
Dynamic Tracking of Page Miss Ratio Curve
for Memory Management ∗

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan Zhou
and Sanjeev Kumar†

Department of Computer Science,
University of Illinois at Urbana-Champaign
{pinzhou, pandey1, sundarsn, raghuram,

yyzhou}@uiuc.edu

†Intel Labs
Santa Clara, CA

Sanjeev.Kumar@intel.com

ABSTRACT
Memory can be efficiently utilized if the dynamic memory
demands of applications can be determined and analyzed
at run-time. The page miss ratio curve(MRC), i.e. page
miss rate vs. memory size curve, is a good performance-
directed metric to serve this purpose. However, dynamically
tracking MRC at run time is challenging in systems with
virtual memory because not every memory reference passes
through the operating system (OS).

This paper proposes two methods to dynamically track
MRC of applications at run time. The first method is using
a hardware MRC monitor that can track MRC at fine time
granularity. Our simulation results show that this monitor
has negligible performance and energy overheads. The sec-
ond method is an OS-only implementation that can track
MRC at coarse time granularity. Our implementation re-
sults on Linux show that it adds only 7-10% overhead.

We have also used the dynamic MRC to guide both mem-
ory allocation for multiprogramming systems and memory
energy management. Our real system experiments on Linux
with applications including Apache Web Server show that
the MRC-directed memory allocation can speed up the ap-
plications’ execution/response time by up to a factor of 5.86
and reduce the number of page faults by up to 63.1%. Our
execution-driven simulation results with SPEC2000 bench-
marks show that the MRC-directed memory energy man-
agement can improve the Energy * Delay metric by 27-58%
over previously proposed static and dynamic schemes.

∗This work is supported in part by an equipment dona-
tion from AMD, IBM SUR grant, a gift from Intel Corp.,
and the National Science Foundation under Grant No.
CCR-0305854, and CCR-0313286.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’04,October 9–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010 ...$5.00.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—main
memory

General Terms
Algorithms, Management, Performance

Keywords
Memory management, Power management, Resource allo-
cation

1. INTRODUCTION

1.1 Motivation
Main memory plays an increasingly important role in bridg-

ing the widening gap between processor and disk speeds.
Even though memory sizes are increasing, memory is a scarce
resource for computing environments with large data sets.
This is especially the case for (i) host centers where multi-
ple applications or virtual machines run on one physical ma-
chine [22], and (ii) mobile devices that have limited amount
of memory due to thermal and packaging considerations.
Moreover, the memory price also grows exponentially with
size above certain standard configurations (1GB or 2GB).
In addition, large physical memory can also lead to signifi-
cant energy consumption in host centers [38, 10]. Therefore,
memory management remains an important research prob-
lem.

This paper focuses on two aspects of efficient memory
management. (1) Memory allocation: In a system with mul-
tiple applications, memory should be apportioned to appli-
cations in a way that maximizes overall system performance,
while ensuring that every application receives a certain min-
imum amount of memory. Applications which are unlikely
to show a significant performance gain with extra memory
should not be given more memory. (2) Memory energy man-
agement: If by giving extra memory to a process, the im-
provement in performance is marginal, it is better to power
down the extra memory to conserve energy. Optimizing en-
ergy consumption of computing components has become im-
portant not only for mobile, wireless and embedded devices
due to short battery life, but also for high-end systems to
reduce electricity bills, which contribute to more than 25%

177

of a host center’s TCO (total-cost-of-ownership) [43]. Mem-
ory is a particularly important target for efforts to address
the energy efficiency issues. It has been observed by pre-
vious studies [9, 32, 38, 56] that the memory subsystem is
one of the dominant consumers of the overall system energy.
Recent measurements from real server systems show that
memory consumes as much as 50% more power than pro-
cessors [39]. To address this problem, many modern mem-
ory modules support multiple low-power operating modes to
conserve energy [49].

Even though the above two aspects of memory manage-
ment focus on two different issues, both can benefit from
information about the dynamic memory needs of the appli-
cations. A metric called working set size is often used to
capture an application’s dynamic memory behavior. The
working set model was first proposed by Denning [19] and is
defined as the number of referenced pages during a time pe-
riod (called working set window). Various researchers have
proposed techniques such as WSCLOCK [8] and VSWS [26]
to dynamically estimate working sets and use them to guide
page replacements.

However, the working set model is not enough to guide
memory allocation or memory energy management because
the working set does not relate directly to an application’s
performance. For example, if an application sequentially ac-
cesses 1000 different pages within the working set window,
its working set would contain 1000 pages whereas the oper-
ating system needs to allocate only a small number of pages
to this application for it to deliver the same performance
(0% page hit ratio).

A better alternative is to use the page miss ratio curve
(MRC), the miss ratio vs. memory size curve, to keep track
of dynamic memory needs of applications. Previous stud-
ies [50, 59, 3, 34] have used MRC to configure the memory
hierarchy for applications. These studies obtain MRC stat-
ically by running the applications multiple times, each time
using a different memory size. Such a method is ineffective
for many applications whose memory requirements vary for
different computation phases or different user inputs. In ad-
dition, the multiprogramming environment makes the mem-
ory availability hard to predict statically. To deal with these
issues, techniques that can dynamically track MRC at run
time are desirable.

Even though dynamically tracking MRC is relatively easy
for file systems by using ghost buffers [36, 44], it is quite
challenging to track MRC for the virtual memory (VM) sys-
tem. Unlike file systems where each file access goes through
the file system, not every memory access is known to the
OS. Only page misses are handled by the OS, while all the
page hits directly access the physical memory without going
through the OS. Therefore, the simple techniques used in
file systems cannot be used to track MRC in systems with
virtual memory.

1.2 Contributions
In this paper, we propose two methods to dynamically

track applications’ MRC and then use the MRC to guide
memory allocation and memory energy management. To the
best of our knowledge, our methods are the first in tracking
MRC at run time in virtual memory. Our study is also the
first in using MRC to direct memory allocation and memory
energy management. Specifically, our paper has the follow-
ing contributions:

• We have designed a hardware MRC monitor to dynam-
ically track MRC for applications at run time. This
MRC monitor is relatively simple and has low power
requirement, as shown by our execution-driven simu-
lation results.

• We have also proposed a software-only solution that
can track MRC approximately at run time in the OS.
Our implementation results on Linux with real appli-
cations show that this software only solution imposes
only 7-10% overhead.

• We have applied MRC to direct memory allocation
to maximize memory utilization in multiprogramming
systems. Our real system experiments on Linux with
real applications, including Apache Web Server, show
that this scheme can speed up applications’ execu-
tion/response time by up to a factor of 5.86 and reduce
the number of page faults by up to 63.1%.

• We have also used MRC to direct memory energy man-
agement in order to reduce energy consumption while
still providing acceptable performance. Our execution-
driven simulation results with SPEC2000 benchmarks
show that MRC-directed memory energy management
can improve the Energy * Delay metric by 27-58% over
previously proposed schemes.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2

briefly describes the background of this work. Section 3.1
and Section 3.2 respectively present the hardware and the
software methods to dynamically track MRC at run time.
Section 4 describes the MRC-directed memory allocation
scheme and the experimental results observed on real sys-
tems. Section 5 presents the MRC-directed memory energy
management scheme and the simulation results obtained
with an execution driven simulator. Section 6 discusses the
related work. Section 7 concludes the paper.

2. BACKGROUND

2.1 Miss Ratio Curve (MRC)
Memory can be efficiently utilized if an application’s dy-

namic memory behavior can be analyzed at run time. One
effective method to measure an application’s memory needs
is to use its dynamic miss-ratio curve (MRC) that plots the
application’s page miss-ratios against varying amounts of
physical memory. Please note, in our paper, MRC is for
accesses filtered by caches. Similar to all previous work on
main memory management, only accesses to physical mem-
ory (i.e. cache misses) are considered. Figure 1 shows the
MRC for the bzip benchmark from SPEC2000 during a par-
ticular time interval (MRC may dynamically change in dif-
ferent time intervals). We see that MRC decreases initially
but eventually starts to flatten out after a certain point (say
n pages). This indicates that even if the system provides
more than n memory pages to this application during that
interval, it does not help in reducing its miss ratio signifi-
cantly. In other words, an efficient memory manager should
allocate only n pages to handle most of accesses made by this
application during that interval(assuming that all n pages
can fit into main memory).

178

Figure 1: Miss Ratio Vs. Memory Size Curve
(MRC) for bzip

MRC provides useful information about applications’ dy-
namic memory needs. For example, we can use MRC to dy-
namically allocate memory to multiple applications to max-
imize the overall system performance. Similarly, MRC can
also be used to direct memory energy management. If appli-
cations need only n pages to provide the best possible page
miss ratio during a period, the system needs to keep only
n pages active and can power down the rest of memory to
conserve energy in that period.

In the past, a metric called “working set size” has been
widely used to capture applications’ memory needs [20, 18,
19]. For an application, the working set is defined as the set
of pages that it has recently referenced. Formally speaking,
the working set of an application is the collection of pages
referenced during the recent working set window (time inter-
val). The working set size is just the memory footprint size
of the working set. For example, if an application sequen-
tially accesses 10000 pages within a working set window, its
working set size is 10000 (pages), even though its page miss
rate is always 100% no matter how much physical memory
is allocated to it.

Working set and MRC are two different but complemen-
tary models. While an application’s working set can be used
to determine what pages should be replaced or what pages
can be powered down, the MRC is better suited to deter-
mine how many pages should be allocated to an application
or how many pages can be powered down. In our mem-
ory allocation and memory energy management schemes,
we have used both MRCs and working sets. Our methods
for dynamic tracking of an application’s MRC also track the
application’s working set.

Most previous works [50, 59, 3, 34] obtain an application’s
MRC statically by running the application multiple times,
each time with a different memory size. However, most ap-
plications are dynamic and the multiprogramming environ-
ment makes the memory resource availability hard to predict
statically. Therefore, static methods are not very useful for
dynamic memory management. An algorithm that can dy-
namically determine the MRC is better suited for memory
management.

2.2 Mattson’s Stack Algorithm
Our methods for dynamically tracking MRC at run time

are based on the Mattson’s stack algorithm, which was ini-
tially proposed by Mattson et al. in 1970 [24] to reduce
trace-driven processor cache simulation time. It can be
used to determine the miss ratios for all processor cache
sizes under certain replacement algorithms with a single pass
through the trace file. Mattson’s stack simulation method

Figure 2: Illustration of Mattson’s stack algorithm

was later extended by Hill et al. [29, 28] and Wang et al. [57]
to provide efficient trace simulations for set associative caches.

The main idea of Mattson’s stack algorithm is to take
advantage of the inclusion property in many cache/memory
replacement algorithms [24] including the commonly used
Least Recently Used (LRU) and the Least Frequently Used
(LFU) algorithms. The inclusion property states that, dur-
ing any sequence of memory accesses, the contents of a mem-
ory of size k (pages) should be a subset of the contents of
a memory of size k + 1 or larger. To explain Mattson’s
stack algorithm, we assume LRU as the replacement algo-
rithm since virtual memory is typically managed using the
CLOCK algorithm, a close approximation of the LRU algo-
rithm [52]. We use a “stack” to store the page numbers of
accessed pages. The entries in the stack are ordered based
on the time of their last use—the most recently used page
is on the top of the stack. Then for a given trace, the Matt-
son’s stack algorithm consists of the following three steps
for each reference:
Step1 : Search the referenced page number in the stack. If
the referenced page is the ith element in the stack from top,
its stack distance is i. If the referenced page is not in the
stack, its distance is ∞.
Step2 : Update the hit counter for the memory size corre-
sponding to the stack distance. For a reference at distance
i, the hit counter for the memory size i, i.e. Hit[i] is in-
creased by 1. This reflects the fact that if the memory size
is between 1 and i − 1 pages, then the reference will result
in a page miss. For memory sizes greater than or equal to
i, the reference will result in a page hit.
Step3 : Update the stack to reflect the memory content based
on the replacement algorithm. For example, under the LRU
policy, the referenced page is moved to the top of the stack.

Finally, after processing the whole trace, miss ratios can
be calculated for multiple memory sizes according to the hit
counters. The miss ratio for memory size m pages, MR(m)
for a system with total memory of n pages is given by the
following formula.

MR(m) = 1 −

∑m

i=1
Hit[i]∑n

i=1
Hit[i] + Hit[∞]

(1)

where Hit[∞] is the number of accesses which result in a
miss even if the process is allocated all n pages. Figure 2
shows an example of how Mattson’s Stack Algorithm works.
In this example, the reference sequence is “1311”. Using the
above formula, we calculate the miss ratios for memory sizes
of 1, 2, and 3 pages as 0.75, 0.5, and 0.5 respectively.

Even though Mattson’s stack algorithm was originally used
for cache simulation, it can also be used to track MRC for

179

Figure 3: MRC monitor architecture

file system accesses [36, 44] and physical memory accesses
as in this study.

3. RUN-TIME TRACKING OF MRC
While the Mattson’s algorithm gives us the basic method

to find the MRC at runtime, implementing it without incur-
ring high space or time overhead is challenging. Unlike file
systems that can monitor every file access, not every mem-
ory access goes through the OS. Therefore, it is infeasible
for the OS to use a straightforward implementation of the
Mattson’s algorithm as done in some file system studies [36,
44].

To dynamically generate the MRC of an application, time
is divided into fixed intervals called epochs. During each
epoch, we use a variant of the Mattson’s stack algorithm to
record the observed accesses. At the end of each epoch, the
MRC for that epoch is computed.

This section presents two implementations of the Matt-
son’s stack algorithm1 to dynamically track an application’s
MRC. The first implementation is a hardware MRC mon-
itor that tracks the MRC of an application at a fine time
granularity. The second method is an OS-only solution that
tracks the MRC at a coarse time granularity.

3.1 Method 1 : Hardware Approach
We design a hardware module, the MRC monitor, to dy-

namically track MRC. The MRC monitor connects to the
memory bus and can observe all memory accesses by snoop-
ing the bus. It can also be built into the memory controller.
The advantage of the hardware approach is that it allows
MRC to be computed at a fine granularity. The disadvan-
tage is that it requires special-purpose hardware.

The MRC monitor consists of three buffer-like structures:
an LRU stack LRUArray, a group header array GroupH-
drs, and a hit counter array HitCtrs. Figure 3 shows the
architecture of the MRC monitor. Table 1 gives the size of
each component and the number of operations at a memory
access for each component.

The LRUArray maintains an LRU stack. Each entry in
the stack corresponds to a physical page. The LRUArray
is indexed directly using the page number. For instance,
if the page size is 4 KB, then the 20 most significant bits
in the physical address form the index. The LRU order is

1To efficiently track the MRC, changes to basic Mattson’s
algorithm are made so that the MRC is computed approxi-
mately. However, the computed MRCs are accurate enough
to be useful (See the results of Section 4 and 5).

Size (in Bytes)Component
General Example

Operations/Access

LRUArray 8 ∗ nps 2 MB (7 + 2 ∗ I) accesses
GrpHdrs 4 ∗ ng 1 KB 2 ∗ I accesses
HitCtrs 4 ∗ (2 + ng) 1 KB 2 counter increment

Table 1: MRC Monitor components. Size of the compo-

nents and number of operations at an access to a page in group

I. nps is the number of physical pages in DRAM and ng is the

number of groups. In the example, the DRAM has capacity of 1

GB, with 256 groups each having 1024 pages of size 4 KB.

implemented by using a doubly linked list. Each entry in
LRUArray has three fields (GroupID, next, prev), a total of
8 bytes. GroupID uses 2 bytes to store the page group to
which the corresponding page currently belongs(Significance
of page groups is explained in the next paragraph). The
pointers next and prev, requiring 3 bytes each, are used to
maintain a doubly-linked list of the entries in the LRU order.

The MRC monitor uses page groups to avoid scanning
the entire LRUArray to compute and update the stack dis-
tances on a memory access. The idea is similar to the fast
stack implementation by Kim and Hill to reduce the trace
simulation time for hardware caches [37]. Pages in the LRU
stack are grouped into multiple page groups, following the
LRU order. Each entry in GrpHdrs points to the header of
the corresponding page group. For example, the first entry
in GrpHdrs points to the top of the LRU stack, the most
recently accessed page. Pages in the same group have the
same stack distance. The stack distance for a page in the
group I is I × GrpSize, where GrpSize is the number of
pages in each group. Even though this page group scheme
treats pages in the same group equally, the amount of loss
in accuracy is small, which can be traded off for efficiency.

The array HitCtrs (4 bytes per entry) keeps track of the
number of hits for different memory sizes. Since the stack
distance is only accurate at the granularity of page group,
HitCtrs only needs to record the numbers of hits for memory
sizes that are integral multiples of GrpSize. In particular,
counter j (1 ≤ j ≤ NumGroups) in HitCtrs records the
number of accesses that would result in a hit with a mem-
ory of size j ∗ GrpSize pages, but a miss for any smaller
memory size. The last two counters in HitCtrs record the
total number of memory accesses and the total number of
misses respectively. For example, on an access to a page
that currently belongs to page group i, counter i and the
penultimate counter (total accesses) of HitCtrs need to be
incremented by one.

In case of a page miss, the OS page fault handler selects
a victim page for replacement and informs the MRC mon-
itor regarding the selected physical page frame to hold the
missed virtual page. The entry in the LRUArray corre-
sponding to the physical page is marked as invalid. After
the page fault is handled and the process accesses the vir-
tual page again, the MRC monitor observes this access and
notices that the corresponding entry is invalid. Therefore,
the stack distance for this access is infinite and the last two
entries in HitCtrs is incremented by one.

Not every access to memory needs to update the struc-
tures of the MRC monitor. The MRC monitor can record
the pages of several recent accesses to exploit temporal lo-
cality. An access to a recorded page only needs to increment

180

the first and the last counter in HitCtrs since the accessed
page would be in page group 1 and among the top GrpSize
elements of the LRU stack. If the workload has good tempo-
ral locality, this optimization would significantly reduce the
number of operations in the MRC monitor. However, this
optimization is currently not implemented in our simulator.

At the end of an epoch, the MRC can be generated from
the data in HitCtrs using equation 1 by noting that Hit[i]
corresponds to HitCtrs[i] and i is now an index over page
groups rather than individual pages. The denominator in
equation 1 need not be explicitly computed, as we store
the total number of accesses in the penultimate counter in
HitCtrs. Since the hardware MRC monitor can observe all
memory accesses, it can generate MRC at a fine granularity.
This is essential because a short epoch length of around
10,000 CPU cycles is necessary for MRC-directed memory
energy management (Section 5).

The MRC monitor described so far tracks the miss ratio-
curve for the entire system including operating system and
all applications. For applications like memory energy man-
agement (Section 5), this is appropriate because it can be
used to conserve the energy in the system as a whole. How-
ever, for applications like memory allocation in a multipro-
gramming system (Section 4), it is better to compute MRCs
for each process separately. To achieve this, the GrpHdrs
and HitCtrs should be private to the running process. The
LRUArray would be shared among all processes, but in-
side the LRUArray, pages that belong to the same process
are linked together following the LRU order. At a context
switch, the GrpHdrs and HitCtrs should also be swapped.

Since the MRC Monitor works in parallel with memory ac-
cesses, it imposes little runtime overhead. Typically, most
memory instructions will access the processor caches and
only a small fraction of memory instructions executed will
result in memory accesses which are our only concern for
memory management. For applications whose memory ac-
cess rate is too high for the MRC monitor to keep up, a
queue can be used to buffer some accesses. In the rare event
that the queue overflows, a few accesses would be dropped.
However, this is unlikely to significantly distort the MRC,
and also we do not need very accurate MRC for both mem-
ory management and power management.

3.2 Method 2: OS Approach
Although the MRC monitor can track an application’s

MRC at fine time granularity, it requires extra hardware
support. For some purposes, such as memory allocation
for multiprogramming environments, tracking MRC at fine
time granularity might not be required. To provide a simpler
solution to serve these purposes, we have designed an OS-
only method to dynamically track MRC at run time. We
have implemented this method in the Linux kernel and have
conducted experiments based on this implementation.

There are several challenges in implementing the Matt-
son’s stack in the OS without extra hardware support. (1)
Accuracy. Not every memory access passes through the OS.
The OS is only notified upon page faults. Page hits are
handled directly by the hardware. The hardware sets the
“accessed” bit for the accessed page at every page reference.
Consequently, the OS can get only a rough approximation
of the set of pages referenced during an interval by reset-
ting the accessed bits at the beginning of the interval and
scanning the bits at the end of the interval. (2) Time Over-

head. Scanning the “accessed” bit of all the pages would
result in unacceptable time overheads. Moreover we need to
scan these bits frequently enough so that we do not miss the
accesses to the pages. (3) Space Overhead. Implementing a
full stack for an application’s entire virtual address space
would require a lot of space, which may offset the benefits
of MRC-directed memory management.

To address these challenges, our OS implementation makes
three key improvements to the basic Mattson’s stack algo-
rithm: (1) It uses page protection to reduce the number of
pages whose “accessed” bit needs to be scanned, so that the
scanning can be done with small time overhead (2) Similar
to the hardware MRC monitor, the OS implementation also
uses page groups instead of pages as the basic memory unit
size to reduce the time overhead. (3) To reduce the space
overhead, the maximum number of entries in the stack are
limited by the number of total physical pages. Due to space
limitations, we give only a brief overview of our OS imple-
mentation with focus on these three ideas. More details can
be found in [46].

For each monitored process, the OS maintains the follow-
ing data structures: (1) A doubly linked list to maintain the
stack order. Each entry contains a virtual page number and
a page group ID. (2) A group header array similar to the one
used in the hardware MRC monitor for tracking the headers
of page groups. (3) A hit counter array to record the num-
ber of hits for different memory sizes. We only keep track of
sizes that are multiples of page groups. (4) A pointer called
“scan list pointer”, which points to one of the elements in
the doubly linked list. All the elements in the stack which
are above this pointer form the scan list, the significance of
which will be explained shortly.

The OS needs to determine the set of recently accessed
pages so that it can update the hit counters. To reduce the
overhead of scanning the accessed bits, the OS implemen-
tation partitions the pages in the physical memory into two
groups. For the recently accessed pages (members of the
scan list), the OS checks the accessed bits to determine if
they were accessed. To catch references to the infrequently
accessed pages, the OS uses the page protection mechanism.

The OS periodically scans the accessed bits for pages that
are in the scan list. If the accessed bit for such a page is
set, the OS calculates the stack distance based on the group
ID associated with the corresponding stack entry. It then
increases the corresponding hit counter by 1. If this page
is not in group 0, it is “moved” to the top of the stack by
manipulating the doubly linked list and its page group ID
is set to be 0. For all page groups in between, their last
elements are pushed to the next page group.

For detecting references to pages that are not in the scan
list, the OS switches off the read-write permission of these
pages. An access to such a page causes a protection fault.
This is similar to the Shared Virtual Memory (SVM) sys-
tems [40]. Then the OS calculates the stack distance, up-
dates the hit counter array, grants the read-write permission
to this page to avoid future faults, and moves the corre-
sponding entry to the top of the stack, thus adding it to the
scan list. The last page in the scan list is evicted from the
list by switching off its read-write permission to detect its
future accesses, and scan list pointer is adjusted to reflect
that this page is no more in the scan list.

The page protection optimization incurs only small over-
head because of the following reasons: (1) Since most pro-

181

grams have good temporal locality, the probability that non
recently-used pages (whose read-write permission is set off)
are accessed is relatively low. Therefore the number of such
protection faults is small. (2) Only the first access to a pro-
tected page triggers a page fault (since then the protection
bit is turned off), and thus the overhead of handling the pro-
tection faults is amortized over many subsequent accesses.

If the number of page protection faults are large (could be
caused by non-LRU accesses, such as sequential accesses), it
indicates that the temporal locality is poor. In this case, we
can increase the scan list length and disable the page pro-
tection optimization. Moreover, previous work has proposed
many techniques to capture loop references or sequential ref-
erences [36]. We can incorporate those techniques to track
MRC without scanning the whole list for these regular ac-
cess patterns. However, in our current prototype we did not
include this.

We have implemented the above method in Linux by mod-
ifying the virtual memory system and adding around 1000
lines of code. In addition to the background scanning proce-
dure for the NRU (not recently used) page replacement al-
gorithm implemented by the original Linux system, we have
added another scanning procedure to scan the reference bits
of the scan list. Due to optimizations described above, the
time overhead of our procedure is very low.

4. APPLICATION I : MRC-DIRECTED
MEMORY ALLOCATION (MRC-MM)

4.1 Main Idea
This section outlines our MRC-based memory allocation

scheme for multiprogramming systems. In a multiprogram-
ming environment, the amount of memory demanded by a
process is not always equal to the amount allocated to it.
When a process is allocated less memory than it needs, each
memory reference outside the resident set of the process trig-
gers a page miss (page fault), which involves blocking the
process execution for tens of thousands of CPU cycles (for
doing slow disk I/O). In addition, each page miss incurred
can further decrease the performance of the process by al-
lowing other processes to steal its resident set when it is not
executing. This can cause the process to thrash and degrade
the system performance. To avoid this, efficient memory
management assumes importance, especially in host centers
that run multiple applications on the same machine to im-
prove system throughput.

The memory manager can use the methods described in
Section 3 to determine the MRC, and use the MRC to guide
memory allocation. The basic idea of the scheme described
in this section is to allocate more memory to processes that
exhibit a higher marginal performance gain.

4.1.1 Problem Formalization
To find a good memory management algorithm, we first

formalize the problem as a resource utility problem. Con-
sider a computer system running n processes Pi, 0 ≤ i ≤
n − 1. Let Mtot represent the total memory of the system.
The problem is to assign memory to the n processes in order
to maximize memory utilization. We need to associate with
each process Pi, a utility function Ui : R → R where Ui(m)
gives the utility obtained by the process Pi when memory
of size m ≥ 0 is allocated to it. As this is a maximization

problem, we represent the utility using hit ratios instead of
miss ratios. It is also possible to use the end-performance
as the utility function by converting miss ratio gain (loss)
to performance loss (gain) based on the process’s memory
reference rate.

Let Mi represent the memory size allocated to process Pi.
Process Pi requires a certain minimum memory size, say
Mmin

i , in order to provide acceptable performance. Each
process is also weighted by wi that describes how important
that process is to the system. The total system utility U

is the weighted sum of the utilities of individual processes.
Then the problem of memory allocation is to find Mi for
0 ≤ i ≤ n − 1 that maximize the total system utility given
by:

U =

n−1∑

i=0

wiUi(Mi) (2)

An allocation M = (M0, . . . , Mn−1) is said to be feasible if
it satisfies the following two constraints. (1) Finite Memory:∑n−1

i=0
Mi ≤ Mtot. The sum of memory allocations to the

different processes must not exceed the total system mem-
ory. (2) Minimum Memory: Mi ≥ Mmin

i , 0 ≤ i ≤ n − 1.
The minimum memory requirement of every process must
be satisfied. Note that we assume that the problem set has
at least one feasible solution. Σn−1

i=0
Mmin

i ≤ Mtot.
This is essentially a QoS-based resource allocation prob-

lem and has been addressed in great detail and higher com-
plexity in previous work [47, 48] that deals with resources
for real-time applications. As the optimal solution for this
has shown to be NP-hard [47], we give a greedy algorithm
to get a good solution for the problem.

4.1.2 A Greedy Algorithm
The main idea of the greedy algorithm is to divide the

memory into small units δ and incrementally allocate δ amount
of memory to the process which can benefit the most from
this memory at each step. In other words, the process that
receives this δ memory is the one with the highest gradient
of the utility function at its current memory allocation.

Without loss of generality, we assume that the utility func-
tions have already been weighted by their priorities wi, thus
eliminating the need to carry them on. Similarly, we can as-
sume that each process has already been allocated the mini-
mum memory which it needs for an acceptable performance.
Thus we take Mmin

i = 0.
The greedy algorithm does the following repeatedly un-

til all memory has been allocated or all processes’ memory
demands have been satisfied. Mtot represents the total mem-
ory available.

1. Let Mi = 0, 0 ≤ i ≤ n − 1

2. Assume for all i, process Pi has been allocated memory
Mi so far. Compute the gradients of the utility curves
viz., U ′

i(Mi), where U ′
i(Mi) is the derivative of Ui at

m = Mi.

3. Select the process Pj with maximum gradient. Ties
can be broken arbitrarily using priority.

4. Allocate δ memory to process Pj . Increase Mj by δ

and the decrease free memory Mfree by δ. Other Mi

values remain unchanged.

5. If Mfree = 0, then quit as no more allocations can be
made. Otherwise go to step 2.

182

Execution/Response # Page Misses
Benchmark Time(s)

Orig MRC Speed Orig MRC Reduc-
-MM -up -MM tion(%)

Apache 0.07 0.03 2.29 474* 301* 36.5
gzip 739 706 1.05 46279 47341 -2.3

Apache 0.10 0.04 2.53 604* 305* 49.5
gcc 325 353 0.92 20175 21506 -6.6

Apache 0.07 0.017 4.04 336* 174* 48.2
LINEAR 381 279 1.37 39369 40108 -1.9
INTR 9.8 2.7 3.61 30317 21115 30.4

LINEAR 462 337 1.37 25114 25193 -0.3
INTR 8.5 1.4 5.86 58159 21454 63.1
gzip 883 797 1.10 50913 52959 -4.0

INTR 5.7 2.3 2.53 35471 15190 57.2
gcc 801 842 0.95 23387 25164 -7.6

Table 2: Overall results of MRC-MM. For Apache and

INTR, the time reported is the average response time per request.

For LINEAR, gcc, and gzip, the time reported is the execution

time. The speedup is calculated by dividing the number in the

original system by the corresponding MRC-MM number. Note

(*): Number of page faults for Apache is per 100 seconds.

For convex utility functions, the greedy algorithm has
shown to be optimal in [46]. For non-convex utilities, the
algorithm can be applied to the convex hull of the utility
function curve. We note that MRCs are usually convex,
and therefore the greedy solution we obtain is very close to
the optimal solution.

4.1.3 Implementation of MRC-MM in Linux
We modified the memory manager in Linux to incorpo-

rate memory reclamation and memory allocation procedures
based on the above greedy algorithm.

In the memory reclamation procedure, when the amount
of free memory in the system falls below some threshold, the
memory manager removes some memory from processes that
have the minimum performance loss. For example, compar-
ing two processes A and B, if taking δ memory from A would
not increase A’s miss ratio at all whereas taking the same
amount of memory from B would cause more misses for B,
then process A is chosen to give up δ memory. The mem-
ory manager iterates this until the system has enough free
memory.

In the memory allocation procedure, when a process com-
mits a page fault, the memory manager checks if it should
replace one of that process’s own page or get one from the
free page pool. The decision is made based on the perfor-
mance gain the process is likely to have when given more
memory. If the performance gain is significant, it is given δ

more memory. Otherwise, one of that process’s own page is
replaced.

4.2 Real System Experiments
We have implemented our OS method for tracking MRC

dynamically, as discussed in 3.2, in Linux operating system.
We have also modified the memory management scheme to
implement the MRC-directed memory allocation scheme dis-
cussed in 4.1.3. We did not use the hardware MRC mon-
itor because our simulator does not support an OS. More-
over, the coarse granularity at which the OS implementation
tracks the MRC is sufficient for memory allocation, as the
following sections will show.

4.2.1 Methodology
We conduct our experiments on a system with a single 1.8

GHz CPU, Pentium 4 machine running Linux-2.4.20, with
128MB memory and 512MB swap space. The page size is
4KB. We use 128MB of memory because our applications’
data set sizes are relatively small. We expect our results to
be similar if we scale up both the memory size and data set
sizes. We use 64 pages as the group size and 10ms as the
epoch length for tracking MRC in OS.

We evaluate the modified system with three real applica-
tions (Apache Web Server [1], gcc, and gzip) and two syn-
thetic benchmarks. For the Apache Web server, we use the
flood [2] to generate requests, and Apache’s logging facili-
ties to find out the response time to serve each request. The
inputs for gcc and gzip are 166.i and input.graphic respec-
tively, which have been taken from the SPEC2000 bench-
mark suite. The two synthetic benchmarks are very similar
to the ones used by Brown and Mowry in their study of
using compiler-inserted releases to manage physical mem-
ory [6]. The two synthetic benchmarks are: (1) LINEAR,
which emulates an application having a loop access pattern.
The program consists of a loop that touches pages in a se-
quential fashion. (2) INTR, which emulates an interactive
application consisting of periods of activity followed by in-
activity (we use sleep() to emulate this). The program con-
sists of a loop, each iteration of which touches a set of pages
based on zipf distribution [4] to simulate temporal locality.
We measure the response time as the time taken to touch
the pages in a given loop iteration.

We compare our MRC-MM with the original Linux mem-
ory management. The original Linux MM uses the global
page replacement (the LRU-like CLOCK algorithm) to man-
age the entire physical memory space without considering
which process a page belongs to. It is simple but suffers
from thrashing.

4.2.2 Overall Results
Table 2 shows the execution/response time and number of

page faults for each application in MRC-MM and the orig-
inal system for six multiprogramming settings: (1) Apache
with gzip, (2) Apache with gcc, (3) Apache with LINEAR,
(4) INTR with LINEAR, (5) INTR with gzip, and (6) INTR
with gcc. Since interactive applications are more sensitive to
response time, the performance of Apache/INTR is a more
important consideration when compared to the execution
time of the other three applications. In all the times pre-
sented, the overhead imposed by tracking MRC is reflected
in the results.

For interactive applications such as Apache and INTR,
MRC-MM can reduce response time by a factor of 2.29 to
5.86. For example, with Apache and LINEAR running, the
average response time of Apache is reduced by a factor of
4.04 when run in MRC-MM. This is because MRC-MM ef-
fectively redistributes memory by giving more memory to
applications that would benefit most. As a result, MRC-
MM reduces the number of page faults for interactive appli-
cations by 36.5-63.1%. Due to the intervention of process
scheduling and request queuing delay, the percentage reduc-
tion in the average response time in some settings is larger
than the percentage reduction in the number of page misses.

Even though MRC-MM favors interactive applications,
non-interactive applications (gcc, gzip and LINEAR) suffer
only minor (5-8%) performance slowdown with MRC-MM in

183

the worst case and in some cases even their performance im-
proves. The main reason is that MRC-MM takes away extra
memory from these applications only when it does not re-
sult in a significant performance degradation. In some cases,
MRC-MM can even improve the performance. This is be-
cause fewer page faults result in reduced page-ins and hence
reduced swap-outs. As a result the swap disk in MRC-MM
has less contention and therefore page misses can be served
faster.

A detailed analysis of Apache+gcc case is presented in
Figure 4. In the experiment, Apache begins first and gcc
begins after 140s. Figure 4(a) shows the response time of
Apache in the Apache+gcc setting on the original and the
MRC-MM system. When gcc begins after 140s, in the orig-
inal system, the response time of Apache increases dramat-
ically to a maximum of 250ms and remains high till around
300 seconds, when gcc releases the memory after its first
pass. When gcc starts its second pass, the Apache response
time increases to a high value again. With MRC-MM, when
gcc begins, the response time of Apache rises initially. How-
ever, MRC-MM finds that giving Apache more memory at
the cost of gcc is beneficial for the overall system perfor-
mance, and the performance of gcc is not greatly degraded
by giving it less memory. Thus, the response time of Apache
resumes much earlier and more quickly in MRC-MM than in
the original system. Similar explanation holds for the second
phase of the gcc. Figures 4(b) and (c) show the resident set
sizes (RSS) of Apache in the original and MRC-MM systems.
In the original system, when gcc starts, the RSS of Apache
drops from around 20000 pages to around 8000 pages, while
gcc is allotted more than 20000 pages. At around 300 sec-
onds, gcc releases its memory after its first pass. As its
second pass starts, it is again allocated around 20000 pages.
In contrast, with MRC-MM, the RSS of Apache drops ini-
tially, but is soon restored to around 15000 pages. The RSS
of gcc is initially around 20000 pages, but soon decreases
to around 8000 pages. These results show that MRC-MM
is able to reduce the response times of Apache in presence
of an out-of-core application. It achieves this by reducing
RSS of the out-of-core application to the size necessary for
an acceptable performance.

In summary, our results show that MRC-MM is very effec-
tive in improving memory utilization for multiprogramming
environments with applications of diverse types. As the host
center-based computing paradigm of running multiple appli-
cations or virtual machines on the same machine becomes
predominant, we believe that MRC-MM will be very useful.

4.2.3 Overheads of tracking MRC
To measure the overhead of our tracking MRC implemen-

tation, we compare the application’s total execution time in
the original Linux system and in the modified Linux system
that computes the MRC periodically. While measuring this
execution time, we do not perform any memory manage-
ment, because we want to calculate only the pure tracking
overhead, and not the performance gains that will arise from
the MRC-MM allocation scheme. As we have seen in results
presented in Section 4.2.2 which already include the MRC
tracking overhead, the performance gains of MRC-MM out-
weigh the overhead of MRC computation. Table 3 shows
the time overhead for three applications – LINEAR, gcc,
and gzip.

Our results show that the pure tracking overheads for

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

ill
is

ec
on

ds
)

execution time(seconds)

orig
mrc-mm

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

ill
is

ec
on

ds
)

execution time(seconds)

orig
mrc-mm

(a) Response time of Apache in Apache+gcc

12K

16K

20K

 0 50 100 150 200 250 300 350 400 450 500

R
S

S
 (

#p
ag

es
)

execution time(seconds)

orig-apache
mrc-mm-apache

12K

16K

20K

 0 50 100 150 200 250 300 350 400 450 500

R
S

S
 (

#p
ag

es
)

execution time(seconds)

orig-apache
mrc-mm-apache

(b) Resident Set Size of Apache in Apache+gcc

5K

10K

15K

20K

 100 150 200 250 300 350 400 450 500

R
S

S
 (

#p
ag

es
)

execution time(seconds)

orig-apache
mrc-mm-apache

5K

10K

15K

20K

 100 150 200 250 300 350 400 450 500

R
S

S
 (

#p
ag

es
)

execution time(seconds)

orig-apache
mrc-mm-apache

(c) Resident Set Size of gcc in Apache+gcc

Figure 4: Detailed analysis of Apache+gcc.

Application LINEAR gcc gzip
Overhead 7 % 10 % 8 %

Table 3: Tracking overhead as a percentage of the exe-
cution time of the original program

these three applications are in the range 7%-10%. This over-
head comes from manipulating the extra data structures,
scanning the scan list, and handling page protection faults.

In our experiments, the MRC tracking process is enabled
all the time. When used in a real system, MRC tracking
code would run only when the system has high memory con-
tention, and it will never be triggered when there is enough
memory. Therefore, in a real system deployment, the over-
head will be even smaller.

5. APPLICATION II : MRC-DIRECTED
MEMORY ENERGY MANAGEMENT
(MRC-EM)

5.1 Main Idea
As explained in the Introduction, memory is a particularly

184

Power State/Transition Power Time
Active 300mW 60ns
Standby 180mW -
Nap 30mW -
Powerdown 3mW -
Standby → Active 240mW +6ns
Nap → Active 160mW +60ns
Powerdown → Active 150mW +6000ns

Table 4: Power consumption and transition time of dif-

ferent power modes.

important target for efforts to address the energy efficiency
issues in both mobile devices and high-end server systems.
Several recent studies [38, 15, 16] have explored the power-
mode control capabilities of modern RDRAM modules [49]
to transition memory modules into a low power operating
mode after being idle for a certain threshold value of time.
Accessing data stored in a memory module in a low power
mode requires the module to be transitioned to the active
mode, which can incur non-negligible resynchronization de-
lay [30]. This gives us a way to trade off performance for
energy savings. Table 4 shows the energy consumption and
resynchronization time for RDRAM, which is the same as
the one used in a previous study [38]. Our key idea is to iden-
tify and power down the chips that are not being accessed
by any application, so that we can save energy without in-
curring any performance degradation.

Our MRC-directed memory energy management (MRC-
EM) assumes hardware MRC monitor since it needs to track
MRC at fine time granularity. It enhances the previous
schemes by using the application’s dynamic MRC to deter-
mine the minimum number of active memory chips necessary
to deliver acceptable performance. For example, if a process
can achieve almost the maximum possible page hit ratio with
Nmrc memory pages, the memory power control algorithm
only needs to adapt the power modes for Nmrc pages and
power down the rest. Unfortunately, current memory tech-
nology only supports power adaptation at chip granularity
rather than page granularity. So we need a way to map se-
lected pages to chips, which we henceforth refer to as “work-
ing chips”. Once working chips have been identified, they
can be managed by the underlying memory energy manage-
ment scheme such as the ones studied in previous works [38,
15, 16], and all other chips can be powered down.

Since MRC only determines the number of working chips,
we also need to determine (1) what chips should be selected
as working chips, and (2) how to handle an access to a non-
working chip. To address the first issue, we take advantage
of the working set model. Since our dynamic MRC-tracking
method maintains the LRU stack, it is easy to find the pages
in the top Nmrc elements of the Mattson’s stack. Any chip
with such a page is selected as a working chip. All the
other chips are powered down. The power states of working
chips are controlled by the basic energy management scheme
(in our experiments, we use both the static and dynamic
schemes studied in [38]).

Accessing a page in a non-working chip results in transi-
tioning it to active state, and this chip is then included in
the set of working chips. Even though accessing a powered
down chip incurs high latency and energy cost, the penalty
is amortized over multiple accesses due to the temporal and
spatial locality exhibited in most of the programs. In our ex-

periments, we use the sequential page allocation mechanism
proposed in [38] to increase the spatial locality at physical
address level.

At any time, if a chip does not contain any of the top Nmrc

pages of the Mattson’s stack, MRC-EM deletes it from the
set of working chips and powers it down. To keep track of
whether a chip contains any of the top Nmrc pages in the
stack, MRC-EM maintains a counter for each memory chip.
Whenever a new page is moved to the top of the stack,
the counter of the chip in which this new page resides is
incremented by one. The counter for the chip that contains
the (Nmrc + 1)th page in the stack is decremented by one.
Whenever a chip’s counter reaches zero, it is removed from
the set of working chips and is transitioned into the power
down mode.

MRC-EM does not increase the number of page faults
since we do not change the page replacement policy of the
system. MRC-EM can be combined with most previous
memory energy management schemes. In our experiments,
we combined it with the static and dynamic schemes pro-
posed by Lebeck et al. [38]. Similar to previous works in
memory energy management [9, 32, 38, 56, 15, 16], we as-
sume an intelligent memory controller to implement the en-
ergy management schemes.

5.2 Experimental Results
We use execution-driven simulation to evaluate MRC-EM.

We enhance the widely used SimpleScalar [7] simulator with
the MRC monitor and RDRAM power model. We use
Wattch [5] to model the energy consumption of the MRC
monitor. The LRUArray, GrpHdrs and HitCtrs are mod-
eled as array structures. We use the chip size as the page
group size for the MRC monitor, since the power adaption is
at chip granularity. The power model of the array structure
is parametrized based on the number of rows and columns,
and the number of ports. These parameters determine the
number of decoders, wordlines, bitlines, and their sizes. The
power dissipation is calculated based on these configuration
parameters and the number of operations are calculated in
a similar way as shown on Table 1 but with smaller memory
capacity and smaller page group sizes. For the MRC-EM
schemes, the energy consumption of the MRC monitor is
also included in the total energy consumption. We do not
simulate the MRC Monitor time overhead, because it works
in parallel with memory accesses and imposes little over-
head.

The default chip size is 64 pages unless stated otherwise
in all our simulations. The memory page size is 4KB. We
simulated a 600 MHz 4-issue processor with a 4-way set-
associative 16K L1 data cache and a direct-mapped 16K L1
instruction cache (both having 32B blocks). The unified L2
cache is 256K with 4-way set associativity and 64B blocks.
The processor executes PISA binaries. We report the results
with memory sizes similar to the corresponding application’s
data set size. The default epoch length is 10,000 cycles,
except in the experiments that studied the effects of epoch
length.

The base-line memory energy management schemes are
the static nap and dynamic schemes proposed in [38]. These
two are the best static and dynamic schemes reported in that
study. In the MRC-EM static scheme, the working chips
always stay in nap mode. In the MRC-EM dynamic scheme
(MRC-EM-Dynamic), the working chips adapt their power

185

Figure 5: The value of the Energy*Delay metric for
different schemes.

mode dynamically based on the original dynamic scheme
[38]. For both original and MRC-EM dynamic schemes, we
use the same threshold setting, namely the found to be the
best in [38].

5.2.1 Overall Results
The Energy*Delay (ED) metric is commonly used in most

previous studies in memory or processor energy manage-
ment [9, 32, 38, 56, 15, 16]. Figure 5 compares the nor-
malized ED results among original static, MRC-EM static,
original dynamic, and MRC-EM dynamic schemes. Due to
space limitation, we do not show the absolute energy con-
sumption and performance delay. These detailed results can
be found in [46].

The results show that MRC-EM can significantly reduce
the ED over the corresponding original scheme. For ex-
ample, MRC-EM static has 42-58% smaller ED than origi-
nal static, and MRC-EM dynamic has 27-42% smaller ED
than original dynamic scheme. This indicates that MRC-
EM is effective in directing memory energy management.
The main reason is that it provides a guideline to the un-
derlying memory energy management scheme on how much
memory is needed to deliver acceptable performance.

The relative energy consumption shown in the figure illus-
trates that the dynamic schemes are better than the static
schemes [38], which is in agreement with the findings in [38].
We note that the ED savings by MRC-EM is more promi-
nent in the case of static scheme when compared to the
dynamic scheme. This is because the dynamic scheme per-
forms better than the static scheme and therefore the extra
gain we obtain by using the MRC-EM with dynamic scheme
is less when compared to using it on a relatively naive scheme
like the static scheme. However, the dynamic scheme relies
on thresholds, and therefore requires cumbersome thresh-
old tuning. The MRC approach is application-independent,
does not require threshold tuning, and can be coupled with
any suitable fine grained power saving mechanism in order
to conserve memory energy.

5.2.2 Effects of Epoch Length
Figure 6(a) shows the variation of improvement in ED

of MRC-EM static over original static with epoch lengths
for bzip and gcc. As the epoch length increases, the im-
provement in ED decreases. The reason is that when each
epoch is long, the system cannot detect MRC changes in a
timely manner. As a result, it may either miss some oppor-
tunities to save energy by transitioning unneeded memory
chips to low-power modes, or degrade performance by using

0

20

40

60

80

100

1000 10000 100000 1e+06

E
*D

 im
pr

ov
em

en
t (

%
)

Epoch interval (in CPU cycles)

gcc
bzip

0

20

40

60

80

100

32 64 128 256

E
*D

 im
pr

ov
em

en
t (

%
)

Chip size (pages)

gcc
bzip

(a) Effect of epoch length (b) Effect of memory chip size

Figure 6: Effects of parameters (epoch length, chip
size)

less than the required number of working chips. In both
the cases, we end up getting a higher ED value. In the OS
implementation, the epoch length is 10 milliseconds which
translates into 6,000,000 CPU cycles, too coarse-grained to
be effective for MRC-directed memory energy management.
We have also studied the effects of epoch length on MRC-
EM-Dynamic and the results are similar.

It should be noted that the epoch length cannot be too
small. Otherwise, the overhead of determining inactive/active
memory chips and transitioning them at the end of each
epoch would dominate and cancel out the benefits of energy
saving. We use 10,000 cycles as the default epoch length.

5.2.3 Effect of Memory Chip Size
Figure 6(b) shows the effect of memory chip size on ED

improvement of MRC-EM static over original static for bzip
and gcc benchmarks. Since we simulated applications that
have medium data set sizes (around 2000 pages), we simu-
late chip sizes that result in number of chips ranging from
8 to 64. We expect the results to be similar for large data
sizes and larger chip sizes. As shown in Figure 6(b), the
ED reduction by MRC-EM schemes is more significant with
smaller chip sizes than with large chip sizes. The reason
is that, with smaller chip sizes we gain more resolution in
choosing the chips containing the Nmrc pages, thereby re-
ducing inaccuracy due to false sharing.

6. RELATED WORK
This section briefly summarizes closely related work in the

areas of memory allocation for multiprogramming systems
and memory energy management. Due to space limitation,
we do not repeat those described in earlier sections.

6.1 Memory Allocation
Research on memory allocation in a multiprogramming

system can be grouped into three categories: global replace-
ments, local replacements, and demand-based replacements.

As mentioned in Section 4.2.1, global page replacements
manage the entire physical memory space without consid-
ering which process a page belongs to. They are simple
to implement and thereby commonly used in many modern
OSs including FreeBSD and Linux [21, 55]. However they
suffer from thrashing [17, 53]. Existing operating systems
address thrashing using load controls [17]. Recently, Jiang
and Zhang have proposed a Trashing Protection Facility to
protect interactive applications from thrashing [31].

Local page replacements are performed inside memory
page pool of individual process [23]. Since this scheme can-

186

not efficiently utilize memory, it is not commonly used ex-
cept in VMS [35].

Demand-based replacements manage memory based on
applications dynamic memory needs. Our MRC-directed
method falls in this category. Most previous works use the
working set model [20, 18, 19] to guide memory manage-
ment. Several schemes have been proposed in the past, in-
cluding the page fault frequency (PFF) algorithm [11, 27,
53] and the variable-interval sampled working set (VSWS)
policy [26]. Windows NT/XP/2K uses a demand-based re-
placement policy by allowing programs to specify working
set sizes explicitly [12, 45]. As discussed in the Introduction,
an application’s working set gives what pages should not
be replaced, whereas MRC shows how many pages should
be resident to provide acceptable performance. Therefore,
these two models complement each other.

Several studies have also used compiler to direct memory
management by estimating the memory requirements of a
program at compile time [41, 42] or insert “release” in out-
of-core programs [6]. This approach is static and limited by
the aliasing problem.

Our work is also related to some virtual memory stud-
ies [51, 33, 58] and disk cache study [54]. Our work differs
from and also complements these studies in that we focus on
virtual memory systems where not every memory reference
goes through the OS, and provide two methods (implemen-
tations): hardware-only and OS-only, to dynamically track
MRC for virtual memory systems. In addition, we also use
MRC for memory power management.

6.2 Memory Energy Management
A lot of research has been done in memory energy man-

agement. Lebeck et al. have explored the interaction of page
placement with static and dynamic hardware policies [38].
Their simulation results show that power aware page alloca-
tion by an informed operating system coupled with dynamic
hardware policies can dramatically improve energy efficiency
of main memory. Fan et al. have investigated DRAM
memory controller policies for determining chip power states
based on the estimated idle time between access [25]. De-
laluz et al. have studied compiler-directed techniques [14,
15] as well as operating-system-based approaches [13, 16] to
reduce the energy consumed by the memory subsystem. Re-
cently, Huang et al. [30] have proposed power-aware virtual
memory implementation in OS to reduce memory energy
consumption. Our work complements previous works by
determining how much memory should be used to provide
similar level of performance.

7. CONCLUSIONS
An application’s miss ratio curve (MRC) contains valu-

able information that can be used for memory management.
However, tracking MRC dynamically at run time is very
challenging because not every memory access passes through
the OS. This paper addresses this challenge by proposing
two methods, a hardware method and an OS-only method,
to track an applications’ miss ratio curve (MRC) dynami-
cally at run time. The hardware method can track MRC at
a fine time granularity, whereas the OS-only method tracks
MRC at a coarse time granularity.

This study also applies MRC to two applications: (1)
MRC-directed memory allocation (MRC-MM) for multipro-
gramming systems and (2) MRC-directed memory energy

management (MRC-EM). Our real system experiments on
Linux with applications including Apache Web Server show
that the MRC-MM can speed up applications by up to a
factor of 5.86 and reduce the number of page faults by
up to 63.1%. Our execution-driven simulation results with
SPEC2000 benchmarks show that the MRC-EM can im-
prove the Energy*Delay metric by 27-58% over previously
proposed static and dynamic schemes.

Our study has several limitations that we plan to address
in the future. The MRC-directed memory allocation scheme
only considers memory utilization as the maximization ob-
jective. It can be easily extended to consider process prior-
ity and other attributes to ensure fairness. We are in the
process of extending the MRC-directed memory manager to
consider end-performance rather than page hit ratio for util-
ity gain. For a given process, the end-performance gain/loss
can be estimated from page hit ratio gain/loss based on the
process’s memory reference rate. We expect the results to
be similar to those presented in this paper for most appli-
cations. Finally, we have performed experiments only in
a few multiprogramming settings. We are in the process of
evaluating more applications, especially for MRC-directed
energy management. We are also exploring other applica-
tions for MRC, such as phase tracking and phase prediction
of programs.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for useful feedback,

the UIUC Opera groups for useful discussions, Paul Sack and
Radu Teodorescu for proofreading the paper, and Professor
Alvin R. Lebeck’s research group for providing the RDRAM
simulator.

9. REFERENCES
[1] Apache web server. http://httpd.apache.org/test/flood.

[2] Flood: A profile driven http load tester.
http://httpd.apache.org/test/flood.

[3] G. A. Abandah and E. S. Davidson. Configuration
independent analysis for characterizing shared-memory
applications. In IPPS-12, Mar 1998.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: Evidence and
implications. In INFOCOM (1), pages 126–134, 1999.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA-27, June 2000.

[6] A. D. Brown and T. C. Mowry. Taming the memory hogs:
Using compiler-inserted releases to manage physical
memory intelligently. In OSDI, Oct 2000.

[7] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: The simplescalar tool set. Technical
Report CS-TR-1996-1308, Univ. of Wisconsin-Madison,
1996.

[8] R. Carr and J. Hennessy. Wsclock — a simple and efficient
algorithm for virtual memory management. In SOSP, Dec.
1981.

[9] F. Catthoor, S.Wuytack, E. Greef, F.Balasa,
L.Nachtergaele, and A. Vandecappelle. Custom memory
management methodology exploration of memory
organization for embedded multimedia systems design. In
Kluwer Academic Publishers, 1998.

[10] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and
R. P. Doyle. Managing energy and server resources in
hosting centres. In SOSP, pages 103–116, 2001.

[11] W. Chu and H. Opderbeck. The page fault frequency
replacement algorithm. In AFIPS Conf. Proc., 1972.

187

[12] H. Custer. Inside Windows NT. Microsoft Press, Redmond,
Washington, 2000.

[13] V. Delaluz, M. Kandemir, and I. Kolcu. Automatic data
migration for reducing energy consumption in multi-bank
memory systems. In the 39th Design Automation
Conference, June 2002.

[14] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Energy-oriented compiler optimizations for
partitioned memory architectures. In International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, Nov 2000.

[15] V. Delaluz, M. Kandemir, N. Vijaykrishnan,
A. Sivasubramniam, and M. J. Irwin. Hardware and
software techniques for controlling dram power modes.
IEEE Transactions on Computers, 2001.

[16] V. Delaluz, A. Sivasubramaniam, M. Kandemir,
N. Vijaykrishnan, and M. J. Irwin. Scheduler-based dram
energy management. In Proceedings of the 39th conference
on Design automation, pages 697–702. ACM Press, 2002.

[17] P. Denning. Thrashing: Its causes and prevention. In
AFIPS Fall Joint Computer Conference, 1968.

[18] P. J. Denning. Memory allocation in multiprogrammed
computers. In Project MAC Computation Structures Group
Memo, Mar 1966.

[19] P. J. Denning. The working set model for program
behavior. Commun. ACM, 11(5):323–333, May 1968.

[20] J. B. Dennis. Program structure in a multi-access computer.
Project MAC Tech Rep. MAC-TR-11, M.I.T, 1967.

[21] M. Dillon. Design elements of the freebsd vm system.
Daemon News, Jan 2001.

[22] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of the
2002 Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[23] J. E. G. Coffman and J. Thomas A. Ryan. A study of
storage partitioning using a mathematical model of locality.
In Proceedings of the third symposium on Operating
systems principles, page 122, 1971.

[24] R. L. M. et al. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[25] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller
policies for dram power management. In ISLPED, Apr
2001.

[26] D. Ferrari and Y.-Y. Yih. VSWS: The variable- interval
sampled working set policy. IEEE Trans. on Software
Engineering, SE-9, 1993.

[27] R. K. Gupta and M. A. Franklin. Working set and page
fault frequency replacement algorithms: A performance
comparison. IEEE Transactions on Computers, C-27, 1978.

[28] M. D. Hill. Aspects of cache memory and instruction buffer
performance. Technical Report CSD-87-381, University of
California, Berkeley, Nov. 1987.

[29] M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. IEEE Transactions on Computers, 38(12),
1989.

[30] H. Huang, P.Padmanabhan, and K. Shin. Design and
implementation of power-aware virtual memory. In
USENIX, 2003.

[31] S. Jiang and X. Zhang. Tpf: A system thrashing protection
facility. Software: Practice and Experience, 32:295–318,
2002.

[32] M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
W. Ye. Influence of compiler optimizations on system
power. In Design Automation Conference, 2000.

[33] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
caching for demand prepaging. In Proceedings of the third
international symposium on Memory management, 2002.

[34] M. Karlsson and P. Stenstrom. An analytical model of the
working-set sizes in decision-support systems. In
SIGMETRICS, pages 275–285, 2000.

[35] L. J. Kenah and S. F. Bate. Vax/VMS Internals and Data
Structures. Digital Press, Bedford, 1984.

[36] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and
C. Kim. A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping
references. OSDI, 2000.

[37] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing
stack simulation for highly-associative memories. In
SIGMETRICS, 1991.

[38] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power
aware page allocation. In ASPLOS, pages 105–116, 2000.

[39] C. Lefurgy, K. Rajamani, F. Rawson, W. F. elter,
M. Kistler, and T. W. Keller. Energy management for
commercial servers. IEEE Computer, 36(12):39–48,
December 2003.

[40] K. Li. Ivy: A shared virtual memory system for parallel
computing. In Proceedings of the 1988 International
Conference on Parallel Processing, volume II Software,
pages 94–101, Aug. 1988.

[41] M. Malkawi and J. H. Patel. Compiler directed memory
management policy for numerical programs. In SOSP, 1985.

[42] M. Malkawi and J. H. Patel. Performance measurement of
paging behavior in multiprogramming systems. In ISCA,
1986.

[43] B. Moore. Taking the data center power and cooling
challenge. Energy User News, August 27th, 2002.

[44] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In the
15th SOSP, 1995.

[45] S. P. Prasad Dabak, Milind Borate. Undocumented
Windows NT. M&T Books, 1999.

[46] A. Raghuraman. Miss-ratio curve directed memory
management for high performance and low energy. UIUC,
Master Thesis, 2003.

[47] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
resource allocation model for qos management. In IEEE
Real-Time Systems Symposium, 1997.

[48] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek.
Practical solutions for qos-based resource allocation
problems. In IEEE Real-Time Systems Symposium, 1998.

[49] Rambus. Rdram. http://www.rambus.com, 1999.
[50] E. Rothberg, J. P. Singh, and A. Gupta. Working sets,

cache sizes and node granularity issues for large-scale
multiprocessors. In ISCA, 1993.

[51] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: simple
and effective adaptive page replacement. In SIGMETRICS,
1999.

[52] B. J. Smith. A pipelined, shared resource MIMD computer.
In Proceedings of International Conference on Parallel
Proc essing, pages 6–8, 1978.

[53] A. S. Tanenbaum. Modern Operating Systems. Prentice
Hall, New Jersey, 1992.

[54] D. Thiebaut, H. S. Stone, and J. L. Wolf. Improving disk
cache hit-ratios through cache partitioning. IEEE Trans.
Comput., 41(6):665–676, 1992.

[55] R. van Riel. Page replacement in linux 2.4 memory
management. USENIX Annual Technical Conference -
FREENIX Track, 2001.

[56] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim,
and W. Ye. Energy-driven integrated hardware-software
optimizations using simplepower. In ISCA-27, pages
95–106. ACM Press, 2000.

[57] W.-H. Wang and J.-L. Baer. Efficient trace-driven
simulation method for cache performance analysis. In
SIGMETRICS, 1990.

[58] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case
for compressed caching in virtual memory systems. In
USENIX, 1999.

[59] S. Woo, M. Ohara, E. Torrie, J.P.Singh, and A. Gupta.
Methodological considerations and characterization of the
splash-2 parallel application suite. In ISCA-23, May 1996.

188

