
Design and Synthesis of a Three Input  
Flagged Prefix Adder 

Vibhuti Dave, Erdal Oruklu, and Jafar Saniie 
Department of Electrical and Computer Engineering 

Illinois Institute of Technology 
Chicago, Illinois, USA 

{vdave,eoruklu,sansonic}@ece.iit.edu
  

Abstract— For multi-operand addition, several techniques, 
such as carry-save adders, Wallace, and Dadda structures 
based on counters and compressors have been proposed.  This 
paper proposes a technique to accomplish multi-operand 
addition utilizing regular adder structures such as parallel-
prefix adders. One of the advantages of this technique is the 
elimination of dedicated adder units to perform three-input 
addition. Conventional prefix adders are modified to generate 
intermediate outputs called flag bits to allow the addition of a 
third  arbitrary number, thereby accomplishing multi-operand 
addition. This adder can find its use in applications such as 
multiplication or multi-media units. An evaluation has been 
performed for 16-bit three-input flagged prefix adder 
architectures (TIFPA) in terms of area, delay and power. The 
performance of this adder design has been compared to that of 
carry save adders to understand the performance gain of the 
proposed technique. 

I. INTRODUCTION 
Minimizing the number of resources required within a 

processor would have a positive impact on its performance. 
Furthermore, since an adder is one of the basic arithmetic 
units, any improvement in the performance of an adder 
would have a significant impact on the performance of a 
processor. This paper proposes a technique to accomplish 
these objectives by introducing certain flexibility to parallel 
prefix designs [1] [2] [3]. This flexibility allows prefix 
adders to be able to add three numbers at a time, thereby 
accomplishing multi-operand addition. This will eliminate 
the need to have a dedicated adder unit such as carry-save 
adders [4] to perform the same task along with a 
performance boost over carry-save adders (CSA). 

Parallel prefix architectures are popular adder designs 
due to their regular layout and the fact that the carry signals 
are generated in parallel increasing the speed of the circuit. 
Prefix computation takes place in three stages, the first stage 
being the pre-processing stage which generates the bit 
propagate and the bit generate signals. This is followed by 
the prefix tree that generates all the carry signals in parallel 
and finally the post-processing stage that produces the final 
result which is a sum of the two input operands [5]. 

The prefix adders were first modified to produce a new 
design called flagged prefix adder in [6]. The flagged prefix 
adders utilize the bit propagate and group propagate outputs 
from the prefix tree to generate a new set of intermediate 
outputs called the flag bits [6]. The flag bits are further used 
to select the appropriate sum bits from the post-processing 
stage that need to be inverted to generate a completely new 
set of results. The new result could be the sum of the two 
input operands augmented or decremented by unity. The 
concept of generating flag bits was utilized to introduce the 
flexibility of constant addition [7] utilizing the carry bits 
from the prefix tree. This would enable the sum of two 
operands, A and B to be augmented/decremented by a 
constant M. 

This paper proposes to incorporate additional hardware 
within the prefix adder to further enhance the performance of 
the design allowing the third operand, M to be any arbitrary 
number instead of limiting the utilization of the technique for 
constant addition. The cost of additional hardware is 
compensated for by the performance gain in terms of speed 
and the elimination of utilizing a dedicated arithmetic unit to 
perform three-input addition. This paper investigates the 
performance of three input flagged prefix adders (TIFPA) for 
16-bit operand sizes modified to incorporate flag logic 
necessary to compute the sum of three numbers. The 
performance of the new architecture is also compared to the 
performance of 16-bit carry save designs. 

The concept of flagged prefix addition is reviewed in 
Section II. Section III describes the implementation of the 
new hardware within the prefix adder design to add three 
numbers. Section IV provides the area, speed and power 
results for 16-bit designs along with a performance 
comparison to a 16-bit carry save design. Section V presents 
the conclusions. 

II. BACKGROUND 
Consider a parallel prefix adder, with two input operands, 

A and B. The result of adding these two numbers is 
represented by R. The flagged prefix adder is a modified 
prefix architecture that generates a new set of intermediate 
outputs called flag bits. The flag bits flag the bits of the 



result, R that need to be inverted to generate a new result. 
This set of results includes simple increment decrement 
operations where the result, R is augmented or decremented 
by unity. The new result is a simple XOR operation between 
the flag bits, F and the result bits, R. The flag bits can be 
computed from the group propagate signals according to the 
following relationship, [6] 

0:1−= kk Pf  (1) 

fi represents the flag bit for the kth bit position and Pk-1:0 
represent group propagate signals from significance 0 to k-1. 
The post-processing stage of the prefix adder is replaced by a 
new stage comprising of the flagged inversion cells (FIC) to 
generate the new result [6]. 

This design therefore causes a regular prefix adder to take 
two operands as inputs but generate various other useful 
results without having to utilize a second adder to generate 
the same set of results. The extra hardware that needs to be 
incorporated to accomplish this flexibility is insignificant 
compared to the utilization of the dual adder scheme [6]. 

The concept of flag generation has been extended to 
compute a new result, A+B+M where M can be a constant or 
any arbitrary number. The following section describes the 
generation of the flag bits and the implementation of the flag 
logic to produce the new result. 

III. FLAG LOGIC FOR M 
In [7], a method to generate a new set of flag bits in order 

to compute (A+B+M), is proposed where M is any constant. 
Assume that R is the result of adding two arbitrary inputs, A 
and B, and R needs to be augmented/decremented by a value, 
M. The full adder equations can be written as [8] 
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In Eq.2, Sk and ck represent the new set of sum and carry bits 
for every bit position. Utilizing the new set of equations, the 
new sum needs to be computed such that, R+M=R⊕F, 
where F is the flag function. The flag bits can be seen as bits 
that indicate whether the current value is flagged to change. 
Consequently, the flag bits can be computed based on 
speculative elements of the constant. Two bits of the constant 
are examined to determine whether or not the carry bit from 
the constant affects the current position. As derived in [7], 
the flag bits are computed according to Table I [7] [8]. Table 
I tabulates all the flag logic gates that might be required for 
the kth bit position depending on the corresponding bits from 
the third operand and the carry bit for that position. The 
initial conditions are assumed as given in Eq. 3 [7].   

 0111 === −−− FMR  (3) 
 

Table I Flag Logic Utilizing Carry Produced from Prefix Tree 
Mk Mk-1 Fk,(ck=0) Fk,(ck=1) 

0 0 11 −− ⋅ kk FR  
11 −− ⋅ kk FR  

0 1 11 −− + kk FR  11 −− ⋅ kk FR  

1 0 11 −− ⋅ kk FR  11 −− + kk FR  

1 1 11 −− ⋅ kk FR  11 −− ⋅ kk FR  
 

As can be seen from Table I, the flag logic depends on 
the bits from the third input operand and the carry bits from 
the prefix tree. The FIC, therefore will be implemented 
according to Table II. A straightforward implementation of 
this is shown in Fig. 1. However it is important to notice that 
the order of the logic gates in the first stage will depend on 
the third input operand [9]. Therefore, this implementation 
can work only when the third operand is a constant and never 
changes [9]. Fig. 1 shows the implementation for the four 
different combinations depending on the two bits of the 
constant. In order to eliminate the limitation of having the 
third operand as a constant, the FIC in Fig.1 are modified to 
get a multilevel set of FIC. 
 Rk-3 Fk-3 Rk-3 Rk-2 Fk-2 Fk-2 Rk-1 Fk-1 Fk-1 Rk Fk Rk 

0 1 0 1 0 1 0 1 
Ck-1 Ck-2 Ck Ck+1 

Sk-2 Sk-1 Sk Sk+1 
Fk-2 Fk-1 Fk Fk+1 

Sk-2 Sk-1 Sk Sk+1 

Figure 1 Flag Inversion Cells for Constant Addition 

It can be deduced observing Fig. 1 and Table I, that a 
minimum of four logic gates are required to compute the 
flag bits based on eight different combinations of the 
constant and carry bits. The four logic gates and their inputs 
are summarized in Table II. Table III summarizes the 
combinations of the constant and carry bits that select one of 
the four logic gates mentioned in Table II to compute the 
flag bit in each successive position. The FIC will therefore 
be a multi-level structure as shown in Fig. 2.  Notice, that 
the flag bit computation for each bit position depends on the 
flag bit computed in the preceding position, thereby causing 
a rippling effect, making this the critical path of the circuit. 

 
Table II Minimum Flag Logic Gates 

Gate Inputs 
AND1 11, −− kk FR

OR  
11, −− kk FR  

NAND 11, −− kk FR
AND2 

11, −− kk FR  
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Figure 2 Flag Inversion Cells for Three-Input Addition

Table III Logic Gate Combinations 
Mk Mk-1 Ck Gate 
0 0 0 
1 1 1 

AND1 

0 1 0 
1 0 1 OR 

0 1 1 
1 0 0 NAND 

0 0 1 
1 1 0 AND2 

IV. RESULTS 
The parallel prefix adders were incorporated with the 

extra hardware as described in Section III. This made the 
prefix adder capable of adding three numbers at the cost of 
extra hardware. This added flexibility however adds to the 
functionality of the adder taking advantage of the regular 
layout and high speed of the prefix structures. 

A. Hardware Cost 
 Each prefix tree utilizes a set of black and gray cells [5] 

arranged in a regular fashion to obtain the carry signals in 
parallel, eliminating the rippling effect of the carry.  

Each 16-bit parallel prefix adder will therefore have 16 
bit propagate and bit generate cells in the pre-processing 
stage. The prefix carry tree will comprise of k black cells and 
15 gray cells [6]. k is the multiplying factor that determines 
the number of prefix cells within the tree. It is a variable 
depending on the kind of tree under consideration. The post 
processing stage will compute the R bits as a result of adding 
two operands, A and B using 16 XOR gates. This will be 
followed by a set of 16 3-8 decoders which are utilized to 
select the flag logic gates in Table III. Depending on the 
eight combinations of the constant bits and the carry bits for 

each bit position, each gate can be selected by a pair of Mk, 
Mk-1, ck combinations. Due to this redundancy, a stage of 
16X4 OR gates is utilized. The outputs of these OR gates 
will be encoded to act as a control signal to the multiplexers 
which will finalize the flag bit for that bit position (Fig. 3). 
Therefore, the extra hardware will also comprise of 16 
encoders, 16 multiplexers and 16X4 flag logic gates in 
addition to the OR gates. The ultimate result is increasing the 
depth of the prefix adder by 4 logic levels, which will impact 
the delay of the circuit. Also the dependence of the flag bits 
on the preceding flag bits affects the critical delay of the 
circuit.  

Each adder was designed with the extra hardware to get 
reasonable estimates of the performance of this design in 
terms of area, delay and power.  

B. Synthesis Results 
An analysis was performed on all adders with regards to, 

area, delay, and power. The designs are implemented in the 
TSMC 0.18µm technology System-on-Chip design flow to 
investigate the power, area, and delay tradeoffs. Synthesis is 
performed with Cadence Build Gates and Encounter [10]. 
The nominal operating voltage is 1.8V and simulation is 
performed at T=25οC. Layouts are generated for each adder 
design and parasitically extracted to obtain numbers for area, 
delay and power. 

Results for 16-bit parallel prefix adders, without any 
hardware modifications are shown in Table IV.  This set of 
results will be used as a reference to understand the cost of 
extra hardware after modification and the impact on the 
critical delay of the circuit. 



Table IV Post Layout Estimates for Conventional Adders 

Adder/Parameters Area (mm2) Delay (ns) Power (mW) 

Brent-Kung 0.2756 0.27 5.63E-04 

Ladner-Fischer 0.2763 0.16 5.81E-04 

Kogge-Stone 0.4961 0.04 7.78E-04 
 

Post-Layout Estimates are also obtained for designs 
where the third operand is a constant. This gives an estimate 
for the delay and area of the schematic when the third 
operand never changes. This implementation is based on the 
design represented in Fig. 2. The results are summarized in 
Table V [9]. The increase in area for this design is 
approximately 6%. The rise in is delay accounted for by the 
additional levels of logic and only increases by 
approximately 7% compared to the conventional design. 

Table V Post Layout estimates for Enhanced Flagged Prefix Adders 

Adder/Parameters Area (mm2) Delay (ns) Power (mW) 

Brent-Kung 0.2921 0.29 8.08E-04 

Ladner-Fischer 0.2933 0.19 8.34E-04 

Kogge-Stone 0.5462 0.08 1.12E-03 
 

Post-layout estimates for the TIFPA designs are 
presented in Table VII. Post-layout estimates are also 
obtained for a 16-bit carry-save adder. The carry-save adder 
is a popular multi-operand adder and serves as a good 
benchmark for the proposed design. 

TABLE VI Post Layout Estimates for Three-Input Adders 

Adder/Parameters Area (mm2) Delay (ns) Power (mW) 

Brent-Kung 0.3271 0.33 1.26E-03 

Ladner-Fischer 0.3183 0.24 1.57E-03 

Kogge-Stone 0.5957 0.13 1.89E-03 
Carry Save 0.3448 0.3 1.17E-03 

 

In terms of speed, the Ladner-Fischer tree is seen to have 
a better performance compared to a conventional carry-save 
adder. The increase in area after incorporating the flag logic 
is around 15% for all three structures. This stays consistent 
with each adder design since the flag logic does not change. 
The Ladner-Fischer tree consumes less area than the carry-
save adder even after the extra logic is incorporated. The 
Kogge-Stone adder is the fastest, but consumes a lot of 
space. This can be attributed to the large number of prefix 
cells and higher number of lateral wires at each level of the 
prefix tree. Figs. 4 and 5 display the results to get further 
clarification.  The Brent-Kung and the carry-save adder have 
a very close performance in terms of speed. 

V. CONCLUSIONS 
The technique of generating flag bits to perform three 

input addition utilizing parallel prefix adders adds flexibility 
and eliminates the need of a dedicated adder unit to perform 
multi-operand addition. The speed of this design is favorable 
over carry-save adders which are conventionally used for 
multi-operand addition. For 16-bit operand sizes, the Ladner-
Fischer tree provides a good compromise with regards to 
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Figure 4. Area Measurements for 16 bit designs 
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Figure 5.  Delay Measurements for 16-bit designs 

area and delay. The Kogge-Stone adder performs best in 
terms of speed but the Ladner-Fischer adder consumes less 
area and is also faster than the carry-save design. 
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