90%. However, the
substitution of an estimated number of species increases the variance so that the precision
of the bias-corrected MLE is the lowest in the four estimators considered in this study. The
resulting RMSE is larger than that of the proposed estimator; see below.

The jackknife estimator and the proposed estimator are generally comparable in bias
and variance. If we restrict our comparison to these two estimators, then the jackknife
estimator has smaller variance but larger bias whereas our proposed estimator has smaller
bias but larger variance. The average coverage probabilities for the jackknife and the
proposed estimators are respectively 71% and 93%. Thus the jackknife method generally
produces an acceptable point estimate but the associated confidence interval has a much
lower chance of containing the true parameter than the nominal level. The proposed
estimator generally is preferable with respect the RMSE and the coverage probability of
interval estimation. Even when there is a large fraction of missing species, our proposed
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Table 3. Comparison of estimators, 5000 simulation trials S =100, Zipf-Mandelbrot

model, CV =1.34, H=4.088.

Size n Average
(Species Average  Average Sample Estimated Sample 95% C. I.
seen) Method Estimate  Bias s.e. s.e. RMSE  Coverage
50 MLE 3.271 —0.817 0.125 0.088 0.827 0.0
(32) MLE_bc  4.036 —0.052 0.325 0.341 0.329 90.1
Jackknife 3.808 —0.280 0.182 0.143 0.334 50.0
Proposed 3.916 —-0.172  0.231 0.241 0.288*  87.0
75 MLE 3.470 —-0.618 0.114 0.083 0.629 0.0
(41) MLE_bc  4.050 —0.039 0.216 0.232 0.220 92.6
Jackknife 3.920 —0.168 0.155 0.126 0.229 71.2
Proposed  3.967 —0.121 0.172 0.191 0.211*  90.6
100 MLE 3.593 —0.496 0.103 0.079 0.506 0.0
(48) MLE_bc  4.060 —0.029 0.165 0.186 0.167 95.1
Jackknife 3.983 —0.106 0.133 0.114 0.170 81.5
Proposed 4.010 —0.078 0.139 0.166 0.160* 94.8
*Denotes the smallest RMSE.
Table 4. Comparison of estimators, 5000 simulation trials S =100, Zipf-Mandelbrot
model, CV =225, H=3.681.
Size n Average
(Species Average  Average Sample Estimated Sample 95% C. I.
seen) Method Estimate  Bias s.e. s.e. RMSE  Coverage
50 MLE 2.950 —-0.731 0.170 0.123 0.750 0.0
27) MLE_bc  3.707 0.026  0.399 0.472 0.400 95.9
Jackknife 3.401 —0.280 0.222 0.179 0.357 64.2
Proposed  3.493 —0.188 0.238 0.295 0.303* 925
75 MLE 3.116 —0.565 0.152 0.115 0.585 0.2
(35) MLE_bc  3.668 —0.013 0.265 0.353 0.265 97.8
Jackknife 3.499 —0.182  0.190 0.158 0.263 76.1
Proposed  3.571 —0.110 0.191 0.259 0.221*  96.9
100 MLE 3.221 —046 0.136 0.108 0.479 2.0
(41) MLE_bc  3.668 —0.012 0.202 0.305 0.202 99.3
Jackknife 3.558 —0.123 0.164 0.143 0.205 83.2
Proposed  3.624 —0.057 0.162 0.243 0.172*  99.1

*Denotes the smallest RMSE.
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estimator can produce a reliable diversity index. The estimated s.e. formula given in (9)
works well when the CV is not relatively large, but it overestimates when the CV is large

as shown in Table 4.



438 Chao, Shen

4. Real data examples

4.1 Tropical insect data (Janzen, 1973a, b) and bird data
(Batten, 1976)

Janzen (1973a, b) presented many valuable data sets on tropical foliage insects from sweep
samples taken in 25 sites in Costa Rica and the Caribbean Islands. We select one set from
Janzen’s collection to illustrate our method. Table 5 gives the frequency counts for beetles
collected respectively in day-time and night-time from the site referred to as ‘‘Osa
primary-hill, dry season, 1967’ in Janzen’s paper.

For these two data sets, most species had only one, two or three individuals represented
in the sample, and there were only a few abundant species. That is, the data information is
concentrated on the lower-order capture frequencies. The estimated CV values for the day-
time and night-time data are, respectively, 0.938 and 1.099 based on Formula (11) for the
counts {f},/2, - - - ,fio}- These relatively high values of CV indicate that the community is
highly heterogeneous in species abundances and any estimator that does not incorporate
the heterogeneity would have severe negative bias for species richness.

Using (10) and (11), we obtain an estimate of 263 (s.e. 64.4) species for the day-time
data, and an estimate of 269 (s.e. 69.7) species for the night-time data. This shows that a
relatively large fraction of species has been missed in the samples. Substituting these two
estimates, we can obtain the bias-corrected MLE. In Table 6, we list the MLE, bias-
corrected MLE, jackknife estimate and the proposed estimate and their estimated s.e.’s.
We also present the non-parametric MLE, which was calculated from a computer program

Table 5. Frequency counts for beetles data.

Day-Time
m 1 2 3 4 5 6 11 Species seen  Individuals
fm 59 9 3 2 2 2 1 78 127
Night-Time

m 1 2 3 5 7 10 14 16 18  Species seen  Individuals

fn 56 9 7 2 1 1 1 1 1 79 170

Table 6. Comparison of various estimates of Shannon’s index of diversity for beetles data
(estimated s.e. in parenthesis).

Estimate Day-Time Night-Time
MLE 4.08 (0.07) 3.83 (0.09)
Bias-corrected MLE 5.11 (0.38) 4.62 (0.38)
Jackknife 4.62 (0.11) 4.24 (0.12)
Non-parametric MLE 4.07 3.81

Proposed 4.70 (0.21) 4.30 (0.21)
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Table 7. Frequency counts for birds data.

Endemic Woodland

m 1 2 3 5 6 11 16 21 25 26 35 Species seen Individuals

fn 4 3 5 1 1 1 1 1 1 1 1 20 170

Conifer Plantation

m 1 2 3 4 5 9 11 14 20 30 65 Species seen Individuals

fo 2 1 2 1 1 1 1 1 1 2 1 14 198

Table 8. Comparison of various estimates of Shannon’s index of diversity for birds data
(estimated s.e. in parenthesis).

Estimate Endemic Woodland Conifer Plantation
MLE 2.41 (0.07) 2.06 (0.07)
Bias-corrected MLE 2.47 (0.12) 2.09 (0.17)
Jackknife 2.48 (0.08) 2.10 (0.07)
Non-parametric MLE 2.40 2.04

Proposed 2.49 (0.10) 2.09 (0.16)

supplied by Dr James L. Norris. A bootstrap s.e. was suggested in Norris and Pollock
(1998), but we were not able to do this because bootstrapping for the nonparametric MLE
would be time-consuming.

Table 6 shows that the MLE and the non-parametric MLE are very close and yield the
lowest estimate, but the bias-corrected MLE yields the highest estimate. The jackknife and
the proposed estimates are in-between and the two estimates are higher than the MLE. The
bias-corrected MLE has the lowest precision, as discussed in the simulation. All estimates
imply that the diversity in the day-time is slightly higher than that in the night-time.
Whether the observed difference is statistically significant is another interesting research
topic; see Solow (1993). The 95% confidence intervals based on the jackknife are (4.40,
4.84) for the day-time data, and (4.00, 4.48) for the night-time data. The corresponding
intervals based on the proposed estimator are respectively (4.29, 5.11) for the day-time
data, and (3.89, 4.71) for the night-time data. Although our estimated s.e. is larger and thus
the associated confidence interval is longer, the results in the Simulation Section lead us to
expect that our intervals would have coverage probability closer to the nominal level.
Same conclusion applies to the other two data analysis results as well.

We now investigate the behavior of all estimators when most species are found in the
sample. Consider the interesting data sets originally reported by Batten (1976) and
discussed in Magurran (1988, pp. 145-149). The purpose was to determine whether
conifer plantations are less diverse than the endemic woodland in Ireland. The frequency
counts of bird species in two woodland plots, a representative of the endemic woodland
and a conifer plantation, are given in Table 7.

For both woodland plots, the data information is dominated by the abundant species.
The estimated sample coverage is very high. Based on the estimator in (10), we conclude
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that there were two missing species for the endemic woodland, and only one species were
undiscovered for the conifer plantation. Thus almost all species were discovered.

The five estimates of diversity for both plots are given in Table 8. The results exhibits
little difference and all estimators are quite precise. For each estimator, the observed
diversity is higher in the endemic woodland than in the conifer plantation. Solow (1993)
applied a randomization procedure to assess the significance of difference in the observed
MLE. Generally, in nearly complete species inventories and/or data information is
concentrated on the high-order frequencies, all estimators yield approximately the same
results and work equally well.

4.2 Coin data (Holst, 1981)

This data set was discussed in Holst (1981), Chao and Lee (1992), and Haas and Stokes
(1998). Two hundred and four coins were found in a hoard of ancient coins. The coins were
classified into different die types. For the obverse side, totally 141 types were identified
and for the reverse side there were 178 types. The frequency count f,, in this example is
interpreted as the number of die types with m coins in the sample. The data for the two
sides are given in Table 9.

The MLE of Shannon’s entropy is 4.80 for the obverse side and 5.13 for the reverse side.
Holst (1981) and Chao and Lee (1992) concluded that for both sides there was a large
proportion of classes un-discovered in the sample. Therefore, the MLE is likely to be
negatively biased. Holst (1981) indicated that for the reverse side it is reasonable to

Table 9. Frequency counts for coin data.

Obverse Side

m 1 2 3 4 5 6 7 Species seen Individuals

S 102 26 8 2 1 1 1 141 204

m 1 2 3 4 5 6 7 Species seen Individuals

I 156 19 2 1 0 0 0 178 204

Table 10. Comparison of various estimates of Shannon’s index of diversity for coin data
(estimated s.e. in parenthesis).

Estimate Obverse Side Reverse Side
MLE 4.80 (0.04) 5.13 (0.03)
Bias-corrected MLE 5.72 (0.19) 7.20 (0.49)
Jackknife 5.41 (0.07) 5.96 (0.05)
Non-parametric MLE 4.80 5.13

Proposed 5.56 (0.14) 6.63 (0.19)
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assume that each die produced about the same number of coins whereas this assumption
was inappropriate for the obverse side. The obverse side is more heterogeneous than the
reverse side among the number of coins produced by dies. This can be seen because the
estimated CV values for the obverse and reverse sides were 0.69 and 0.36 respectively.
From (10), the total number of types for the obverse side is estimated to be 378 (s.e. 65) for
the reverse side and 844 (s.e. 187) for the reverse side. The estimated number of dies for
the reverse side is significantly higher than that for the observe side. This is
understandable, because the designs on the obverse side (e.g., portrait of the sovereign
for the data) are usually more complicated than those secondary designs on the reverse
side. Substituting these two estimated numbers of dies, we get the bias-corrected
estimates. In Table 10, we list all the five estimates for both sides. The MLE and non-
parametric MLE yield identical results. The proposed estimate is much higher than the two
MLE’s for both sides. All estimates reveal that the reverse side is more diverse than the
obverse side.

5. Concluding remarks and discussion

We have proposed a non-parametric method to estimate Shannon’s index of diversity
when there are unseen species in a sample. This approach combines the Horvitz—
Thompson estimator and the concept of sample coverage to adjust for unseen species. The
traditional maximum likelihood approach is valid only when the species survey is
complete and all species are found in the sample. In such complete surveys, our proposed
method and the previous estimators (the MLE, the bias-corrected MLE, jackknife
estimator and the non-parametric MLE) work equally well. However, conducting a
complete survey may require an extraordinary sampling effort because a large number of
species with relatively small abundances may exist. When there is a non-negligible
number of species missed in the sample as in the models considered in Section 3, our
estimator is generally preferable to the previous estimators in terms of RMSE. The
associated confidence interval constructed from our estimator also provides satisfactory
coverage probability. The proposed method performs reasonably well even when a
relatively large fraction of species is missing in the sample. Therefore, biodiversity can be
estimated without expending much effort on searching for rare species.

Although we specifically deal with Shannon’s index of diversity in this paper, the
approach can be readily applied to other types of biological indices (Good, 1953; Smith
and Grassle, 1977), e.g., the widely used Simpson’s index of diversity. It follows from
Smith and Grassle (1977) that both the MLE and minimum variance unbiased estimator
(MVUE) exist for Simpson’s index. Our (unreported) simulation results show that the
proposed estimator for Simpson’s index much improves the MLE, but the improvement
over the MVUE is limited. Therefore, our method is more useful for situations in which no
MVUE exists such as the entropy case considered in this paper.

A computer program SPADE (Species Prediction And Diversity Estimation), written in
C language, that calculates various estimators for species richness and diversity indices
may be obtained from the first author upon request and will be available soon on the
website at http://chao.stat.nthu.edu.tw.
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