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Abstract. This paper presents two lifetime models that describe two
of the most common modes of operation of sensor nodes today, trigger-
driven and duty-cycle driven. The models use a set of hardware parame-
ters such as power consumption per task, state transition overheads, and
communication cost to compute a node’s average lifetime for a given
event arrival rate. Through comparison of the two models and a case
study from a real camera sensor node design we show how the models
can be applied to drive architectural decisions, compute energy bud-
gets and duty-cycles, and to preform side-by-side comparison of different
platforms.

1 Introduction

The rapid progress of sensor networks in many applications is constantly fueling
the quest for extending the lifetime of battery-operated wireless sensor nodes. In
fact, many innovative platforms [9, 3, 8, 11, 13] have recently demonstrated sev-
eral important new techniques for increasing node lifetime. Despite these efforts
however, there are numerous situations where design decisions are rather oppor-
tunistic and tend to be influenced on the availability of low-power components
and techniques without considering the longer term trends in platform design.

To complement these effort, we draw from our experiences in building and
using sensor nodes to develop detailed models that characterize two widely used
operation patterns for sensor nodes today: trigger-driven and schedule-driven.
The models are constructed using Semi-Markov models by considering the power
consumption in different operational modes and the energy overheads incurred
during transitions. While similar predictions about lifetime could be obtained
using simulations, we argue that detailed models are also needed to provide ad-
ditional insight into how individual platform and application parameters affect
lifetime. For instance, one can use the lifetime models presented here to evalu-
ate potential gains from the design of hardware triggering mechanisms, software
driven scheduling and duty-cycle modes and power budgets. The models pre-
sented here can also be used to perform side-by-side comparison between existing
platforms under different application requirements, event arrival rates and de-
tection probabilities. With this, our models can be used as a deployment analysis
tool to determine which design is more appropriate for a certain application.
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Our presentation is divided into two main parts. The first part states our as-
sumptions and derives our models. The second part demonstrates the usefulness
of our models in a case study drawn from our own experiences during the design
of a camera sensor node. The case study shows how the models developed here
can be applied to analyze the lifetime properties of a sensor node architecture
based on application characteristics, hardware properties and changing trends
in microprocessor and radio technologies.

2 Related Work

Node lifetime is a frequently discussed topic in platform design and analysis.
In the last couple of years new platforms such as LEAP[9], XYZ[8], iMote2[3]
and the Hitachi watch in [15] have demonstrated several new techniques for re-
ducing power leakage during sleep time. The LEAP [9] platform adopted a dual
processor/radio architecture to exploit the tradeoffs between power efficient and
high-power components. An Energy Management and Accounting Preprocessor
(EMAP) module based on a low-power MSP 430 processor has been designed
to manage different power domains on the LEAP board, enabling the high-end
sensors and processors only when needed. Intel’s iMote2 [3] uses dynamic fre-
quency and voltage scaling and a power management IC (PMIC) to control
different voltage domains on the node. The XYZ [8] node and the Hitachi watch
[15] have used an external real-time clock circuit to wake up the node processor
from ultra-low power deep-sleep modes. A number of proposals [10],[13],[4] de-
scribed energy dissipation at the node level. Nath et al.[10] used Markov chains
to analyze energy dissipation behavior per node. Each node is assumed to have
six distinct power modes and transitions over different modes with given prob-
abilities. Despite the detailed power mode consideration, this work is mostly
simulation-based (in ns-2) and does not consider the energy dissipation mod-
els pertaining to the power modes. Snyder et al. [13] demonstrated the validity
and effectiveness of their power consumption simulation tool, PowerTOSSIM,
by predicting energy consumption per node. Hardware components are charac-
terized at a very detailed level to simulate power consumption of a node as close
as possible. Another approach presented in [4] uses hybrid automata models for
analyzing power consumption of a node at the operating system level (TinyOS).

Our work differs from the above in that it tries to derive longer-term models
by considering a node’s hardware characteristics and operation patterns. Instead
of considering software optimizations, the emphasis of our analysis is in exposing
how a chosen combination of hardware components and operation patterns can
influence lifetime.

3 Model Overview and Assumptions

The analysis described below models two main sensing schemes commonly em-
ployed in sensor nodes today: trigger-driven and schedule-driven. In trigger-
driven operation, the sensors are managed by a low-power pre-processing unit
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Symbol Description Symbol Description

ETotal Total amount of energy per node Z Transmission time per packet
Si Power state of mode i σ Job inter arrival time per event
PM Power consumption at power λ Average event inter arrival rate

mode M , where M ∈ Si, i = 1...5 nij(t) # of i → j transitions during t
PS Power consumption at asleep period PW Power consumption at awake

of schedule based node period of schedule based node
pj Steady state probability of mode j Nσ The number of jobs per event
pij Transition probability from Cij Transition energy cost from

mode i to j mode i to j
CP CPU wake-up energy cost NP Number of packets per event
CR Radio wake-up energy cost TW CPU awake duration
L Channel-listening time of radio TS CPU asleep duration
Y Processing time per event Tc Duty period, Tc = T1 + T2

u Detection probability d Duty cycle, d = T1/(T1 + T2)

Table 1. List of variables

that continuously samples the sensors. This preprocessor performs a first-order
filtering of the data and wakes up a more powerful main processing unit if cer-
tain criteria are met. The LEAP node [9] and image sensors described in [14]
follow this model. In schedule-driven operation, the node’s sensors are connected
directly to the node’s main processor. To conserve energy, the processor follows
a schedule that alternates between a low-power mode (e.g sleep, deep-sleep or
shutdown) and a short, full-power mode in which the processor (or its ADC)
samples the sensors for interesting activity. If the desired event types are sensed,
it proceeds to make the necessary computations and transmits the outcome with
the radio if needed. The sentry nodes used in the Vigilnet project [5] follow this
type of model. In this case the sentry are asleep most of the time, and periodically
wake up to sample for activity.

3.1 Assumptions

The models described in this paper make the following assumptions:
1. The first-order statistical characteristic (mean value) of all random quantities

(events, processing time, etc) is known by observation and experiment from
the Ergodic property.

2. Event arrivals follow a Poisson distribution.
3. Processing and radio-transmission times are independent and identically dis-

tributed (i.i.d.) with arbitrary distribution.
4. When an event is detected, the node processes it and sends the information

to a base station (or another node) with probability α.
5. During the processing period, the CPU visits a limited number of low-power

states (e.g. idle state).
6. During the communication period, the radio visits a limited number of listen

(idle) states.
7. All power consumptions are constant during an operation and a fixed amount

of energy is required to turn on or off the CPU and radio.
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Trigger-Driven Node Schedule-Based Node
Mode Preprocessor CPU Radio Sensor CPU Radio

S0 – – – Off Off Off
S1 On Off Off – – –
S2 On On Off On On Off
S3 On On TX On On TX
S4 On Idle Off On Idle Off
S5 On On RX On On RX

Table 2. Power state description

The first three assumptions imply that the power state transitions may be
modeled as a semi-Markov chain [12] that can be used to compute a node’s av-
erage power consumption and lifetime. While assumption 2 may not always hold
true in all deployments a Poisson arrival rate is a representative model for many
applications. For example, the number of people entering a building is a well
known example of Poisson arrival [6]. For the purposes of our analysis we argue
that the Poisson assumption is a reasonable choice because our main interest is
to exercise the node hardware parameters that influence lifetime. Furthermore,
by fixing the distribution of arrival events in our models we provide a common
baseline for the comparison of many platforms by exercising their features under
the same underlying distribution. In order to include communication overhead
in the lifetime analysis, the same communication paradigm is adopted for both
the trigger-driven and schedule-driven models as stated in assumption 4. The
next two assumptions, 5 and 6, related to the idle state of the CPU and listening
state of the radio, are necessary to more accurately describe the power consump-
tion of those components. When an event is sensed by the node, the CPU will
usually go to a full-power, active mode to perform some processing or additional
sensing, but may alternate it with a temporary lower-power state to conserve
energy. This is accounted for in assumption 5. Meanwhile, it is common for MAC
protocols to listen to the radio channel before any transmission, to avoid packet
collisions [2]. For this we have introduced assumption 6. We also emphasize that
our models focus on node-level behaviors by examining the parameters of the
node hardware under different event arrival rates. Software and network level
optimizations are therefore not considered in this analysis.

3.2 Node Power Modes and Variables

Our analysis considers a simplified version of the power modes available on sensor
nodes, eliminating some of the impractical modes. The modes considered are
described in Table 2. To develop our models we also introduce a set of variables.
These are described Table 1. Our notation also uses a bar to denote expected
value (i.e the expected value of the variable A is Ā).

4 Lifetime Models

In this section, we will show that each sensor node can be modeled by an em-
bedded semi-Markov Chain. Let X(t) denote the power state at time t. Then
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Fig. 1. (a) Power profile of simplified trigger-driven node model, (b) Semi-Markov
chain of simplified trigger-driven node model.

change of state X(t), t ≥ 0 does not solely depend on the present state, but also
the length of time that has been spent in that state. This characterizes a semi-
Markov chain, as states change in accordance with a Markov chain but there is
a random length of time between the changes. Let Hi denote the distribution
of time that the semi-Markov process spends in state i before making a transi-
tion, and let the mean be µi =

∫∞
0

xdHi(x). With Xn denoting the nth state
visit, Xn, n ≥ 0 becomes a Markov chain with transition probabilities pij . It is
also called the embedded Markov chain of the semi-Markov process [12]. Let Tii

denote the time between successive transitions into state i and let µii = E[Tii].
If the semi-Markov process is irreducible and if Tii has nonlattice distribution
with finite mean, then

pi ≡ lim
t→∞

P [X(t) = i|X(0) = j] = lim
t→∞

Tt

t
, (1)

where Tt is the amount of time in i during [0, t], exists and is independent of
the initial state, j. In other words, pi equals the long-run proportion of time in
state i (the time spent in i over the combined time spent in all states). Suppose
further that the embedded-Markov chain Xn, n ≥ 0 is positive recurrent. Then
a stationary probability exists, which is the frequency of visiting each state for
infinite time duration . Let its stationary probability be πj , j ≥ 0. Then πj is
the unique solution of

πj =
∑

i

πipij ,
∑

j

πj = 1 (2)

and πj can be interpreted as the proportion of transitions into state j (over the
sum of all state transitions). Then the following theorem holds

pi =
µi

µii
=

πiµi∑
j πjµj

(3)

Using equations (2) and (3), one can compute the long-run proportion of
time in state i.
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Fig. 2. (a) Power profile of complete trigger-driven node model, (b) Semi-Markov chain
of complete trigger-triven node model.

4.1 Trigger-Driven Lifetime Model

Figure 1a shows the simplest power model. In this model, the sensor node has
only three states, which can be represented by the semi-Markov chain in Fig-
ure 1b. This model does not account for any Idle or Listening modes on the
CPU or radio, respectively. However, in reality the CPU and radio often enter
Idle mode during the processing and communication stages. For example, when
an event is detected, the CPU has a choice of either processing the data, or
deciding to drop it (or quickly store it for later). In these situations, the CPU
may go back into an idle state to wait for the next job. Meanwhile, radios tend
to spend considerable energy listening to the channel before any actual trans-
mission due to impositions of the underlying MAC protocol. In IEEE 802.15.4,
for instance, less than 50 percent of energy is spent for actual transmission, and
listening activity accounts for more than 40 percent of energy consumption [2].
To take these factors into account, Figure 2a deals with the addition of the
idle and listening states of the CPU and radio. The updated semi-Markov chain
in Figure 2b shows that each processing and communication stage contains a
two-state embedded chain.

Given a long enough time period, T , the total time spent at state i can be
approximated as limT→∞ Ti = Tpi. Therefore, the total energy spent at state i
is ESi = Tpi × PSi , for i ∈ {1, 2, 3}, and the transition energy cost from state i
to j during T can be obtained as ESij = Cijnij(T ). However, only the CPU and
radio wake-up costs (CP and CR, or, in ESij notation, ES12 and ES23) need to be
taken into consideration since the sleep cost (ES31) is negligible in comparison.
Since the total amount of energy spent at each state, ESi , and the transition
energy, ESij

, cannot exceed the energy resource, Etotal, the following inequality
holds: ∑

1≤k≤3

ESk
+ ES12 + ES23 ≤ Etotal (4)

By applying (2) and (3) to Figure 1b, we can obtain the asymptotic node
lifetime as follows. A more detailed derivation can be found in [7].
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Fig. 3. (a) Schedule-based node power profile, (b) Power state transition during wake-
period.

TL(λ) ≤ [1 + λKT ]ETotal

PS1 + λKE
(5)

In (5), KT and KE represent the average time and energy spent for a sensed
event respectively. Typically, KE � PS1 and λ � 1sec−1. As shown in the
denominator of (5), the power component can be roughly broken down into two
parts: λKE , the average power spent for computation and communication per
sensed event; and PS1 , the power spent to monitor the events. It can be easily
found that a sensor node spends more power monitoring an event than processing
it at λ ≤ PS1

KE
. The average steady-state power consumption of the trigger-driven

sensor node is simply given as:

PST,td(λ) =
PS1 + λKE

[1 + λKT ]
(6)

For the simplest power model, Figure 1a, KT and KE are given as:

KT = Y + αZ, KE = Y PS2 + αZPS3 +
CP + αCR

1 + α
(7)

By taking into consideration the average power consumption and sojourn
time in these two-state chains as shown Figure 2b, KT and KE are given as:

KT = (σ + Y )Nσ + α(L + Z)N̄P

KE = (σPS4 + Y PS2)Nσ + α(LPS5 + ZPS3)N̄P +
CP + αCR

1 + α

(8)

4.2 Schedule-Based Lifetime Model

Let k be the total number of duty cycles during the node’s entire lifetime, and
each εi the residual processing time after the ith awake state of the node. Addi-
tionally, let TW be the length of time when the node is awake. Then the average
node lifetime is obtained as following:



8

∑
0≤i≤k

((TW + εi)P̄W,i + (TS − εi)P̄S,i + CP ) ≤ ETotal (9)

where P̄W,i and P̄S,i denote average power consumption of awake and asleep
periods during cycle i respectively. Note that each P̄W,i incorporates the power
expenditure of four power states: S2, S3, S4 and S5. As for the power computa-
tion, the schedule-based node performs the same function as the trigger-driven
node when an event occurs during the awake period (Figure 3). Therefore, given
a long enough timespan, the average power consumption of the node during the
active period (P̄W,i) can be approximated by replacing in (6) the preprocessing
power with idle power, and setting CP = 0. The result is shown below:

lim
i−→∞

P̄W,i = PW (λ) =
PS2 + λK ′

E

1 + λK ′
T

(10)

In (10), K ′
T and K ′

E represent the average time and energy spent for a sensed
event respectively during awake period. Typically, K ′

E > PS2 and λ � 1sec−1.
As before, the nominator of (10) shows the power component during the awake
period can be roughly broken down into two factors, namely λK ′

E , the average
power spent for computation and communication per sensed event, and PS2 , the
static power spent during the awake period. It can be easily found that a sensor
node spends more power for the idle state than processing events at λ ≤ PS2

K′
E

.
For the awake period of the schedule-based power model, (Figure 1b) K ′

T

and K ′
E are given as using (8):

K ′
E = (σPS4 + Y PS2)Nσ + α(LPS5 + ZPS3)N̄P +

αCR

1 + α

K ′
T = (σ + Y )Nσ + α(L + Z)N̄P

(11)

Using the fact that P̄S,i(t) is constant (P̄S,i ≡ PS0), the average node lifetime
can be obtained by applying (10) to equation (9):

TL ≈ (TW + TS)k ≤ ETotal(TW + TS)
[TW PW (λ) + TSPS0 + (PW (λ)− PS0)ε + CP ]

(12)

Since it is typically the case that TW � ε, the term (P̄W (λ)−PS0)ε̄ can often
be ignored as TW P̄W (λ) � ε̄P̄W (λ) ≥ ε̄(P̄W (λ)− PS0).

The model derivation is now complete. Before applying these models, we have
verified their numerical correctness through simulation. The simulation iterates
through each state visited for a certain time period summing up all the power
overheads during the lifetime of the node. Due to space limitations, these results
are omitted from this paper.
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4.3 Trigger-Driven and Schedule-Driven Comparison

To meaningfully compare the two models, the event detection probability also
needs to be considered. For the trigger-driven case, the sensor and preprocessor
are always on, so we can assume that event detection happens with probability
one. This comes at a price, of course, of added power cost for the preprocessor.
The schedule-driven scheme, however, takes no such toll on power, but does so
at the expense of event detection probability. All events that do not coincide
with the node’s duty-cycle remain undetected. To compare, let us define two
random variables U and V to describe the number of Poisson sensor events
during TW and Tc respectively. Then the average detection probability, E

[
U
V

]
,

can be computed as:

E

[
U

V

]
=

∑
0≤v≤∞

E

[
U

v

∣∣∣∣ V = v

]
PV (v) =

∑
0≤v≤∞

1
v

[
v
TW

Tc

]
PV (v) =

TW

Tc
= d

(13)
The second equality of Equation (13) comes from the fact that P (U = u|V =

v) has a binomial distribution, B(v, d), where d = TW

Tc
. As shown in Equa-

tion (13), the detection probability is simply the duty cycle of the schedule-driven
node. Therefore, we can express the trade-off diagram between the trigger-driven
and schedule-driven schemes as a function of the detection probability u (shown
in Figure 4), where the node lifetime of the schedule-based node follows the
equation:

T̄L(u) ≤ ETotal

(P̄W (λ)− PS0)u + (PS0 + CP

Tc
)

(14)

From (14), the average steady-state power consumption of the schedule-based
node can be found:
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Fig. 5. (a) iMote2 node with a COTS camera board, (b) Trigger-driven sensor node
with iMote2 fitted with a PIC microcontroller and PIR motion sensor

P̄ST,sb(u) = (P̄W (λ)− PS0)u +
(

PS0 +
CP

Tc

)
(15)

By superimposing the two average power consumption formulas (Equations (15)
and (6)), we can obtain a trade-off diagram as Figure 4. The thick line denotes
the lowest-power choice for a given detection probability. The two curves meet

at u∗ =
P̄ST,td(λ)−(PS0+

CP
Tc

)

P̄W (λ)−PS0
. The figure shows that for an application that allows

the use of sensors with detection probability smaller than u∗, the schedule-driven
scheme is a sound choice. For events with larger arrival rates, u∗ gets shifted to
the right, further favoring the schedule-driven scheme for frequent, non-critical
detections. Otherwise, if the application demands high-accuracy, the trigger-
driven scheme is a better alternative. Of course, multiple nodes with comple-
mentary schedules may reduce the number of events that are globally missed,
but such a network-wide power analysis is out of the scope of this paper.

5 Case Study: Using the models to characterize and
make decisions about a camera sensor node

To demonstrate the usefulness of the models derived in the previous sections, we
now demonstrate their application in the decision-making process of an experi-
mental camera sensor node designed for the BehaviorScope project at Yale. Our
goal is to decide whether it makes sense to develop an improved version of the
camera node shown in Figure 5a. This camera node is an Intel iMote2 [3] coupled
with a custom camera board we have designed with a commercial, off-the-shelf
(COTS) image sensor, the Omnivision’s OV7649. The node is powered by three
AAA batteries (1150mAh capacity). The alternative design we are considering is
a new camera board that supports a wakeup preprocessor mechanism comprised
of a passive infrared (PIR) sensor for detecting motion and a small 8-bit PIC
10F200 microcontroller to act as a preprocessor. This configuration (described
in Figure 5b) would allow the node to follow a trigger-driven mode of operation.
Instead of periodically sampling the camera to detect activity, with this im-
provement the PXA 271 processor onboard the iMote2 will wait in a low-power
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Parameter Value Parameter Value

λ 0.1/min Ȳ 2sec∗

Z̄ 3.8msec L̄ 0 msec
σ̄ 0 min N̄σ 1
α 1 Tc 10 min

N̄P 1 Total Energy 18.63 kJ

Table 3. Reference scenario, measured (∗)

state until triggered by the PIC-based preprocessor that is always kept on for a
small energy overhead (Mode S1 in Table 5). In this state, the preprocessor will
apply a thresholding algorithm to the samples it collects from the PIR sensor. If
the observed motion exceeds a predefined value, the preprocessor will power up
the iMote2 and camera board to acquire and process the images. If the image
processing reveals something of interest, the node the transmits the information
to a basestation. These transmissions take place with probability α. To provide
more concrete numbers in our case study, we set up the camera node to act as
a simple single target localization device. An event is defined as the complete
trajectory of human centroid in the range of camera sensor. In this setting, the
camera sensor node performs the following functions in order.

1. When a person enters the camera’s field-of-view, the preprocessor wakes up
the iMote2 and camera (only for the trigger-driven node).

2. When awake, the iMote2 continually computes the location of the person
at a frequency of 8Hz (8fps) until the person exits the coverage area of the
camera.

3. Once the person is out of the sensing range, the node transitions back into
the low power mode after sending a stream of locations to the base station.

According to our experiment, event duration is roughly 2 seconds. From our
event definition, processing time is actually the same as event duration, and any
incomplete trajectory (set of centroids) of a person is considered a missed event
(hard-decision). For example, if a person is entering into camera view, and 1
sec later a node wakes up and observes only half of the trajectory, then the
event is considered missed. For real-time computation, the node may transmit
the centroids as soon as they are acquired. Notice, however, that whether the
centroids are sent immediatelly or left for transmitting later is not of relevance
to our models, as long as the energy consumption of both cases is still the same.
From a lifetime perspective, the summation of the energy spent at each stage will
be same regardless of the processing order. The time between capturing a frame
to extracting a centroid is 123msec/centroid. Therefore, a node generates a total
of roughly 16 centroids per event and the total amount of information per event
is 96 Bytes. With a packet size of 119 Bytes (including 23 Byte of packet header)
transmitted at the rate of 250 kbps, the packet transmission takes 3.8msec. As
a reference scenario, we set the system parameter values as specified in Table 3.

The PXA271 processor provides six power modes: Normal, Idle, Deep Idle,
Standby, Sleep and Deep Sleep. Each of the six modes have different levels of
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CPU Camera Radio
Mode PXA271 OV7649 CC2420 Total

S0 Deep Sleep Standby Shutdown

1.8mW 8mW 144nW 9.8mW

CP 48.63mJ - 691pJ 48.63 mJ

252msec - 970µsec 253msec

S2 Normal Active Idle

193mW 44mW 712µW 237.7mW

S4 Deep Idle Active Idle

88mW 44mW 712µW 132.7mW

CR - - 6.63µJ 6.63µJ

- - 194µsec 194µsec

S3 Normal Active TX

193mW 44mW 78mW 315mW

S5 Normal Active RX

193mW 44mW 78mW 315mW
Table 4. Typical power-consumption specifications of schedule-driven camera sensor
node (iMote2) at 104 MHz CPU Core frequency, 4MHz PIC and 0dBm TX Power

power consumption and different transition times to the Normal mode. The Nor-
mal mode is the state where all internal power domains and clocks are enabled
and running. At Idle and Deep Idle modes, the CPU core stops being clocked,
but for the latter the PXA is first switched into 13 MHz frequency. Standby
mode puts all internal power domains into their lowest power mode except for
the real-time clock and the PLL for the core. At Sleep and Deep Sleep modes,
the PXA271 core power is turned off. Furthermore, in Deep Sleep mode all clock
sources are also disabled. Therefore, Standby mode is the lowest power mode that
does not require the node to reboot. To reason with the different design possibil-
ities, we measured the power consumption and transient time of the iMote2 at
different operational modes that correspond to the schedule-driven and trigger-
driven modes we have previously defined in our models. The measurements for
these modes are shown in Tables 4 and 5 1. More detailed information can be
found in [1]. Both tables follow the power mode definitions introduced in Ta-
ble 2. Since the iMote2 does not provide any special interface for measuring the
power of the PXA CPU, we measured the total power drawn when the radio is
shutdown.
Question 1: What is the expected lifetime for the existing (schedule-driven,
Figure 5a) and proposed (Figure 5b) configuration? Using our measurements in
Table 4, the schedule-driven node will last for only 1.61 days if it is always on,
continuously sampling, since T̄L(1) = ET otal

P̄W (0.1/min)
by plugging u = 1 and Tc = ∞

in Equation (14). The lifetime of the alternative, trigger-driven configuration
depends on the event arrival rate and can be computed using the model in

1 In our tables Normal and Active modes have similar meanings. We opted on using
two different terms to be consistent with the naming conventions of the datasheet
for each device
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Preprocessor CPU Camera Radio
Mode Motion Sensor PIC10F200 PXA271 OV7649 CC2420 Total

S1 On On Standby Standby Shutdown

3.6µW 340µW 17mW 8mW 144nW 25.34mW

CP - - 2.2mJ - 114nJ 2.2mJ

- - 11.432msec - 970µsec 12.4msec

S2 On On Normal Active Idle

3.6µW 340µW 193mW 44mW 712µW 238.05mW

S4 On On Deep Idle Active Idle

3.6µW 340µW 88mW 44mW 712µW 133.05mW

CR - - - - 6.63µJ 6.63µJ

- - - - 194µsec 194µsec

S3 On On Normal Active TX

3.6µW 340µW 193mW 44mW 78mW 315.34mW

S5 On On Normal Active RX

3.6µW 340µW 193mW 44mW 78mW 315.34mW
Table 5. Typical power-consumption specifications of trigger-driven camera sensor
node(iMote2) at 104 MHz CPU Core frequency, 4MHz PIC and 0dBm Tx Power on a
CC2420 radio

Equation (8). The trend for different arrival rates is shown in Figure 6b. At our
default configuration (PXA and Camera in Standby Mode), the trigger-driven
iMote2 would only last 8.45 days at most (1.03 days at least). Figure 6b shows
that less than 4 days of lifetime gain would be achieved by completely turning off
the camera sensor board. It reveals the important design guide that in order to
obtain a significant lifetime gain (more than 10 times), the trigger-driven node
ultimately has to stay at Deep-Sleep mode during preprocessing stage, which is
the lowest power state that can be achieved by the node with software control.
Question 2: Given a specific arrival rate for a certain application, and a life-
time requirement, what is the maximum power a pre-processor(and sensor) can
consume? To obtain the power budget for the pre-processor we need to solve
for PS1 of the trigger-driven model in (5). The lifetime trend at different event
arrival times as a function of preprocessor power is shown in Figure 6c.
Question 3: If we don’t build the proposed board and use a duty-cycle instead,
what is the expected lifetime for a certain detection probability? We can answer
this question by plugging in the detection probability u in the lifetime model for
the schedule-driven node described by Equation (14). The expected lifetimes for
different detection probabilities are shown in Figure 6a.
Question 4: Suppose we had an ideal sensor preprocessor (power cost=0) what
would be the lifetime of the node at a certain arrival rate? This trend is shown
in Figure 6d. If we use Standby mode as the lowest power mode, in a trigger-
driven configuration, the node will last for only 8.62 days! Also, if we entirely
disable the preprocessor, the node will operate as in the schedule-driven model
with duty-cyle=0, missing all events. Even so, the node lifetime is only 8.62
days, indicating that we should try to operate at power levels lower than the



14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Detection Probabilty 

Li
fe

tim
e 

(d
ay

s)

 

 

10-3 10-2 10-1 100 101 102100

101

102

Li
fe

tim
e 

(d
ay

s)

Event Inter-Arrival Rate (1/min)

iMote2 Deep Sleep
Camera board Off

PXA Standby Mode
Camera board Off

PXA Standby Mode
Camera Standby

94.15

12.33
8.45

(a) (b)

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

Preprocessor (mW)

Li
fe

tim
e 

 (d
ay

s)

 

 

λ=1/10min
PXA in Standby Mode

λ=0
PXA in Standby Mode

λ=∞
PXA in Standby Mode

λ=0
iMote2 in Deep-Sleep Mode

10-3 10-2 10-1 100 1010

5

10

15

20

25

Event Inter-Arrival Rate (1/min)

Li
fe

tim
e 

(d
ay

s)

 

 

Schedule-Driven iMote2
Trigger-Driven iMote2

Preprocessor=0 mW
PXA in Standby Mode

Preprocessor=0 mW
iMote2 in Deep Sleep Mode

Duty Cycle=0
iMote2 in Deep Sleep Mode

Duty Cycle=0
PXA in Standby Mode

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

Detection Probabilty 

Li
fe

tim
e 

(d
ay

s)

10-3 10-2 10-1 100 101 1020

100

200

300

400

500

600

700

Event Inter-Arrival Rate (min-1)

Li
fe

tim
e 

(d
ay

s)

(e) (f)

Fig. 6. a) Lifetime trend versus detection probability for question 1, b) Lifetime trend
versus arrival rate for question 1, c) Lifetime trend for question 2, d) Lifetime trend for
question 3, e) Lifetime trend versus detection probability for the sentry node described
in VigilNet[5], f) Predicted hypothetical lifetime trend versus arrival rate for the sentry
node described in VigilNet[5]

.

Standby mode. Comparing Figure 6c and Figure 6d, we notice that just lower-
ing power consumption of preprocessor does not impact the lifetime trend of the
trigger-driven node since PS1 is heavily dominated by the power consumption of
the camera board and PXA at Standby mode. Indeed, our computation shows
that for rare events the lifetime increases to 94 days, with the camera board
off and the iMote2 in Deep Sleep mode (Figure 6b). Much to our surprise, our



15

models have shown that the addition of a preprocessor and trigger-driven oper-
ation will not provide substantial lifetime gains. This is mainly due to the high
power consumption in the Standby mode of the PXA and camera. The trends
also indicate that it is unlikely to significantly improve lifetime by manipulating
the processor power modes alone. A better strategy would be to consider mech-
anisms that disconnect the entire node from the power supply as suggested in
[8]. According to our models, the use of such a mechanism would increase the
lifetime of the schedule-driven node to 552 days, a large improvement over the
currently predicted 8.45 days for a non-ideal preprocessor (see Figure 6d).

As a sanity check, we also used our model to predict the lifetime of the
Micaz nodes used in the Vigilnet project [5]. Using our model, we computed the
expected lifetime of a sentry node to be about 442 hours (18.5) days as shown in
Figure 6d. According to [5], a sentry node will last 90 days with a role rotation
of 4-5 nodes and 25% of sentry duty cycle. Multiplying our prediction by 5 to
account for role rotation, our model will anticipate a lifetime of 92.5 days, an
estimate that is very close to the lifetime of the real deployment reported by
the authors of [5]. Furthermore, Figure 6f shows that the lifetime of the sentry
node will significantly increase if we convert it into a trigger-driven node using
the same preprocessor as before.2 Such a high lifetime gain comes from the fact
that the power consumption of sentry node at Sleep state is extremely low (42
µW).

6 Conclusion

In this paper, we presented parametric lifetime model for trigger-driven node
and schedule-driven node that also takes the associated transition overheads into
consideration. The application of the models in making decisions about a camera
node platform has helped us to isolate the dominant factors that limit lifetime in
our design and provided valuable insight on how to proceed with the architecture.
In the near future we are working on extending our models to cover more complex
cases involving multiple processors and radios. Additional updates about this
work can be found on our website at http://www.eng.yale.edu/enalab.
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