
RJ 10253 (A0208-026) August 21, 2002
Computer Science

IBM Research Report

 On the Validity of Throughput as a Characteristic of
Computer Input

Shumin Zhai
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

 

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



 1

(Working paper, comments welcome) 

On the Validity of Throughput as a Characteristic of 
Computer Input 

Shumin Zhai 
IBM Almaden Research Center 

650 Harry Road, San Jose, California 
 zhai@almaden.ibm.com  

 

Abstract 

Throughput (TP) has been a fundamental metric in quantifying input system performance. TP is a 
concept based on Fitts’ law, an essentially two parameter (a, b) relationship between movement time (MT) 
and Fitts’ index of difficulty  (ID). In part thanks to ISO 9241-9, the final draft international standard 
(FDIS) of “Ergonomic requirements for office work with visual display terminals - Part 9: Requirements 
for non-keyboard input devices”, research and testing of computer input system in recent years have 
increasingly relied on TP as the sole measure of performance quality of input devices. The goal was to 
standardize studies onto one metric that can be generalized and compared across different experimental 
studies. Unfortunately TP as defined in ISO 9241-9 is an ill-defined concept that changes with the mean 
index of difficulty used in measuring it and therefore cannot be generalized beyond specific experimental 
settings. Furthermore, important properties can be hidden when TP is used as a single metric to input 
system evaluation. We reason that it is more informative to use (a, b) parameters in Fitts’ law as separated 
metrics of an input system. One related issue, the foundation for post-hoc target size adjustment, known as 
effective width, is also discussed. 

Categories and subject descriptors: H.5.2 User Interfaces: Benchmarking, Evaluation/methodology, 
Graphical user interfaces, Input devices and strategies, Standardization, Theory and method.  H.1.2 
Models and Principles: User/Machine systems – Human information processing 

General terms:  Human factors, Performance, Theory 

Key words and phrases: computer input, Fitts’ law, motor control performance, throughput, bandwidth, 
index of performance (IP), ISO 9241-9.  

Introduction 

One important goal of computer input research is to measure and characterize the usability and 
performance of various input systems1.  Naturally, the more generalizable the characterization is, the more 
useful it is. It is difficult to make use of performance characterizations that cannot be generalized. For 
example, if an input device A (e.g. a mouse) were said to be superior to an input device B (e.g. a trackball) 
for pointing tasks, we would have to ask by what metrics such a statement is made. If we say system A was 
measured to take 0.9 seconds and system B 1.0 seconds on average to perform a pointing action, with 
similar error rate (e.g. 4%), a carefully recipient of that information would have to ask under what 

                                                           
1 For brevity, we use the term input system to mean one, a few, or all aspects of computer input – device, 
sensor, transfer function, interaction technique, user expertise, shape and size the device handle, etc. 
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conditions such measurements were made. If the measurements were made with an icon of one centimeter 
in width, over 10 centimeters distance, the recipient may not find that information useful because his or her 
application might be primarily concerns with much smaller targets.  

Card, English and Burr first realized that human performance models could be used to generalize 
studies on input devices (Card, English, & Burr, 1978). In particular, they applied the well-known Fitts’ 
law to computer pointing tasks: 

bIDaMT +=    (1) 

where MT is movement time and ID = log2 (2D/W) is the index of difficulty as originally defined by Fitts 
(Fitts, 1954). D and W are target distance and size respectively, and a and b are empirically determined 
constants, depending on the input system used.  An obvious problem with this definition of ID is that when 
D, the distance from the center of one target to another, is zero, ID (and hence MT) tends to negative 
infinity. MacKenzie (MacKenzie, 1989) first proposed to return to Shannon’s original formula of 
information in a noisy channel, which was the inspiration of Fitts’ law to define index of difficulty, to 
quantify ID, i.e.: ID = log2 (D/W +1), which resolves the negative ID problem. 

Important to the use of Fitts’ law in this context is that the infinite number and range of possible 
target sizes and distances can be unified into one variable ID. Quantifying input systems hence can be made 
by measuring a and b parameters in Fitts’ law. If done properly, such metrics would be independent of the 
experimental task setting and generalizable to other target sizes and distances2. 

In recent years, in part thanks to ISO 9241-9, the final draft international standard (FDIS) of 
“Ergonomic requirements for office work with visual display terminals (VDTs) - Part 9: Requirements for 
non-keyboard input devices”, research and testing of computer input system have increasingly relied on 
throughput ( MTIDTP /= ) that further  combines a and b into one quantification metric. Research on 
a number of devices and techniques have been conducted in such a manner, ranging from isometric joystick 
((Douglas, Kirkpatrick, & MacKenzie, 1998)), touchpad (Douglas et al., 1998), remote control mouse 
(MacKenzie & Jusoh, 2001), (Silfverberg, MacKenzie, & Kauppinen, 2001) and laser pointers (Myers et 
al., 2002) (Oh & Stuerzlinger, 2002). The goal was to standardize studies onto one metric that can be 
generalized and compared across different experimental studies.  

What has not been realized by the authors of ISO 9241-9 and these studies is a simple fact that in 
general TP is not a constant independent of the mean index of difficulty used in measuring it hence cannot 
be generalized beyond the task parameters used in a study. In other words, there  lack a logical foundation 
to the validity of TP as an intrinsic performance characteristic. Furthermore, important properties can be 
hidden when TP is used as a single metric to input system evaluation. There are two aspects to TP as 
defined in ISO 9241-9. One is incorporating error into movement time metric by using effective rather than 
nominal target width, the other is reducing two parameters of Fitts’ law (a, b) into one metric by the 
division of mean ID and mean MT. We analyze these two aspects separately in the rest of the paper. 

Incorporating error into movement time 

The smaller number of metrics needed to characterize an input system, the more convenient and powerful 
they are. Other than a and b that quantifies the time aspects of Fitts’ law, participants may also make errors 
during pointing experiments. Ideally the experimental participants follow the instruction of performing 
pointing “as quickly possible and as accurately as possible” and only miss the target in about 4% of the 
trials as a result. However in reality error rate may vary across systems, ID’s or studies. This means that 

                                                           
2 This is only true within a reasonable range, but not to extremely large or small scale ends (cf. (Guiard, 
2001), (Accot & Zhai, 2001)).  
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one cannot use MT alone to quantify the performance of an input system. Sometimes MT and error rate 
change in the same direction from one input system to another and other times in opposite directions, 
making it difficult to conclude which system is overall superior.  

A technique adopted by ISO 9241-9 FDIS and used by some (e.g. (Welford, 1968) (MacKenzie, 
1992), (Douglas et al., 1998; MacKenzie & Jusoh, 2001) (Myers et al., 2002; Silfverberg et al., 2001) (Oh 
& Stuerzlinger, 2002) ) but not all researchers (e.g. (Fitts, 1954), (Fitts & Peterson, 1964), (Card et al., 
1978), (Mottet, Guiard, Ferrand, & Bootsma, 2001), (McGuffin & Balakrishnan, 2002), (Accot & Zhai, 
2002)), is to incorporate error into MT. This was done by post hoc adjustment of nominal width W to 
effective width We in calculating ID. We was so chosen that effectively 4% of the trials fell outside the 
adjusted target3 . The underlining assumption is that if pointing movement is indeed like information 
transmission as hypothesized by Fitts, then the hits (the landing points of pointing) should be distributed 
along a Gaussian distribution curve. Furthermore errors can be traded off with ID (hence MT) along the 
Gaussian distribution curve (Figure 1). This is to say, for example, making 14% error with MT time at a 
target of W width is equivalent to making 4% error at a target of We width with 

)1/(log 2 ++= ee WDbaMT  time, where We is chosen as if 10% of the error falls inside the target 

and 4% outside the target.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 . An illustrative example: adjustment from nominal width W to “effective”  
width We so 4% (2% on each side) of trials fall outside We. 

 

There could be three lines of arguments or support for the validity of such a conversion – a matter 
of standardization, empirical evidence, and theoretical plausibility. 

The standardization argument could be that this is an agreement on how error should be converted 
into time, with or without basis. Once agreed, all research should be done in such a manner so there is a 
consistent method. A similar standardization method to speed and accuracy trade-off is in typing contest, 
where each stroke of mistake is counted as five words less in the final score. The counter argument to this 
conversion agreement argument is that it may or may not be “fair” to specific applications. In some 
                                                           
3  We can be either calculated from standard division of the hits or converted from actual error rate based on 
Gaussian distribution z-score (MacKenzie, 1992). Both methods assume Gaussian distribution and the 
effect is the same: leaving 4% of trials outside of adjusted We. 
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applications, error is much more critical than others. How error is weighed against time should be a 
decision made by the users of input performance information based on their application. 

An empirical argument could be an experiment where target width and error rate are 
systematically manipulated, which allows quantitative examination of error and target width relationship 
and see if they indeed trade along the Gaussian distribution curve. Unfortunately no such a study has been 
found in the literature. We call for such a study in the future. 

A theoretically argument could be that Fitts’ law tasks follow information theory and has to 
behave like information transmission in a noisy channel. More noise has to reduce information in a 
quantitative way that supports the We conversion. While Fitts’ law as an empirical relationship is widely 
confirmed, its theoretical basis is not agreed in the literature at all. Fitts' original theoretical foundation was 
information theory – the mathematical theory of communication ((Fitts, 1954), (Shannon and Weaver, 
1949)). He viewed the motor control system quite literally as a communication channel with noise, based 
on the argument that subjects in fact use all the tolerance specified with an approximate Gaussian 
distribution, exhibiting exactly the amount of information specified by that task, no more (wider than target 
size) and no less (narrower than the target size). Interestingly, according to such reasoning the spread of 
hits should not be much greater or much less than the nominal target width. Otherwise the task does not 
behave like information transmission along Fitts’ argument.   

  Fitts’ information transmission theory on his lawful relationship has been challenged by other 
researchers. For example Crossman and Goodeve (Crossman & Goodeve, 1963/1983) argued that a 
feedback control theory was more appropriate. They first proposed a theory in which the effector was 
moved at a speed negatively proportional to the remaining error (first order velocity control). However they 
rejected this theory upon further examination and opted for an ``intermittent sampling and proportional 
correction model'' which postulated reaching movement with a series of (sub)movement corrections, each 
with an amplitude proportional to the remaining error to the target. Schmidt and colleagues (Schmidt, 
Zelaznik, Hawkins, Frank, & Quinn, 1979) noted the theoretical difficulty in such a theory because it 
involved four or five corrections in one trial of reaching, each requiring at least 120 to 200 ms response 
time. Instead, they attempted to explain the speed-accuracy tradeoff by motor-output variability (Schmidt et 
al., 1979). An interesting result of Schmidt and colleagues’ endeavor is Schmidt’s law that is a linear 
relationship between movement time and the ratio of target distance and its “effective width” – defined by 
the standard deviation of the hits – in reaching tasks. A critical difference between Schmidt’s law and Fitts’ 
law lies in the role of dependent and independent variables in human performance. Fitts’ law treats spatial 
properties of movement (D and W) as independent variable (controlled and manipulated in experiments) 
and temporal performance as dependent variable (measured from the experiments). In contrast, Schmidt’s 
law specifies temporal property (the time or pace of the reaching task) and measures the spatial property of 
movement (the effective width of the reaching movement). Fitts’ law applies to close-loop information-
processing based reaching tasks, while Schmidt’s law applies to open-loop reaching task dictated by motor 
impulse variability (Schmidt et al., 1979). Along this line of thinking, when participants did not use the 
nominal width (independent variable) specified in Fitts’ law task, the task starts to move away from Fitts’ 
paradigm. Therefore post-hoc adjustment to independent variable is on a slippery ground. 

To complete this short review of Fitts’ law theories, Meyer and colleagues (Meyer, Abrams, 
Kornblum, Wright, & Smith, 1988) proposed a theory that advances the Crossman-Goodeve deterministic 
model of iterative-correction with stochastic components. Their theory divides reaching movement into two 
sub-movements and views the total movement as a result of optimization or ``ideal compromise'' between 
the durations of primary and secondary sub-movements. If and how such a theory can support effective 
width adjustment is an open question. 

Another unresolved issue in converting error to We is if such a conversion should be done on the 
basis of an individual or the whole group of experimental participant. It is more theoretically plausible to 



 5

use trials from individual participant on one W and D combination, as these are from the one source of 
“information channel”. A side effect of this approach is that IDe adjusted in such a way may vary from one 
participant to another, resulting different points for Fitts’ law regression analysis. This weakens the 
averaging effect that eliminates individual difference and other “noises” in Fitts’ law regression. In addition 
the degree of freedom in regression increases n folds (n  is the number of participants). The goodness of fit 
in Fitts law regression will hence suffer accordingly.  

Some studies, such as the re-analysis of Fitts’ data based on We in (MacKenzie, 1992), calculate 
We on a group basis. Given the trials assembled in such a manner are not from the same information 
channel, its theoretical foundation is sound than adjustment on individual basis. 

To conclude, while the intent of using We to incorporate error into MT is compelling for pointing 
tasks4 and may indeed be proven valid in the future, we have not found enough theoretical or empirical 
bases for such a conversion in the literature. Before then, it is recommendable to additionally report error 
rate and MT parameters (a, b) based on unadjusted W separately, if the We approach is used. 

Reducing a and b into one metric TP  

Throughput (TP), a metric based on Fitts’ law with or without using We conversion, has also been 
called index of performance (IP) or bandwidth. Since Fitts’ law can quantify pointing task in terms of 
information with ID (in bits), conversely the amount information transmitted (or more accurately 
expressed) per unit time (in bits per second) is a logical metric to quantify the performance of an input 
system. 

There have been at least two ways to calculate TP. One is to use the inverse of b in Equation 1. 
For clarity, we used bTP to denote this approach: 

bTPb /1=    (2) 

b is in the unit of second/bits; the unit of bTP is hence bits per second (bps, sometimes also denoted bits/s 

or b/s).  

This method, used by many researchers (e.g. (Card et al., 1978), (MacKenzie, Sellen, & Buxton, 
1991), (Soukoreff & MacKenzie, 1995), (Zhai, Morimoto, & Ihde, 1999), (Zhai, Smith, & Hunter, 2002a)), 
does not incorporate parameter a, the Fitts’ law regression intercept, and hence is only one part of 
movement time. It has to be considered in conjunction with a. Ignoring constant a can be misleading. For 
example, using bpsTPb 9.4= and considering a = 0 except when tapping on the same key consecutively, 

Zhai, Hunter and Smith (Zhai, Hunter, & Smith, 2000) (Zhai et al., 2002a) estimated movement efficiency 
of various stylus keyboard layouts. Later our research based on empirical data showed that a could not be 
neglected and hence the performance estimations had to be modified (Zhai, Sue, & Accot, 2002b). 

The second method, used by researchers including Fitts’ himself (Fitts, 1954) and increasingly by 
many others thanks to its adoption in ISO 9241-9 FDIS (Douglas et al., 1998; MacKenzie & Jusoh, 2001) 
(Myers et al., 2002; Silfverberg et al., 2001) (Oh & Stuerzlinger, 2002)) incorporates a into TP calculation. 
We use aTP to denote this calculation: 

                                                           
4 ISO 9241-9 FDIS also recommends using We to calculate path steering task difficulty, defined as ID = 
D/W where D is the distance and W is the width of a linear path (Accot & Zhai, 1997). Such a conversion in 
the case of steering has no plausible basis since the law of steering only models successful steering trials. 
The nature of error in steering tasks, which may occur anywhere along the steering path, is also 
fundamentally different Fitts’ task where error only occurs on the final landing point. 
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MTIDTPa /= ,   (3) 

ID and MT are mean values of ID and MT  in an experiment. ID may or may not be adjusted for error 
using We although ISO 9241-9 FDIS suggests so. 

When a = 0 (a special case), the two approaches give the same result: 

ba TPbbIDaIDMTIDTP ==+== /1)(// , (4) 

The goal and a potential advantage of using aTP is to characterize pointing performance of an input system 

into one value. Such a value should be independent of, or at least generalizable beyond, the task parameters 
such as the number, sizes, and distances of targets used in measuring TP. If so, aTP would be intrinsic to 

an input system. However this is not true when a is not zero.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fitts’ law: movement time in pointing increases linearly with ID,  
in addition to the constant a. 

 
According to Fitts’ law ( bIDaMT += , Figure 2) pointing time cannot be entirely quantified 

by information terms (namely ID ) when a is not zero. There is a constant portion (a) in completion time 
regardless the amount of information expressed. MTIDTPa /=  incorporates both a and b into one 

metric. On the surface, this seemed have solved the problem of a non-zero a, but in fact it means aTP is no 

longer an intrinsic value to an input system, but rather is a value dependent on the task parameters.  

An input system test based on Fitts’ law is usually carried out with systematic manipulation of ID 
through target size and distance (W, D) combinations. Suppose the number of ID in an experiment is N, 
then according to (4) aTP  is calculated as 

N

MT

N

ID
TP

N

i
i

N

i
i

a

∑∑
=== 11    (5) 

Since MT follows Fitts’ law, we may substitute MT with a + b ID, and obtain: 

MT 

ID 

a 

a + b ID 
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Clearly, aTP  depends not only on a and b, two intrinsic quantities to the input system, but also 

the mean ID used in the experiment. Figure 2 illustrates how aTP  changes with mean ID with typical 

Fitts’ law parameter values b = 0.125 (sec/bit) and a = 0.1, 0.2 or 0.4 sec. 
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Figure 3. Throughput defined by MTIDTPa /= as a function of mean ID.  

 

In sum, aTP is not a system intrinsic constant. When a throughput value is reported for an input 

system, its meaning is ill-defined, because there is a free degree of freedom (mean ID).  Depending on 
mean ID, aTP moves up and down on the curves in Figure 2.  In other words, aTP  is not a metric that can 

be generalized beyond experimental parameters.  

The sensitivity of aTP  to the mean ID used varies with a. The greater a is, the more slowly aTP  

converges to 1/b. When a = 0, aTP  = bTP = 1/b. 

aTP  has an asymptote of 1/b when mean ID increases toward infinity. This means that a more 

stable value of aTP  can be measured if a greater mean ID is used in the experiment. On the other hand this 

is totally unnecessary because the asymptote can be easily estimated from Fitts’ law regression (1/b). 
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Sometimes a negative a value is reported. When a is negative, aTP  calculation is even more 

unstable. Not only aTP  still is not a constant. It in fact has a singular point at aID =  where aTP is 

infinity. Figure 3 shows aTP  as a function of mean ID when a = - 0.15 sec. 
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Figure 4. MTIDTPa /= as a function of mean ID, when a is negative. 

  

Now that the dependency of aTP on mean ID is understood, is it possible to standardize mean ID 

used in experiments so aTP  can be compared across studies? This is difficult because the range of ID in 

an experiment depends on the practical application that motivates the study. In practice even similar studies 
by the same researchers could change the set of IDs in different studies. For example, MacKenzie & Jusoh 
(2001) choose D = 40 mm, 80 mm, 160 mm and W = 10 mm, 20 mm, 40 mm. The corresponding mean ID 
is 2.396 bits. Silfverberg et al. (2001) choose W =  3 mm, 6 mm, 12 mm and D =  25 mm, 50 mm, 100 mm, 
which corresponds to mean ID 3.269 bits. Douglas et al. (1998) used yet a different set: W= 2, 5, 10 mm 
and D = 40, 80, 160 mm, corresponding to mean ID 4.219 bits. 

 

There is yet another way to calculate TP by averaging ID/MT ratio over all ID values in the 
experiment: 

N

MTID
MTIDTP

N

i
ii

c

∑
=== 1/     (7) 

As illustrated in Figure 4, cTP averages the inverse of the series slopes determined by 

ii MTID and hence is a function of the set of ID used. It therefore suffers the same problem as bTP . 
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Figure 5. MTIDTPc /= changes as a function of ID points used.  

 

Sources of non-zero intercept a 

The cause of the throughput problem is the non-zero Fitts’ law intercept a. There are at least the following 
three possible sources of a non-zero a. 

 

1. Regression error. As a statistical method, regression results cannot be perfect. Even if there is not 
an intrinsic constant component to MT, there could be a non-zero intercept due to regression noise. 
This is particular true when the range of ID used in experiments is narrow. A non-zero a resulted 
from such a cause is purely an artifact of experimental measurement. This cause can be reduced by 
choosing a wide enough range of ID in experiments. 

2. A component of human visual, cognitive or motor reaction process that is independent of 
movement task parameters. For example the process of finding where the target is (in case of a 
serial, none reciprocal pointing task). The time to activate muscle movement etc. 

3. Modeling error. Evidence in the literature (e.g. Crossman & Goodeve, 1963/1983, also see Fitts' 
original data) shows that Fitts’ law may not apply to tasks with very low ID. When ID is lower 
than 2 bits, it is likely the task shifts towards open-loop behavior governed by Schmidt’s law 
rather than byinformation as quantified by Fitts’ index of difficulty.  The movement time is hence 
curved in the low ID end when the horizontal scale is logarithmic. This “non-Fitts component” 
when forced into a linear regression on the logarithmic scale may result in a non-zero intercept.  

4. A component of motor performance independent of distance or target size. For example, the time 
to click on a mouse button, the time to tap on the same target twice (D = 0), etc.  

Category 4 is in fact a performance aspect that should not be ignored or mixed into the 
information (time as a function of ID) aspect of performance. It is possible that an input device is more 
effective than another in moving a cursor from one target to another but less so in target activation due to 
selection button design. When this happens, it is more informative to report it (as indicated by a) 

MT 

a 

MT =a + b ID 

ID 
ID1 ID2 . . . . . . IDN 

. . . .  MT1 
MT2 

MTN 
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separately, rather than mixing it with the information aspects. In designing laptop computer pointing 
devices, such as touchpads or miniature in keyboard joysticks, a particular challenge is that the selection 
buttons cannot be well integrated into the movement action as for a mouse. Some alternative solutions have 
been made available in recent years, such as press-to-select or tap-to-select, which uses a vertical press or a 
tap on the stick or the touchpad surface to activate target selection. When researching the efficiency of 
these solutions, it is critical to be able to study a separately. 

Conclusions  

It is a worthy goal to find the smallest possible number of quantities that are necessary and 
sufficient to characterize input performance. The use of Fitts’ law is a leap forward in this regard. Without 
Fitts’ law, pointing performance cannot be generalized beyond the set of targets size and distance used. 
With it, input performance can be characterized by the Fitts’ law parameters (a and b), plus error rate made 
during the experiment. 

Another possible step forward is to incorporate error into Fitts’ law regression by adjusting target 
sizes so there are a fixed percentage of trials outside of the adjusted targets. While this is a compelling 
method, it lacks firm theoretical or empirical foundation. We suggest both adjusted and unadjusted results 
with errors reported until a firm foundation is established. 

 A further step towards performance parameter reduction is to concentrate on a single metric – 
throughput. Recommended by ISO 9241-9 FDIS and adopted by an increasing number of input studies, it is 
unfortunately an “overshoot” on the topic of input performance characterization. The analysis presented in 
this paper shows that throughput is either limited to one aspect of performance, as defined by bTPb /1= , 

or ill-defined with value extrinsic to the input system, as calculated by MTIDTPa /= .  

The forgoing analysis points out that input performance can be a multi-dimensional property, 
along at least an information (ID) independent dimension as measured by a, and an information dependent 
dimension as measured by b. How the different dimensions weigh in overall performance depends on the 
application tasks so that trade-off decision should be made by the end-user of the performance information. 
If these dimensions are combined arbitrarily (e.g. incidentally by the choice of mean ID used in 
experiments), important information is lost and the result can be misleading5.  

We conclude Fitts’ law in its complete form (with a and b6) plus error rates should be used in 
characterizing input performance, as these parameters are theoretically intrinsic to the input system studied 
and hence generalizable beyond the target parameters used in experiments.   

It should also be pointed out that Fitts’ law only models pointing tasks. Performance 
characterization using the Fitts’ paradigm should be interpreted as such. Depending on its application, a 
study may also use other paradigms of evaluation, such as path steering or goal crossing whose movement 
regularities have been recently reported ((Accot & Zhai, 1997), (Accot & Zhai, 2002)). Note that although 
much smaller relative to the total completion time, the law of steering may also has a non-zero intercept.  

                                                           
5  It should be pointed out that the cited studies based on ISO 9241-9 should still have internal validity 
between the experimental conditions within these studies. However the performance measure embodied in 
TP cannot be generalized beyond these studies as TP is not intrinsic. Furthermore many of them no longer 
report complete Fitts’ law results (a, b, error rate, a goodness of fit), so it is not possible to recover the 
intrinsic a b measures. 
6 Or it can be said as bTP plus a. 
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