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The purpose of this note is to prove the following theorem describing the
Witt group W,(K) of quadratic forms over a field K of characteristic 2 in
terms of generators and relations.

Theorem: W, (K) is generated by the [a,b], a,b € K, such that [a,b] is
biadditive as a function of a and b and such that

(1) [a,br?] = [ar?,b] for all a,b,r € K.

(I1)  [a,ar®*+r] =0 for all a,r € K.

In [Arason| there was given a presentation of W, (K') as a module over the
Witt ring W (K') of symmetric bilinear forms over K. This was used in [Kato|
to give a presentation of W, (K) that can be seen to be essentially equivalent
to the one in the theorem. Here we give a direct elementary proof.

In this note K always is a field of characteristic 2. We shall assume that
the reader is familiar with the basic facts about quadratic forms over such a
field. These can be found in [Scharlau|, Chapter 1.6 and Chapter 9.4, and
(with some proofs missing) in [SBF]|, Appendix 1, and also in [Baeza|. All
the relevant facts are already in the fundamental paper [Arf].

We shall, however, need some more elementary facts about such forms.
For a lack of suitable references we shall start by gathering some. The proofs
needed are easy but included for completeness. As usual, for elements a
and b in K the quadratic form on K2, (z,y) — az® + zy + by?, is denoted
by [a,b]. In particular, [0,0] is the hyperbolic plane. But, obviously, every
[a,0] and every [0, b] is isomorphic to the hyperbolic plane. (For example,
ar? + xy = uv, where u = r and v = ax +y.) We shall use = to denote
isomorphism of quadratic form but ~ for Witt equivalence.

Fact 1: For any r in K we have

[ar?, b] = [a, br?]

Proof: If r = 0 both sides are isomorphic to the hyperbolic plane. If r # 0
then ar?z? + zy + by? = au® + uv + br?v?, where u = ro and v = r~1y.

Fact 2: For any r in K we have
[a,b] = [a,ar® + 7 + b]

Proof: Writing z = u + rv and y = v we have ax? + zy + by? = au® + wv +
(ar® + 7 + b)v?.



Fact 3: Assume that [a,b] = [¢,d]. Then there is an r in K such that

[a,b] = [cr?, b] = [c,br?] 22 [e, d]

Proof: The hypotesis implies that there are s and ¢ in K, not both equal 0,
such that b = cs? + st + dt>.

If t # 0 we take r = ¢t~ and get br* = c(sr)? + (sr) + d. If t = 0 we take
r = ds™! and get br? = cd®> + d + d. In both cases the third isomorphism
therefore follows from Fact 2. The second one holds by Fact 1 and the first
one then follows from the hypothesis.

Fact 4: We have
[a,b] & [a,c] ~ [a,b+ (]

Proof: Writing z = z; +u and v = y + v; we get az? + xy + bx® + au? +
uv + cv? = ax? + 11y + (b+ ¢)y* + uvy + cv?. This shows that [a, b] @ [a, c] =
[a,b+ c] &[0, c]. As [0, ] is hyperbolic the result follows.

We now turn to the proof of the theorem. For that we let N be the
subgroup of K ® K := K ®z K generated by all elements of the form
I a®br*—ar*®bfora,breK.
(1)  a® (ar?+r) for a,7 € K.
We then let M = (K ® K)/N.
For a,b € K we denote by |a,b] the class of a ® b in M. We then can
rewrite (I) and (II) as
(D) la,br?| = |ar?,b] for all a,b,7 € K.
(1)  |a,ar®*+7r| =0 for all a,7 € K.
We refer to these equations as relations of type (I) and type (II), respectively.

Remark: As char(K) = 2, K is in fact a vector space over Fy and hence
K ® K can also be interpreted as K ®p, K. In particular, M is a 2-torsion
group. Let Ky = {z?|z € K}, which is a subfield of K. The relations
of type (I) then simply mean that the natural projection K ® K — M
factors through K ®g, K. So M can also be described as the quotient of
K ®k, K by the subgroup generated by all a @, (ar? + r) with a,r € K.
Remark: In some applications it seems nicer to use relations of the type

la,br?] = |b,ar?] instead of relations of type (I). (Also that gives an easier
proof of the symmetry of |a,b].)

It is well know (cf. [Arf]) that W,(K) is additively generated by the
[a,b] € W,(K). (We shall, as is common, use the notation [a,b] also for the
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class in W, (K) of the form [a, b]. The correct meaning will hopefully be clear
from the context.) From Fact 4 above (and the symmetry of [a, b]) it follows
that [a,b] is biadditive as a function of @ and b. From Fact 1 and Fact 2
above it follows that [a, br?] = [ar?,b] and [a, ar? + r] = 0 for every a,b,r €
K. We therefore have a group epimorphism M — W,(K) mapping each
generator |a,b] of M to [a,b] in W,(K). We call it the canonical morphism
M — W, (K).

Step 1: |a,b| = |b,a] for every a,b € K.

Proof: By letting @ = ¢ and r = 1 in relations of type (II), we get that
le,e+ 1] =0, ie., |¢c] = e 1] for every ¢ € K. In particular, |a + b,a +
b] = la+b,1] = |a,1| + |b,1]. But we also get that |a + b,a + b] =
la,a| + |a,b] + |b,a] + [b,b] = |a,1| + |a,b] + |b,a] + |b,1]. Comparing
these two expressions for |a + b,a + b], we see that |a,b| + |b,a] =0, i.e.,
that |a,b] = |b,a].

Step 2: If [a, b] is isotropic then |a,b| = 0.

Proof: By hypothesis, there are r, s € K, not both 0, such that ar? + rs +
bs?> = 0. If a = 0 then, of course, |a,b] = 0. So we may assume that a # 0.
But then s # 0 and we may, because of the homogenity of the equation,

assume that s = 1. Then we have ar? +r +b = 0, ie., b = ar? + r, so
la,b] = 0 by the relations of type (II).

Step 3: If [a,b] = [c,d] then |a,b] = |c,d].

Proof: Because of Fact 3, relations of type (I) and Step 1 we may assume
that ¢ = a. But, by the Cancellation Theorem for quadratic forms over K
(cf. |Arf]), [a,b] = [a,d] implies that [a,b — d] is hyperbolic. By Step 2 we
then get |a,b — d| =0, hence |a,b] = |a,d].

Step 4: The canonical morphism M — W,(K) is an isomorphism.

Proof: We only have to show that this morphism is injective. To do
that we have to show that if @,[a;,b;] is hyperbolic then > ;|a;, b;] = 0
in M. By induction on the number of summands, it suffices to show that
if @7 ,[a;,b;] is isotropic then there are c¢y,...,¢, 1,dy,...,d,—1 € K such
that Y1 [as, b)) = S0 e, di] in M. The case n = 1 is given by Step 2,
so we assume n > 1. By the induction assumption, we may assume that all
the [a;, b;] are anisotropic. Then there are ¢;, each ¢; a value of [a;, b;], not
all ¢; = 0, such that ¢; +--- + ¢, = 0. By the induction assumption, we
may assume that all ¢; # 0. Then [a;,b;] = [¢;, d;] for some d; € K, hence
|ai, b;| = |ci,d;] by Step 3. To complete the proof it therefore suffices to show
that [cp—1,dn—1]+|Cn,dn]| = |cn-1+cn. d,_ 1|+, d, | forsomed,_,,c,.d, €

—1>*ns“¥n
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K. But we have in general, by the biadditivity of the symbol |a,b], that
la+d,b]+ |, b+V] =|a,b]+ |, b+ |d,b] + |d, V] =]|ab|+ V]
In particular, |¢,—1 4 ¢n, dp_1] + |Cnydn1 +dn] = a1, dn1]| + [Cn, dn].

This concludes the proof of the theorem. We now shall give some conse-
quences.

Let W(K) be the Witt ring of symmetric bilinear forms over K and
let I(K) be the fundamental ideal of W(K). Then W, (K) is a W(K)-
module in a natural way. In particular, we have the subgroups I"W,(K) :=
I(K)"W,(K) of W,(K). (For this, see [Scharlau|, [SBF], or |[Baezal.)

Recall that p(K) is the additive subgroup {r?+r|r € K } of K. The Arf
invariant A : W, (K) — K/p(K) is an epimorphism that maps the generator
[a,b] to ab+ p(K). It is well known that its kernel equals 1T, (K).

Clearly, by d + p(K) + [1,d] there is given a right inverse to the Arf
invariant. It follows that W, (K) is the direct sum of the subgroup { [1,d] | d €
K} and IW,(K). In particular, /W, (K) is isomorphic to the quotient of
W,(K) by this subgroup.

If a # 0 then (a)[1,d] = [a,%] in W,(K). It follows that (1,a)[1,d] =
[1,d] + [a,%]. Writing d = ab the right hand side becomes [1,ab] + [a, D).
As this equals 0 if @ = 0, we conclude that IW,(K) is generated by the
[la,b]] :== [1,ab] + [a,b] with a,b € K. Using our representation of W,(K)
above and that IW,(K) is isomorphic to the quotient of W, (K') described
above, we get the following representation of W, (K).

Corollary 1: IW,(K) is generated by the [[a,b]], a,b € K, such that [[a, b]]
is biadditive as a function of a and b and such that

(0)  [[1l,a]]=0foralac K.
(I) [[a, br?]] = [[ar?,b]] for all a,b,r € K.
(1) [la,ar* +7]] =0 for all a,r € K.

If a,b # 0 then we get as above that (1,a)(1,b)[1,d] = [1,d] + [a, 4] +
[b, 414 [ab, £]. Writing d = abc, the right hand side becomes [1, abc] + [a, bc] +
[b, ac| + [ab, c]. Denoting this by [[a, b, ¢|], and noting that this is trivial if
a=0orb=0, wesee that I’WW,(K) is generated by the [[a,b,¢]] with
a,b,ce K.

As [1, abc]+[1, abc] = 0, we can write [[a, b, c|| = [[a, bc]]+[b, ac]]+[[ab, c]].
Denoting by ((a,b)) the class of [[a,b]] in IW,(K)/I*W,(K), we get the
following representation of this quotient.



Corollary 2: TW,(K)/I*?W,(K) is generated by the ((a,b)), a,b € K, such
that ((a,b)) is biadditive as a function of a and b and such that

(0)  ((1,a)) =0forall a € K.

( ((a,br?)) = ((ar?,b)) for all a,b,r € K.

(1) ((a,ar®*+7r))=0for all a,r € K.

( ((a,bc)) + ((b,ac)) + ((ab,c)) = 0 for all a,b,c € K.

It is well known that IW,(K)/I*(K)W,(K) is isomorphic to Bry(K), the
2-torsion part of the Brauer group of K. Under this isomorphism ((a,b))
corresponds to the class of the Clifford algebra of [a, b]. In particular, Corol-
lary 2 gives a presentation of Bry(K) by generators and relations.

Acknowledgements:

The original draft for this note was written during a two month visit to the
University of Talca, Chile, in the year 2002. The author wishes to express
his thanks for the hospitality he enjoyed during this visit.

References:

[Arason| J.K. Arason: Wittring and Galoiscohomologie bei Charakteristik 2.
J. Reine Angew. Math. 307/308, 247-256 (1979).

[Arf] C. Arf: Untersuchungen tiber quadratische Formen in Kérpern der
Charakteristik 2 (Teil I). J. Reine Angew. Math. 183, 148-167 (1941).

[Baeza| R. Baeza: Quadratic forms over semilocal rings. Lecture notes in
mathematics 655. Berlin, Heidelberg, New York: Springer 1978.

[Kato] K. Kato: Symmetric bilinear forms, quadratic forms and Milnor K-
theory in characteristic two. Invent. Math. 66, 493-510 (1982).

[SBF| J. Milnor; D. Husemoller: Symmetric bilinear forms. Berlin, Heidel-
berg, New York: Springer 1973.

[Scharlau] W. Scharlau: Quadratic and hermitian forms. Berlin, Heidelberg,
New York: Springer 1985.



