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We study an acceleration method for point-to-point shortest path computations in large and sparse
directed graphs with given nonnegative arc weights. The acceleration method is called the arc-flag

approach and is based on Dijkstra’s algorithm. In the arc-flag approach we allow a preprocessing of
the network data to generate additional information, which is then used to speed-up shortest path
queries. In the preprocessing phase the graph is divided into regions and information is gathered
on whether an arc is on a shortest path into a given region. The arc-flag method combined with
an appropriate partitioning and a bi-directed search achieves an average speed-up factor of more
than 500 compared to the standard algorithm of Dijkstra on large networks (1 million nodes,
2.5 million arcs). This combination narrows down the search space of Dijkstra’s algorithm to
almost the size of the corresponding shortest path for long distance shortest path queries. We
conduct an experimental study that evaluates which partitionings are best suited for the arc-flag
method. In particular, we examine partitioning algorithms from computational geometry and a
multiway arc separator partitioning. The evaluation was done on German road networks. The
impact of different partitions on the speed-up of the shortest path algorithm are compared among
each other. Furthermore, we present an extension of the speed-up technique to multiple levels of
partitions. With this multi-level variant, the same speed-up factors can be achieved with smaller

space requirements. It can therefore be seen as a compression of the precomputed data that
preserves the correctness of the computed shortest paths.
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Birk Schütz and Dorothea Wagner and Thomas Willhalm
Universität Karlsruhe (TH)
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe, Germany
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1529-3785/2006/0700-0001 $5.00

ACM Journal on Experimental Algorithmics.



2 · Rolf H. Möhring et al.

F.2.2 [Nonnumerical Algorithms and Problems]: Routing and layout

General Terms:
Algorithm, Experimentation

Additional Key Words and Phrases:
shortest path, Dijkstra’s algorithm, acceleration method, road network

1. INTRODUCTION

In the present paper we consider the point-to-point shortest path problem where
one has to find a shortest path between two nodes in a graph. The standard al-
gorithm for this problem is the one developed by Dijkstra [1959] which runs in
O(m + n log n) time, see [Fredman and Tarjan 1987]. For a long time the main
focus in developing shortest path algorithms has been on finding algorithms with
good theoretical time-bounds. An overview is given in [Goldberg and Harrelson
2005; Sanders and Schultes 2005; Willhalm 2005]. Although fast in theory, the cor-
responding algorithms are often not fast enough for applications in large networks
that require many shortest path computations.

In our study we assume that for the same underlying network the shortest path
problem has to be solved repeatedly for different node pairs. Thus, preprocessing
of the network data is possible and can support the computations that follow. We
work on large but sparse directed graphs with given arc weights and a given 2D
layout. We will see that the presented acceleration of shortest path computations
works also on higher dimensional layouts or even on graphs with no layout.

More precisely, we consider a generalization of a partition-based arc labeling
approach that we refer to as the arc-flag approach. The basic idea of the arc-flag
method using a simple rectangular geographic partition has been suggested by Lau-
ther [1997; 2004]. The arc-flag approach divides the graph into regions and gathers
information for each arc on whether this arc is on a shortest path into a given re-
gion. For each arc this information is stored in a vector. The vector contains a flag
for each region of the graph indicating whether this arc is on a shortest path into
that particular region. The vector is called the arc-flag-vector and the entries in the
arc-flag-vector are called the arc-flags. The size of each vector is determined by the
number of regions and the number of vectors is determined by the number of arcs.
Arc-flags are used in the Dijkstra computation to avoid exploring unnecessary paths.

Outline of the paper. In Section 1.1 we give a brief review of recent related results in
the field and in Section 1.2 we describe our contribution. Section 2 starts with basic
definitions and a precise description of the problem. Section 3 explains the pruning
of the search space of Dijkstra’s algorithm with arc-flags. The preprocessing is
described in Section 4. We discuss the two-level variant of the arc-flags in Section 5.
In Section 6, we present the selection of partitioning algorithms that we used for
our analysis. Section 7 describes our experiments and we discuss the results of the
experiments in Section 8. Section 9 concludes the paper.
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1.1 Related work

Much research has been done on shortest path problems and there is a large variety
of different algorithms for computing shortest paths efficiently in a given network.
Therefore we can only give a short overview of some more recent results. Extensive
surveys can be found in [Goldberg and Harrelson 2005; Sanders and Schultes 2005;
Willhalm 2005].

Gutman [2004] introduces a method based on the concept of reach: for each node
a single reach value together with Euclidean coordinates is stored in order to enable
a specific kind of goal-directed search. The reach value is then used to focus on
nodes which are part of a path long enough to be of use for the current shortest
path query. All other nodes are not taken into consideration during the search.
Gutman reports that he computes shortest paths 10 times faster than the standard
algorithm of Dijkstra on networks containing about 400,000 nodes. Combined with
an A∗ search this methods achieves a speed-up factor of 17. On networks of the same
size our method runs about one order of magnitude faster and needs approximately
the same preprocessing time. See Figure 1(c) for a sample search in the German
road network and the pruning of Dijkstra’s search space generated by Gutman’s
acceleration technique.

Goldberg and Harrelson [2005] describe an approach which uses an A∗ search in
combination with a lower-bounding technique based on so-called landmarks and the
triangle inequality. After selecting a small number of landmarks for all nodes the
distances to and from each landmark are precomputed. For instance, two one-to-all
shortest path computations per landmark suffice as preprocessing. The maximum
of these lower bounds is used during an A∗ search. The speed-up increases with
the number of landmarks used for the search. With just one landmark the results
that Goldberg and Harrelson’s algorithm produces are not as good as Gutman’s,
but with 16 landmarks they report on a speed-up of up to 17 in networks up to
a size of approx. 7 million nodes. The preprocessing for this method is very fast
and the achieved speed-ups are reasonable, but the space requirement is large. One
distance value per node-landmark pair needs to be saved.

Sanders and Schultes [2005] fairly recently published an interesting hierarchical
approach. It is based on the idea of a highway network, which is defined by a local
search. The local search visits a fixed number of nodes, which are closest to the
terminal nodes. This approach can be iterated to generate a hierarchy of highway
networks. The construction of the hierarchy can be done very fast in a preprocessing
step. As in our approach, the space requirement is only a small constant factor of
the input size. In terms of preprocessing time this method is clearly faster than the
arc-flag approach, but we still achieve speed-ups which are an order of magnitude
higher on networks of the same size. There is a whole family of methods that use
different kinds of hierarchies for the search process and make use of properties of
the given graphs. More examples can be found in [Frederikson 1987; Agrawal and
Jagadish 1994; Car and Frank 1994; Chou et al. 1998; Schulz et al. 2000; Schulz
2005].

Schulz et al. [2000] already introduced the concept of enriching the graph with
arc labels that mark (for each arc) possible target nodes of a shortest path that
start with this arc. This was done for the special case of a timetable information
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(a) The standard algorithm of Dijkstra (b) The geometric container method

(c) The reach based method (d) The arc-flag method

Fig. 1. Different search spaces on the German road network for different acceleration methods
compared to the standard algorithm of Dijkstra 1(a). A sample search request from Karlsruhe
to Berlin is shown. The network arcs and nodes are colored in light gray. The shortest path
arcs are colored in black. The search space, i.e. the arcs which were visited by the shortest path
algorithms, is colored in dark gray.
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system. In this work, arc labels are angular sectors in the given layout of the train
network. In [Wagner and Willhalm 2003; Wagner et al. 2005], the approach has
been studied for general weighted graphs. Instead of the angular sectors, different
types of convex geometric objects are implemented and compared. See Figure 1(b)
for a sample search in the German road network and the pruning of Dijkstra’s
search space using arc labels and geometric containers.

In theory, all mentioned acceleration techniques can be combined, but not all
combinations would lead to an improvement of the speed-up factor. Holzer et al.
[2004] provide an extensive study of possible combinations of an A∗ search, bi-
directed search, the multi-level method, and geometric containers. They suggest
different combinations for different graph types. In Schulz et al. [2000], for instance,
a combination of a geometric container, the separator based multi-level method, and
an A∗ search yields a speed-up factor of 62 on a railway network.

A different variation of the arc labels has been presented by Lauther [2004],
where the graph is first partitioned into regions by a simple rectangular geographic
partition. Then each arc gets a vector of flags assigned where each entry corresponds
to a region in the partition. An entry of the flag-vector is set to true iff the
corresponding region contains target nodes of shortest paths starting with this arc.
In contrast to the geometric containers [Wagner and Willhalm 2003; Wagner et al.
2005], arc-flags result in a much smaller search space and the generation of arc-flags
can be realized without the computation of all-pairs shortest paths. In fact, only
the distances to nodes are needed that lie on the boundary of a region, see Köhler
et al. [2005] for more details.

Köhler et al. [2005] have shown that using an arc multi-way separator parti-
tioning instead of a simple rectangular geographic partitioning results in an even
faster preprocessing of the arc-flags. At the same time this improved partition-
ing led to better speed-up factors of the accelerated shortest path search itself.
For instance, when a bi-directed search is combined with the arc-flag method, Lau-
ther [2004] obtains a speed-up factor of 64 on the European truck drivers’ road map
(330,000 nodes, 520,000 arcs, 139 regions). Köhler et al. on the other hand, achieve
a speed-up factor of 677 on an instance of roughly the same size (360,000 nodes,
920,000 arcs, 100 regions). This is a result of the improved partitioning. Another
advantage of the improved partitioning is that it does not require a given layout
of the graph. Additionally, Köhler et al. managed to use even fewer regions than
Lauther and therefore reduced the space requirement of the arc-flag method.

An observation which could not be expected at the beginning of the study con-
ducted by Köhler et al. [2005] is that the choice of the underlying partition is crucial
for the speed-up of the arc-flag method. This is where the present paper starts.

1.2 Our Contributions

In this paper we conduct a computational study on which partitioning method
achieves the best speed-up for the presented arc-flags. The choice of the underlying
partitioning seems to be crucial for the speed-up of the arc-flag acceleration of Dijk-
stra’s algorithm. We investigated partitions from computational geometry and an
arc multi-way separator partitioning. The computational study was done on large
road networks, a typical application for shortest path problems. In particular, we
worked on road networks of Germany up to the size of 1 million nodes and 2.5 mil-
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lion arcs. See Figure 1(d) for a sample search in the German road network and the
pruning of Dijkstra’s search space generated by the arc-flag approach together with
an arc multi-way separator partitioning.

Typically, the arc-flag accelerated algorithm of Dijkstra creates a cone-like spread-
ing of the search space as the search approaches the target region; whereas at the
beginning of a shortest path search the algorithm is forced by the arc-flags to search
along the shortest path arcs only. In order to handle this behavior of the arc-flag
method, we suggest a two-level partition: a coarse partition for far-away target
nodes and a finer one for nearby nodes. With this multi-level version of the arc-
flags the same speed-up can be achieved but with lower space consumption. The
multi-level arc-flags can be seen as a compression of the flag-vectors.

Finally we tested different combinations of the the arc-flag method with different
partitions and other acceleration techniques. We found that a combination with
a bi-directed search seems to be a perfect match, but a combination with an A∗

search, for example, does not improve the speed-up factor. The reason is that the
arc-flags are already highly goal-directed by construction.

2. DEFINITIONS AND PROBLEM DESCRIPTION

2.1 Graphs

A directed simple graph G is a pair (V, A), where V is a finite set of nodes and
A ⊆ V × V are the arcs of the graph G. Throughout this paper, the number of
nodes |V | is denoted by n and the number of arcs |A| is denoted by m. A path in
G is a sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ A for all 1 ≤ i < k. A
path with u1 = uk is called a cycle. A graph (without multiple arcs) can have up
to n2 arcs. We call a graph sparse, if m ∈ O(n). We assume that we are given a
layout L : V → R

2 of the graph in the Euclidean plane. For ease of notation, we
will identify a node v ∈ V with its location L(v) ∈ R

2 in the plane.

2.2 The Shortest Path Problem

Let G = (V, A) be a directed graph whose arcs are weighted by a function ℓ : A → R.
We interpret the weights as arc lengths in the sense that the length of a path is
the sum of the weights of its arcs. The (single-source single-target) shortest-path
problem consists in finding a path of minimum length from a given source s ∈ V to a
given target t ∈ V . Note that the problem is only well defined for all pairs, if G does
not contain negative cycles. If there are negative weights but not negative cycles, it
is possible, using Johnson’s algorithm [Johnson 1977], to convert in O(nm+n2 log n)
time the original arc weights ℓ : A → R to non-negative arc weights ℓ′ : A → R

+
0

that result in the same shortest paths. Hence, in the rest of the paper, we can safely
assume that arc weights are non-negative. Throughout the paper we also assume
that for all pairs (s, t) ∈ V × V the shortest path from s to t is unique. Kranakis
et al. [1995], for instance, gave a detailed description on how one can transform any
graph into such a unique shortest path graph.

2.3 Bi-directional Search

In the bi-directed search two Dijkstra runs start simultaneously from s and t. A
distance dists(u) from s in the common (forward) graph and a distance distt(u)
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from t in the reverse graph, the graph with every arc reversed, is then computed.
The bi-directed search algorithm alternates between running the common (forward)
and reverse search version of Dijkstra’s algorithm and stops with an appropriate
stopping criterion when the two searches meet. Note that any alternation strategy
will correctly determine a shortest path.

More precisely, the bi-directional search stops if one direction gets a node v from
the priority queue that is already labeled by the other direction: the shortest path
between s and t is already found. The node v is not necessarily on that shortest
path. In order to avoid searching for the connector-node v of the two searches,
we determine the shortest path on-the-fly: every time we consider a node which
is labeled by both directions, we update the minimal sum of the shortest paths to
source and target.

Fig. 2. This figure illustrates the search space of a uni-directional standard Dijkstra search (left)
and a bi-directional standard Dijkstra search (right). The source node is marked in light gray, the

target node in dark gray, and all arcs which are touched during the search are the dark gray arcs.
The search stops, when the target node has been settled.

The bi-directional search leads to speed-up factors of up to 4 in the unaccelerated
case. Figure 2 illustrates the search space in contrast to the uni-directional Dijkstra
search. In principle, this speed-up method can be combined with any other accelera-
tion method. In our experiments, a forward and backward accelerated bi-directional
search achieved the best results. This means that we applied the partition-based
speed-up technique on both search directions with half of the arc-flag entries for
each direction. The underlying partitioning can differ for the two directions. The
preprocessing for both directions must be computed independently. The reverse
graph is used for the calculation of the arc-flags for the backward search.
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3. DIJKSTRA’S ALGORITHM WITH ARC-FLAGS

The classical algorithm for computing shortest paths in a directed graph with non-
negative arc weights is that developed by Dijkstra [1959]. For the general case
of arbitrary non-negative arc lengths, it still seems to be the fastest algorithm
with O(m + n log n) worst-case time. However, in practice, speed-up techniques
can reduce the running time and often result in a sub-linear running time. They
crucially depend on the fact that Dijkstra’s algorithm is label-setting and that it
can be terminated when the destination node is settled. Therefore, the algorithm
does not necessarily search the whole graph.

If we allow for a preprocessing step, the running time can be further reduced
with the following insight: consider, for each arc a, the set of nodes S(a) that can
be reached by a shortest path starting with a. It is easy to verify that Dijkstra’s
algorithm can be restricted to the sub-graph with those arcs (∗, t) ∈ E for which
the head node t is in S(a). However, storing all sets S(a) requires O(n2) space
which is prohibitive for large graphs even if they are sparse ones with m ∈ O(n)
(as in our case). We will therefore use a partition of the set of nodes V into p
regions for an approximation of the set S(a). Formally, we will use a function
r : V → {1, . . . , p} that assigns to each node the number of its region. For example:
given a 2D layout of the graph, a simple method to partition a graph is to use a
regular grid as illustrated in Figure 6(a) and assign the same number to all nodes
inside a grid cell.

We will then use for each arc a a vector fa : {1, . . . , p} → {true, false} with
p entries, each of which corresponds to a region. The vector fa will be called the
arc-flag-vector. The entries in the vector will be called the arc-flags. For each arc a,
we set the arc-flag fa(i) to true iff a is the beginning of a shortest path to at least
one node in region i ∈ {1, . . . , p}. See Figure 3 for an illustration of an instantiated
arc-flag-vector. For a specific shortest path query from s to t, Dijkstra’s algorithm
can be restricted to the sub-graph Gt with those arcs a for which the flag entry of
the target-region (i.e., the region where t belongs to) is set to true. We will call
this restricted version of Dijkstra’s algorithm the Dijkstra’s algorithm with arc-flags.
The Lemma 3.2 provides the correctness of Dijkstra’s algorithm with arc-flags and
for this we need to define the notion of a consistent container.

Definition 3.1. Let G = (V, E) be a weighted graph together with a weight
function ℓ : E → R. We call a set of nodes C ⊆ V a container. A container C
associated with an arc (u, v) is called consistent, if for all shortest paths from u to
t that start with the arc (u, v), the target node t is in C.

Lemma 3.2 Dijkstra’s algorithm with arc-flags. Let G = (V, E) be a
weighted graph together with a weight function ℓ : E → R. Then for each arc
e ∈ E the nodes in the regions which are associated with the true entries of the
arc-flag-vector of e constitute a consistent shortest path container.

Proof. Consider the shortest path P from s to t that is found by Dijkstra’s
algorithm. If for all arcs e ∈ P the target node t is in C(e), then the path P will
also be found by Dijkstra’s algorithm with arc-flags. This is, because the arc-flags
do not change the order in which the arcs are processed. A sub-path of a shortest
path is again a shortest path, so for all arcs (u, v) ∈ P , the sub-path of P from
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u to t is a shortest u, t-path. Therefore by definition of the consistent container:
t ∈ C(u, v) and so Dijkstra’s algorithm with arc-flags finds a shortest path from s
to t, s, t ∈ V , if one exists.

The sub-graph Gt can be computed online during a run of Dijkstra’s algorithm. In
a shortest path search from s to t, while scanning a node u, the modified algorithm
takes into account all the outgoing arcs which have their arc-flag entries set to true

for the region of the target node t. All other arcs will be ignored. All possible
partitions of the nodes lead to a correct solution but most of them would not lead
to the desired speed-up of the computation.

Fig. 3. Illustration of the partition-based arc-flags acceleration: the labeled arc (i.e. the gray arc
in the figure) only leads to white and black nodes. The according arc-flag-vector of this arc has
therefore only two entries: one for the region of the black nodes and one for the region of the
white nodes. A search with targets in the light gray, middle gray and dark gray regions can ignore
this arc.

The space requirement for the preprocessed data is O(p ·m) for p regions because
we have to store one flag for each region and arc. If p = n and we assign to every
node its own region number, we store in fact all-pairs shortest paths: if a node is
assigned to its own, specific region, the modified shortest path algorithm will find
the direct path without looking at unnecessary arcs or nodes. Note, however, that
in practice even for p ≪ n we achieve an average search space that is only 4 times
the number of nodes in the shortest path. Furthermore, it is possible within the
framework of the arc-flag speed-up technique to use a specific region only for the
most important nodes. Storing the shortest paths to important nodes can therefore
be realized without any additional implementation effort. It is common practice to
cache the shortest paths to the most important nodes in the graph.

4. THE PREPROCESSING

We have to calculate the arc-flag entries for all arcs. This can be achieved by
computing a shortest path tree from every arc a to all nodes in the graph – a one-to-
all shortest path computation from the head node of arc a. The computation is done
by a standard algorithm of Dijkstra which stops when all nodes are permanently
marked. During this computation, if a node v is settled we are setting the arc-flag
entry fa(r(v)) to true for the region r(v) containing node v.
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The setting of the bit-vectors needs O(mn) time for all pairs of arcs and nodes.
The running time for the preprocessing is dominated by the time needed to com-
pute m times a shortest path tree, which can be done in O(m + n log n) time each.
The resulting time complexity of the overall preprocessing is therefore O(m · (m +
n + n log n)). For sparse graphs (m = O(n)), such as typical road networks we
get a worst-case time complexity of O(n2 log n). For large n this simple version
of the preprocessing algorithm takes far to long. Therefore we are heading for a
more scalable preprocessing algorithm which takes subquadratic or even linearith-
mic running time. Fortunately, we can give a variant of the preprocessing with a
much better (although not linearithmic) running time.

4.1 The Preprocessing without All-Pairs Shortest Path Computations

It is not necessary to compute all-pairs shortest paths to fill the flag-vectors cor-
rectly. We can simply use the following insight: every shortest path from any node
s to a region R with the region number pR has to enter the region R by an arc:
if s is not a member of the region R then there must be an arc e = (u, v) with
r(u) 6= pR and r(v) = pR; a so-called overlapping arc. We will see in Lemma 4.1
that in the preprocessing step it is sufficient (for the correct computing of the arc-
flags) to take into account only shortest paths to such nodes v which are head nodes
of overlapping arcs. Such nodes will be called boundary nodes.

Lemma 4.1 Boundary Nodes. Let G = (V, E) be a graph and let r : V →
{1, . . . , p} define a partition of the node set V in p regions. Let further for all arcs
(u, v) ∈ E where the end nodes u and v belong to the same region r′ the flag-vector
entry f(u,v)(r

′) set to true. If the arc-flag-vectors fe of all arcs e ∈ E are computed
with the set of shortest paths to boundary nodes only, then the nodes in the regions
which are associated with the true entries of the arc-flag-vectors are consistent
shortest path containers.

Proof. Let s and t be arbitrary but fixed nodes which are connected by the
shortest path s = n1, · · · , nk = t. Further, let s and t belong to different regions
ps = r(s) 6= r(t) = pt. By induction one can easily see that there exists an arc
e = (ni, ni+1), 1 ≤ i < k, in this shortest path with pni

= r(ni) 6= r(ni+1) = pt.
The preprocessing which only considers shortest paths to boundary nodes would
have considered the path from s to node ni+1 and hence it would have set the flag-
vector entry which refers to region pt for all arcs of the shortest path s, · · · , ni+1.
The flag-vector entry which refers to region pt of the arcs between ni+1 and t
are set to true by definition, because these arcs belong to the region pt. Since
the flag entries for the target region pt are set for all arcs on the shortest path
s = n1, · · · , nk = t, the modified algorithm of Dijkstra finds the shortest path from
s to t.

For the processing of the shortest paths to boundary nodes, we define the reverse
graph Drev of a directed graph D = D(V, E, l) as the graph Drev = D(V, Erev, ℓrev)
with

Erev = {(u, v)|(v, u) ∈ E} and ℓrev(u, v) = ℓ(v, u).

Hence, the reverse graph is the graph D with all arcs reversed. It is easy to see
that s, · · · , t is a shortest path from s to t in D iff t, · · · , s is a shortest path in Drev
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with the same arcs reversed.
We can now exploit this property. The preprocessing algorithm determines all

boundary nodes of the chosen partition and calculates their shortest path trees in
the reverse graph Drev. More precisely, let us look at one region R and its boundary
node set

BR = {v ∈ R|∃(u, v) ∈ E such that r(u) 6= r(v)}.

For each node b ∈ BR the algorithm calculates shortest path trees in Drev. For
each adjacent node of b which does not belong to BR the preprocessing algorithm
calculates one shortest path tree in Drev. It is necessary to do one tree computa-
tion per adjacent node of b (outside BR) because otherwise one could miss to set
true entries in the flag-vectors and this could later on lead to wrong shortest path
computations. The preprocessing algorithm stores for each node w in a shortest
path tree its incoming arc ew of the shortest path tree. In Drev this is an incoming
arc of w and hence in D it is an outgoing arc which is the beginning of the shortest
path from w to b in D. For this outgoing arc e, the algorithm sets the region-flag
of R in the flag-vector of e because there exists a shortest path which starts with e
and ends in region R. After scanning all nodes of BR, all shortest paths ending in
region R have been taken into account and all region-flags of region R of all arcs in
the graph have been set.

This is an improvement of the first preprocessing algorithm, because the present
algorithm does not calculate the shortest path trees of all nodes of D – only the
shortest path trees of overlapping arcs are calculated. We denote the number of
overlapping arcs by k. Depending on k we get a time complexity of the improved
preprocessing of O(k · n log n). An example of the resulting preprocessing time is
the following: the improved preprocessing algorithm calculated the preprocessing
data of one of our real-life graphs with 473000 nodes and 1, 1 million arcs by using
a 10 × 10 grid partition in 2,5 hours. The average search space during a single
requests was reduced to less than 4% compared to the standard Dijkstra search -
this led to a factor 34 improvement of shortest path computation time. The number
k of overlapping arcs is highly dependent on the partitioning of the nodes. We can
minimize k by taking the minimum arc multi-way separator for a partitioning of
the graph. However, we will see in section 8 that this partition does not always lead
to the best results with regard to the size of the search space, when we perform an
accelerated shortest path search.

For a further reduction of the preprocessing time one can easily adapt the pre-
processing algorithm to a parallel algorithm: each processor calculates the shortest
path trees of a subset of the boundary nodes BR. The results are independent.

4.2 The Preprocessing with Pruned Shortest Path Trees

In this section, we present a technique to avoid the computation of the full shortest
path trees of all boundary nodes. Let v1, v2 ∈ V be two boundary nodes of the same
region. When we compute the shortest path tree for v1 we get an upper bound on
the length of the shortest path from v2 to v for every node v ∈ V : it cannot be
longer than the distance from v2 to v1 plus the shortest path length from v1 to v.
We can now use this upper bound to reduce the effort of preprocessing.

For the first boundary node v1 of each region, the algorithm computes its (reverse)
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Table I. Analysis of the arc-flags: kdTree(n) and METIS(n) are partitioning algorithms of size n

(see also Section 8). For 80% of the arcs, either almost none (< 10 %) or nearly all (> 95 %) flags
of the corresponding flag-vector have been set to true.

Graph #Arcs Algorithm = 1 < 10 % > 95 %

road network 1 920,000 KdTree(32) 351,255 443,600 312,021

road network 1 920,000 KdTree(64) 334,533 470,818 294,664
road network 1 920,000 METIS(80) 346,935 468,101 290,332
road network 4 2,534,000 KdTree(32) 960,779 1,171,877 854,670
road network 4 2,534,000 KdTree(64) 913,605 1,209,353 799,206

shortest path tree, the corresponding flag-vectors and distance from the closest
boundary node v2 of that region. During the computation of the shortest path tree
of v2, we use the upper bounds of the prior search: if we find a shortest path to a
node v which is longer than or equal to the upper bound, the algorithm does not
put v into the priority queue, because we will get no new information about our
flag-vectors – we have already found the shortest path to that node v. If a shorter
path is found later, the node will be put into the priority queue and the algorithm
provides correct results. During the computation of the shortest path tree for the
next boundary node v3, upper bounds are computed using v2, and so on.

Our experiments have shown that this method reduces the number of nodes that
are put into the priority queue during the preprocessing to less than 70% compared
to the preprocessing from the previous section. In the experiments the running
time of the preprocessing was improved by up to 20 %.

5. TWO-LEVEL PARTITIONS

An analysis of the calculated flag-vectors shows that it is possible to find a (lossy)
compression of the flag-vectors: for 80% of the arcs either almost none or nearly all
flags of their flag-vectors are set to true. Table I and Figure 4 show an example of
the analysis we made.

The column ”= 1” shows the number of arcs, which are only part of shortest
paths inside their own region (only one flag has been set to true). Arcs with more
than 95% of arc-flag entries set to true seem to be central in the graph and could
be important roads or could be incident to important intersections in the road
network. Obviously, these results are highly dependent on the characteristics of the
graphs, but the situation will probably be similar for other road networks, too.

The high amount of almost empty flag-vectors justifies the idea for a compression
of the vectors. It is important that the decompression algorithm is very fast –
otherwise the speed-up of the running time will be lost. The two-level technique,
described in the following section, is a suitable lossy compression method for the
flag-vector entries.

Let us have a closer look at a search space to get an idea of how to compress
the arc-flags. As illustrated in Figure 5(a), for a search from the dark gray node
to the light gray node, the accelerated Dijkstra search reduces the search space at
the beginning of the search, but once the target region has been reached, almost all
nodes and arcs are visited. This is not very surprising if we consider that usually all
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Fig. 4. Statistics of the fill rate of the flag-vectors on instance road network 2 (1,169,000 arcs).
The y-axis shows the number of arcs for which the corresponding flag-vector has a certain fill rate,

while the x-axis shows the different fill rates in percentage. For instance, an arc a has a flag-vector
with fill rate 30% if 3 out of 10 flags in the vector have been set to true.

(a) With one-level arc-flags a
search visits almost all arcs
in the region where the tar-
get node belongs to. The tar-
get node is dark gray. The
source node is light gray. Vis-
ited arcs are dark gray.

(b) With the two-level arc-flags for each arc a ∈ E a flag-
vector is stored for a coarse partition (5×5 grid) and another
flag-vector for a fine partition (3×3 grid) of the coarse region

where the arc a belongs to.

Fig. 5. The one-level vs. two-level arc-flag method
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arcs of a region were assigned the region-flag of their own region. We could deal with
this problem by using a finer partition of the graph but this would lead to longer flag-
vectors at each arc (requiring more memory and a longer preprocessing). Take the
following example, if we used a finer 15×15 grid instead of a coarse 5×5 grid, each
coarse region would then be split in 9 additional finer regions. The preprocessing
data, however, increases from 25 flags (in the coarse case) to 225 flags (in the finer
case) per arc. We can see that the additional information for the fine grid is mainly
needed for arcs close to the target node, e.g. arcs in the target region of the coarse
grid. This leads to the idea that we could split each region of the coarse partition but
store the additional data (for the fine grid) only for the arcs inside the same coarse
region. More precisely, we regard the target region as an independent graph. We can
partition this independent graph again, see Figure 5(b), and perform an additional
preprocessing for the flag-vectors at each arc in this graph. Therefore, each arc gets
two flag-vectors: one for the coarse partition and one for the associated regions of
the fine partition. See the pseudo code of the modified algorithm of Dijkstra with
arc-flags and two-level partition for more details. In the pseudo code, the vectors
ArcFlagVectorFirstLevel and ArcFlagVectorSecondLevel refer to the flag-vectors for
the coarse and the fine partition. Entries in these vectors are set to true for an
arc (v, u) ∈ E if the arc (v, u) is at the beginning of a shortest path into the
TargetRegion (for the coarse partition and ArcFlagVectorFirstLevel) or into the
SubTargetRegion (for the fine partition and ArcFlagVectorSecondLevel).

The advantage of this method is that the preprocessed data is smaller than for a
fine one-level partitioning, because the second flag-vector exists only for the target
region (34 flags per arc instead of 225). It is clear that the 15× 15 grid would lead
to better results. However, the difference between the search spaces is small since
the entries in flag-vectors of far-away neighboring regions are similar. Thus, one
can see this two-level method as a (lossy) compression of the first-level flag-vectors:
we summarize the flags for remote regions. If one flag is set for a fine region, the
flag is set for the whole group.

Only a slight modification of the search algorithm is required. Until the target
region is reached, everything will remain unaffected, unnecessary arcs will be ig-
nored with the flag-vectors of level one. When the algorithm has entered the target
region, the second-level flag-vector provides further information on whether an arc
can be ignored for the search of a shortest path to the target-node.

As we will see in Section 8, our experiments have shown that this method led to
the best results with regard to the reduction of the search space, but an increased
preprocessing effort is required. Note, however, that in the preprocessing it is not
necessary to compute the complete shortest path trees for all boundary nodes of
the fine partitioning. The computation can be stopped if all nodes in the same
coarse region have been permanently marked.

6. PARTITIONING ALGORITHMS

The arc-flag speed-up technique uses a partitioning of the graph to precompute
information on whether an arc may be part of a shortest path. Any possible par-
titioning can be used for the technique and the accelerated Dijkstra algorithm will
always return a correct shortest path. However, different partitions do lead to dif-
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Modified algorithm of Dijkstra with arc-flags and two-level partition

Input: directed graph G = (V, A), nonnegative length ℓa for all a ∈ A,
start and target nodes s, t ∈ V
Output: shortest path from s to t
begin

TargetRegion := region number of t; //coarse partition
SubTargetRegion := subregion number of t; //fine partition
distance(s) := 0;
Queue.insert(s,0);
while not Queue.empty do

v := Queue.extractMin;
for all outgoing arcs (v, u) do

if not ArcFlagVectorFirstLevel[(v, u),TargetRegion] then
continue;

if (v, u) ∈ TargetRegion then

if not ArcFlagVectorSecondLevel[(v, u),SubTargetRegion] then
continue;

if distance(u) ≤ distance(v) + ℓ(v,u) then
continue;

distance(u) = distance(v) + ℓ(v,u);
if u /∈ Queue then

Queue.insert(u);

else
Queue.decreaseKey(u);

end

ferent accelerations of the algorithm of Dijkstra. The question is which partitions
lead to the best speed-up.

In this section, we will present the partitioning algorithms that we used in com-
bination with the arc-flag approach. Most of these algorithms need a 2D layout of
the graph except for the multi-way arc separator algorithm used by METIS. The
partitioning algorithms based on a 2D layout can easily be adapted to higher di-
mensions. In fact, for the arc-flag approach itself no layout of the graph is necessary
as long as one can provide a partitioning for a given graph.

6.1 Rectangular Partitioning (Grid)

Probably the easiest way to partition a graph with a 2D layout is to define the
regions with a n × m grid of the bounding box. More precisely, we denote with
(ℓ, t) the top-left coordinate of the bounding box of the 2D layout of the graph
and with (r, b) the bottom-right one. Furthermore, we define w = r − ℓ as the
width and h = t − b as the height of the layout. The grid cell or region Gi,j with
0 ≤ i < n, 0 ≤ j < m is now defined as the rectangle

[

ℓ + i ·
w

n
; ℓ + (i + 1) ·

w

n

]

×
[

b + j ·
h

m
; b + (j + 1) ·

h

m

]
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(a) Rectangular partition (35 regions) (b) Quad-tree (34 regions)

(c) kd-Tree (32 regions) (d) METIS (32 regions) Different colors
correspond to different regions.

Fig. 6. Germany with four different partitions

Nodes on a grid line are assigned to one of the neighboring grid cells. Figure 6(a)
shows an example of a 7 × 5 grid.

Arc-flags for a grid can be seen as a raster image of S(u, v), where S(u, v) repre-
sents the set of nodes x for which the shortest u-x path starts with the arc (u, v).
The pixel i in the image is set, iff (u, v) is the beginning of a shortest path to a
node in region i ∈ {1, . . . , p}. A finer grid, i.e. an image with higher resolution,
provides a better image of S(u, v), but requires more memory. On the other hand,
the geometric objects by Wagner et al. [2003; 2005] approximate S(u, v) by a single
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convex object of constant size.
The rectangular or grid partitioning method only uses the bounding box of the

graph—all other properties like the structure of the graph or the density of nodes
are ignored and hence it is not surprising that this method does not lead to the best
partitioning for our application. In fact, the rectangular partitioning always has the
worst results in our experiments. Since earlier work on the arc-flag method [Lauther
2004] used the rectangular partitioning, we use it as a baseline and compare all other
partitioning algorithms with it.

6.2 Quad-trees

A quad-tree is a data structure for storing points in the plane. Quad-trees are
typically used in algorithmic geometry for range queries, since they support fast
access to nearest neighbor points. Further applications are in computer graphics,
image analysis, and geographic information systems. Quad-trees can be generalized
to higher dimensions—for 3D they are called oct-trees.

Fig. 7. Example of a Quad-Tree. Each region is recursively divided until each region contains
only one point.

Definition 6.1 QuadTree. Let P be a set of n points in the plain, R0 its quadratic
bounding-box, then the data structure quad-tree is recursively defined as follows:

—Root v0 corresponds to the bounding-region R0

—R0 and all other regions Ri are recursively divided into four quadrants, while
they contain more than one point of P . The four quadratic subregions of Ri are
sub-nodes of vi in the tree. See Fig. 7

The leaves of a quad-tree form a subdivision of the bounding-box R0. Even more,
the leaves of every sub-tree containing the root form such a subdivision. Since, for
our application, we do not want to create a separate region for each node, we use
a sub-tree of the quad-tree. More precisely, we define an upper bound b ∈ N of
points in a region and stop the division if a region contains fewer points than the
bound b. The result is a partition of our graph where each region contains at most
b nodes. Fig. 6(b) shows such a partition with 32 regions. In contrast to the grid-
partition, this partitioning reflects the geometry of the graph better—dense parts
will be divided into more regions than sparse parts.
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6.3 kd-Trees

In the construction of a quad-tree, a region is divided into four equally-sized sub-
regions. However, equally-sized sub-regions do not take the distribution of the
points into account. This quad-tree division can therefore be extended to more
general sub-division schemes, the so-called kd-trees. In the construction of a kd-
tree, the plane is recursively divided in a similar way as for a quad-tree. In contrast
to a quad-tree, the underlying rectangle is decomposed into two halves by a straight
line parallel to an axis. The axes alternate in the order x, y, x, y, . . .. The positions
of the dividing line can depend on the data. Frequently used positions are given
by the center of the rectangle (standard kd-tree), the average, or the median of the
points inside. If the median of points in general position is used, the partitioning
has always 2ℓ regions. Fig. 6(c) shows a result for the median and 32 regions.
In applications with higher dimensions, the partition axes are not cycled but the
dimension with the largest variance is used.

Our experiments on real-life road networks showed that the kd-tree with median
position partition usually leads to the best results, see Figure 6(c). Therefore, we
only used this method as a representative for this partitioning class. If the median
of the points is used, at every decomposition one node of the graph lies exactly on
the boundary of two regions. For these nodes it is worthwhile to check whether all
neighbors of that node have their positions in the other region. If yes, the node can
be transferred to the other region and will not become a boundary node.

The median of the nodes can be computed in linear time with the median of
medians algorithm [Cormen et al. 2001]. Since the running time of the preprocessing
is dominated by the shortest path computations after the partitioning of the graph,
we decided to use standard algorithms: sorting the nodes and taking the mean.
As an example, the kd-tree partitioning with 64 regions for one of our test graphs
with one million nodes was calculated in 175s, the arc-flags were calculated in seven
hours.

6.4 METIS

A fast method to partition a graph into R almost equally-sized sets with a small
cut-set is presented by Karypis and Kumar [1998]. An efficient implementation can
be obtained free-of-charge from [Karypis 1995]. There are two advantages of this
method for our application. The METIS partitioning does not need a layout of
the graph and the preprocessing is faster because the number of arcs in the cut
is noticeably smaller than in the other partitioning methods. Fig. 6(d) shows a
partitioning of a graph generated by METIS.

7. EXPERIMENTAL SETUP AND IMPLEMENTATION

The main goal of the present work is to compare four different partitioning al-
gorithms in combination with the arc-flag acceleration method for Dijkstra’s al-
gorithm. The comparison is done with regard to the resulting search space and
speed-up of processing time of the accelerated Dijkstra search. We have four or-
thogonal dimensions in our algorithm tool-box:

(1) The base partitioning method: Grid, Kd-Tree or METIS

(2) The number of partitions
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(3) Usage of one-level partitions or two-level partitions

(4) A uni-directional or a bi-directional search

As the differences between quad-Trees and kd-trees are very small, we used only
kd-trees with median in the rest of this work as a representative for this partitioning
class.

We chose eleven combinations of the above described techniques, which we believe
are the most promising ones. For instance, we left out a combination of two level
arc-flags with a METIS partitioning and a bi-directional search (Bi2Metis), because
in most cases the two-level arc-flags in a bi-directional search hardly performed
better than the one-level variant. Table II shows our selection of combinations.

Table II. Overview of the tested algorithms

Name Description Parameter

Grid c × c grid over graph layout c

KdTree kd-tree concerning coordinates of nodes depth of kd-tree
METIS partition generated by METIS number of regions
2LevelGrid c × c grid coarse grid, g × g fine grid c and g

2LevelKdTree coarse kd-tree and fine kd-tree depth of coarse and
fine kd-tree

2LevelMETIS coarse METIS and fine METIS number of coarse and
fine regions

BiGrid bi-directional grid size of forward and
backward grid

BiKdTree bi-directional kd-tree depth of kd-trees
Bi2LevelGrid bi-directional 2LevelGrid sizes of grids
Bi2LevelKdTree bi-directional 2LevelKdTree depth of kd-trees
BiMETIS bi-directional METIS number of forward and

backward regions

Furthermore, we fixed the size of the preprocessed data to nearly the same number
for all algorithms. Exactly the same size cannot be realized due to the restrictions
by the construction of the partitioning algorithms. Table III shows the preprocessed
data size for the algorithms we tested.

We looked at the algorithms on German road networks, which are directed and
have a 2D layout and positive arc weights. Table IV shows some characteristics of
the graphs. The column ”shortest path” refers to the average number of nodes on
a shortest path in the graph. For the unmodified algorithm of Dijkstra, the average
running time and number of nodes visited by the algorithm is calculated for 5000
runs. The algorithm stops if the target is reached. For each graph, we generated
a demand file with 5000 random shortest path requests so that all algorithms use
the same shortest path demands. All running time measurements were made on a
single AMD Opteron Processor with 2.2 GHz and 8 GB RAM.

All of our experiments were performed with an implementation of the algorithms
in C++ using the GCC compiler 3.3. We used the graph data structure from LEDA
4.4 [Mehlhorn and Näher 1999]. In order to measure the unaffected improvement
in performance with respect to time, we implemented the algorithms very carefully
without using frameworks for re-use of code. Our experiments have shown that
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Table III. Partitions with nearly the same preprocessed data size of 80 bit

Name of partitioning forward backward bits per arc
1st level 2nd level 1st level 2nd level

Grid 9 × 9 - - - 81
KdTree 64 - - - 64

METIS 80 - - - 80
2LevelGrid 8 × 8 4 × 4 - - 80
2LevelKd 64 16 - - 80
2LevelMETIS 72 8 - - 80
BiGrid 7 × 7 - 6 × 6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6 × 6 2 × 2 6 × 6 2 × 2 80
Bi2LevelKd 32 8 32 8 80

Table IV. Characteristics of the tested road networks. The column ”shortest paths” provides the
average number of nodes on a shortest path.

Graph #nodes #arcs shortest Dijkstra’s algorithm
path time [s] #visited nodes

road network 1 362,000 920,000 250 0.26 183,509

road network 2 474,000 1,169,000 440 0.27 240,421
road network 3 609,000 1,534,000 580 0.30 306,607
road network 4 1,046,000 2,534,000 490 0.78 522,850

using complex class-hierarchies with virtual functions increased the time for a single
shortest path request by up to a factor of ten (even with aggressive optimization of
the compiler).

The algorithm of Dijkstra needs several arrays of node and arc data to store the
predecessor arc or the current distance of a node. Since an initialization step at
the beginning of each shortest path search would take a long time, we used time-
stamps: every time, a node is visited by the search it gets the time of the current
search. Hence we know whether the data of the arrays is valid for this search or
not. Therefore the initialization step of all nodes can be omitted. This is also a
suitable method in the real-life application - where a central server has to answer
a huge number of shortest path queries.

Our speed-up method reduced the complete graph for each search to a smaller
sub-graph and this led to a smaller search space. We sampled the average size of
the search space by counting the number of nodes that have been visited during
a search and we measured the average CPU time per query. A node is ”visited”
during a search if it is put into the priority queue, i.e. an Queue.insert operation
is performed.

Dijkstra’s algorithm is used as a reference algorithm to compare the search space
and CPU time. One reason for the excellent speed-up which can be achieved by
the arc-flag technique is the negligibly small computational overhead that it adds
to the standard algorithm of Dijkstra: Dijkstra’s algorithm with arc-flags only tests
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one bit of a bit-vector every time an arc is explored.
Arc-flags can be combined with a bi-directional search. In principle, arc-flags

can be used independently for the forward search, the backward search, or both of
them. In our experiments the best results (with a fixed total number of bits per
arc) are achieved through a forward and backward accelerated bi-directional search,
which means that we applied the partition-based speed-up technique to both search
directions (with half of the bits for each direction). For the bi-directional search
there are several possible alternation methods for switching between the forward
and backward search. In order to reduce the resulting search space, our algorithm
takes the direction with the smaller search-horizon (the size of the priority queue).

Most of the figures that we present in this paper compare speed-ups of time or
reductions of the search space in relation to the size of preprocessed data which is
the size of the calculated flag-vectors.

8. COMPUTATIONAL RESULTS

Figure 8 illustrates that, in the graphs we tested, there is a linear correlation be-
tween the search space and the CPU time. This justifies that in the following
analysis it is sufficient to consider the search space only.

Fig. 8. Search space vs. search-time of bi-directed, accelerated searches. Because of the linearity,
it is sufficient to compare the search spaces in further analysis.

8.1 Uni-directional search

Figure 9 shows a comparison of the grid and the kd-tree partitioning with respect
to the number of the partitions. In all graphs we tested, the grid partitioning led
to smaller reductions of the search space, because the kd-tree adapts better to the
2D layout of the graph. Therefore, we will restrict the following analysis of the
partition-based Dijkstra to the kd-tree partitions.

Figure 10 shows the absolute and relative size of the search space, the speed-
up factor and the preprocessing time for the uni-directional arc-flag acceleration
method using kd-tree partitions with increasing sizes of the partitions. The size of
the absolute search space clearly depends on the size of the graph. A surprising
result is that the relative size of the search space (relative to the search space of the
standard algorithm of Dijkstra) is very similar for all graphs, except road network 3,
which seems to have a special characteristic. The speed-up diagram of Figure 10
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Fig. 9. Comparison of the quality between grid partitions and kd-tree partitions for uni-directional
shortest path searches. The usage of kd-tree partitions leads to clearly better results because it
adapts to the layout of the graph.

shows the factor between the average time of one accelerated shortest path search
and the running time of the standard algorithm of Dijkstra for the same request.

8.2 Two-Level Partitions

The main reason for the introduction of the second-level partitions was that no arc
is excluded from the shortest path search inside the region of the target node t. Our
experiments have shown that by using the two-level arc-flags the number of nodes
that are visited during a search decreases as the search approaches the target node.
Figure 11 compares the search spaces of the accelerated searches with one-level and
two-level arc-flags. Although only very few bits are added, the average search space
is reduced to about half of its size.

8.3 Bi-directional Search

The best results were achieved by a bi-directional Dijkstra search, that is accelerated
in both directions: we can measure speed-ups of more than a factor of 500 compared
to the standard algorithm of Dijkstra. In general, the speed-up increases with the
size of the graph.

Using a bi-directional search, the two-level strategy becomes less important, be-
cause the second-level flag-vectors will not be used in most of the shortest path
searches: the second-level flag-vectors are only used, if the search enters the region
of the target. During a bi-directional search, the two search horizons are likely
to meet in a region other than the source or the target region. Therefore, the
second-level flag-vectors are only used if both nodes are lying in the same region.
Figure 12 confirms this estimation: only for large partitions in the first level is a
speed-up recognizable with two-level flag-vectors. If more than 50 bits for the first
level are used, the difference is marginal. Therefore, it does not seem useful to use
the second-level strategy in a bi-directional search.

Figure 14 shows the results of the bi-directional search which is accelerated by
arc-flags with kd-tree partitions. Even with less preprocessed data (16 bits per arc),
we get a speed-up of over 50. The accelerated search on network 4 is 545 times
faster than the search with the standard algorithm of Dijkstra when using 128 bits
per arc preprocessed data (1.3 ms on average per accelerated search).
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Fig. 10. Results of our uni-directional arc-flag acceleration method using kd-tree partitions. The
numbers are the average numbers over all performed shortest path computations. The absolute

search space is shown by the number of visited or touched nodes during a shortest path search vs.
the size of the flag-vectors per edge (in bits per edge). The relative search space is shown by the
reduction of the size of the search space in percent (the search space of the standard algorithm
of Dijkstra equals 100%) vs. the size of the flag-vectors per edge (in bits per edge). For example,
a reduction of the size of the search space to 5% means that the acceleration method visits only
5% of the search space of the standard algorithm of Dijkstra (for the same request) to find a
shortest path. The speed-up relative to Dijkstra shows the absolute speed-up factor of the uni-

directional arc-flag acceleration method vs. the size of the flag-vectors per edge (in bits per edge).
For example, a speed-up of 80 means that the acceleration method finds a shortest path 80 times
faster than the standard algorithm of Dijkstra. The preprocessing time is shown in hours vs. the
size of the flag-vectors per edge (in bits per edge) for all of our road networks.
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Fig. 11. Comparison of the search space of the one-level (64 regions) and the two-level (64 first-
level regions, 8 second-level regions) arc-flags with kd-trees.
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Fig. 12. Average search space for a bi-directional search using arc-flags with kd-trees and a two-

level partition vs. one-level partition. The y-axis shows the size of search space in number of
visited (touched) nodes. The x-axis of the left figure shows the sum of bits of the arc-flag-vectors
for the first and the second level partition. The x-axis of the right figure shows the number of bits
only for the arc-flag-vector for the first level partition.

8.4 Comparison of the Partitioning Methods

We first compared the four geometric partitioning methods quad-trees and kd-trees
for the center (standard), average, and median. Figure 13(a) shows the average
search space for a road network for an increasing number of bits per arc. As the
differences are indeed very small, we will use only kd-trees with median in the rest
of this section as a representative for this partitioning class.

We now compare the average search spaces for different graphs. For an easy
comparison we consider the search space relative to the average search space of
Dijkstra’s algorithm in a given graph. Figure 13(b) provides the relative average
search space for an increasing number of bits per arc. An interesting point is that
for arc-flags in this range of size all curves follow a power law.

Figure 15 compares the results of the different partitioning methods on the four
road networks. The size of the preprocessed data per arc is nearly the same for all
algorithms: 80 bits. The exact size of 80 bits could not always be realized, as the
size of a partition (and therefore the size of the flag-vectors per arc) is determined
by specific parameters. The kd-tree partitions, for instance, always have a size of
powers of two. Table III shows the partitions we used for the comparison.

Figure 12 shows the average search space for a bi-directional search using arc-
flags with kd-trees for a one-level and two two-level partitions with different sizes
of the partitions. If more than 50 regions are used for the first-level, the two-level
acceleration does not provide any noticeable improvement. Note that in the case of
a bi-directional search for a large number of bits per arc the curves are bent, which
is the result of some degree of saturation. The same observation can be made in
Figure 14, which shows the search space for the four road networks. In contrast, in
Fig. 13(b) the curves follow a power-law for a uni-directional search.

For the uni-directional searches, the two-level strategies led to the best results: a
factor of 2 better than for their corresponding one-level partitioning (see Figure 11).
For the bi-directional search, we can see some kind of saturation: the differences
between one-level and two-level partitions are getting very small with increasing



Partitioning Graphs to Speed-Up Dijkstra’s Algorithm · 25

10 20 50 100 200

20
00

40
00

60
00

80
00

12
00

0

Quadtree
kd−Tree Standard
kd−Tree Average
kd−Tree Median

bits per arc

se
a
rc

h
sp

a
ce

[#
n
o
d
es

]

(a) Partitioning with quad-tree and three kd-
tree partitions (standard, average, and me-
dian). The difference in the resulting search
space is marginal.

10 20 50 100 200 500

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

street network 1
street network 2
street network 3
street network 4

bits per arc

se
a
rc

h
sp

a
ce

[%
]

(b) Partitioning with median kd-tree for road
networks 1-4. The search space is plotted rela-
tive to the search space of Dijkstra’s algorithm.

Fig. 13. Average search spaces for different sizes of the flag-vectors and uni-directional search.
With an increasing number of bits per arc, the search space gets smaller.

Fig. 14. Search space and speed-up for road networks 1-4 with a bi-directional accelerated search
using kd-tree partitions.

number of bits (see Figure 12).
In summary, our tests showed that the best results are achieved by the arc-flag

method combined with a bi-directed search, accelerated in both directions with
kd-tree partitions or METIS partitions.

9. CONCLUSION AND OUTLOOK

For the arc-flag method there is a clear trade-off between speed-up factor and mem-
ory usage. Depending on the chosen partition, one can regard the arc-flag accel-
eration of shortest path computation as an interpolation between no precomputed
information at all (standard algorithm of Dijkstra) and complete precomputation
by determining all possible shortest paths of the graph. Whereas the former is
achieved by choosing a partition of the graph into just one region, the latter means
partitioning the graph in such a way that a region is given for every single node of
the graph. Thus in theory we can get as close as possible to the ideal shortest path
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Fig. 15. Average sizes of the search spaces for most of the implemented algorithms on road
networks 1-4 are given on the y-axis. The sizes are given in average numbers of visited arcs during
a shortest path search. The sizes of the flag-vectors (number of bits per arc) are given in brackets.

search by increasing the number of regions in the partition (’ideal’ means that the
shortest path algorithm visits only arcs which actually belong to the shortest path
itself). Obviously, an increase in the number of regions also entails an increase in
preprocessing time and memory consumption.

Our tests show that the best partition-based speed-up methods is a bi-directed
search, accelerated in both directions with kd-tree partitions or METIS partitions.
We can measure speed-ups that are more than 500 times faster than Dijkstra’s
algorithm. In general, the speed-up increases with the size of the graph. The
preprocessing effort scales well and can easily be adapted to a parallel algorithm:
the flag-vector entries of different regions are independent and can be computed in
parallel.

Even with the smallest preprocessed data (16 bit per arc), we get a speed-up of
more than 50. The accelerated search on network 4 is 545 times faster than the
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standard algorithm of Dijkstra using 128 bits per arc preprocessed data (1.3 ms on
average per accelerated search). On the basis of our tests, we can recommend the
kd-tree used for forward and backward acceleration. The partitions with kd-trees
and METIS yield the highest speed-up factors, but kd-trees are easier to implement.

It would be particularly interesting to develop a specialized partitioning method
that is optimized for the arc-flags approach. Our experiments support our intuition
that regions should be of equal size and nodes should be grouped together if the
distance between them is small. However, we cannot prove theoretically that this
would be the best partitioning method for arc-flags.

One approach for finding good partitions might be the following: consider the
flag-vectors of the preprocessing of the partitioning with exactly one node per re-
gion. Now regard the Hamming-distance according to the flag-vectors of two nodes
– the number of entries that differ for these two nodes over all arcs. These distances
form a distance matrix. We can now search a partitioning with R regions where
the distances of nodes in one region are minimal according to the distance matrix.
This problem is known as clustering. Although various other techniques are known
for graph clustering, all optimization criteria that we are aware of either result in a
large processing time or their use for the arc-flags approach cannot be sufficiently
motivated.

For a uni-directional search the two-level arc-flags lead to a significant speed-up.
The reduction of the search space outweighs by far the overhead to ”uncompress”
two-level arc-flags. It would be interesting to evaluate whether this effect can be
repeated with a third or fourth level of compression, especially for very large graphs
like the complete road network of Europe.

There are further known speed-up techniques by Sanders and Schultes [2005],
Goldberg and Harrelson [2005], Gutman [2004], Holzer [2003], and Jung and Pra-
manik [1996]. Although the speed-up factors of these speed-up techniques are not
competitive, experimental studies done by Holzer et al. [2004] and Wagner and
Willhalm [2005] with similar techniques suggest that combinations outperform a
single speed-up technique. A systematic evaluation of combinations with current
approaches would therefore be of great value.
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