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The purpose of this note is to prove the following theorem describing the
Witt group Wq(K) of quadratic forms over a field K of characteristic 2 in
terms of generators and relations.

Theorem: Wq(K) is generated by the [a, b], a, b ∈ K, such that [a, b] is
biadditive as a function of a and b and such that
(I) [a, br2] = [ar2, b] for all a, b, r ∈ K.
(II) [a, ar2 + r] = 0 for all a, r ∈ K.

In [Arason] there was given a presentation of Wq(K) as a module over the
Witt ring W (K) of symmetric bilinear forms over K. This was used in [Kato]
to give a presentation of Wq(K) that can be seen to be essentially equivalent
to the one in the theorem. Here we give a direct elementary proof.

In this note K always is a field of characteristic 2. We shall assume that
the reader is familiar with the basic facts about quadratic forms over such a
field. These can be found in [Scharlau], Chapter 1.6 and Chapter 9.4, and
(with some proofs missing) in [SBF], Appendix 1, and also in [Baeza]. All
the relevant facts are already in the fundamental paper [Arf].

We shall, however, need some more elementary facts about such forms.
For a lack of suitable references we shall start by gathering some. The proofs
needed are easy but included for completeness. As usual, for elements a
and b in K the quadratic form on K2, (x, y) 7→ ax2 + xy + by2, is denoted
by [a, b]. In particular, [0, 0] is the hyperbolic plane. But, obviously, every
[a, 0] and every [0, b] is isomorphic to the hyperbolic plane. (For example,
ax2 + xy = uv, where u = x and v = ax + y.) We shall use ∼= to denote
isomorphism of quadratic form but ∼ for Witt equivalence.

Fact 1: For any r in K we have

[ar2, b] ∼= [a, br2]

Proof: If r = 0 both sides are isomorphic to the hyperbolic plane. If r 6= 0
then ar2x2 + xy + by2 = au2 + uv + br2v2, where u = rx and v = r−1y.

Fact 2: For any r in K we have

[a, b] ∼= [a, ar2 + r + b]

Proof: Writing x = u + rv and y = v we have ax2 + xy + by2 = au2 + uv +
(ar2 + r + b)v2.
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Fact 3: Assume that [a, b] ∼= [c, d]. Then there is an r in K such that

[a, b] ∼= [cr2, b] ∼= [c, br2] ∼= [c, d]

Proof: The hypotesis implies that there are s and t in K, not both equal 0,
such that b = cs2 + st + dt2.

If t 6= 0 we take r = t−1 and get br2 = c(sr)2 + (sr) + d. If t = 0 we take
r = ds−1 and get br2 = cd2 + d + d. In both cases the third isomorphism
therefore follows from Fact 2. The second one holds by Fact 1 and the first
one then follows from the hypothesis.

Fact 4: We have
[a, b]⊕ [a, c] ∼ [a, b + c]

Proof: Writing x = x1 + u and v = y + v1 we get ax2 + xy + bx2 + au2 +
uv + cv2 = ax2

1 + x1y + (b + c)y2 + uv1 + cv2
1. This shows that [a, b]⊕ [a, c] ∼=

[a, b + c]⊕ [0, c]. As [0, c] is hyperbolic the result follows.

We now turn to the proof of the theorem. For that we let N be the
subgroup of K ⊗K := K ⊗Z K generated by all elements of the form
(I) a⊗ br2 − ar2 ⊗ b for a, b, r ∈ K.
(II) a⊗ (ar2 + r) for a, r ∈ K.
We then let M = (K ⊗K)/N .

For a, b ∈ K we denote by ba, bc the class of a ⊗ b in M . We then can
rewrite (I) and (II) as
(I) ba, br2c = bar2, bc for all a, b, r ∈ K.
(II) ba, ar2 + rc = 0 for all a, r ∈ K.
We refer to these equations as relations of type (I) and type (II), respectively.
Remark: As char(K) = 2, K is in fact a vector space over F2 and hence
K ⊗ K can also be interpreted as K ⊗F2 K. In particular, M is a 2-torsion
group. Let K0 = {x2 |x ∈ K }, which is a subfield of K. The relations
of type (I) then simply mean that the natural projection K ⊗ K → M
factors through K ⊗K0 K. So M can also be described as the quotient of
K ⊗K0 K by the subgroup generated by all a ⊗K0 (ar2 + r) with a, r ∈ K.
Remark: In some applications it seems nicer to use relations of the type
ba, br2c = bb, ar2c instead of relations of type (I). (Also that gives an easier
proof of the symmetry of ba, bc.)

It is well know (cf. [Arf]) that Wq(K) is additively generated by the
[a, b] ∈ Wq(K). (We shall, as is common, use the notation [a, b] also for the
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class in Wq(K) of the form [a, b]. The correct meaning will hopefully be clear
from the context.) From Fact 4 above (and the symmetry of [a, b]) it follows
that [a, b] is biadditive as a function of a and b. From Fact 1 and Fact 2
above it follows that [a, br2] = [ar2, b] and [a, ar2 + r] = 0 for every a, b, r ∈
K. We therefore have a group epimorphism M → Wq(K) mapping each
generator ba, bc of M to [a, b] in Wq(K). We call it the canonical morphism
M → Wq(K).

Step 1: ba, bc = bb, ac for every a, b ∈ K.
Proof: By letting a = c and r = 1 in relations of type (II), we get that
bc, c + 1c = 0, i.e., bc, cc = bc, 1c for every c ∈ K. In particular, ba + b, a +
bc = ba + b, 1c = ba, 1c + bb, 1c. But we also get that ba + b, a + bc =
ba, ac + ba, bc + bb, ac + bb, bc = ba, 1c + ba, bc + bb, ac + bb, 1c. Comparing
these two expressions for ba + b, a + bc, we see that ba, bc + bb, ac = 0, i.e.,
that ba, bc = bb, ac.

Step 2: If [a, b] is isotropic then ba, bc = 0.
Proof: By hypothesis, there are r, s ∈ K, not both 0, such that ar2 + rs +
bs2 = 0. If a = 0 then, of course, ba, bc = 0. So we may assume that a 6= 0.
But then s 6= 0 and we may, because of the homogenity of the equation,
assume that s = 1. Then we have ar2 + r + b = 0, i.e., b = ar2 + r, so
ba, bc = 0 by the relations of type (II).

Step 3: If [a, b] ∼= [c, d] then ba, bc = bc, dc.
Proof: Because of Fact 3, relations of type (I) and Step 1 we may assume
that c = a. But, by the Cancellation Theorem for quadratic forms over K
(cf. [Arf]), [a, b] ∼= [a, d] implies that [a, b − d] is hyperbolic. By Step 2 we
then get ba, b− dc = 0, hence ba, bc = ba, dc.

Step 4: The canonical morphism M → Wq(K) is an isomorphism.
Proof: We only have to show that this morphism is injective. To do
that we have to show that if

⊕
i[ai, bi] is hyperbolic then

∑
ibai, bic = 0

in M . By induction on the number of summands, it suffices to show that
if

⊕n
i=1[ai, bi] is isotropic then there are c1, . . . , cn−1, d1, . . . , dn−1 ∈ K such

that
∑n

i=1bai, bic =
∑n−1

i=1 bci, dic in M . The case n = 1 is given by Step 2,
so we assume n > 1. By the induction assumption, we may assume that all
the [ai, bi] are anisotropic. Then there are ci, each ci a value of [ai, bi], not
all ci = 0, such that c1 + · · · + cn = 0. By the induction assumption, we
may assume that all ci 6= 0. Then [ai, bi] = [ci, di] for some di ∈ K, hence
bai, bic = bci, dic by Step 3. To complete the proof it therefore suffices to show
that bcn−1, dn−1c+bcn, dnc = bcn−1+cn, d

′
n−1c+bc′n, d′nc for some d′n−1, c

′
n, d

′
n ∈
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K. But we have in general, by the biadditivity of the symbol ba, bc, that
ba + a′, bc + ba′, b + b′c = ba, bc + ba′, bc + ba′, bc + ba′, b′c = ba, bc + ba′, b′c.
In particular, bcn−1 + cn, dn−1c+ bcn, dn−1 + dnc = bcn−1, dn−1c+ bcn, dnc.

This concludes the proof of the theorem. We now shall give some conse-
quences.

Let W (K) be the Witt ring of symmetric bilinear forms over K and
let I(K) be the fundamental ideal of W (K). Then Wq(K) is a W (K)-
module in a natural way. In particular, we have the subgroups InWq(K) :=
I(K)nWq(K) of Wq(K). (For this, see [Scharlau], [SBF], or [Baeza].)

Recall that ℘(K) is the additive subgroup { r2+r | r ∈ K } of K. The Arf
invariant ∆ : Wq(K) → K/℘(K) is an epimorphism that maps the generator
[a, b] to ab + ℘(K). It is well known that its kernel equals IWq(K).

Clearly, by d + ℘(K) 7→ [1, d] there is given a right inverse to the Arf
invariant. It follows that Wq(K) is the direct sum of the subgroup { [1, d] | d ∈
K } and IWq(K). In particular, IWq(K) is isomorphic to the quotient of
Wq(K) by this subgroup.

If a 6= 0 then 〈a〉[1, d] = [a, d
a
] in Wq(K). It follows that 〈1, a〉[1, d] =

[1, d] + [a, d
a
]. Writing d = ab the right hand side becomes [1, ab] + [a, b].

As this equals 0 if a = 0, we conclude that IWq(K) is generated by the
[[a, b]] := [1, ab] + [a, b] with a, b ∈ K. Using our representation of Wq(K)
above and that IWq(K) is isomorphic to the quotient of Wq(K) described
above, we get the following representation of IWq(K).

Corollary 1: IWq(K) is generated by the [[a, b]], a, b ∈ K, such that [[a, b]]
is biadditive as a function of a and b and such that
(0) [[1, a]] = 0 for all a ∈ K.
(I) [[a, br2]] = [[ar2, b]] for all a, b, r ∈ K.
(II) [[a, ar2 + r]] = 0 for all a, r ∈ K.

If a, b 6= 0 then we get as above that 〈1, a〉〈1, b〉[1, d] = [1, d] + [a, d
a
] +

[b, d
b
]+[ab, d

ab
]. Writing d = abc, the right hand side becomes [1, abc]+[a, bc]+

[b, ac] + [ab, c]. Denoting this by [[a, b, c]], and noting that this is trivial if
a = 0 or b = 0, we see that I2Wq(K) is generated by the [[a, b, c]] with
a, b, c ∈ K.

As [1, abc]+[1, abc] = 0, we can write [[a, b, c]] = [[a, bc]]+[[b, ac]]+[[ab, c]].
Denoting by ((a, b)) the class of [[a, b]] in IWq(K)/I2Wq(K), we get the
following representation of this quotient.
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Corollary 2: IWq(K)/I2Wq(K) is generated by the ((a, b)), a, b ∈ K, such
that ((a, b)) is biadditive as a function of a and b and such that
(0) ((1, a)) = 0 for all a ∈ K.
(I) ((a, br2)) = ((ar2, b)) for all a, b, r ∈ K.
(II) ((a, ar2 + r)) = 0 for all a, r ∈ K.
(III) ((a, bc)) + ((b, ac)) + ((ab, c)) = 0 for all a, b, c ∈ K.

It is well known that IWq(K)/I2(K)Wq(K) is isomorphic to Br2(K), the
2-torsion part of the Brauer group of K. Under this isomorphism ((a, b))
corresponds to the class of the Clifford algebra of [a, b]. In particular, Corol-
lary 2 gives a presentation of Br2(K) by generators and relations.
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