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Abstract. Symbolic software verification engines such as SLAM and
ESC/JAvA often use automatic theorem provers to implement forms of
symbolic simulation. The theorem provers that are used, such as Sim-
PLIFY, usually combine decision procedures for the theories of uninter-
preted functions, linear arithmetic, and sometimes bit vectors using tech-
niques proposed by Nelson-Oppen or Shostak. Programming language
constructs such as pointers, structures and unions are not directly sup-
ported by the provers, and are often encoded imprecisely using axioms
and uninterpreted functions.

In this paper we describe a more direct and accurate approach to-
wards providing symbolic infrastructure for program verification engines.
We propose the use of a theorem prover called COGENT, which provides
better accuracy for ANSI-C expressions with the possibility of nested
logic quantifiers. The prover’s implementation is based on a machine-
level interpretation of expressions into propositional logic. COGENT’s
translation allows the program verification tools to better reason about
finite machine-level variables, bit operations, structures, unions, refer-
ences, pointers and pointer arithmetic.

This paper also provides experimental evidence that the proposed
approach is practical when applied to industrial program verification.

1 Introduction

Program verification engines, such as symbolic model checkers and advanced
static checking tools, often employ automatic theorem provers for symbolic rea-
soning. For example, the static checkers ESC/JAvA [2] and BOOGIE [3] use
the SIMPLIFY [4] theorem prover to verify user-supplied invariants. The SLAM
[BUGITIRIOITO] software model-checker uses ZAPATO [I1] for symbolic simulation
of C programs. The BLAsT [12] and MAGIC [13] tools use SIMPLIFY for abstrac-
tion, simulation and refinement. Other examples include the INVEST [14] tool,
which uses the PVS [I5] theorem prover. Further decision procedures used in
program verification are CVC-LITE [16], ICS [I7] and VERIFUN [18].

The majority of these theorem provers use either the Nelson-Oppen [19] or
Shostak [20] combination methods. These methods combine various decision pro-
cedures to provide a rich logic for mathematical reasoning.

* This paper is an extended version of [I].
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However, the fit between the program analyzer and the theorem prover is
not always ideal. The problem is that the theorem provers are typically geared
towards efficiency in the mathematical theories, such as linear arithmetic over
the integers. In reality, program analyzers rarely need reasoning for unbounded
integers. Linearity can also be too limiting in some cases. Moreover, because lin-
ear arithmetic over the integers is not a convex theory (a restriction imposed by
Nelson-Oppen and Shostak), the real numbers are often used instead. Program
analyzers, however, need reasoning for the reals even less than they do for the
integers.

The program analyzers must consider a number of issues that are not easily
mapped into the logics supported by the theorem provers. These issues include
pointers, pointer arithmetic, structures, unions, and the potential relationship
between these features. Additionally, because bit vectors and arrays are not con-
vex theories, many provers do not support them. In those that can, the link
between the non-convex decision procedures can be disappointing. As an exam-
ple, checking equality between a bit-vector and an integer variable is typically
not supported.

When using provers such as SIMPLIFY, the program verification tools must
encode the features specific to programming languages into the input logic of
the theorem prover, and approximate the language semantics with axioms over
the symbols used during the encoding. However, using axioms to encode the
language semantics has a drawback in that they can interact badly with the
heuristics that are often used by provers during axiom-instantiation in order to
improve performance—at the expense of accuracy.

Another problem that occurs when using provers such as SIMPLIFY or ZAPATO
is that, when a query is not valid, the provers do not supply concrete counterex-
amples. Some provers provide partial information on counterexamples. However,
in program verification this information rarely leads to concrete valuations to
the variables in a program, which is what a programmer most wants when a
program verification tool reports a potential bug in their source code.

This paper addresses the following question: When analyzing programs, can we
abandon the Nelson-Oppen/Shostak combination framework in favor of a prover
that performs a basic and precise translation of program expressions into propo-
sitional logic?

Inspired by the success of CBMC [21] and UCLID [22], this paper describes
a new theorem prover called COGENT which provides direct support for queries
in the form of pure ANSI-C [23] expressions together with quantifiers. COGENT
largely dispenses with the mathematical theories for unbounded integers and
real numbers, and the communication between theories through equivalence re-
lations. Instead, COGENT provides machine-level accurate reasoning for the class
of expressions that occur in programs and program invariants.

Much like CBMC, the implementation of COGENT is based on a direct com-
pilation of expressions into propositional logic. When necessary (for example,
in order to handle arrays with unbounded size), COGENT uses uninterpreted
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functions with Ackerman’s encoding. A similar approach is found in UCLID.
Pointers are represented as regions with finite vectors and offsets.

COGENT’s translation allows the program verification tools to accurately rea-
son about arithmetic overflow, bit operations, structures, unions, pointers and
pointer arithmetic. COGENT can be used for different software verification appli-
cations. As an example, when applied to software model checking it can be used
within the abstraction refinement framework [24125] for abstraction, simulation,
and abstraction refinement. COGENT also produces concrete counterexamples to
failed proofs.

This paper makes the following novel contributions:

— We provide details on an accurate translation from C expressions together
with nested quantifiers into propositional logic. While COGENT is based
on parts of the CBMC source code, this paper extends it by using non-
determinism to model architecture dependent behavior. When combined
with predicate abstraction, like in SLAM, this technique guarantees that
a positive verification result is valid on all standard compliant architectures.

— We demonstrate that the new approach improves the performance of software
model checking. In particular, we report results of replacing SLAM’s theorem
prover ZAPATO with COGENT. This allows us to speed up the verification of
previously checked safety properties of Windows device drivers. The speedup
is caused by the improved accuracy of COGENT. Moreover, the COGENT-
based model checker allows us to verify new properties that make use of
bit-level constructs. In this paper, we describe a new Windows device driver
bug that was found due to COGENT’s improved accuracy. The ZAPATO-based
SLAM is unable to locate this bug.

— We also report the results of experiments from queries that come from ex-
tended static checking with BOOGIE.

The queries from SLAM and BOOGIE differ significantly in their characteris-
tics, which allows us to evaluate COGENT’s performance under different circum-
stances. SLAM’s queries have no quantifiers but make extensive use of structures,
pointers, arithmetic and bit operations. BOOGIE’s queries, on the other hand,
have nested quantifiers and some uninterpreted functions, but do not use pointer
semantics.

The remainder of this paper is organized as follows: Section 2l surveys related
work; Section [ describes the algorithm used by COGENT; Section M presents
the results of our experiments with COGENT and SLAM on benchmarks from
Windows device drivers; Section [0l describes the results of COGENT when used
to verify conditions generated by BOOGIE. Section [6] concludes the paper and
Section [ discusses future work.

2 Related Work

In this work we are following the basic proof strategy used by CBMC [2I] and
UCLID [22]. 1) The input logic of COGENT is translated eagerly into proposi-
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tional logic. 2) The resulting propositional formula is then passed to an efficient
SAT solver.

The difference between our approach and UCLID is the logic supported by the
provers. UCLID does not support the low-level programming language features
that COGENT does. On the other hand, COGENT does not support features such
as A-abstraction, which is supported by UCLID.

The experimental application of UCLID to software verification is limited
to a restricted set of theorem proving queries from software model checking
n [26]. However, neither the relative effect on accuracy nor the effect on the
model checking performance was measured, as UCLID was not integrated into
an abstraction refinement loop.

To the best of our knowledge (beyond the experiments in [26]), no-one has
evaluated the performance of an eager and purely SAT-based theorem prover
implementation in abstraction-based symbolic software model checking nor ex-
tended static checking. The use of SAT for the abstraction of ANSI-C programs
was suggested in [2728]. No comparative evaluation was done, however, and no
support for quantifiers was provided.

COGENT is not unique in its support for accurate reasoning for bit-vectors.
Numerous tools implement bit-vector reasoning, particularly hardware verifica-
tion tools (e.g., [29130]). Some bit-vector level decision procedures have been
adapted to fit into the Nelson-Oppen/Shostak’s cooperating decision procedure
framework (e.g., [31]). The key difference between the bit-vector support found
in COGENT and these provers is that our translation fully accounts for the se-
mantics of the ANSI-C standard [23], using non-determinism in cases where the
standard does not specify the details of the machine representation of the data
types.

Some program verification tools do not use general purpose theorem provers at
all. For example, PREFIX [32] and ESP [33] use custom symbolic simulators in
which they mix their own language semantics together with the abstractions used
in order to make their verification engines scale to large programs. CMC [34] uses
a similar approach. Our work is motivated by these efforts. We aim to provide
accurate support for the C semantics at the same level of detail as PREFIX. Note
that COGENT does not provide any abstractions—we expect that the program
verification tool performs the abstraction, if needed, while using COGENT for
symbolic reasoning.

COGENT builds on the source code of CBMC [2I]. COGENT and CBMC
differ in that COGENT supports quantifiers and uses non-determinism to take
architecture-dependencies into account. They also differ in their intended use:
COGENT is designed to be a sound theorem prover for use in any program veri-
fication engine, whereas CBMC is a program verification engine by itself.

While not related directly, this work can contribute to the predicate ab-
straction refinement framework with predicates that contain quantifiers, such as
described in [35]. The applications proposed by the authors (hardware and soft-
ware) would benefit from the accuracy provided in COGENT.
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3 Encoding into Propositional Logic

In hardware verification, the encoding of arithmetic operators such as shifting,
addition, and even multiplication into propositional logic using arithmetic circuit
descriptions is a standard technique. We propose using this same style of encod-
ing in COGENT. This allows us to model artifacts such as arithmetic overflow
accurately.

The goal is to implement the ANSI-C standard semantics, as described in [23].
The standard purposely does not provide precise semantics. This is to allow an
efficient implementation on different architectures. As an example, the behavior
in the case of arithmetic overflow on signed integer types is undefined. Thus,
using a true machine-like bit-encoding would be an under-approzimation of the
behavior allowed by the standard. Potentially, this can lead to incorrect verifi-
cation results, making the verification tool unsound. Therefore, the answers of
the prover would be only valid for architectures that use the same bit-encoding.
On other architectures, the program might execute in a different way.

In order to avert this problem, we model the architecture-dependent parts
of the language semantics by introducing non-determinism into the encoding.
A non-deterministic choice can be encoded in propositional logic by using free,
unconstrained variables. In order to decide whether to use the non-deterministic
choice or not, we add additional checks to the arithmetic operators. If an operator
obtains operands for which the result is architecture dependent, the result of the
operator is a non-deterministic choice.

In the context of software verification, if the prover reports that the property
is verified, the property holds for any architecture compliant with the standard.

3.1 Scalar Data Types

The scalar data types are encoded using a particular bit width for each data
type. This bit-width is a run-time option. The arithmetic operators (e.g., ad-
dition, multiplication, division) and the bit-wise operators are transformed into
corresponding arithmetic circuits using basic gates such as AND, OR, NOT.
These circuits are then transformed into propositional logic.

Optimizations for Division. While a standard arithmetic circuit for addition,
subtraction, multiplication and shifting provides sufficient performance, imple-
menting an iterative division circuit using propositional logic is prohibitively
expensive. We therefore implement the division and remainder operators as fol-
lows: we use non-deterministic choice to guess the correct result of the division,
i.e., the quotient ¢ and the remainder r, and then add constraints that these
guesses are correct. L.e., we return ¢, r such that g * b+ r = a. This requires one
multiplication, one addition and one equality test. Note however, that the mul-
tiplication and the addition must be forced (by adding appropriate constraints)
not to overflow, or wrong results would be obtained.



Accurate Theorem Proving for Program Verification 101

Arithmetic Overflow on Unsigned Types. On unsigned integer types, the ANSI-
C standard requires modular arithmetic, i.e., the result is required to be a bit-
encoding of 7 mod 2", where r is the result obtained with infinite precision and
n is the number of bits. Using arithmetic circuits accurately models these se-
mantics, so no non-determinism is required.

Arithmetic Qverflow on Signed Types. On signed integer types, the ANSI-C stan-
dard leaves the behavior in case of arithmetic overflow undefined. In particular,
the semantics of a two’s complement encoding are not guaranteed.

Formally, let overflow+(a,b) denote a Boolean function that is true if and
only if the sum of a and b is outside the interval given by INT MIN and INT MAX.
Let a®b denote the bit-vector operator for adding a and b. Let L denote a vector
of free, new variables with the same width as the addition result. The result of
a signed addition is denoted by op s+.

op s+(a,b) := overflow+(a,b)?L :a®b

Note that the case-split on the overflow is translated as part of the circuit, and
thus performed dynamically by the propositional logic solver, not during trans-
lation. A similar definition is used for subtraction, multiplication, and bitwise
shifting.

3.2 Structures, Unions, and Bounded Arrays

Structures and small arrays are encoded in a straight-forward manner by re-
cursively concatenating the bit-vectors that encode their components. Large
arrays are treated like arrays with unbounded size, which is described in the
next section. The prover query language contains operators to extract members
from a structure and to replace members. If an array index operation is out
of bounds, the value of the index operator is a vector of free variables, i.e., it
is non-deterministically chosen. In contrast to that, when using a conventional
theorem prover such as SIMPLIFY, arrays and structures are typically encoded
using uninterpreted functions and axioms. This requires expensive heuristics for
quantifier instantiation.

Unions are encoded using a pair of bit-vectors. The first bit-vector is as wide
as the widest bit-vector of any of the union members. It encodes the value of the
union. The second bit-vector is a binary encoding of the number of the member
that was used last for writing into the union. During member extraction, we
check that the extracted member matches the member used for writing. If they
do not match, the value of the member extraction operator is a vector of free
variables.

3.3 Unbounded Arrays

Programs may allocate arrays of variable size. Encoding such an array using
a bit-vector is infeasible. Thus, we model unbounded arrays as uninterpreted
functions using Ackermann’s reduction, as done in CBMC [2I]. Note that the
contents of the array are still interpreted as bit-vectors.
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3.4 Pointers

We encode the value of a pointer using two bit-vectors. Let p denote a pointer
type expression. The first bit-vector, denoted by p.o, encodes the object the
pointer points to, while the second bit-vector, denoted by p.i, encodes an index
within that object using two’s complement. The width of p.i is the same as the
width used for the integer type. The width of p.o is dynamically adjusted to
accommodate the number of objects mentioned within the query. The object
bit-vector consisting of all zeros is used to encode a NULL pointe

The offset bit-vector is used to encode the position of the pointer within the
object. In case of an array consisting of elements of a scalar data type, this
value is equal to the array index, independent of the size of the scalar data type.
Structures consisting of n fields with scalar data types are treated like an array
with n elements, even if the types of the individual fields have different widths.

If arrays and structures are nested, the offset bit-vector is equal to the number
of the scalar type variable inside the nested data structure.

Address Operator and Pointer Arithmetic. The encoding above models the se-
mantics of the ANSI-C pointer operators accurately. The unary & operator re-
turns the address of the object passed as operand. The operand may contain
field access and array index operators. These operators are handled by adjusting
the index bit-vector. As the array index may be a variable, the formula built for
the index bit-vector may require addition and multiplication.

The pointer arithmetic operands only adjust the index bit-vector, never the
object bit-vector. The logic includes predicates that allow checking for overflow
and underflow on pointer arithmetic operations, if desired.

Function Pointers. Functions mentioned in the query are assigned object numbers
just as variables. However, the ANSI-C standard provides no semantics for arith-
metic on pointers pointing to functions. Thus, the pointer arithmetic operators
return non-deterministic results when applied to pointers that point to functions.

Relational Operators. When checking equality between two pointers, as specified
by the ANSI-C standard, the object bounds have to be considered. If the index
bit-vector of the pointer is not within the object, we call the pointer out-of-
bounds. As a special case, the index bit-vector of the pointer can be exactly
one element beyond the end of the object. We call such a pointer an off-by-one
pointer. In case of a pointer pointing to the NULL object, any index bit-vector
other than zero is considered to be out of bounds. These comparisons are done
dynamically by encoding an arithmetic circuit for the relations on the index
bit-vector and the object size, which may be a variable.
We form an equation that dynamically distinguishes the following cases:

— If both pointers are within their bounds, the result of the comparison is equal
to bitwise equality of both components of the pointer.

! Note that the ANSI-C standard prohibits dereferencing a NULL pointer. It is a com-
mon misunderstanding that dereferencing NULL will result in the value zero.
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— If both pointers point to the same object (i.e., the object bit-vectors are
bitwise equal) and both pointers are within their bounds or off-by-one, the
result of the comparison is equal to bitwise equality of the index bit-vector.

— Otherwise, the result is a free, unconstrained variable.

When checking the other relations (greater than, and so on), the standard
requires that the two pointers must point to the same object. Also, the pointer
must be within the bounds or off-by-one. The result of the comparison is a
non-deterministic choice if either check fails.

3.5 Quantifiers

The sections above describe the translation of formulae into propositional logic.
In these formulae, all variables are assumed to be implicitly universally quan-
tified. However, some program analysis tools make use of nested quantifiers. In
most cases, COGENT is able to rewrite the input query in such a way that the
quantifiers can be encoded directly into propositional logic with fresh variables
and Skolemization. In the worst case, COGENT will translate the input formula
into propositional logic with quantifiers (called quantified Boolean formulae or
QBF) instead of the standard propositional logic—we believe that this case will
not occur frequently in practice.

3.6 Examples

In order to summarize the techniques above, consider the following examples.
Given the formula Q)

ptxl=q || &(p->y) == &((g-x)->y)

let p and q be two pointers to a structure containing a member y. Let x be an
integer variable.

This formula is translated into propositional logic as follows. First, two new
Boolean variables a and 3 are allocated for the two operands of the OR operator.
Then, we add the following constraint:

Q < avp

We then add the constraints for the left-hand side operand of the OR operator.
We allocate bit-vectors for p.i, p.o, q.i, q.o, and x. We assume that n is the
number of elements of simple type in the structure, and that ® is the bit-vector
multiplication operator.

a = (pi®(x®n)#q.i)V(p.o#qo)

Note that this constraint does not contain the bounds check for the object
pointed to by p and q.
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For the encoding of the right-hand side of the OR operator, suppose that y is
the second member of the structure. Thus, the index bit-vector is increased by
one when taking the address of p->y.

b = (pi®l=(¢io(x®n))d1)A(p.o=q.0)

This simple example illustrates the complexity of mixing pointer arithmetic
with structures and arrays. In contrast to our tool, existing decision procedures
are unable to handle even such simple examples.

In order to illustrate an invalid query generating a counterexample, consider
the formula R

I (p==at+2 && g==a+n && p==q)

where a is an array, p and q are pointers, and n is an integer. Again, we first assign
fresh Boolean variables ap 2, and 2 to the operands of the AND operator:

R <— !(012 /\ﬂz/\’}/z)

The encoding of the constraints for the pointer arithmetic is done similarily
as above for a. The object a is assigned a number. Suppose this number is 1.
When passed to a SAT solver, we obtain a satisfying assignment with n = 2, a
value of 1 for the object of p and q, and a value of 2 for the offset of p and q.

4 Application to Software Model Checking

One popular approach to software model checking is called counter-ezample guided
abstraction refinement (CEGAR). SLAM, for example, implements CEGAR
for the C programming language. CEGAR implementations [24,25,36,37,13,
14,12] often use automatic theorem provers to implement the abstraction and re-
finement components of this algorithm. In this section, we briefly describe the CE-
GAR approach, and then present results of an experiment with SLAM where we
have replaced the theorem prover ZAPATO with COGENT.

4.1 Software Model Checking with Counter-Example Guided
Abstraction-Refinement

Predicate abstraction [38/39] is a method for systematically constructing conser-
vative abstractions of software. It abstracts data by only keeping track of certain
predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. The pred-
icate abstraction of software is usually automated. For example, in SLAM, the
predicate abstraction is implemented in a module called C2BP [40J5].

In practice, the set of predicates must be discovered by trial-and-error. Typi-
cally, CEGAR implementations guess the initial set of predicates. If the abstrac-
tion is computed using an insufficient set of predicates, then the model checker
will find a false error in the abstraction—called a spurious trace. There are two
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sources of spurious traces: 1) the set of predicates is insufficient, and 2) C2BP
trades accuracy for efficiency.

SLAM first uses NEWTON [0] to symbolically simulate the entire trace and
determine if it is spurious. If the trace is spurious, then NEWTON searches for
additional predicates which could eliminate the trace in a refined abstraction.

If no new predicates are found, SLAM concludes that the spurious trace is
caused by the inexact abstraction done by C2BP. It then invokes another refine-
ment method, called CONSTRAIN [7]. CONSTRAIN symbolically examines each
step of the trace in isolation and attempts to refine the abstract transition re-
lation in order to improve the accuracy of the abstraction using the predicates
that are available.

By default, NEWTON and CONSTRAIN both use the theorem prover Zapato [11].
As is done in [26], C2BP does not call a theorem prover. Instead, it uses a module
called FASTCOVERING that implements a form of parallel inference.

4.2 Experiments with SLAM

We have integrated COGENT with SLAM and compared the results to SLAM us-
ing its original theorem prover, ZAPATO. Note that, in our integration, C2BP
still uses FASTCOVERING. FASTCOVERING is currently an extremely weak in-
ference engine that produces poor abstractions when uncommon symbols (like
the C bitwise operations) appear in the sets of predicates. As a consequence,
SLAM/COGENT is at a disadvantage over SLAM/ZAPATO, as the abstraction of
bitwise operations must be done in a needlessly inefficient manner with CON-
STRAIN. For a more optimal result, FASTCOVERING should perform an analysis
similar to COGENT in order to provide better abstractions.

4.2.1 Comparing the Model Checking Results

In order to compare the overall effect of COGENT on SLAM we ran SLAM/COGENT
on 308 model checking benchmarks and compared the results to SLAM/ZAPATO.
The results are given in Fig.[Il

Model checking result SLAM/ZAPATO SLAM/COGENT
Property passes 243 264
Time threshold exceeded 39 17
Property violations found 17 19
Cases of abstraction-refinement failure 9 8

Fig. 1. Comparison of SLAM/ZAPATO to SLAM/COGENT on 308 device driver correct-
ness model checking benchmarks. The time threshold was set to 1200 seconds.

The SLAM/COGENT performs considerably better that SLAM/ZAPATO. No-
tably, the number of cases where SLAM exceeded the 1200 second time threshold
was reduced by half. As a result, the reduced timeouts led to two additional bugs
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being found. The cases where SLAM failed to refine the abstraction (as described
in detail in [7]) was effectively unchanged.

During SLAM’s execution, the provers actually returned different results in
some cases. This is expected, as the provers support different logics:

— ZAPATO provides support for uninterpreted functions together with UTVPI
integer arithmetic [41]. In addition, ZAPATO supports expressions with point-
ers only through axioms and a heuristic for dynamic axiom instantiation.

— COGENT, on the other hand, supports full arithmetic over bit vectors to-
gether with a more accurate handling of pointers and structures. COGENT
is strictly more accurate than ZAPATO.

For this reason, there are queries that ZAPATO can prove valid and COGENT can
prove invalid (e.g., when overflow is ignored by ZAPATO), and vice-versa (e.g.,
when validity is dependent on pointer arithmetic or non-linear uses of multipli-
cation). Thus, it is difficult to compare the accuracy of ZAPATO to COGENT. We
have, however, compared the overall performance of the two provers and found
that COGENT is usually more than 2x slower than ZAPATO. On 2000 theorem
proving queries ZAPATO executed for 208s, whereas COGENT ran for 522s. We
can therefore conclude that the performance improvement in Fig. [lis indicative
that, while COGENT is slower, COGENT’s increased accuracy allows SLAM to do
less work overall.

4.3 Checking New Properties of Windows Drivers

During the formalization of the kernel API usage properties that SLAM is used
to verify [25], a large set of properties were removed or not actively pursued due
to inaccuracies in SLAM’s theorem prover. For this reason the results in Fig. [
are not fully representative of the improvement in accuracy that SLAM/COGENT
can give.

In order to demonstrate this improved accuracy, we developed and checked
several new safety properties that would have resulted in too many false bugs
being reported in SLAM/ZAPATO. Fig.[2] contains an example of such a property,
written in SLAM’s event-based property language called SLic [42]. It makes use
of COGENT’s treatment of bit vectors, structures and pointers. This rule checks
that a Windows device driver always sets a special bit in a field of a structure
to 0 before returning from its AddDevice callback routine.

This property has the effect of instrumenting three events into the driver when
SLAM performs symbolic model checking:

— Calls from the device driver to the kernel function IoCreateDevice, which
(in the case the function returns successfully) causes an assignment of 1 to
the variable created.

— Calls from the device driver to the kernel function IoDeleteDevice, which
causes an assignment of 0 to the variable created.
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// The variable "created" is O when the special variable pdevobj is not
// pointing to something that has been allocated. It is set to

// 1 when it is.

state

{

int created = 0;

}

// IoCreateDevice will, if successful, place the pointer pdevobj in the
// handle passed to it.
IoCreateDevice.exit

{
if ($return==STATUS_SUCCESS) {
created = 1;
}
}
IoDeleteDevice.exit
{
created = 0;
}

// If the driver has an AddDevice callback, it will be called fun_AddDevice
#ifdef fun_AddDevice
fun_AddDevice.exit

{
// pdevobj is the pointer returned the environment model
// for IoCreateDevice
if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {
abort "AddDevice routine failed to set "DO_DEVICE_INITIALIZING flag";
}
}
#endif

Fig. 2. SLIC device driver safety property using C bit operations

— Returns from the device driver’s AddDevice callback routine When this
event occurs, a check (under the condition that the device object has been
allocated) ensures that the driver has negated the DO DEVICE INITIALIZING
flag in the device object structure that was allocated.

This rule is checked together with a main function that calls the driver’s
AddDevice routine from an unspecified state, and a set of non-deterministically
abstracted models of the kernel functions that the driver might call.

Fig. Bl displays the environment model for the function IoCreateDevice that
is used while checking device drivers with SLAM. This function can return any

2 pddDevice is referred to as a C macro called fun AddDevice in the property. Before
SLAM is used to perform model checking, an initial scan of the driver’s source code is
done and special callbacks found during this pass are defined using the C macro lan-
guage. These macros are then called from the properties and kernel environment model.
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NTSTATUS

ToCreateDevice(
DRIVER_OBJECT * DriverObject,
unsigned long int DeviceExtensionSize,
UNICODE_STRING * DeviceName,
DEVICE_TYPE DeviceType,
unsigned long int DeviceCharacteristics,
unsigned int Exclusive,
DEVICE_OBJECT #**DeviceObject

)
{
switch (MakeNondeterministicChoice()) {
case 0: (xDeviceObject) = pdevobj;
pdevobj->Flags |= DO_DEVICE_INITIALIZING;
return STATUS_SUCCESS;
case 1: (*DeviceObject) = NULL;
return STATUS_INSUFFICIENT_RESOURCES;
case 2: (*DeviceObject) = NULL;
return STATUS_OBJECT_NAME_EXISTS;
default: (*DeviceObject) = NULL;
return STATUS_OBJECT_NAME_COLLISION;
}
}

Fig.3. Nondeterministic environment model of Windows kernel function
TIoCreateDevice for device driver verification with SLAM

of four possible return values. In the case that it returns STATUS SUCCESS it sets
the DO DEVICE INITIALIZING flag in pdevobj’s Flags field to 1.

We checked this new property on 15 Windows device drivers using both
SLAM/ZAPATO and SLAM/COGENT. When using ZAPATO, SLAM found false
errors in each driver. When using COGENT as the prover, SLAM was able to
verify the correctness of all but one driver. In the case of this one driver, SLAM
produced a counterexample that pointed to a real and previously unseen bug.

5 Application to Extended Static Checking

BOOGIE [3] is an implementation of Detlef et al.’s notion of extended static check-
ing [A3] for the C# programming language. Extended static checkers attempt to
automatically verify manually added pre- and post-conditions in code. It can also
be used to ensure that client-code respects the pre-conditions, and does not assume
too much of the post-conditions. BOOGIE, using a notion of weakest-
preconditions, computes verification conditions that can be checked by an auto-
matic theorem prover. BOOGIE uses SIMPLIFY to formally validate the conditions.

In order to demonstrate the applicability of COGENT to extended static check-
ing, we have applied it to verification conditions generated by BOOGIE and com-
pared the results to those of SIMPLIFY. The runtimes in seconds are given in Fig. Al
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Benchmark # COGENT SIMPLIFY Benchmark # COGENT SIMPLIFY

1 0.010s 0.029s 28 0.044s 0.050s
2 0.013s 0.029s 29 0.030s 0.045s
3 0.012s 0.028s 30 0.002s 0.025s
4 0.041s 0.042s 31 0.003s 0.026s
5 0.573s 0.452s 32 0.093s 0.111s
6 0.001s 0.026s 33 27.772s  16.311s
7 0.002s 0.026s 34 0.001s 0.024s
8 0.002s 0.027s 35 0.001s 0.025s
9 0.042s 0.045s 36 0.002s 0.025s
10 0.043s 0.051s 37 0.010s 0.038s
11 0.030s 0.045s 38 0.014s 0.030s
12 0.002s 0.025s 39 0.012s 0.029s
13 0.003s 0.026s 40 0.042s 0.042s
14 0.093s 0.100s 41 0.573s 0.457s
15 26.217s  15.735s 42 0.002s 0.026s
16 0.001s 0.024s 43 0.001s 0.025s
17 0.001s 0.025s 44 0.002s 0.027s
18 0.002s 0.026s 45 0.042s 0.045s
19 0.010s 0.030s 46 0.043s 0.050s
20 0.013s 0.029s 47 0.030s 0.045s
21 0.013s 0.028s 48 0.002s 0.025s
22 0.042s 0.043s 49 0.003s 0.026s
23 0.571s 0.455s 50 0.092s 0.112s
24 0.001s 0.026s 51 30.813s  70.763s
25 0.001s 0.026s 52 0.001s 0.024s
26 0.003s 0.027s 53 0.001s 0.024s
27 0.042s 0.045s 54 0.001s 0.025s

Fig. 4. Comparison of SIMPLIFY and COGENT on 54 verification conditions generated
by BOOGIE

Unlike we did in the case of SLAM, we have not yet fully integrated BOOGIE
and COGENT. For the purpose of this experiment we first annotated the variable
names in the input C# programs with their types—BOOGIE currently does not
pass any type information down to the theorem prover. We then ran BOOGIE on
the programs and collected the verification conditions. We converted the queries
from SIMPLIFY’s input format into the syntax of COGENT, and removed the ax-
ioms and artifacts of the SIMPLIFY-specific encoding. Note that the comparison
is not quite fair: SIMPLIFY’s execution time includes parsing, whereas parsing
and translation is not included in the COGENT execution time.

The verification conditions mix both finite and infinite types together with ref-
erences. Objects of unbounded types were encoded with uninterpreted functions
and axioms. The verification conditions did not contain any pointer arithmetic,
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nor C-style unions. They did, however, contain some examples with bit-level
operations. In particular, one C# program models a microprocessor (as described
in some detail in [44]) and makes heavy use of bit-level programming constructs.

For the harder queries, COGENT was faster in one instance, whereas SIMPLIFY
was faster in two. Unlike SLAM, BOOGIE does not use the results of the validity
checks during its analysis, so the increased accuracy provided by COGENT does
not improve the overall performance of BOOGIE.

Note that C# provides an unsafe extension, in which pointer arithmetic and
other C-like features can be used. This is, for example, how C# calls C code.
Using the increased accuracy of COGENT for low-level programming features,
BOOGIE could potentially analyze mixtures of unsafe and safe code.

6 Conclusion

Automatic theorem provers are often used by program verification engines. How-
ever, the logics implemented by these theorem provers are not typically ideal for
the program verification domain. In this paper, we have described a new prover
that accurately supports the type of reasoning that program verification engines
require.

The prover’s strategy is to directly encode input queries into propositional
logic. This encoding accurately supports bit operations, structures, unions, point-
ers and pointer arithmetic, and pays particular attention to the sometimes sub-
tle semantics described in the ANSI-C standard. We have detailed the prover’s
translation of queries into propositional logic. We have also reported experimen-
tal results that demonstrate the performance and accuracy improvements of the
approach. We make the tool and the bitvector benchmark files used available on
the wel in order to allow other researchers to reproduce our results.

7 Future Work

As future work, we would like to further extend the prover with features that
can be useful for symbolic program verification tools. As an example, the prover
should take a query that represents a symbolic state of a program and apply a
widening operation such that verification engines based on abstract interpreta-
tion [45] could potentially reach a fixpoint. Additionally, we would like to make
use of interpolants [46J47] in COGENT.

A number of modern automatic theorem provers, such as CVC-LITE, ZAPATO,
ICS and VERIFUN, produce proofs. These proofs can be used in cases to quickly
determine why a query is valid. When used for symbolic simulation, this allows
us to find a small set of facts that cause a trace to be spurious. SAT-solvers for
propositional logic typically can produce an unsatisfiable core which has similar
information. For this reason, COGENT is able to produce information that is
similar—but not identical—to the proofs generated by traditional provers. In

3 http://www.inf.ethz.ch/personal/kroening/cogent/
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the future we would like to demonstrate that the unsatisfiable cores can provide
the same benefit to symbolic simulators as the proofs.

As mentioned in Section [, the abstraction module of SLAM uses FASTCoOV-
ERING, which is similar to [26] but optimized for speed and not precision. The
motivation behind this approach is to avoid the exponential number of calls to
a theorem prover—as originally proposed in [38]. As we replaced ZAPATO with
COGENT in Section ] we would also like to replace FASTCOVERING with a new
module that supports the same level of accuracy as COGENT.

There are a number of areas for potential performance improvement in Co-
GENT. We would like to optimize COGENT and then perform more extensive
empirical comparisons. Additionally, we would like to better integrate COGENT
with BOOGIE and compare the approaches on a larger set of benchmarks.
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