Generators and relations for $W_q(K)$ in characteristic 2

Jón Kr. Arason

RH-18-2006

Science Institute University of Iceland Dunhaga 3, IS 107 Reykjavík

jka@hi.is

December 2006

The purpose of this note is to prove the following theorem describing the Witt group $W_q(K)$ of quadratic forms over a field K of characteristic 2 in terms of generators and relations.

Theorem: $W_q(K)$ is generated by the [a,b], $a,b \in K$, such that [a,b] is biadditive as a function of a and b and such that

- (I) $[a, br^2] = [ar^2, b]$ for all $a, b, r \in K$.
- (II) $[a, ar^2 + r] = 0$ for all $a, r \in K$.

In [Arason] there was given a presentation of $W_q(K)$ as a module over the Witt ring W(K) of symmetric bilinear forms over K. This was used in [Kato] to give a presentation of $W_q(K)$ that can be seen to be essentially equivalent to the one in the theorem. Here we give a direct elementary proof.

In this note K always is a field of characteristic 2. We shall assume that the reader is familiar with the basic facts about quadratic forms over such a field. These can be found in [Scharlau], Chapter 1.6 and Chapter 9.4, and (with some proofs missing) in [SBF], Appendix 1, and also in [Baeza]. All the relevant facts are already in the fundamental paper [Arf].

We shall, however, need some more elementary facts about such forms. For a lack of suitable references we shall start by gathering some. The proofs needed are easy but included for completeness. As usual, for elements a and b in K the quadratic form on K^2 , $(x,y) \mapsto ax^2 + xy + by^2$, is denoted by [a,b]. In particular, [0,0] is the hyperbolic plane. But, obviously, every [a,0] and every [0,b] is isomorphic to the hyperbolic plane. (For example, $ax^2 + xy = uv$, where u = x and v = ax + y.) We shall use \cong to denote isomorphism of quadratic form but \sim for Witt equivalence.

Fact 1: For any r in K we have

$$[ar^2, b] \cong [a, br^2]$$

Proof: If r = 0 both sides are isomorphic to the hyperbolic plane. If $r \neq 0$ then $ar^2x^2 + xy + by^2 = au^2 + uv + br^2v^2$, where u = rx and $v = r^{-1}y$.

Fact 2: For any r in K we have

$$[a,b]\cong [a,ar^2+r+b]$$

Proof: Writing x = u + rv and y = v we have $ax^2 + xy + by^2 = au^2 + uv + (ar^2 + r + b)v^2$.

Fact 3: Assume that $[a,b] \cong [c,d]$. Then there is an r in K such that

$$[a,b] \cong [cr^2,b] \cong [c,br^2] \cong [c,d]$$

Proof: The hypotesis implies that there are s and t in K, not both equal 0, such that $b = cs^2 + st + dt^2$.

If $t \neq 0$ we take $r = t^{-1}$ and get $br^2 = c(sr)^2 + (sr) + d$. If t = 0 we take $r = ds^{-1}$ and get $br^2 = cd^2 + d + d$. In both cases the third isomorphism therefore follows from Fact 2. The second one holds by Fact 1 and the first one then follows from the hypothesis.

Fact 4: We have

$$[a,b] \oplus [a,c] \sim [a,b+c]$$

Proof: Writing $x = x_1 + u$ and $v = y + v_1$ we get $ax^2 + xy + bx^2 + au^2 + uv + cv^2 = ax_1^2 + x_1y + (b+c)y^2 + uv_1 + cv_1^2$. This shows that $[a, b] \oplus [a, c] \cong [a, b+c] \oplus [0, c]$. As [0, c] is hyperbolic the result follows.

We now turn to the proof of the theorem. For that we let N be the subgroup of $K \otimes K := K \otimes_{\mathbf{Z}} K$ generated by all elements of the form

- (I) $a \otimes br^2 ar^2 \otimes b$ for $a, b, r \in K$.
- (II) $a \otimes (ar^2 + r)$ for $a, r \in K$.

We then let $M = (K \otimes K)/N$.

For $a, b \in K$ we denote by $\lfloor a, b \rfloor$ the class of $a \otimes b$ in M. We then can rewrite (I) and (II) as

- (I) $|a, br^2| = |ar^2, b|$ for all $a, b, r \in K$.
- (II) $|a, ar^2 + r| = 0$ for all $a, r \in K$.

We refer to these equations as relations of type (I) and type (II), respectively.

Remark: As char(K) = 2, K is in fact a vector space over \mathbf{F}_2 and hence $K \otimes K$ can also be interpreted as $K \otimes_{\mathbf{F}_2} K$. In particular, M is a 2-torsion group. Let $K_0 = \{x^2 \mid x \in K\}$, which is a subfield of K. The relations of type (I) then simply mean that the natural projection $K \otimes K \to M$ factors through $K \otimes_{K_0} K$. So M can also be described as the quotient of $K \otimes_{K_0} K$ by the subgroup generated by all $a \otimes_{K_0} (ar^2 + r)$ with $a, r \in K$. **Remark**: In some applications it seems nicer to use relations of the type $\lfloor a, br^2 \rfloor = \lfloor b, ar^2 \rfloor$ instead of relations of type (I). (Also that gives an easier proof of the symmetry of $\lfloor a, b \rfloor$.)

It is well know (cf. [Arf]) that $W_q(K)$ is additively generated by the $[a,b] \in W_q(K)$. (We shall, as is common, use the notation [a,b] also for the

class in $W_q(K)$ of the form [a,b]. The correct meaning will hopefully be clear from the context.) From Fact 4 above (and the symmetry of [a,b]) it follows that [a,b] is biadditive as a function of a and b. From Fact 1 and Fact 2 above it follows that $[a,br^2]=[ar^2,b]$ and $[a,ar^2+r]=0$ for every $a,b,r\in K$. We therefore have a group epimorphism $M\to W_q(K)$ mapping each generator $\lfloor a,b\rfloor$ of M to [a,b] in $W_q(K)$. We call it the canonical morphism $M\to W_q(K)$.

Step 1: [a,b] = [b,a] for every $a,b \in K$.

Proof: By letting a=c and r=1 in relations of type (II), we get that $\lfloor c,c+1\rfloor=0$, i.e., $\lfloor c,c\rfloor=\lfloor c,1\rfloor$ for every $c\in K$. In particular, $\lfloor a+b,a+b\rfloor=\lfloor a+b,1\rfloor=\lfloor a,1\rfloor+\lfloor b,1\rfloor$. But we also get that $\lfloor a+b,a+b\rfloor=\lfloor a,a\rfloor+\lfloor a,b\rfloor+\lfloor b,a\rfloor+\lfloor b,b\rfloor=\lfloor a,1\rfloor+\lfloor a,b\rfloor+\lfloor b,a\rfloor+\lfloor b,1\rfloor$. Comparing these two expressions for $\lfloor a+b,a+b\rfloor$, we see that $\lfloor a,b\rfloor+\lfloor b,a\rfloor=0$, i.e., that $\lfloor a,b\rfloor=\lfloor b,a\rfloor$.

Step 2: If [a, b] is isotropic then |a, b| = 0.

Proof: By hypothesis, there are $r, s \in K$, not both 0, such that $ar^2 + rs + bs^2 = 0$. If a = 0 then, of course, $\lfloor a, b \rfloor = 0$. So we may assume that $a \neq 0$. But then $s \neq 0$ and we may, because of the homogeneity of the equation, assume that s = 1. Then we have $ar^2 + r + b = 0$, i.e., $b = ar^2 + r$, so $\lfloor a, b \rfloor = 0$ by the relations of type (II).

Step 3: If $[a, b] \cong [c, d]$ then |a, b| = |c, d|.

Proof: Because of Fact 3, relations of type (I) and Step 1 we may assume that c = a. But, by the Cancellation Theorem for quadratic forms over K (cf. [Arf]), $[a, b] \cong [a, d]$ implies that [a, b - d] is hyperbolic. By Step 2 we then get $\lfloor a, b - d \rfloor = 0$, hence $\lfloor a, b \rfloor = \lfloor a, d \rfloor$.

Step 4: The canonical morphism $M \to W_q(K)$ is an isomorphism.

Proof: We only have to show that this morphism is injective. To do that we have to show that if $\bigoplus_i [a_i, b_i]$ is hyperbolic then $\sum_i \lfloor a_i, b_i \rfloor = 0$ in M. By induction on the number of summands, it suffices to show that if $\bigoplus_{i=1}^n [a_i, b_i]$ is isotropic then there are $c_1, \ldots, c_{n-1}, d_1, \ldots, d_{n-1} \in K$ such that $\sum_{i=1}^n \lfloor a_i, b_i \rfloor = \sum_{i=1}^{n-1} \lfloor c_i, d_i \rfloor$ in M. The case n=1 is given by Step 2, so we assume n>1. By the induction assumption, we may assume that all the $[a_i, b_i]$ are anisotropic. Then there are c_i , each c_i a value of $[a_i, b_i]$, not all $c_i=0$, such that $c_1+\cdots+c_n=0$. By the induction assumption, we may assume that all $c_i\neq 0$. Then $[a_i, b_i]=[c_i, d_i]$ for some $d_i\in K$, hence $\lfloor a_i, b_i \rfloor = \lfloor c_i, d_i \rfloor$ by Step 3. To complete the proof it therefore suffices to show that $\lfloor c_{n-1}, d_{n-1} \rfloor + \lfloor c_n, d_n \rfloor = \lfloor c_{n-1} + c_n, d'_{n-1} \rfloor + \lfloor c'_n, d'_n \rfloor$ for some $d'_{n-1}, c'_n, d'_n \in C$

K. But we have in general, by the biadditivity of the symbol $\lfloor a, b \rfloor$, that $\lfloor a + a', b \rfloor + \lfloor a', b + b' \rfloor = \lfloor a, b \rfloor + \lfloor a', b \rfloor + \lfloor a', b \rfloor + \lfloor a', b' \rfloor = \lfloor a, b \rfloor + \lfloor a', b' \rfloor$. In particular, $\lfloor c_{n-1} + c_n, d_{n-1} \rfloor + \lfloor c_n, d_{n-1} + d_n \rfloor = \lfloor c_{n-1}, d_{n-1} \rfloor + \lfloor c_n, d_n \rfloor$.

This concludes the proof of the theorem. We now shall give some consequences.

Let W(K) be the Witt ring of symmetric bilinear forms over K and let I(K) be the fundamental ideal of W(K). Then $W_q(K)$ is a W(K)-module in a natural way. In particular, we have the subgroups $I^nW_q(K) := I(K)^nW_q(K)$ of $W_q(K)$. (For this, see [Scharlau], [SBF], or [Baeza].)

Recall that $\wp(K)$ is the additive subgroup $\{r^2 + r \mid r \in K\}$ of K. The Arf invariant $\Delta: W_q(K) \to K/\wp(K)$ is an epimorphism that maps the generator [a, b] to $ab + \wp(K)$. It is well known that its kernel equals $IW_q(K)$.

Clearly, by $d + \wp(K) \mapsto [1, d]$ there is given a right inverse to the Arf invariant. It follows that $W_q(K)$ is the direct sum of the subgroup $\{[1, d] | d \in K\}$ and $IW_q(K)$. In particular, $IW_q(K)$ is isomorphic to the quotient of $W_q(K)$ by this subgroup.

If $a \neq 0$ then $\langle a \rangle [1,d] = [a,\frac{d}{a}]$ in $W_q(K)$. It follows that $\langle 1,a \rangle [1,d] = [1,d] + [a,\frac{d}{a}]$. Writing d=ab the right hand side becomes [1,ab] + [a,b]. As this equals 0 if a=0, we conclude that $IW_q(K)$ is generated by the [[a,b]]:=[1,ab]+[a,b] with $a,b\in K$. Using our representation of $W_q(K)$ above and that $IW_q(K)$ is isomorphic to the quotient of $W_q(K)$ described above, we get the following representation of $IW_q(K)$.

Corollary 1: $IW_q(K)$ is generated by the [[a,b]], $a,b \in K$, such that [[a,b]] is biadditive as a function of a and b and such that

- (0) [[1, a]] = 0 for all $a \in K$.
- (I) $[[a, br^2]] = [[ar^2, b]]$ for all $a, b, r \in K$.
- (II) $[a, ar^2 + r] = 0$ for all $a, r \in K$.

If $a, b \neq 0$ then we get as above that $\langle 1, a \rangle \langle 1, b \rangle [1, d] = [1, d] + [a, \frac{d}{a}] + [b, \frac{d}{b}] + [ab, \frac{d}{ab}]$. Writing d = abc, the right hand side becomes [1, abc] + [a, bc] + [b, ac] + [ab, c]. Denoting this by [[a, b, c]], and noting that this is trivial if a = 0 or b = 0, we see that $I^2W_q(K)$ is generated by the [[a, b, c]] with $a, b, c \in K$.

As [1, abc] + [1, abc] = 0, we can write [[a, b, c]] = [[a, bc]] + [[b, ac]] + [[ab, c]]. Denoting by ((a, b)) the class of [[a, b]] in $IW_q(K)/I^2W_q(K)$, we get the following representation of this quotient.

Corollary 2: $IW_q(K)/I^2W_q(K)$ is generated by the ((a,b)), $a,b \in K$, such that ((a,b)) is biadditive as a function of a and b and such that

- (0) ((1, a)) = 0 for all $a \in K$.
- (I) $((a, br^2)) = ((ar^2, b))$ for all $a, b, r \in K$.
- (II) $((a, ar^2 + r)) = 0$ for all $a, r \in K$.
- (III) ((a,bc)) + ((b,ac)) + ((ab,c)) = 0 for all $a,b,c \in K$.

It is well known that $IW_q(K)/I^2(K)W_q(K)$ is isomorphic to $Br_2(K)$, the 2-torsion part of the Brauer group of K. Under this isomorphism ((a,b)) corresponds to the class of the Clifford algebra of [a,b]. In particular, Corollary 2 gives a presentation of $Br_2(K)$ by generators and relations.

Acknowledgements:

The original draft for this note was written during a two month visit to the University of Talca, Chile, in the year 2002. The author wishes to express his thanks for the hospitality he enjoyed during this visit.

References:

[Arason] J.K. Arason: Wittring and Galoiscohomologie bei Charakteristik 2. J. Reine Angew. Math. 307/308, 247–256 (1979).

[Arf] C. Arf: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 (Teil I). J. Reine Angew. Math. 183, 148–167 (1941).

[Baeza] R. Baeza: Quadratic forms over semilocal rings. Lecture notes in mathematics 655. Berlin, Heidelberg, New York: Springer 1978.

[Kato] K. Kato: Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two. Invent. Math. 66, 493–510 (1982).

[SBF] J. Milnor; D. Husemoller: Symmetric bilinear forms. Berlin, Heidelberg, New York: Springer 1973.

[Scharlau] W. Scharlau: Quadratic and hermitian forms. Berlin, Heidelberg, New York: Springer 1985.