
Design and Synthesis of a Three Input
Flagged Prefix Adder

Vibhuti Dave, Erdal Oruklu, and Jafar Saniie
Department of Electrical and Computer Engineering

Illinois Institute of Technology
Chicago, Illinois, USA

{vdave,eoruklu,sansonic}@ece.iit.edu

Abstract— For multi-operand addition, several techniques,
such as carry-save adders, Wallace, and Dadda structures
based on counters and compressors have been proposed. This
paper proposes a technique to accomplish multi-operand
addition utilizing regular adder structures such as parallel-
prefix adders. One of the advantages of this technique is the
elimination of dedicated adder units to perform three-input
addition. Conventional prefix adders are modified to generate
intermediate outputs called flag bits to allow the addition of a
third arbitrary number, thereby accomplishing multi-operand
addition. This adder can find its use in applications such as
multiplication or multi-media units. An evaluation has been
performed for 16-bit three-input flagged prefix adder
architectures (TIFPA) in terms of area, delay and power. The
performance of this adder design has been compared to that of
carry save adders to understand the performance gain of the
proposed technique.

I. INTRODUCTION
Minimizing the number of resources required within a

processor would have a positive impact on its performance.
Furthermore, since an adder is one of the basic arithmetic
units, any improvement in the performance of an adder
would have a significant impact on the performance of a
processor. This paper proposes a technique to accomplish
these objectives by introducing certain flexibility to parallel
prefix designs [1] [2] [3]. This flexibility allows prefix
adders to be able to add three numbers at a time, thereby
accomplishing multi-operand addition. This will eliminate
the need to have a dedicated adder unit such as carry-save
adders [4] to perform the same task along with a
performance boost over carry-save adders (CSA).

Parallel prefix architectures are popular adder designs
due to their regular layout and the fact that the carry signals
are generated in parallel increasing the speed of the circuit.
Prefix computation takes place in three stages, the first stage
being the pre-processing stage which generates the bit
propagate and the bit generate signals. This is followed by
the prefix tree that generates all the carry signals in parallel
and finally the post-processing stage that produces the final
result which is a sum of the two input operands [5].

The prefix adders were first modified to produce a new
design called flagged prefix adder in [6]. The flagged prefix
adders utilize the bit propagate and group propagate outputs
from the prefix tree to generate a new set of intermediate
outputs called the flag bits [6]. The flag bits are further used
to select the appropriate sum bits from the post-processing
stage that need to be inverted to generate a completely new
set of results. The new result could be the sum of the two
input operands augmented or decremented by unity. The
concept of generating flag bits was utilized to introduce the
flexibility of constant addition [7] utilizing the carry bits
from the prefix tree. This would enable the sum of two
operands, A and B to be augmented/decremented by a
constant M.

This paper proposes to incorporate additional hardware
within the prefix adder to further enhance the performance of
the design allowing the third operand, M to be any arbitrary
number instead of limiting the utilization of the technique for
constant addition. The cost of additional hardware is
compensated for by the performance gain in terms of speed
and the elimination of utilizing a dedicated arithmetic unit to
perform three-input addition. This paper investigates the
performance of three input flagged prefix adders (TIFPA) for
16-bit operand sizes modified to incorporate flag logic
necessary to compute the sum of three numbers. The
performance of the new architecture is also compared to the
performance of 16-bit carry save designs.

The concept of flagged prefix addition is reviewed in
Section II. Section III describes the implementation of the
new hardware within the prefix adder design to add three
numbers. Section IV provides the area, speed and power
results for 16-bit designs along with a performance
comparison to a 16-bit carry save design. Section V presents
the conclusions.

II. BACKGROUND
Consider a parallel prefix adder, with two input operands,

A and B. The result of adding these two numbers is
represented by R. The flagged prefix adder is a modified
prefix architecture that generates a new set of intermediate
outputs called flag bits. The flag bits flag the bits of the

result, R that need to be inverted to generate a new result.
This set of results includes simple increment decrement
operations where the result, R is augmented or decremented
by unity. The new result is a simple XOR operation between
the flag bits, F and the result bits, R. The flag bits can be
computed from the group propagate signals according to the
following relationship, [6]

0:1−= kk Pf (1)

fi represents the flag bit for the kth bit position and Pk-1:0
represent group propagate signals from significance 0 to k-1.
The post-processing stage of the prefix adder is replaced by a
new stage comprising of the flagged inversion cells (FIC) to
generate the new result [6].

This design therefore causes a regular prefix adder to take
two operands as inputs but generate various other useful
results without having to utilize a second adder to generate
the same set of results. The extra hardware that needs to be
incorporated to accomplish this flexibility is insignificant
compared to the utilization of the dual adder scheme [6].

The concept of flag generation has been extended to
compute a new result, A+B+M where M can be a constant or
any arbitrary number. The following section describes the
generation of the flag bits and the implementation of the flag
logic to produce the new result.

III. FLAG LOGIC FOR M
In [7], a method to generate a new set of flag bits in order

to compute (A+B+M), is proposed where M is any constant.
Assume that R is the result of adding two arbitrary inputs, A
and B, and R needs to be augmented/decremented by a value,
M. The full adder equations can be written as [8]

kkkk cMRS ⊕⊕=

⎪⎩

⎪
⎨
⎧

=+

=⋅
=+

1

0
1

kkk

kkk

k

MifcR

MifcR
c

(2)

In Eq.2, Sk and ck represent the new set of sum and carry bits
for every bit position. Utilizing the new set of equations, the
new sum needs to be computed such that, R+M=R⊕F,
where F is the flag function. The flag bits can be seen as bits
that indicate whether the current value is flagged to change.
Consequently, the flag bits can be computed based on
speculative elements of the constant. Two bits of the constant
are examined to determine whether or not the carry bit from
the constant affects the current position. As derived in [7],
the flag bits are computed according to Table I [7] [8]. Table
I tabulates all the flag logic gates that might be required for
the kth bit position depending on the corresponding bits from
the third operand and the carry bit for that position. The
initial conditions are assumed as given in Eq. 3 [7].

 0111 === −−− FMR (3)

Table I Flag Logic Utilizing Carry Produced from Prefix Tree
Mk Mk-1 Fk,(ck=0) Fk,(ck=1)

0 0 11 −− ⋅ kk FR
11 −− ⋅ kk FR

0 1 11 −− + kk FR 11 −− ⋅ kk FR

1 0 11 −− ⋅ kk FR 11 −− + kk FR

1 1 11 −− ⋅ kk FR 11 −− ⋅ kk FR

As can be seen from Table I, the flag logic depends on
the bits from the third input operand and the carry bits from
the prefix tree. The FIC, therefore will be implemented
according to Table II. A straightforward implementation of
this is shown in Fig. 1. However it is important to notice that
the order of the logic gates in the first stage will depend on
the third input operand [9]. Therefore, this implementation
can work only when the third operand is a constant and never
changes [9]. Fig. 1 shows the implementation for the four
different combinations depending on the two bits of the
constant. In order to eliminate the limitation of having the
third operand as a constant, the FIC in Fig.1 are modified to
get a multilevel set of FIC.
 Rk-3 Fk-3 Rk-3 Rk-2 Fk-2 Fk-2 Rk-1 Fk-1 Fk-1 Rk Fk Rk

0 1 0 1 0 1 0 1
Ck-1 Ck-2 Ck Ck+1

Sk-2 Sk-1 Sk Sk+1
Fk-2 Fk-1 Fk Fk+1

Sk-2 Sk-1 Sk Sk+1

Figure 1 Flag Inversion Cells for Constant Addition

It can be deduced observing Fig. 1 and Table I, that a
minimum of four logic gates are required to compute the
flag bits based on eight different combinations of the
constant and carry bits. The four logic gates and their inputs
are summarized in Table II. Table III summarizes the
combinations of the constant and carry bits that select one of
the four logic gates mentioned in Table II to compute the
flag bit in each successive position. The FIC will therefore
be a multi-level structure as shown in Fig. 2. Notice, that
the flag bit computation for each bit position depends on the
flag bit computed in the preceding position, thereby causing
a rippling effect, making this the critical path of the circuit.

Table II Minimum Flag Logic Gates

Gate Inputs
AND1 11, −− kk FR

OR
11, −− kk FR

NAND 11, −− kk FR
AND2

11, −− kk FR

Decoding

Mk-2 Mk-3 Ck-2

Y0 Y7 Y2 Y5 Y3 Y4 Y1 Y6

AND1 OR NAND AND2

Rk-3 Fk-3 Rk-3 Fk-3 Rk-3 Fk-3 Rk-3 Fk-3

Fk-2

MUX

Decoding

Mk-1 Mk-2 Ck-1

Y0 Y7 Y2 Y5 Y3 Y4 Y1 Y6

AND1 OR NAND AND2

Rk-2 Fk-2 Rk-2 Fk-2 Rk-2 Fk-2 Rk-2 Fk-2

Fk-1

MUX

Decoding

Mk Mk-1 Ck

Y0 Y7 Y2 Y5 Y3 Y4 Y1 Y6

AND1 OR NAND AND2

Rk-1 Fk-1 Rk-1 Fk-1 Rk-1 Fk-1 Rk-1 Fk-1

Fk

MUX

Decoding

Mk+1 Mk Ck+1

Y0 Y7 Y2 Y5 Y3 Y4 Y1 Y6

AND1 OR NAND AND2

Rk Fk Rk Fk Rk Fk Rk Fk

Fk+1

MUX

Encoder Encoder Encoder Encoder

Figure 2 Flag Inversion Cells for Three-Input Addition

Table III Logic Gate Combinations
Mk Mk-1 Ck Gate
0 0 0
1 1 1

AND1

0 1 0
1 0 1 OR

0 1 1
1 0 0 NAND

0 0 1
1 1 0 AND2

IV. RESULTS
The parallel prefix adders were incorporated with the

extra hardware as described in Section III. This made the
prefix adder capable of adding three numbers at the cost of
extra hardware. This added flexibility however adds to the
functionality of the adder taking advantage of the regular
layout and high speed of the prefix structures.

A. Hardware Cost
 Each prefix tree utilizes a set of black and gray cells [5]

arranged in a regular fashion to obtain the carry signals in
parallel, eliminating the rippling effect of the carry.

Each 16-bit parallel prefix adder will therefore have 16
bit propagate and bit generate cells in the pre-processing
stage. The prefix carry tree will comprise of k black cells and
15 gray cells [6]. k is the multiplying factor that determines
the number of prefix cells within the tree. It is a variable
depending on the kind of tree under consideration. The post
processing stage will compute the R bits as a result of adding
two operands, A and B using 16 XOR gates. This will be
followed by a set of 16 3-8 decoders which are utilized to
select the flag logic gates in Table III. Depending on the
eight combinations of the constant bits and the carry bits for

each bit position, each gate can be selected by a pair of Mk,
Mk-1, ck combinations. Due to this redundancy, a stage of
16X4 OR gates is utilized. The outputs of these OR gates
will be encoded to act as a control signal to the multiplexers
which will finalize the flag bit for that bit position (Fig. 3).
Therefore, the extra hardware will also comprise of 16
encoders, 16 multiplexers and 16X4 flag logic gates in
addition to the OR gates. The ultimate result is increasing the
depth of the prefix adder by 4 logic levels, which will impact
the delay of the circuit. Also the dependence of the flag bits
on the preceding flag bits affects the critical delay of the
circuit.

Each adder was designed with the extra hardware to get
reasonable estimates of the performance of this design in
terms of area, delay and power.

B. Synthesis Results
An analysis was performed on all adders with regards to,

area, delay, and power. The designs are implemented in the
TSMC 0.18µm technology System-on-Chip design flow to
investigate the power, area, and delay tradeoffs. Synthesis is
performed with Cadence Build Gates and Encounter [10].
The nominal operating voltage is 1.8V and simulation is
performed at T=25οC. Layouts are generated for each adder
design and parasitically extracted to obtain numbers for area,
delay and power.

Results for 16-bit parallel prefix adders, without any
hardware modifications are shown in Table IV. This set of
results will be used as a reference to understand the cost of
extra hardware after modification and the impact on the
critical delay of the circuit.

Table IV Post Layout Estimates for Conventional Adders

Adder/Parameters Area (mm2) Delay (ns) Power (mW)

Brent-Kung 0.2756 0.27 5.63E-04

Ladner-Fischer 0.2763 0.16 5.81E-04

Kogge-Stone 0.4961 0.04 7.78E-04

Post-Layout Estimates are also obtained for designs
where the third operand is a constant. This gives an estimate
for the delay and area of the schematic when the third
operand never changes. This implementation is based on the
design represented in Fig. 2. The results are summarized in
Table V [9]. The increase in area for this design is
approximately 6%. The rise in is delay accounted for by the
additional levels of logic and only increases by
approximately 7% compared to the conventional design.

Table V Post Layout estimates for Enhanced Flagged Prefix Adders

Adder/Parameters Area (mm2) Delay (ns) Power (mW)

Brent-Kung 0.2921 0.29 8.08E-04

Ladner-Fischer 0.2933 0.19 8.34E-04

Kogge-Stone 0.5462 0.08 1.12E-03

Post-layout estimates for the TIFPA designs are
presented in Table VII. Post-layout estimates are also
obtained for a 16-bit carry-save adder. The carry-save adder
is a popular multi-operand adder and serves as a good
benchmark for the proposed design.

TABLE VI Post Layout Estimates for Three-Input Adders

Adder/Parameters Area (mm2) Delay (ns) Power (mW)

Brent-Kung 0.3271 0.33 1.26E-03

Ladner-Fischer 0.3183 0.24 1.57E-03

Kogge-Stone 0.5957 0.13 1.89E-03
Carry Save 0.3448 0.3 1.17E-03

In terms of speed, the Ladner-Fischer tree is seen to have
a better performance compared to a conventional carry-save
adder. The increase in area after incorporating the flag logic
is around 15% for all three structures. This stays consistent
with each adder design since the flag logic does not change.
The Ladner-Fischer tree consumes less area than the carry-
save adder even after the extra logic is incorporated. The
Kogge-Stone adder is the fastest, but consumes a lot of
space. This can be attributed to the large number of prefix
cells and higher number of lateral wires at each level of the
prefix tree. Figs. 4 and 5 display the results to get further
clarification. The Brent-Kung and the carry-save adder have
a very close performance in terms of speed.

V. CONCLUSIONS
The technique of generating flag bits to perform three

input addition utilizing parallel prefix adders adds flexibility
and eliminates the need of a dedicated adder unit to perform
multi-operand addition. The speed of this design is favorable
over carry-save adders which are conventionally used for
multi-operand addition. For 16-bit operand sizes, the Ladner-
Fischer tree provides a good compromise with regards to

Area

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Brent-Kung Ladner-Fischer Kogge-Stone Carry Save

m
m

2

Conventional
Constant
Three-Input

Figure 4. Area Measurements for 16 bit designs

Delay

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Brent-Kung Ladner-Fischer Kogge-Stone Carry Save

ns

Conventional
Constant
Three Input

Figure 5. Delay Measurements for 16-bit designs

area and delay. The Kogge-Stone adder performs best in
terms of speed but the Ladner-Fischer adder consumes less
area and is also faster than the carry-save design.

REFERENCES
[1] R. Brent, and H.Kung. A regular layout for parallel adders. IEEE

Transactions on Computers, C-31:260-264,1982.
[2] R.E Ladner, and M.J Fischer. Parallel Prefix Computation. Journal of

the ACM, 27:831-838,1980
[3] P. Kogge, and H..Stone. A parallel algorithm for the efficient solution

of a general class of recurrence equations. IEEE Trasanctions on
Computers, C-22:783-791,1973.

[4] R. Zimmermann. Binary Adder Architectures for Cell-Based VLSI
and their synthesis. PhD Thesis. Swiss Federal Institute of
Technology, Zurich, 1997

[5] Milos Ercogavac and Tomas Lang. Digital Arithmetic. Morgan
Kauffmann, First Edition, 2004.

[6] N.Burgess. The flagged Prefix Adder and its Applications in Integer
Arithmetic. Journal of VLSI Signal Processing, 31(3):263-271,2002.

[7] James Stine, Chris Babb, V. Dave. Constant Addition utilizing
Flagged Prefix Structures. In 7th Euromicro Conference on Digital
System Design, 2004.

[8] V.Dave, E. Oruklu, and J. Saniie, “Performance Evaluation of
Flagged Prefix Adders for Constant Addition,” in 6th IEEE
International Conference on Electro/Information Technology, 2006

[9] V.Dave, E. Oruklu, and J. Saniie, “Analysis, Design and Synthesis of
Flagged Binary Adders with Constant Addition,” in 49th IEEE
International Midwest Symposium on Circuits and Systems, 2006.

[10] J. Grad, and J. E Stine. A sandard cell library for student projects. In
International Conference on Microelectronics Systems Education,
pages 98-99. IEEE Society press 2003.

	Introduction
	Background
	Flag Logic for M
	It can be deduced observing Fig. 1 and Table I, that a minim

	Results
	Hardware Cost
	Synthesis Results

	Conclusions
	References

