
FORMI: An RMI Extension for Adaptive Applications

Rüdiger Kapitza
Dept. of Comp. Sciences

Informatik 4
University of Erlangen-Nürnberg

Germany

rrkapitz@cs.fau.de

Michael Kirstein
Holger Schmidt
Franz J. Hauck

Distributed Systems Laboratory
University of Ulm

Germany

formi@kirstein-michael.de
{holger.schmidt,franz.hauck}@

uni-ulm.de

ABSTRACT
RMI is a well-known middleware that smoothly integrates
into Java. RMI uses classical RPC-based client-server inter-
action, precisely remote method calls. Although RMI has
several extension points (i.e., for replacing transport proto-
cols and call semantics), this is not enough for many appli-
cations as it can not cope with non-RPC-based communi-
cation, fault tolerance, scalability, and quality-of-service in
general. We present FORMI, an RMI extension for support-
ing the very flexible fragmented-object model. This model
allows to build distributed objects with arbitrary internal
communication protocols and interaction patterns (e.g., in-
ternal peer-to-peer communication) and with a truly dis-
tributed internal structure (e.g., replicated servers, smart
proxies, hierarchical servers). Both, internal communica-
tion and structure, remains hidden behind the RMI-object
interface and is thus transparent to clients. We demonstrate
our approach by an Internet radio example.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Distributed applications; D.2.12b [Software]: Soft-
ware Engineering Interoperability[Distributed objects]; D.3.3.h
[Programming Languages]: Language Constructs and
Features—Distributed objects, components, containers

General Terms
Design

Keywords
Java RMI, Fragmented Objects, Adaptability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RM’05,November 28– December 2, 2005, Grenoble, France
Copyright 2005 ACM 1-59593-270-4/05/11 ...$5.00.

1. INTRODUCTION
Distributed object-oriented applications are commonly im-

plemented on top of popular middleware platforms like
CORBA, .Net-Remoting or Java Remote Method Invoca-
tion (RMI). These platforms aim at simplifying the develop-
ment and the execution of client-server–based applications.
Whereas this is sufficient for most distributed applications
based on the traditional client-server approach, there is a ris-
ing number of applications demanding for fault-tolerance,
high availability, shorter response times, and many more
so-called non-functional requirements. Fault tolerance and
availability have been addressed by introducing the object
group paradigm [1]: A server object is replicated among a
group of objects that are kept consistent via a group com-
munication protocol. Clients interact transparently with
the replicated object using group proxies. Unlike CORBA,
which provides a special extension called FT-CORBA [2],
this is left open in the Java RMI specification. Instead, the
RMI framework provides extension points to implement new
call semantics and transport protocols. Various research
projects [3, 4] have used these extension points to integrate
the object group paradigm into RMI. Fault tolerance and
availability are, however, only two of many extended de-
mands of recent distributed applications. Furthermore, the
proposed solutions usually introduce a restricted set of pro-
tocols and patterns of the possible internal structure. Exist-
ing extensions do not provide any way to generically adapt
the interaction pattern and the internal structure of dis-
tributed objects to the application’s needs.

A fragmented-object model as proposed by Shapiro [5]
can meet the expected flexibility. It is far more generic and
flexible than the traditional client-server approach or the
object group paradigm. A fragmented object is a truly dis-
tributed object that can be arbitrarily partitioned. Parts of
the object—named fragments—may exist on different nodes
and provide the object’s interface. Unlike RMI and most
other middleware systems that use a stub-skeleton–based
architecture in combination with an RPC-based protocol,
accessing a fragmented object presumes the existence of a
local fragment. This can act as a proxy supporting an-
other fragment’s functionality, but may also contain local
functionality. This principle can increase the application’s
performance since in some cases no remote call is needed.

Article 2

Figure 1: Fragmented object on three nodes

The internal communication among the fragments can use
arbitrary patterns and protocols (e.g., real-time transport
protocols). The internal structure of the fragmented object
may be hierarchical or peer-to-peer or even something else.
At the same time a client will just invoke local methods on a
local representative as in any other middleware system (on
a stub or fragment). Thus, the internal implementation of
a fragmented object is truly transparent.

A fragmented-object model has been proposed in previ-
ous research projects to implement distributed applications
with extended requirements. FOG [6] and Globe [7], how-
ever, provide this model within a proprietary middleware
that cannot interoperate with popular middleware platforms
like CORBA or RMI. Based on our former work [8] that uses
a fragmented-object model within a CORBA environment
this paper presents an approach to seamlessly integrate the
fragmented-object model into the RMI framework. In con-
trast to our former work, this framework does not depend on
an extended ORB implementation but provides fragmented
objects in any Java 1.2-compliant run-time environment.

This paper is structured as follows: Sections 2 and 3 give
a brief introduction to the fragmented-object model and
present the RMI architecture. The integration of the frag-
mented-object model into RMI is the subject of Section 4.
Section 5 presents an example application, a fragmented ob-
ject for an Internet radio. Section 6 compares our work with
related approaches. Finally Section 7 concludes the paper.

2. THE FRAGMENTED-OBJECT
APPROACH

Fragmented-object models [5, 6] extend the traditional
concept of stub-based distributed objects. Hence, an ob-
ject, which has a unique object identity, can be distributed
among different nodes. On these nodes a local fragment is
created that belongs to the fragmented object. For bind-
ing to a fragmented object, a local fragment has also to be
created, if not yet available, that acts as a (proxy-)fragment
offering the whole object’s functionality. Similar to a stub in
classic RPC-based systems, the fragment acts as a gateway
or proxy to the real object. Like stubs, fragments provide
the same interface as the distributed object they belong to.
In principle, an implementation can be designed in such a
way that clients cannot distinguish between the access of a
local object, a local stub or a local fragment. Thus distri-
bution transparency can be maintained and it can also be
transparent how distributed objects are accessed.

Figure 1 shows a fragmented object placed on three nodes.
On Node 1 a client has bound to the object. The local frag-
ment may have been created just for the binding purpose,
whereas the other fragments may be placed at creation time

of the object. The fragments can communicate with one an-
other and there is no restriction about communication pat-
terns and protocols. Fragments on Node 1 and 3 may act
as stubs contacting the server fragment on Node 2. In an-
other scenario, the fragment on Node 1 may act as a smart
proxy, similar to the smart proxies in [9, 10]. Those can
support caching mechanisms to reduce communication, or
they may send method invocations to a group of replicas
(e.g., on Nodes 2 and 3 there could be fragments replicat-
ing the state of the distributed object) in order to balance
load or mask faults. As another alternative the fragments
may communicate by peer-to-peer or real-time protocols (cf.
Section 5).

The distribution of state and functionality over the frag-
ments has to be done by the object developer by designing
different fragment implementations. Thus, a fragmented ob-
ject can provide fragments for replication and partitioning
of state. Fragments may even be organized in a hierarchy to
support scalability of large-scaled application objects. The
internal structure and communication remains completely
transparent to the client and allows even dynamic changes
inside the fragmented object. The object may decide to
introduce replicas or to migrate state and/or functionality
whenever appropriate. Thus, a fragmented-object model
supports static and dynamic adaptable applications. For
supporting dynamic adaptability, a local fragment imple-
mentation should be replaceable by another version or vari-
ant without the clients noticing any difference.

A middleware system supporting the fragmented-object
model has to implement ways to pass references to frag-
mented objects, and to create local fragments on the receiver
side (e.g., when receiving a passed reference as a parameter).
Unlike a classic RPC-based system that creates a local stub,
this is more complex. The local fragment is object specific,
i.e., depending on the object instance a specific fragment im-
plementation has to be created that was configured by the
object developer. For supporting dynamic adaptability the
concrete fragment implementation may also depend on local
properties (e.g., load and available resources) which makes
the selection of such an implementation more complex.

3. JAVA RMI ARCHITECTURE
The Java Remote Method Invocation (RMI) is a Java

Standard that allows users to call methods on objects lo-
cated in another Java Virtual Machine (JVM). This JVM
might even be located on a remote node. Java RMI aims
at maintaining the semantics of the Java object model in a
distributed environment including, e.g., distributed garbage
collection. In this section we give a brief overview of the
RMI architecture. Furthermore, we discuss the RMI archi-
tecture and extension points with respect to the seamless
integration of a fragmented-object model.

In RMI there are different semantics for passing an object
to a remote method. A primitive value like, e.g., an integer
is transferred using a call-by-value semantics. Java objects
as well as not exported RMI-objects to a remote method are
passed using a call-by-copy semantics. Java RMI uses Java
Serialization during the marshalling process. Hence, objects
being passed using call-by-copy semantics have to be serial-
izable. It is possible to export and to un-export RMI objects
using the UnicastRemoteObject class. Exported objects are
remotely accessible and are passed using a call-by-reference
semantics.

Article 2

Figure 2: Java-RMI Architecture

Figure 2 shows the Java-RMI architecture, which contains
three layers. the first layer is the stub and skeleton layer.
In RMI, the standard mechanism of RPC-based systems is
used: Stubs and skeletons are generated as an interface for
the client and the server to the middleware. Thus, these
helper objects enable distribution-transparent invocations
on remote objects. The stub and the skeleton implement
a remote object reference, and take care about marshalling
and de-marshalling. They are generated from the object’s
remote interface that has to be specified by the application
programmer. In RMI, the stub on the client side has to be
generated manually using the RMI compiler rmic1 whereas
the skeleton is always automatically created at run-time.

The common super type of all stub classes is RemoteStub.
RemoteStub inherits RemoteObject and defines no further
methods beside the constructor. For concrete distributed
objects, rmic creates a stub, which also contains the remote
object’s methods. RemoteObject inherits java.lang.Object.
Final methods of java.lang.Object cannot be overwritten.
These include the objects synchronization methods (wait(),
notify(), notifyAll()) as well as the getClass() method
that returns the object’s class. Thus, these methods re-
late to the stub object and not to the remote RMI object:
The getClass() method returns the stub class instead of
the class of the remote object. The synchronization meth-
ods use the local stub object for coordination. These final
methods cause language-dependent limitations that reduce
the access transparency of RMI objects, but this would ap-
ply to any other RPC-based interaction mechanisms that is
integrated into Java.

Some of the non-final methods of RemoteObject are over-
written in a concrete stub: equals(), hashCode() and
toString() are adapted to the semantics of a distributed
object. The RemoteObject class contains a reference to a
RemoteRef object, which represents a handle to the remote
object.

The remote-reference layer specifies the call semantics of
an RMI object. Therefore, a RemoteRef interface is defined
in the RMI specification. Objects implementing remote call
semantics have to implement this interface. The stub is
using the invoke() method of the actual RemoteRef object
in order to call remote methods. A reference to a RemoteRef

object is stored in every stub.
The RMI implementation from Sun offers standard Remote-

Ref objects for several call semantics, e.g., for activatable
remote objects. Nevertheless, it is possible to implement
own call semantics by creating another RemoteRef instance.
The client does not have to be changed for this purpose; the
call semantics are transparent to the client.

The transport layer uses Java socket classes in order to

1With Java 1.5, stubs can also be generated automatically
at run-time.

Figure 3: Java-RMI Invocation Path on Client Side

handle the communication between the different participat-
ing JVMs. Due to the socket-factory concept introduced in
Java 1.2, the RMI system is able to use any stream-based
communication.

Since Java 1.3, RMI offers the possibility to communicate
using the Internet Inter ORB Protocol (IIOP). This allows
access to RMI objects from CORBA environments. A so-
called Java-to-IDL mapping takes care of the conversion of
a RMI interface into an IDL interface.

Fig. 3 shows the invocation path through all layers of RMI
on the client side. The stub marshals the parameters and
calls a generic invoke method at the remote-reference ob-
ject, which will implement the call semantics using an RPC
protocol on top of UDP or TCP sockets.

4. FRAGMENTED OBJECTS IN RMI
Our goal is to integrate a fragmented-object model into

RMI such that clients cannot see any difference to standard
RMI objects. This way, even already existing applications
could have access to fragmented RMI objects and thus ben-
efit from a fragmented-object model (e.g., have access to
a fault-tolerant service without knowing that parts of the
fault-tolerance mechanism will be locally implemented in a
special proxy fragment). This means that references to frag-
mented RMI objects should look like references to standard
RMI objects, and should be serializable by standard RMI
marshalling operations.

In this section we first discuss several implementation al-
ternatives based on the extension points of RMI. Then we
present the design of local fragments within our approach.

4.1 Implementation Alternatives
As already described in Section 3, the RMI architecture

is divided into three layers: the stub-skeleton layer, the ref-
erence layer and the transport layer. Whereas the first two
layers are part of the specification the third layer is from an
architectural point of view completely implementation spe-
cific. For this reason and for the fact that the remote and all
internal communication is object specific and therefore im-
plementation dependent we will inspect how the fragmented-
object model can be integrated or even completely replace
the stub-skeleton layer or the remote reference layer.

4.1.1 Extending the Remote Reference Layer
The remote reference layer can be extended as designated

by Sun to provide new remote-invocation semantics. This
has already been done to support on-demand activation of
objects by Sun itself and to provide replicated objects in the
JGroup system [3] and by Cazzola et al. [4]. Fragmented
objects could be easily integrated the same way: The rmic-
generated stubs remain the same and only the RemoteRef

object has to be extended. It needs to refer to the local
fragment, which has to implement the remote interface of

Article 2

Figure 4: Invocation path with extended reference
layer

our FORMI object. The RemoteRef object forwards incom-
ing invocations to the local fragment.

As marshalling of the reference to a FORMI object (i.e.,
the reference to the stub) will serialize the stub and its ad-
junct objects, it will also marshal the fragment. This is
not appropriate as every client may get its own individual
fragment, perhaps even with entirely different implementa-
tion. Therefore, the fragment reference needs to be transient
and a fragment-implementation factory has to be introduced
that is marshalled and takes care of creating the fragment
locally depending on whatever decisions. The fragment-
implementation factory may also take care of reusing already
existing local fragments.

Although this approach is very lightweight and easy to
implement it has one major weakness. Each call of the local
fragment instance is treated like a remote method invoca-
tion. The parameters are already marshalled in the stub,
and the RemoteRef object is invoked (see Fig. 4 and cf.
Fig. 3). This has to de-marshal the parameters in order to
invoke the corresponding method on a local fragment. Mar-
shalling partially involves Java serialization and reflection.
Both are expensive operations and thus inefficient.

4.1.2 Extending the Stub-Skeleton Layer
For the elimination of inefficient serialization and reflec-

tion operations we could replace the stub and skeleton for a
fragmented object. In the standard implementation of RMI,
the RemoteRef class is responsible for setting up the commu-
nication based on its encapsulated contact information, for
forwarding the incoming call to the remote object, and for
implementing the call semantics. In context of fragmented
objects this is actually not necessary since a fragment in-
stance itself is responsible for setting up and managing the
object’s internal communication. From a conceptual point
of view, a RemoteRef instance is not essentially needed.

Following this idea, custom stubs can be generated that
take the role of the fragment. Standard stubs inherit from
class RemoteStub which in turn inherits RemoteObject. As
RemoteStub provides some static methods (e.g., toStub())
it is preferable that custom stubs inherit those classes as
well to maintain compatibility.

A severe problem of this approach is that the reference
layer is not existent. When trying to marshal such a stub for
transferring an RMI reference a MarshalException will oc-
cure because the RMI serialization mechanism cannot han-
dle a null value for a RemoteRef reference. Solutions for
this issue might be the usage of a non-empty dummy object
representing the RemoteRef or the usage of writeReplace()
and readReplace() methods for supporting the marshalling
process. We propose a solution that solves all the mentioned
problems in a more elegant way in the next sub-section.

Figure 5: FORMI-stub replacing the Stub and the
Remote Reference

Figure 6: Architecture of a Fragment including the
involved helper objects

4.1.3 Combined Approach
Regarding the previously presented solutions we propose a

combined approach. A special stub—named FORMI-stub—
where the remote reference layer and the stub-skeleton layer
are merged (see Fig. 5). More precisely, this means that
our stub extends RemoteStub and implements the RemoteRef
interface at the same time.

This approach has some advantages: First of all, mar-
shalling the stub is possible without any efforts since the
reference to a RemoteRef object can be a self reference and
thus is not null. Second, calls are processed faster because
there is no need for using reflection and serialization (see
Section 4.1.1).

4.2 The Structure of Local Fragments
As seen from the previous sub-section, we can implement

our fragments by inheriting from RemoteStub. This has the
drawback that the fragment implementation cannot be ex-
changed at run-time as clients may have references to that
fragment that cannot be redirected. Thus, we introduce one
level of indirection to the fragment structure as shown in
Fig. 6. A so-called fragment interface is used as a refer-
ence to the local fragment. The fragment interface inher-
its RemoteStub as described before and offers the complete
set of methods of the fragmented object (cf. Section 3).
It forwards calls to a fragment implementation which car-

Figure 7: FORMI invocation path on client side

Article 2

ries the actual fragment functionality. The fragment im-
plementation has to implement the remote interface as any
RMI object. This mechanism enables dynamic, transparent
exchange of the current fragment implementation at run-
time. Another fragment implementation has to be created
and the corresponding reference in the fragment interface
has to be updated. The last internal component, the view,
manages the fragment interfaces, the fragment implementa-
tion and its exchange, and stores internal data like, e.g., the
object id. Furthermore, it provides an interface for quality-
of-service requirements related to the local fragment based
on so-called aspect configurations (cf. [11]). The view is,
in conjunction with a view manager, also used to detect
locally existing fragments for reuse when receiving remote
object references. The invocation path in FORMI is shown
by Fig. 7 (cf. Fig. 3).

For supporting the application programmer we provide a
stub generator equivalent to Sun’s rmic2. Therefore, creat-
ing fragment interfaces in our environment is more or less
the same for an application programmer using RMI. For
client programmers this will be transparent as they will dy-
namically load the class code via the RMI codebase.

4.3 Creating Objects and Fragments
For the creation of a new fragmented object a fragment-

implementation factory has to be created. This is respon-
sible to select the class of the local fragment implementa-
tion. The seletion process may even depend on local prop-
erties or on the distributed state of the fragmented object.
An instance of a new FORMI object is created by calling
the FORMI fragment factory and passing a reference to the
object-specific fragment-implementation factory (cf. Fig. 6).
FORMI will build a new fragmented object and create an
initial fragment by calling the fragment factory. As a result
the application will get an RMI reference to the new object
in form of a Java-object reference to the fragment-interface
object.

When passing a reference referring to a FORMI object to
another RMI object, the fragment interface and the fragment-
implementation factory are marshalled and transmitted. The
view and the fragment implementation have to be marked
transient because these two components of a local frag-
ment represent the local only parts. After de-marshalling
just the fragment interface and a reference to the fragment-
implementation factory are existent. The view and the ap-
propriate fragment implementation are not created until the
first call to the fragment is received at the fragment inter-
face. This approach optimizes performance, e.g., for the case
of registering the object with an RMI registry. The registry
will not use the object and thus does not need a fragment
implementation.

5. EXAMPLE APPLICATION
In order to demonstrate the usability of our approach we

implemented a fragmented Internet radio. An Internet radio
is a service that broadcasts audio streams to clients. The
service should be implemented using RMI. That means, the

2Similar to Java 1.5, our stubs, aka fragment interfaces,
could be generated automatically at run-time. This, how-
ever, would introduce additional run-time costs due to the
calls to the reflection API that are used within these stubs.
We plan to introduce this as an optional feature in the fu-
ture, similar to Java 1.5.

Figure 8: Fragmented Audio Service using IP mul-
ticast for internal communication

Internet radio should be registered in a naming service (e.g.,
RMI registry) and accessible by RMI clients like any other
RMI object. The client accesses the radio by a lean interface
(RadioInterface):

• getAudioStream() (retrieves a stream delivering the
audio data of the radio service)

• getFormat() (returns audio format)

• send() (sends file to clients)

With standard RMI a client would only be able to in-
teract with the service by RPC-based method invocations.
This would not be appropriate for delivering audio data.
With the fragmented-object model the radio service is im-
plemented by different fragments, a server fragment that
broadcasts audio data to a IP multicast group, and a client
fragment that receives those data (see Fig. 8).

Based on this interface, the fragmented audio service was
created. First, the fragmented object is created by creating
an initial fragment. FORMI returns a reference to the first
fragment interface. This supports the RadioInterface. It is
registered at an RMI registry using bind(). After this pro-
cess the send() method is called in order to start sending the
audio data. The communication address for inter-fragment
communication is stored in the fragment-implementation
factory which is referenced by each fragment interface and
transferred to each node of the distributed system. The
factory can pass this information to every new fragment im-
plementation.

A client retrieves the reference to the radio service from
the RMI-registry using the lookup() method. As usual, the
returned reference (to the fragment interface) is casted to the
RadioInterface. With the first invocation the fragment im-
plementation is automatically created. The implementation
will act here like a smart proxy: it will open the multicast
socket and receive audio data, which will be available to
clients as an audio stream.

With the local fragment implementation, there is implic-
itly appropriate code available for interacting with the radio
server. This code is always specific to the particular dis-
tributed object. The service can use non-RPC-based pro-
tocols and even maintain quality-of-service properties (e.g.,
resource reservation on the network3).

6. RELATED WORK
Shapiro [5] introduced the concept of fragmented objects

used in the FOG project [6]. The concept was considered

3Reservation is not part of our prototype implementation.

Article 2

especially useful for designing distributed applications. The
FOG project focused on creating tools for supporting users
in creating fragmented objects. The concept of fragmented
objects was also subject of the Globe project [7] for support-
ing scalability by caching and replication. Unlike Globe, we
support implicit binding as it is used in most object-based
systems: A local fragment is automatically created when a
fragment reference is passed through the marshalling pro-
cess.

The concept of smart proxies [9, 10] has benefits simi-
lar to our approach (e.g., regarding caching and support of
replicate groups). Nevertheless, smart proxies represent the
traditional client-server concept whereas fragmented objects
offer a more powerful and flexible approach; special frag-
ments can even act like a smart proxy. As the implementa-
tion effort of using fragmented objects is comparable to the
usage of smart proxies, we preferred the fragmented-object
approach.

For supporting fault tolerance the Jgroup project [3] inte-
grated the group communication paradigm supporting one-
to-many semantics into Java RMI. A replicated object’s
method is successively invoked on each replicate until a suc-
cessful invocation returns the result. The group commu-
nication was integrated by providing a special RemoteRef

implementation (see Section 3). Cazzola et al. offered a
similar group communication framework in Java RMI by en-
hancing java to support object groups [4]. Besides offering
a special RemoteRef-implementation (one-to-many seman-
tics) they also changed the stub layer (see Section 3). When
invoking an operation on a replicated object the client re-
ceives a result array containing the invocation-result of ev-
ery replicate. In contrast to Jgroup and Cazzola et al. our
approach enables any part of the distributed objects be-
ing locally available. Furthermore an arbitrary communica-
tion mechanism is possible and the distribution might even
change dynamically at run-time in our solution.

7. CONCLUSIONS
In this paper we presented a novel approach of integrat-

ing the concept of an fragmented-object model into Java
RMI. Our FORMI architecture supports a more powerful
and more flexible infrastructure for distributed applications:
local fragments can act as smart proxies, can have dynamic
distribution of state and functionality, and can be imple-
mented with arbitrary internal communication and struc-
ture. We still preserve compatibility with standard RMI-
clients; any RMI-capable client is able to use FORMI objects
without even noticing.

According to our former work of integrating fragmented
objects into CORBA within the AspectIX project, the inte-
gration of fragmented objects into Java RMI is even simpler
for the application programmer. For this purpose we provide
a Java archive (JAR) containing the needed functionality for
easy integration of FORMI in foreign projects.

8. REFERENCES
[1] K. P. Birman. The process group approach to reliable

distributed computing. Commun. ACM, 36(12):37–53,
1993.

[2] Object Management Group (OMG). Common Object
Request Broker Architecture. Object Management
Group (OMG), 3.0.3 edition, March 2004.

[3] A. Montresor. The Jgroup Reliable Distributed Object
Model. In Proceedings of the 2nd IFIP International
Working Conference on Distributed Applications and
Systems (DAIS ’99), Helsinki, June 1999.

[4] W. Cazzola, M. Ancona, F. Canepa, M. Mancini, and
Vanja Siccardi. Enhancing Java to Support Object
Groups. In Proceedings of Recent Object-Oriented
Trends (ROOTS’02), Bergen Norway, April 2002.

[5] M. Shapiro. Structure and Encapsulation in
Distributed Systems: the Proxy Principle. In
Proceedings of the 6th Int. Conf. on Distributed
Systems (ICDCS), pages 198–204, Cambridge MA
(USA), May 1986.

[6] M. Makpangou, Y. Gourhant, J.-P. Narzul, and
M. Shapiro. Fragmented objects for distributed
abstractions, pages 170–186. IEEE Computer Society
Press, 1994.

[7] P. Homburg, L. van Doorn, M. van Steen, A.S.
Tanenbaum, and W. de Jonge. An Object Model for
Flexible Distributed Systems. In Proceedings of the 1st
Annual ASCI Conference, pages 69–78, Heijen,
Netherlands, May 1995.

[8] H. P. Reiser, F. J. Hauck, R. Kapitza, and A. I.
Schmied. Integrating fragmented objects into a
CORBA environment. In Proceedings of the
Net.ObjectDays (Erfurt, Germany, Sep. 22-24, 2003),
2003.

[9] R. Koster and T. Kramp. Structuring QoS-supporting
services with smart proxies. In Proceedings of the
IFIP/ACM Middleware Conference (Middleware),
volume 1795, Berlin, Heidelberg, New York, Tokyo,
2000. Springer-Verlag.

[10] N. Santos, P. Marques, and L. Silva. A Framework for
Smart Proxies and Interceptors in RMI. In ISCA 15th
International Conference on Parallel and Distributed
Computing Systems, Louisville, Kentucky, USA,
September 2002.

[11] F. J. Hauck, E. Meier, U. Becker, M. Geier,
U. Rastofer, and M. Steckermeier. A middleware
architecture for scalable, QoS-aware and
self-organizing global services. In Proc. of the 3rd
IFIP/GI Int. Conf. on Trends towards a Universal
Service Market - USM (Munich, Sep. 12-14,2000),
number LNCS 1890, pages 214–229. Springer, 2000.

Article 2

