
An introduction to
explicit Bruhat-Tits theory

JIU-KANG YU

November 29, 2001

� This is a slightly expanded note of my talk.

� I will talk about recent efforts to make Bruhat-Tits theory more explicit and accessible. These
are joint works with W. Gan and G. Prasad. I also hope that this talk can serve as a preparation for
DeBacker’s talk.

By an explict Bruhat-Tits theory for a p-adic group G, I mean:

– Describe the building B(G) as a topological space.
– Describe the structure of apartments and (poly)-simplical complexes on B(G).

– Describe the parahoric subgroups their Bruhat-Tits schemes, and their Moy-Prasad filtrations.

All these descriptions should be given in terms of some geometry relevant to G.

� Instead of explaining the results of Gan-Yu (focused on exceptional groups, which are not treated
“explicitly” in the canon of Bruhat-Tits) and Prasad-Yu, I will work through an example of classical
group. The reasons to do this are

– The treatment of Bruhat-Tits (BSMF 1987) does not cover the simplical structure in detail.

– The book of Garret is not quite group theoretic. In fact, he started with, say symplectic geometry,
and then proceed to construct some simplical complex, show that it is a building, etc. There is
no explicit connection with the viewpoint of Bruhat-Tits theory.

– With the ideas developed in Gan-Yu, now it is possible to figure out everything about the building
of classical group fairly easily. The outline given here seems much simpler than the above two
references.

– I hope that this lecture is helpful if you will read Gan-Yu, in particular you are not one of the few
people, like Wee-Teck, who find exceptional groups more familiar than classical groups.

� Setting up. Let k be a local field of residue characteristic �= 2, (V, 〈, 〉) a symplectic space over k
with symplectic basis e1, . . . , en, f1, . . . , fn. Let G = Sp(V ).

� The building of GL(V ). It is well-known (due to Iwahori-Matsumoto-Bruhat-Tits) that B GL(V ) is
the space of norms on V . This is the starting point of any explicit Bruhat-Tits theory.

We recall the definition of a norm α on V : it is a function α : V → R ∪ {+∞} satisfying

– α(x + y) ≥ inf{α(x), α(y)}, for all x, y ∈ V ;

– α(λx) = ord(λ) + α(x) for all λ ∈ k, x ∈ V ;
– α(x) = +∞ if and only if x = 0.

(so that e−α is similar to a norm on a real normed vector space).

1



Example. Let m = 2n, v1, . . . , vm a basis of V and
c1, . . . , cm ∈ R, then

α : V → R ∪ {+∞},∑
λivi 	→ inf{ord(λi) + ci : 1 ≤ i ≤ m}

is a norm. By varying the ci ’s, we get a space of norms parametrized by Rm . This Euclidean space is
just an apartment on B GL(V ).

Example. Let L be a lattice in V , define α = αL by

α(x) = sup{t : x ∈ π t L}.
Then α is a norm. Such norms are precisely the vertices on B GL(V ).

Fact. Since GL(V ) � GL(V ∗), we have B GL(V ) � B GL(V ∗). This just means that every norm α on
V determines a dual norm on the dual space V ∗.

� The topological space of B Sp(V ). There is an involution σ of GL(V ) such that G = GL(V )σ . The
involution σ acts on B GL(V ) by transport of structure, and σ (α) just identifies the dual norm on V ∗

back to a norm on V via V ∗ � V offered by the duality 〈, 〉.
By a theorem of Prasad-Yu, B Sp(V ) = (B GL(V ))σ . So,

THEOREM 1. B Sp(V ) is the space of self-dual norm on V .

This description was first conjectured by Weil in 1963, announced as a theorem by Bruhat-Tits in
1974, proved by them in 1987. Recently, Moy and Kim re-discovered the statement and gave a nice
proof.

As mentioned above, this now follows from a general theorem of Prasad-Yu. However, it is also very
easy to give a one-page proof using a general formalism of Gan-Yu. One only needs a single arithmetic
input: the fact that any two self-dual lattice in V are conjugate by G(k). [Remark. The proof of Gan-Yu
or Bruhat-Tits is valid for p = 2 also].

� Theorem 1 is very useful. But it doesn’t answer questions as: can one give some explicit points on
BG? how do we know whether a point is a vertex? etc.

The rest of this talk is to answer these questions with minimal amount of computations. I would
like to emphasize that Theorem 1 is the key point. It is why we can give a much simpler treatment of
the whole theory.

� The root system. The minimal computation we need to do is to work with a torus and compute
the affine root system, so that we know what an apartment is like.

We first specify a maximal torus: S = {s(t1, . . . , tn) : ti ∈ Gm}, where s(t).ei = ti ei , s(t). fi = t−1
i fi ,

for 1 ≤ i ≤ n.
Let ai be the character of S such that ai (s(t)) = ti . Then

� = �(G, S) = {±2ai ,±ai ± a j }
is of type Cn.

The root subgroups are easy to describe: for example, for a = ai − a j , Ua = {xa(u) : u ∈ Ga},
where xa(u) acts on 〈ei , e j 〉 by

(
1 u
0 1

)
and on 〈 fi , f j 〉 by

(
1 0

−u 1

)
(and fixing the other ek ’s, fk ’s.

For a = 2ai , Ua acts on 〈ei , fi〉 by
(

1 u
0 1

)
, etc.
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� The affine root system. Of course, what we have written down is just a Chevalley system {xa}a∈� for
the split group (G, S). It is a general fact that whenever you have a Chevalley system (more generally
a Chevalley-Steinberg system), you know:

– there is a (hyperspecial) point y0 on the building (actually on the apartment A(G, S)), determined
by the Chevalley system.

– using y0 as the origin of A(G, S), the affine root system is

{Z ± 2ai , Z ± ai ± a j }.
– the filtration groups of the root subgroups are as follows: Ua(k)y0,r = {xa(u) : u ∈ k, ord(u) ≥ r}

for any a.

� Finding a set of standard vertices. Let us first identify y0 in the description of Theorem 1. By
definition, the hyperspecial subgroup Gy0,0 associated to y0 is generated by S(Ok) and Ua(k)y0,0 =
xa(Ok), a ∈ �. Clearly, the matrices of all these generating elements have integral coefficients (relative
to the basis e1, . . . , en, f1, . . . , fn). So it is clear that Gy0,0 fixes the lattice L0 spanned by

e1, . . . , en, f1, . . . , fn.

The action of σ on B GL(V ) is such that σ (αL) = αL⊥ , where

L⊥ = {x ∈ V : 〈x, L〉 ⊂ Ok}
is the lattice dual to L. Since L0 is self-dual, αL0 lies on B Sp(V ), and it must be the unique point y0

fixed by Gy0,0.

Other vertices. Now a system of simple affine roots can be choose to be

{α0, . . . , αn} = {1 − 2a1, a1 − a2, . . . , an−1 − an, 2an}.
We notice that α0 + 2(α1 + · · · + αn−2) + αn = 1. Setting (α0, . . . , αn) to (1, 0, . . . , 0), we get the vertex
y0. Setting it to (0, 1/2, 0, . . . , 0), we get another vertex y1. The vector y1 − y0 lies in Hom(Gm, S) ⊗
R ⊂ Hom(Gm, T ) ⊗ R, which acts on A(GL(V ), T ), where T is the maximal k-split torus of GL(V )

determined by the basis ei , fi . We know how this action works in B GL(V ), therefore, we can figure
out what y1 is.

In more details, y1 is obtained from y0 by applying the translation (1/2, 0, . . . , 0,−1/2, 0, . . . , 0)

to A(GL(V ), T ) � R2n. If we are translating by (1, 0, . . . , 0,−1, 0, . . . , 0), it is the same as the action of
(π, 1, . . . , 1, π−1, 1, . . . , 1) ∈ T (k) on y0, hence is the lattice spanned by {πe1, e2, . . . , en, π

−1 f1, f2, . . . , fn}.
Now it is easy to see that y1 is the mid-point of L1 and L⊥

1 , where L1 is the lattice spanned by

πe1, e2, . . . , en, f1, f2, . . . , fn.

Hence L⊥
1 is the lattice spanned by

e1, e2, . . . , en, π
−1 f1, f2, . . . , fn.

Similarly, we can find all vertices in the chamber determined by the above system of simple affine
roots. They are the mid-points yi of Li and L⊥

i , where Li is the lattice spanned by

πe1, . . . , πei , ei+1, . . . , en, f1, . . . , fn.

The point yn is hyperspecial.
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� Identifying all vertices. What is special about the lattice Li? One can try to find intrinsic properties
of them (invariant by G(k)). Then it is natural to conjecture the following description of vertices on
B Sp(V ): there is a bijection

{vertices on B SO(V )} ↔
{lattices L in V satisfying π L⊥ ⊂ L ⊂ L⊥}.

A vertex “L” is of “type i” (in the sense that it is conjugate to yi) if and only if dim L⊥/L = 2i .

THEOREM 2. This description is correct.

This theorem amounts to the following: a lattice L satisfying π L⊥ ⊂ L ⊂ L⊥ is G(k)-conjugate to
a our standard examples, or equivalently, such an L admits a suitable Witt-type decomposition.

This Witt-type decomposition theorem is proved in Bruhat-Tits or Garret (and some work of Wald-
spurger can be considered as a reference too). Though it is not very hard, it is not easy and the proof
is long. Here is a very simple argument, based on ideas developed in Gan-Yu.

We first explicate the correspondence L 	→ a point on BG. Of course, it is just L 	→ vL = the
mid-point of L and L⊥. When we write down this point as a norm, we realize that it takes values in
1
2Z (in fact, this norm α takes value 0 on L � π L⊥, value 1

2 on π L⊥ � π L, etc.)
Now we assert that a self-dual norm α takes values in 1

2Z if and only if α is a vertex on BG. It is
clear that this statement can be checked by computing in an apartment, and there we check it easily.

The theorem is clear from these two observations. Notice that this simple argument recovers the
Witt-type decomposition theorem. This argument relies on Theorem 1 in a crucial way. In the paper
of Bruhat-Tits, the Witt-type decomposition is needed to proved Theorem 1. However, we now have
several easier proofs of Theorem 1 independently.

� The maximal parahoric subgroups. Without giving details of justification, I will mention the fol-
lowing results, which are at least very plausible.

Let L be a lattice determining a vertex y. Then the parahoric subgroup Gy,0 acts on L⊥/L and
L/π L⊥. We notice that these are vector space over the residue field κ of k, and they carry canonical
non-degenerate symplectic forms which are preserved by the action of Gy,0. Therefore, we get a map
Gy,0 → Sp(L⊥/L) × Sp(L/π L⊥).

In fact, the image is Sp(L⊥/L)× Sp(L/π L⊥), and this is the maximal reductive quotient of Gy ⊗ κ.
Moreover,

THEOREM 3. (BRUHAT-TITS) Gy is the schematic closure of G in GL(L) × GL(L⊥).

� Incidence relations.

THEOREM 4. Let L , L ′ be two lattices which correspond to vertices on BG. Then L is incident to L ′ if
and only if L ⊂ L ′ or L ′ ⊂ L.

To see this, we can assume that the two vertices lie on a standard apartment. Then the statement is
a simple exercise in linear programming (fixing L, the points vL ′ with L ′ ⊂ L lies in a bounded subset
of the apartment defined by linear inequalities, and we can check that the only vertices in the bounded
sets are those adjacent to vL ).

Consequently, to specify a chamber is to give a chain of lattice M0 � . . . � Mn such that π M⊥
i ⊂

Mi ⊂ M⊥
i for each i . Since all chambers are G(k)-conjugate to each other, we can deduce that any such

chain of lattices is G(k)-conjugate to the standard one, in other words, they admit a “simultaneous
Witt-type decomposition.” Again, this type of result is needed before proving Theorem 1 in earlier
approaches. But we get it for free.

4



� Other classical groups

One can treat all classical group (defined by an involution) in the same way. The description of the
points on the topological space is uniform: set of self-dual norms. But just as we can only describe the
root systems uniformly for classical groups in a fixed series, we need to treat the simplical structures of
classical groups in different Witt towers separately.

As an example, I will describe the vertices in a split even orthogonal group SO(V ), dim V = 2n,
n ≥ 4. They are in bijection with the set of lattices L satisfying

(i) π L⊥ ⊂ L ⊂ L⊥, (ii) length(L⊥/L) �= 2, 2n − 2.

Remark. The set of L satisfying (i) is precisely the set of L whose stablizer is a maximal compact
subgroup of SO(V ).

Two vertices L and L ′ are incident if and only if

– L ⊂ L ′, or

– L ′ ⊂ L, or

– length(L⊥) = length(L ′⊥/L ′) = 0, length(L/(L ′ ∩ L)) = length(L ′/(L ∩ L ′)) = 1, or
– length(L⊥) = length(L ′⊥/L ′) = 2n, length((L′ + L)/L)) = length((L ′ + L)/L ′) = 1.

Remark. I emphasize that all you have to do is start with the analogue of Theorem 1 for the orthogonal
group, and go through the line of arguments for Sp(V ) above. It only involves linear geometry on a
real affine space. We don’t need to solve any arithmetic/algebra problems about lattices in quadratic
spaces.

In contrast, the problem of describing the simplicial complex of a quasi-simple algebraic group (say
a classical group) is sometimes more involved. Although the analogue of Theorem 1 is still true, the
remaining work involves spherical geometry rather than linear geometry.
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