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Abstract 
This paper introduces TAGS (Transducer Automata Graphical Simulator), a software tool for teaching 
different aspects of transducer automata theory, a theoretical topic which underlies many aspects of the design 
of sequential digital circuits. TAGS allows to simulate both Moore and Mealy transducer automata, integrating 
different theoretical concepts associated with them. The student can define an arbitrary transducer automaton in 
an interactive way, being able to simulate and trace its behavior by means of different views. 

 

1 Introduction and Motivations 

Automata theory [10,4,16] is an important subject in the Electronic Engineering (EE) and Computer 

Science and Engineering (CS&E) curricula. Transducer automata are a special kind of finite state 

automata which are particularly important in the context of EE, as they provide a theoretical basis for 

the design of sequential systems [5,24].  From a pedagogic point of view, making some theoretical 

concepts of automata theory attractive for EE students is not an easy task. Many times students find 

considerably difficult to acquire the main underlying ideas as they are overwhelmed by the abstract 

formal notation being used. This situation has motivated the development of a number of theoretical 

computer simulators [8] as educational tools which allow the student to implement and `bring to life' 

many topics of automata theory which traditionally are studied and analyzed mathematically (as 

mathematical abstractions) rather than algorithmically (as properties or characteristics of computing 



devices). This applies particularly to transducer automata, which effectively allow to characterize a 

basic model of interactive computation [14,15] and provide the basis to understand the design of 

sequential digital circuits.  Several theoretical computer simulators have been developed for modeling 

automata in the CS&E Curricula  (such as Finite State Automata, Turing Machines, etc.) [8]. However, 

the design of similar tools for transducer automata theory has been particularly neglected, maybe 

because this particular topic is more related to  Electronic Engineering rather than Computer Science. 

 

In this paper we introduce TAGS (Transducer Automata Graphical Simulator), a software tool 

developed for helping students to design, analyze and execute transducer automata. TAGS includes a 

number of  features which make it attractive as a pedagogical tool in a traditional Automata Theory 

course or an introductory course in Digital Systems. Some of the most relevant features of TAGS 

include: 

•  the design and execution of an arbitrary Mealy or Moore transducer automaton;  

•  the automatic conversion from a Mealy automaton into an equivalent Moore automaton (and 

vice versa) by applying equivalence theorems between these two kinds of automata; 

•  the minimization of both Moore and Mealy transducer automata by means of an algorithm that 

includes animation effects along with a step-by-step explanation.  

This paper is structured as follows: Section 2 introduces some fundamentals on transducer automata 

theory as well as some relevant properties and theorems which are modeled by TAGS. Section 3 

discusses the main features of TAGS and their application in an Automata Theory course. Section 4 

outlines some salient features of TAGS and related teaching strategies oriented to promote significant 

learning of transducer automata theory. Finally, in Section 5 we detail the main conclusions that have 

been obtained.  

 

2 Transducer Automata:  Fundamentals 

Next we will recall some basic concepts of transducer automata theory as well as some special 

properties and equivalence results.  A (deterministic) finite-state transducer automaton (FSTA) is a 



device much like a deterministic FSA, except that its purpose is not to accept strings, but rather to 

transform input strings into output strings. Informally, a FSTA T  starts in a designated initial state s0 

and moves from state to state, depending on the input, just as a deterministic finite automaton does. On 

each step, T emits (or writes onto an output tape) a string of zero or more symbols, depending on the 

current state si and the current input symbol. The state diagram for a deterministic finite-state 

transducer looks like that for a deterministic finite automaton, except that either states or arcs are 

labeled with an output symbol s, producing s as an output every time the state is reached (or the arc is 

traversed).  In the first case, the automaton is called a Moore automaton [20]; in the second case, the 

automaton is called a Mealy automaton [19]. Formally: 

Definition 1 [Finite State Transducer Automata]:  A deterministic Finite State Transducer 

Automaton (FSTA) is a 6-tuple T = (S, Σ, O, δ, s0, f0) where  S is a finite set of states, S ≠ ∅ ,  Σ is the 

input alphabet, O is the output alphabet  δ : S x Σ → S is the next state function or transition function, 

s0  is the initial state, s0 ∈  S, and f0 is an output function defined as f0: S → O  (if T is a Moore 

automaton) or  f0 : S × Σ  → O  (if T is a Mealy Automaton). 

Fig. 1 illustrates these two kinds of automata. Fig. 1 (left) shows a Moore automaton T that given the 

input sequence “aabba” outputs the string “11010”. Fig. 1 (right) shows a Mealy automaton T’ that 

behaves the same way. Note that in the first case states are labeled with output symbols, whereas in the 

second case the output symbols are associated with the arcs connecting nodes in the automaton. 

 

Figure 1: Example of equivalent Moore and Mealy transducer automata 
 



States in any transducer automaton T can be classified according to how they behave with respect to 

different input strings. Thus, for example, a state sk is called a transitory state if no input sequence α 

exists such that δ(sk, α) = sk. Similarly, a state sj is called an unreachable state if there not exists one 

input sequence α such that δ(s0, α) = sj.   Consider the automata T and T’ as defined in Fig. 1. Then no 

state is unreachable, and states s0 and s0’ are not transitory states. 

 

Definition 2 [Translation of αααα via T]: Given an arbitrary transducer automaton T = (S, Σ, O, δ, s0, f0) 

and an input string α = c1c2c3...cj, 1≤ k≤ j, ck∈Σ , the translation of α  via T (denoted T(α)) is defined as 

the output produced by T for that input α. Formally it results T(α) = T(c1c2c3...cj) = a1a2a3...aj, 1≤ i ≤ j, 

ai ∈  (O ∪  {λ}), where λ represents the empty string. For the Moore automaton in Fig. 1 (left), it is the 

case that T(aabba) = 11010. 

 

Minimizing Transducer Automata 

Given a finite state automaton F with S states, a well-known result in automata theory refers to 

computing the minimized version of F [10,16,22]. That is to say, computing an automaton F’ with S’ 

states such that F and F’ behave the same way and F’ is the automaton which has a minimal number of 

states. A similar result applies for transducer automata:  

Definition 3 [Output language]: Given a transducer automaton T = (S, Σ, O, δ, s0, f0), we define the 

output language for T as L(T) = { w |  T(α) = w, ∀   α ∈  Σ* } (i.e., the set of all output strings that can 

be generated by T for every possible input string α).  

Definition 4 [Minimized version of T]: A transducer automaton T’ = (S’, Σ, O, δ’, s0’, f0’) is the 

minimized version of T if L(T’) = L(T), T(α) = T’(α)  ∀  α ∈  Σ*  and besides T’ has a minimal number 

of states. 

The minimization algorithm for computing T’ from T is based on computing equivalence classes from 

the original set S of states in T. See [10,16,22] for more details. 

 



 

Equivalence Theorems: 
 

Let α be an arbitrary input string, and let T(α) and T´(α) be the output strings obtained after processing 

α by means of a Mealy automaton and a Moore automaton, respectively. It should be noted that such 

strings can never be equal in length (no matter how T and T´ are defined), as the length of  T(α) will 

always be less than the length of T´(α), for every possible α. However, the initial output provided by a 

Moore automaton can be discarded, defining T and T´ as equivalent if for any possible input α,  xT(α) 

= T’(α), where x is the output of T’ for its initial state. According to this convention we can state the 

following theorems: 

 
Theorem 1: If  T1 = (S, Σ, O, δ, s0, f0)  is a Moore automaton, then there is a Mealy automaton T2 

equivalent to T1 . 

Theorem 2: If  T1 = (S, Σ, O, δ, s0, f0)  is a Mealy automaton, then there is a Moore automaton T2 

equivalent to T1 . 

 

3 The TAGS Software: Overview 

In this section we will describe the main characteristics of the TAGS (Transducer Automata Graphical 

Simulator) software tool. First we will give an overview of how TAGS can be used to define and 

execute an arbitrary Mealy or Moore automaton.  We will then describe the different views of a given 

automaton which can be visualized using TAGS. Finally we will detail the main facilities provided by 

TAGS which solve important aspects of the curricula in transducer automata theory. 

 

3.1   Designing and executing transducer automata with TAGS 

TAGS is a standalone program that can be easily installed and run on any typical Windows-based PC. 

It is available as freeware from http://cs.uns.edu.ar/~cic/simuladores.htm. The TAGS interface looks 

similar to well-known educational tools for automata theory (e.g. JFLAP [3]), but specifically oriented 



for dealing with typical topics in transducer automata theory. As TAGS starts, an empty canvas is 

available for the user to draw the graph corresponding to either a Moore or a Mealy transducer 

automaton. At the right of this canvas a design toolbar appears, offering a number of icons for 

accessing different options: adding a new state to the current automaton, defining the input/output 

alphabet, save/load automaton to/from disk, etc.   

 

The user can add a transition arc between two states by double-clicking on the origin state and then 

clicking at the destination state. It must also be noted that arcs may be dynamically reshaped using the 

mouse. States and arcs labels can also be dragged around in the same way. Moreover, the user may 

change the appearance of the automaton (e.g. colour of states and arcs, width of arcs, size of the circles 

corresponding to states, etc.). The user can also delete an arc or state by simply selecting it with the 

mouse and then pressing Delete on the keyboard.  Additionally, TAGS also provides a set of keyboard 

shortcuts to facilitate the design process of a transducer automaton. 

 

Once the transducer automaton has been completely designed, the user can start a simulation process of 

the execution of the automaton for an arbitrary input string (according to the input alphabet originally 

defined). TAGS provides the user with an execution toolbar located below the design toolbar. The 

execution toolbar provides four traditional buttons: Play, Stop, One Step Backward, and One Step 

Forward. By pressing "Play" TAGS starts executing the current automaton for the specified input 

string and continues until all input symbols have been processed. Once the "Play" Button has been 

pressed, TAGS enters in simulation mode, where the automaton cannot be edited until the input string 

has been completely processed. The "Stop" button allows the user to stop the animation process at any 

time, making TAGS return to the original design mode. The third and fourth buttons (backward and 

forward animation) allow animating the execution in a step-by-step fashion. The user can either rewind 

or move forward the current execution as many steps as he wants. The user can also set up the desired 

animation speed by means of a slide bar provided with the execution toolbar. Fig. 2 shows a snapshot 

of the TAGS interface when drawing a Moore automaton. 

 



 

Figure 2: The design of a Moore automaton using TAGS 

 

3.2 Allowing Different Views for the Same Automaton 

Using simulators as teaching aids to complement the different topics presented in an automata theory 

course encourages different views for simulating a given automaton. A view is a particular 

representation of an automaton which emphasizes some of its features. In [18] four different views 

associated with pushdown automata (PDA) are proposed:  (1) tape view  (showing the current input 

tape); (2) stack view (showing the current stack); (3) path view (verbose mode); and (4) automata 

image view (PDA visualization as a graph).  We adapted and extended these views for transducer 

automata, incorporating them as a facility provided by the TAGS  software. Next we detail each of 

such views: 

 

1) Transition diagram view: When working in design mode, TAGS provides a graph-like 

representation of the automaton. In this view the student can design his own automaton as 

naturally as if he were drawing it on a blackboard. When simulating an automaton, the current 

state as well as the corresponding arc traversed when processing a symbol is always highlighted. 



2) Input/Output view:  this  view provides an overview of the string being processed as well as the 

current output string produced by the automaton. In this view, the input string is shown within a 

text-field where the last symbol read  is clearly highlighted. This view is practical for the user to 

know which part of the input string has already been processed. 

3) Path view: this scrolling window reports a summary of every action performed during the 

simulation process. This summary involves a description of the current state, the symbol just read, 

the output obtained and the new state reached after processing the current symbol. 

4) Natural Language view:  this view provides a full explanation of every action performed by the 

automaton when processing an input string. The explanation is presented to the student in natural 

language (as if he were being told about it by a human tutor). This view is complemented by one 

particularly motivating feature:  the ability to make use of the speech engine software provided by 

the Microsoft Windows-XP operating system. By means of such speech engine, TAGS provides 

the student with an explanation of how the automaton proceeds as a given input string is processed, 

or how to carry out the different steps in the minimization algorithm by computing classes of 

equivalent states.  

5) Theoretical view:  this view involves a matrix-like layout in which the formal definition of the 

current automaton is shown. In contrast to the three preceding views, this one is static, 

complementing the transition diagram view by means of a formal definition of the automaton that 

has been defined graphically. 

 

3.3 Using TAGS to solve different aspects of  Transducer Automata Theory 

As presented in Section 2, there are several practical problems and theoretical issues that can be 

identified in the context of transducer automata. TAGS helps the student to cope with these situations, 

making easier and more motivating to solve typical exercises of transducer automata theory.  Some 

special options included in TAGS aiming at this purpose are the following: 

•  Automata Minimization:  TAGS can simulate the well-known minimization algorithm [10,16] on 

an arbitrary transducer automaton. This can be applied to either Moore or Mealy transducer 



automata. The execution of the minimization algorithm is performed stepwise, taking into account 

the main difficulties the students will find when applying the algorithms by themselves. First, 

TAGS identifies all unreachable states, deleting them from the graph. Afterwards the 

corresponding k-equivalent classes are found (i.e., all states that behave in equivalent way for 

strings whose length is less than or equal to k). Whenever a class was found, TAGS highlights all 

of the states belonging to such class with a colour that has not been used to represent another class 

before. This helps the student to easily recognize the different classes inside the automaton along 

the minimization process. TAGS will give a full-spoken explanation of  the minimization process 

in case of having  a suitable speech engine available on the operating system. Fig. 3 illustrates the 

screens associated with a Mealy Transducer Automaton and the application of the minimization 

algorithm. 

 

                 
 

Figure 3:  Mealy Transducer Automaton before and after applying the minimization algorithm 

 

•  Converting Transducer Automata: given a Moore transducer automaton, TAGS allows the 

student to transform it into an equivalent Mealy transducer automaton by applying the 

corresponding algorithm [4]. Conversely, TAGS is able to transform any Mealy transducer 

automaton T into an equivalent Moore transducer automaton T’.  For this last case, TAGS  shows a 

matrix-like layout with the complete definition for the automaton T’ instead of transforming its 



graph. That is due to the possible high number of states and transitions that may be generated after 

the transformation from Mealy to Moore. 

•  Analyzing States Properties:  when working on the drawing canvas, after holding the mouse 

pointer on a state for 2 seconds a pop-up window appears. This window reports different facts 

about the state under the mouse pointer (such as the condition of reachable/unreachable state, the 

list of states reachable from that state and many other special properties of these machines). 

•  HTML Generator: this option creates an HTML document containing the formal definition of the 

current automaton on the drawing canvas as well as its full picture. This aims at facilitating students 

to get a print out of the automata they define, or even paste it into other electronic documents (e.g. a 

webpage). 

•  Updater and multilanguage support: TAGS has the ability to perform an automatic update from 

its current web location (http://cs.uns.edu.ar/~cic/simuladores.htm), as well as a multilanguage 

support. The last version of TAGS can be run either in English or Spanish languages. 

 

4   Promoting Significant Learning with TAGS: a constructivist viewpoint 

We contend that TAGS can be used as a complementary tool to promote significant learning in the 

theory of transducer automata within a constructivist approach. Constructivism is a theory of learning 

which claims that knowledge is actively constructed by the student, and not passively absorbed from 

lectures and textbooks [1,2,6,7]. According to this theory the construction of new knowledge is 

performed recursively, based on previous knowledge. The constructivist approach postulates that 

effective learning relies on an explicit process in which viable mental models are constructed. This 

process of construction and reconstruction of ideas is actively guided by the teacher. The ultimate goal 

of constructivism is to achieve significant learning, i.e. adequate mental models that will be available 

for use in different contexts. According to Bruner [6,7] some of the major principles that lead to 

significant learning are the following: 

1. New knowledge acquisition must encourage discovery and active learning. As the process of 

learning is a reconstruction of the student's mental models carried out by the student 



himself/herself, it demands an active attitude. By getting involved in his/her own learning 

process the student can perform meta cognition activities as the result of thinking about the 

learning process itself. Discovery learning activities and the stimulation of meta cognition 

enable students to continue learning by themselves in the future with greater effectiveness. 

2. The use of previous knowledge plays a major role in learning. Because the learning process is 

based on the construction and reconstruction of ideas, the learning process of highly abstract 

concepts is not possible without having some other structure developed from previous 

knowledge to build on. Therefore any effort to teach must be related to the mental models of the 

learner, providing a path into the taught material based on the learner's previous knowledge. 

3. New knowledge must be related with experience and social context significant to the learner. 

Our learning is intimately associated with our interaction with other human beings (teachers, 

peers, society, etc.). The social dimension of learning involves discovering the implications and 

human significance of what is being learnt. 

 

Next we outline some salient features of TAGS which can be analyzed under a constructive approach, 

in the context of the principles described above. As discussed in the introduction, theoretical computer 

simulators have proven to be a very motivating link between theory and practice, encouraging active 

and discovery learning of specialized knowledge through abstraction, interaction and visualization 

[8,9,23]. As a specialized theoretical computer simulator, TAGS encourages discovery and active 

learning in an automata theory course. In our teaching experience, learning how to make use of the 

different facilities provided by TAGS (e.g. using different views for the same problem) has also led to 

questions and problematic situations which incentivated self-directed learning. It must be remarked that 

the existence of multiple views for the same automaton has helped students to find a proper abstraction 

level in different problem solving situations. A proper handling of such abstraction levels is particularly 

important in the context of analyzing students' mental processes. In this respect, a simulator like TAGS 

helps students to "zoom in and out" when working on practical exercises.  

When using TAGS, students apply previous knowledge in different ways. On the one hand, they refine 

and extend some concepts of automata theory they already know, as transducer automata theory 



naturally “extends” many notions related to  finite state automata (e.g. by preserving the notions of 

state, transition, etc. used in finite state automata, and incorporating the new concept an “output 

alphabet”). The different views that TAGS makes available for any transducer automata defined by the 

student are also based on concepts already known from previous undergraduate courses (e.g. using a 

matrix or a graph as equivalent representations of a given transducer automaton). 

The use of TAGS as a tool for solving practical problems of transducer automata theory was 

complemented by including details of the historical context in which transducer automata emerged. 

Although an Automata Theory course for Electronic Engineering is clearly not centered on such a 

topic, it can be considerably enriched by introducing related articles and discussions. Such 

contextualized analysis allows our students to become aware that transducers were the standard finite 

state machines in the 1950s and 1960s, when computer science was emerging as a new discipline and 

shared many common topics with electronic engineering. Edward Moore’s original work [20] was thus 

concerned in discussing the relationship of an abstract machine’s external input/output behaviour to its 

internal state-transition behaviour, allowing thus to model interactive computation performed by 

hardware devices or any other type of system where the amount of available memory is finite. As 

computer science turned away from interaction and toward a notion of computation restricted to 

algorithms, the study of transducers was no longer an important topic in the computer science curricula, 

and was kept as a theoretical topic for the design of sequential circuits.  Knowing such facts make 

students aware of the role of foundational knowledge in relationship with the later development of real-

world applications (e.g.  the design of actual sequential circuits). 

 

5    Conclusions  

Simulation environments for automata theory reinforce the significance of theoretical issues when 

solving practical exercises, providing an interesting link between theory and practice. Although most 

important topics in an automata theory course can be illustrated using such simulators, an in-depth 

treatment of transducer automata has been neglected so far in existing simulator programs. TAGS 

makes it possible to “bring to life” many typical theoretical problems of transducer automata theory, 

such as converting a Moore automaton into a Mealy automaton (and vice versa), or obtaining a 



minimal transducer automaton. In this context, the possibility of having different views for modeling 

the formalization and execution of an arbitrary transducer automaton are particularly attractive. 

In our opinion, the theory and application of transducer automata are very interesting topics for many 

students. We think that the availability of a software tool like TAGS makes such topics even more 

motivating and attractive, complementing the later usage of other software tools (such as OrCAD [17]) 

for the design and simulation of digital sequential circuits based on the use of logical gates. 
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