
  
Abstract—In sensor networks, the location of a sensor 

making an observation is a vital piece of information to allow 
accurate data analysis. GPS is an established technology to 
enable precise position information. Yet, resource constraints 
and size issues prohibit its use in small sensor nodes that are 
designed to be cost efficient. Instead, most positions are 
estimated by a number of algorithms. To date, however, the 
focus was on individual accuracy of each sensor’s position 
estimates in isolation to the complete network. In this paper, 
we propose a novel positioning algorithm called nQUAD to 
enable representative topology information based on relative 
accuracy. nQUAD makes use of relative distances to 
determine the quadrant it resides in and refines its estimation 
according to neighbor provided information and reports a 
level of certainity along with estimates. Our experiment 
results suggest significant improvements in individual 
accuracy in comparison to lateration based alternatives. At 
top of all, drastic improvements are achieved in the overall 
topology to enable accurate analysis of data. 
 

I. INTRODUCTION 

Wireless sensor nodes are used in a wide range of 
applications such as scientific research, military, 
healthcare, and environmental monitoring. Sensor 
nodes collect information about the environment and 
communicate their observations to a data collection 
point from where users can access the collected data 
without the need to travel to the monitored area. In 
this regard, every user has to depend on the location 
information provided by the sensor node that reports 
an observation. As a result the user’s view of the 
monitored area highly depends on reported locations, 
and, therefore, it is critical to illustrate a 
representative picture of observations to users. 

In ad hoc sensor networks, node positions are not 
known prior to the deployment. The process of 
estimating the unknown node positions within the 
network is referred to as localization. The limited 
power supply, size and cost considerations in sensor 
networks prohibit the deployment of GPS (Global 
Positioning System) at each sensor node. Instead, it is 
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preferred to limit the number of nodes with GPS 
antennas and then rely on location estimation 
algorithms for the rest of the nodes.   

 
  

(a)  position estimates, A’ and B’, for 
the sensor nodes A and B 

(b) comparison with an alternative 
set of estimates 

Figure 1: Representative topology is more important than reducing 
the individual errors reported in isolation to the network: A and B are 
the actual positions. A’ and B’ are the estimates of one localization 
algorithm. A’’ and B’’ are the estimates of another algorithm that 
results in a similar pair-wise error. However, the estimates, A’’ and 
B’’, result in a completely misleading overall topology from the end 
users point of view.  
 

Obviously, errors are inevitable in estimations, 
and, it is important to understand the impact of errors 
for a particular application. In Figure 1, we illustrate a 
simple example with only two sensor nodes. The 
actual positions of A and B are represented by solid 
circles in the figure. Recall that, in practical 
applications, the actual positions of these nodes would 
not be known, and one will have to depend on the 
position estimations reported by the nodes. In figure 
1(a), we plot localization estimates being reported by 
these nodes as A’ and B’. Now, consider another 
localization algorithm that produces location 
estimates of A’’ and B’’ for the same nodes as 
demonstrated in figure 1(b). Following the traditional 
approach in localization studies, we would evaluate 
these two sets of estimations based on the Euclidean 
distance between the real and the estimated positions 
of individual nodes. When considered in isolation as 
in previous work, this would suggest a similar error in 
both cases. However, these two sets of estimates have 
quite different impacts for data management in 
practical applications! In particular, the relative 
positions of A’ and B’ are incorrect in comparison to 
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A and B. In consequence, this may result in 
misleading conclusions during data analysis. For 
instance, the advection of a particulate pollutant may 
appear to be in the reverse direction than it really is.  

In general, the precise location of each sensor node 
is not necessary in most sensor network applications 
[AKY02]. Yet, accurate overall topologies are vital 
for accurate identification*, routing, in-network 
processing as well as overall analysis of observations. 
Our focus, therefore, is on the overall sensor network 
topology constructed, rather than on individual 
estimates as has been the major focus in previous 
studies, e.g., [NIC04, SAV01, LAZ04, MOO04, 
NAG03].  

Cricket [PRI00], Centroid [BUL00], SeRLoc 
[LAZ04], Active Badge [WAN92], etc. require a high 
number of landmarks. Landmarks are super nodes 
with additional resources, e.g., GPS antennas, 
additional power and resources to allow precise 
knowledge of their location. In practice, it is desirable 
to reduce the number of landmarks or additional 
hardware at ordinary nodes, as required by DV-
Position [NIC04] and AHLoS [SAV01]. While APIT 
[HET03] requires nodes to move and have accurate 
signal strength measurements to produce estimates. 
[WHI06] discusses problems with signal strength 
based approaches. [NAG03][LAZ04][MOO04] 
require highly dense networks with lots of neighbor 
nodes to produce reasonable estimates.  

In this paper, we propose a novel location 
estimation algorithm, QUAD (Quadrant-based 
estimation), that aims at calibrating estimates based 
on relative position information to help assist accurate 
data management. QUAD assigns levels of certainty 
to generated estimations since it is of extreme 
importance to inform the user about the level of 
uncertainty in location estimates to reflect possibility 
of errors. 

In particular, the relative distances to known 
landmark positions are evaluated to determine if the 
node resides East/West/South/North of the landmarks. 
Once the quadrants are determined, estimates are then 
generated using neighbor observations. Unlike 
approaches that require additional hardware (e.g., 
[NIC04, SAV01]) to allow such directional 
information, we merely rely on radio communications 
for location estimations.  

 

 
* For large scale deployments, producing arbitrary addresses for 

billions of nodes is not feasible; if estimated accurately, geographic 
locations can help identify nodes, routing, etc. 

Our Contributions: 

In this study we point out the major disadvantage 
in existing location estimation algorithms: treating 
each individual node estimate independently in 
isolation to the complete network. We propose a 
novel localization algorithm, QUAD, to address this 
problem. We focus on the following challenges: 
• Representative Overall Topology: Based on 

expert user input, the relative positions of the 
nodes in the network constitute a critical piece of 
information that should be maintained for accurate 
data management and accuracy. QUAD enables 
such representative overall topologies. In addition, 
each reported location estimate includes a 
certainty level to help reflect possible errors. 

• Minimal Specialized Hardware: In order to keep 
the overall network economically feasible 
additional hardware (e.g., GPS, directional 
antennas) should be avoided whenever possible. 
Keeping the individual node size small is another 
goal. Therefore it is preferred to use existing 
capabilities (e.g., radio communication), without 
further investment on additional equipment. In 
this regard, QUAD relies merely on regular radio 
communications for making location estimates. 

• Robustness to Network Density: The location 
estimation should not be dependent on a specific 
network density, as parts of the network can be 
sparse while others are dense. QUAD is robust to 
changes in network densities.  
Our performance evaluation results suggest 

significant improvements in comparison to previous 
algorithms. At top of all, our proposed algorithm can 
provide representative topologies for various network 
settings and densities. 

The rest of this paper is organized as follows: In 
section II, we present our motivation behind QUAD. 
Section III describes our proposed localization 
algorithm. Section IV presents results from our 
performance evaluation using various network 
topologies.  Finally, Section V concludes this paper. 

II. RELATIVE POSITION ACCURACY 

Our main motivation in this study is the expert 
user, e.g., environmental engineers’, demand for 
maintaining a representative overall topology with 
estimated sensor locations. Representative overall 
topology would not only enable accurate data 
analysis, but also correct information source selection 
[AKS05b]. In the following subsections we outline 
our motivations behind the design of QUAD. 



A. Problems with Lateration 
For basic wireless communications without 

additional hardware, when a node receives a 
transmission, it can at best estimate the distance from 
the sender. The sender can be anywhere on a radius of 
this distance around the receiver. A major technique 
applied in localization is lateration. Lateration 
[NIC01][NAG03] refers to finding the intersection 
point of (at least three) circles around the references. 
If accurate distances are provided, the solution can be 
obtained by a set of equations in the form 
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where (xi, yi) are the coordinates of landmark i and di 
is the estimated distance from the landmark. In 
practice, however, distance di can be misleading since 
the multi-hop distance to a landmark is determined as 
the sum of the distances along the path between the 
landmark and the node. Therefore, even if the 
individual distances between immediate neighbors 
could be precisely determined, the sum is only an 
upper bound on the actual distance unless nodes are 
aligned on a perfect line [KAM06].  

 
Figure 2: Lateration can only provide a solution if the distances are 
non-conlicting. In practice, the distances d1, d2, and d3 are only 
approximated, and as a result the three circles might not even 
intersect at a common point. 
 

We demonstrate an illustrative example with a 
small error in one distance estimate from a landmark 
in figure 2. In the figure there are three landmarks at 
locations (x1, y1), (x2, y2), and (x3, y3). A sensor node 
is estimated to be d1, d2, and d3 apart from these 
landmarks, respectively. If these distances were 
precise, we could successfully estimate the node’s 
position. Otherwise, as illustrated by the example, we 
can end up with conflicting circles around the 
landmarks that do not necessarily intersect.  As 
demonstrated, it is possible that the error made in 

distance estimates d1, d2, and d3 can prevent obtaining 
an estimate for the node’s location.   

B. Implications for Data Management 
With the popularity of sensor networks we observe 

the number of sensors increasing at a significant rate 
with an increasing demand on data management. For 
instance, PLASMA (PLAnetary Scale Monitoring 
Architecture) [AKS05a] is an interdisciplinary project 
that aims at providing an integrated architecture for 
heterogeneous sensor systems to enable public access 
for user queries. PLASMA consists of a large number 
of heterogeneous sensor nodes that report to data 
collection points. We observed that previous 
localization algorithms that rely on lateration can 
yield quite unrealistic views of the actual deployment. 
For instance, even though some node locations could 
be estimated with 100% accuracy, strikingly 
conflicting estimates are made for some other nodes’ 
location even for immediate neighbors. As 
demonstrated in figures 6-7 the overall topology can 
look significantly different than what one would 
expect with the knowledge of the actual topology.  

At top of all, for large-scale deployments, it is of 
extreme importance to inform the user about the level 
of uncertainty in location estimates to reflect the 
possible errors being made using the estimates. This is 
especially important in cases where the estimates are 
produced with a low confidence level. For the user 
interface, it is highly desirable to provide some 
information about the certainty level in location 
estimations while reporting observations from the 
field. Based on our observations, we were motivated 
to develop an alternative approach for localization. 

III. QUAD LOCALIZATION ALGORITHM 

Our proposed algorithm, QUAD relies on an 
intuitive comparison between the relative distances to 
known landmark locations. This comparison allows 
nodes to figure out the quadrant, i.e., 
North/South/East, etc. in reference to the landmarks. 
QUAD can be summarized in three phases as 
explained below.   

1) hop distance dissemination: This first phase 
is the same in any algorithm that uses hop distance 
based approach, e.g.,  DV-Hop [NIC01],  Smooth 
[NAG03]. In particular, each landmark will flood the 
network with its location. Each node records the 
minimum hop count to each landmark among the 
received messages. The hop counts are then converted 
to actual distances according to the radio range. 



2) position vote: In this phase, each node 
compares its distance to each landmark. If the node is 
equidistance to all landmarks, it delays its decision 
until the next phase. Otherwise, it determines its 
relative position in comparison to the landmarks. Note 
that we deploy landmarks in clusters, typically of 
three* landmarks. Such a deployment can be easily 
achieved by tying three landmark nodes with 
ropes/rods or installing them on a common board.   

Each node first categorizes each landmark as the 
near, and far landmark nodes based on their relative 
hop distance. First, the minimum and the maximum 
hop distances are used to identify the furthest and the 
nearest landmarks. Then, if a landmark’s hop count is 
closer to the nearest, it is categorized as near; and if it 
is closer to the furthest, it is categorized as far.† For 
instance, if a node is 1,3, and 4 hops away from the 
landmark nodes L1, L 2, and L 3 respectively, then L 1 
is put in the near set, and L 3 and L 2 are recorded in 
the far set. Nodes that can not be categorized in either 
set are left out.  

Then each member in the near set is compared to 
each member in the far set to produce a 
negative/positive/middle vote on each x and y-
coordinate as plotted in figure 3. The main idea of this 
categorization is to determine the relative location a 
node is residing in. For instance, if the node is closer 
to a landmark that has a smaller x-coordinate, it is 
concluded that it resides somewhere East of the 
landmarks.  

 
vote = None; 
for (int i=0; i<# elements in near set; i++) 
   for (int j=0; j<# elements in far set;j++) { 
  if (landmark[near[i]].X > landmark[far[j]].X) { 
       if (vote== East) 
        vote = Middle; 
        else 

    vote = West; 
              } 

     if (landmark[near[i]].X < landmark[far[j]].X) { 
        if (vote== West) 
   vote = Middle; 
        else 
   vote = East; 
     } 
 } 

Figure 3: Pseudo code for determining the quadrant that will help 
estimate the X-coordinate of a sensor node in comparison to the 
landmarks categorized in the near and far sets. 
 

We apply the simple decision criteria as 
demonstrated in figure 3 also to Y-coordinates where 

 
* In theory two landmarks would be sufficient for a cluster with an 

appropriate alignment. However, due to irregularities in the field we 
require the additional landmark to ensure comparable X and Y 
coordinates. 

† The main objective is to single out landmarks that will help in 
estimating the relative location.  

each occurrence of East is replaced by South and each 
occurrence of West by North. The combination of X 
and Y-coordinate votes determine the quadrant a 
sensor node resides in. For instance, North and East 
votes suggest the Northeast quadrant in reference to 
the landmark cluster. These votes help produce 
estimations as explained in phase 3).  

Figure 4 plots an example topology with a cluster 
of three landmarks at (50,50), (49,49) and (50,48), 
respectively. The landmark nodes are represented by 
dark circles, and the ordinary nodes are represented 
with light colored circles. In this example the radio 
range is 1 unit such that each node can communicate 
with direct east, west, north, or south neighbors. Note 
that the perfect grid structure helps demonstration of 
our approach. In practice, additional errors are due to 
irregularities of deployment in the field.  

In the example, node A categorizes the landmark 
at (50,50) as the near and those at (49,49) and (50,48) 
as the far landmark nodes.  The X-coordinate of the 
nearest landmark (50) is larger than or equal to each 
of the nearest landmarks (located at 49 and 50). 
Therefore node A will have a West vote for the X-
coordinate and a North vote for the Y-coordinate. A is 
3 hops away from (50,50) so, intuitively, it can not 
have an X-coordinate greater than 53 or a y-
coordinate greater than 53. At this point, node A can 
be concluded to be somewhere in the approximated 
NorthWest region shown in the northeast quadrant.   

 

 
Figure 4: Example topology with a radio range of 1 unit. Node A is 3 
hops away from the landmark node at (50, 50), and the marked region 
plots possible estimations for node A. 
 

3) location estimation: After the nodes determine 
their position votes, they announce these votes (if 
any) to their immediate neighbors. The estimation 
process is as follows. If a node has produced a Middle 
vote for a particular coordinate, it is estimated to be in 
between those coordinates of the landmarks. For 
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instance, in the previous example node B would have 
a Middle vote for the Y-coordinate, its coordinate is 
estimated to be the midpoint of the highest and the 
lowest Y-coordinates of the landmarks, namely 49. 
Node B is 1 hop away from the landmark at (49,49). 
The distances in the X and Y direction should add up 
to 1. As a result node B will produce a coordinate 
estimate of (48,49). 

All nodes apply similar approximations to 
determine the lower and upper bounds of possible 
locations. Nodes that hear conflicting votes on a 
particular coordinate adjust their estimates 
accordingly. For instance, in the previous example 
node C will hear from both South and North 
neighbors which indicates that it is close to the 
borderline between south and north for the y-
coordinate. This information is exploited to determine 
the other coordinate similar to the above case.    

For pure quadrant votes, we have a wider range of 
possibilities based on the size of the approximated 
box. Therefore, the certainty level of the estimate is 
set to be inversely proportional to the distance from 
the landmarks. As a result, nodes closer to the 
landmarks have higher certainty levels in comparison 
to those further away. For boundary cases, e.g., 
Middle vote or conflicting votes, the certainty level is 
set higher since the range of possibilities is smaller. 
Such higher certainty levels help neighbors improve 
their estimations. 

At the end of this phase nodes adjust their own 
estimates using weighted average of neighbor 
estimates with equal or higher levels of certainty. 
Note that it is possible to continue refining the 
estimates to improve estimates further. 

IV. PERFORMANCE EVALUATION 

To evaluate the performance of QUAD, we have 
implemented a simulator using C++.  We compared 
QUAD with well-known localization algorithms, DV-
Hop, Min/Max , and Smooth for a wide range of 
scenarios. In each setting we feed the simulator with 
an arbitrary topology and obtain the position 
estimates of each sensor node based on the 
localization algorithm.  

DV-Hop is a practical implementation of DV-
Distance [NIC01] that addresses the problems raised 
in [KAM06]. For DV-Hop implementation, we record 
the minimum hop distances between the landmarks 
and the nodes. The distances are then improved based 
on topology information before lateration. Min/Max 
[SAV03] is an approximation to DV-Hop to reduce 
the complexity of lateration operations. In this case, 
instead of circles around landmarks approximated 

squares are assumed. The intersection of these squares 
help determine the location estimation of each node. 
Finally, Smooth [NAG03] allows neighbors exchange 
their distance estimates to improve their estimates 
before applying lateration. This adjustment highly 
improves the accuracy of the distance estimates for 
highly dense deployments. 

Error in the estimates is traditionally measured as 
the Euclidean distance between the real coordinate 
and the estimated coordinate of a sensor node as  

 2
re

2
re )yy()xx(Error Euclidean −+−=  

where (xe,ye) is the estimated position of a node and 
its real position is (xr,yr). Note that this metric would 
not differentiate between the two sets of estimates 
shown in Figure 1. Therefore we also present some 
visual representation of data to provide better insight. 

In our experiments, we used a default radio range 
of 5 units. We then studied the sensitivity to varying 
communication ranges. We repeated the experiments 
with different random number generator seeds such 
that we end up with different topologies each time. In 
the experiments, we simplify the communication 
model assuming no message loss or corruption. In 
practice the communication model should be 
enhanced using organized scheduling [BAL07]. 

A. Traditional Metric: Estimation Accuracy 
In the first experiment, we exploit three 

landmarks at (50,50), (49,49) and (50,48) in a 
100x100 grid. At 100% density, we deploy a sensor at 
each integer coordinate in the grid such that all 
neighbours are equidistance to each other. This highly 
unrealistic perfect grid topology is used as a 
comparison basis. We then randomly deleted sensors 
in this grid. This creates more diverse and 
representative topologies to reflect problems that can 
occur in actual deployments. As we use lower density 
deployments we face unisotropic deployments 
[LIM05] to stress-test our algorithm. At each setting 
we apply the algorithm from scratch and evaluate the 
performance according to the final estimates. 

We plot the average Euclidean error of different 
topologies in Figure 5 as the number of nodes in the 
network decreases. Recall that the first data point in 
figure 5 presents an unrealistically dense and uniform 
topology. At this highly unlikely setting, we have a 
sensor node at every point in the grid. Beyond this 
unrealistic point, we observe QUAD to provide a 
significantly better performance in comparison to the 
other algorithms. As we move to more realistic non-
uniform topologies with lower densities, Smooth is 
out-performed by more and more other algorithms. 



This is due to the fact that Smooth depends on the 
density in the network to improve the hop distance 
before applying lateration. In low densities, the 
neighbors are not uniformly distributed around a 
node, and the targeted improvement is, in fact, 
detrimental to the performance. When nodes do not 
have a sufficient number of neighbors Smooth 
performs worse than DV-Hop.  
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Figure 5: QUAD’s individual error performance is the best except for 
the unrealistic case of a perfect grid. 

 
QUAD, on the other hand, is quite robust to 

changes in the topology because it relies on relative 
positioning information. In between the lowest and 
the highest density settings, for instance, at 50% 
density DV-Hop has 330% higher error than QUAD.  

We were not satisfied with these promising results 
obtained by the traditional performance metric since 
our main motivation is to capture a representative 
overall topology. For this reason, we take a closer 
look at the estimates in the following. 

B. Need for a New Accuracy Metric 
In the previous section, we have represented the 

performance of alternative approaches on a complex 
overall topology using a simple numeric metric. To 
provide a better understanding of the performance of 
the algorithms, we analyzed the estimates made for 
each node in more detail. For this purpose, a simple 
illustration of the network with each algorithm’s 
estimation on a 2-dimensional area was not sufficient. 
In other words, when we plot the location estimation 
of each sensor node, we loose the information about 
the relationship to their actual coordinates. For 
instance, it is not possible to evaluate a case where 
two estimates at, say, (120,50) and (35,99) are 
actually immediate neighbors in the deployment 
topology! 

In our study we had a pressing need to plot the 
estimates as a function of their actual location. For 
ease of illustration we plot the X and Y-coordinate 
estimates separately to avoid an unreadable 4-

dimensional representation. We have observed a 
similar trend for both X and Y-coordinates, and 
therefore, focus on a single coordinate for 
demonstration purposes. 

 
Figure 6: X Coordinate Estimates using DV-Hop: Estimates are  all 
over, either overestimated or underestimated, resulting in highly 
conflicting estimates even for immediate neighbors. 
 

 
Figure 7: X-Coordinate Estimates using Min-Max: The overall 
topology is completely misleading. 
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Figure 8: X Coordinate Estimates using QUAD: Refinements based on 
certainty levels in estimates help improve the overall topology 
significantly in comparison to alternatives. 
 

 Figure 6 depicts the X-coordinate estimates of 
DV-Hop. we plot the X-coordinate estimate of the 
node located at (0,0) at position (0,0). In the ideal (no 
error) case, all nodes would have the exact X-



coordinate and the 3-dimensional illustration would 
appear to be a smooth surface with a 45˚ inclination 
(similar to figure 8). In figure 6, however, the 
estimates of DV-Hop are far from being 
representative as the values are either overestimated 
or underestimated without a specific pattern. Even 
immediate neighbors can have highly conflicting 
estimates in this case. In addition, DV-Hop is likely to 
produce the same estimates for symmetric locations in 
a quadrant such that it is not possible to differentiate 
between the relative positions of sensors. 

Figure 7 plots the estimates made by Min-Max. In 
this setting, Min-Max estimates all nodes to be more 
or less at the same coordinate, in particular around the 
average within the whole field. Recall that in Figure 5 
Min-Max appears to have a reasonable performance 
using the traditional metric.  

This result suggests that the Euclidean distance 
metric, as has been used in previous studies, is not a 
representative metric to evaluate location estimation 
algorithms. The main problem with this metric is that 
it does not reflect the relative positioning errors that 
are very critical for data management.  

Using Min-Max it is not possible to differentiate 
between, say, even the two furthest corner nodes at 
southeast and northwest, when they report an 
observation. In figure 8, on the other hand, we plot 
the X-coordinate estimates generated by QUAD. 
After refinements applied using neighbour estimates 
QUAD’s topology gets much closer to the actual 
plane. 

V.  CONCLUSIONS AND FUTURE WORK 

Previous work in localization algorithms focus on 
individual accuracy of sensor position estimates 
without considering the relative positioning of nodes 
in comparison to each other. Yet, such relative 
positioning defines the overall topology of the sensor 
network for accurate data management. In this paper, 
we proposed a novel localization algorithm, QUAD, 
to produce a representative overall topology based on 
the relative positions of landmarks to sensor nodes. 
QUAD only depends on already existing radio 
communications to produce representative estimates.  
Our performance evaluation results suggest 2-fold 
improvements in the traditional Euclidean distance 
based error metric and orders of magnitude 
improvement when we consider the overall topology.  
We are currently developing an alternative accuracy 
metric that compares the estimated locations of all 
sensors according to their actual positioning in the 
field. In terms of future work, we plan to use the 
certainty levels in estimates for the visualization 

interface to enable accurate data management for 
PLASMA queries. 
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