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Abstract

Inductive plasmas are simulated by using a one-dimensional particle-in-cell sim-
ulation including Monte Carlo collision techniques (pic/mcc). To model induc-
tive heating, a non-uniform radio-frequency (rf) electric field, perpendicular to
the electron motion is included into the classical particle-in-cell scheme. The
inductive plasma pic simulation is used to confirm recent experimental results
that electric double layers can form in current-free plasmas. These results differ
from previous experimental or simulation systems where the double layers are
driven by a current or by imposed potential differences. The formation of a
super-sonic ion beam, resulting from the ions accelerated through the poten-
tial drop of the double layer and predicted by the pic simulation is confirmed
with nonperturbative laser-induced fluorescence measurements of ion flow. It
is shown that at low pressure, where the electron mean free path is of the order
of, or greater than the system length, the electron energy distribution function
(eedf) is close to Maxwellian, except for its tail which is depleted at energies
higher than the plasma potential. Evidence supporting that this depletion is
mostly due to the high-energy electrons escaping to the walls is given.

A new hybrid simulation scheme (particle ions and Boltzmann/particle elec-
trons), accounting for non-Maxwellian eedf and self-consistently simulating low-
pressure high-density plasmas at low computational cost is proposed. Results
obtained with the “improved” hybrid model are in much better agreement with
the full pic simulation than the classical non self-consistent hybrid model. This
model is used to simulate electronegative plasmas and to provide evidence sup-
porting the fact that propagating double layers may spontaneously form in
electronegative plasmas. It is shown that critical parameters of the simulation
were very much aligned with critical parameters of the experiment.
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Résumé

Un modèle particle-in-cell / Monte Carlo collisions (pic/mcc) unidimensionnel
est utilsé pour simuler un plasma inductif. Un champ électrique radiofréquence
(rf) est utilisé pour modéliser le chauffage inductif. L’amplitude du champ
est non-uniforme et sa direction perpendiculaire à celle du déplacement des
électrons. Ce modèle de plasma inductif permet de confirmer de récents résultats
expérimentaux démontrant la possibilité de former des doubles couches élec-
triques au sein de plasmas sans courant. Les doubles couches étudiées par le
passé, aussi bien numériquement qu’expérimentalement, ont toujours été im-
posées par différence de potentiel ou en forçant un courant électrique dans
le plasma. C’est en ce sens que les résultats présentés ici diffèrent de ceux
précédemment reportés. La simulation prédit la formation d’un faisceau d’ions
supersoniques résultant des ions accélèrés par le saut de potentiel de la dou-
ble couche. L’existence de ce faisceau d’ions supersoniques est confirmée par
fluorescence induite par laser (nonperturbative laser-induced fluorescence). La
simulation montre aussi qu’à basse pression, lorsque le libre parcours moyen
des électrons est du même ordre de grandeur ou plus grand que le système, la
fonction de distribution en énergie des électrons (eedf) est quasi-Maxwellienne,
à l’exception de sa queue, dépeuplée pour des énergies supérieures au poten-
tiel plasma. Ce dépeuplement est principalement dû à la perte aux parois des
électrons les plus rapides.

Un nouveau schéma de simulation hybride (ions particulaires et électrons
particulaires et Boltzmann), permettant de simuler des plasmas hautes pres-
sions et hautes densités, en des temps de calculs relativement faibles, est pro-
posé. Les résultats obtenus avec ce modèle hybride “amélioré” sont bien plus
proches de ceux d’une simulation pic, que le sont ceux d’une simulation hybride
classique. Ce modèle est appliqué à la simulation de décharges électronégatives
et confirme des résultats expérimentaux démontrant la possibilité de forma-
tion de doubles couches propagatives. En particulier, les paramètres critiques
contrôllant cette formation dans la simulation corroborent ceux de l’expérience.
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Chapter 1

Introduction

1.1 Electric double layers in plasmas

The acceleration of charged particles (electrons or ions) is a fundamental aspect
of plasma physics, as the creation of electron or ion beams have many applica-
tions such as propulsion, where the creation of an ion beam provides the thrust
to the spaceship, plasma processing, where electron or ion beams are used to
functionalize surfaces etc.

Charged particles are accelerated by electric fields, that can be either elec-
trostatic or induced by time-varying magnetic fields. Hence, understanding the
mechanisms that can create and maintain electric fields in plasma is of par-
ticular interest. One of these mechanisms is the electric double layer, which
is, in essence, an electrostatic phenomenon where a significant electric field is
sandwiched between two opposite space charge layers. Although electric double
layers have been studied for many decades, the understanding that we have of
them is still far from complete. In this section, a brief overview on various kinds
of double layers and their investigation through theory, computer simulation,
experiment, and observation in space, is given.

1.1.1 Definition and classification

Definition

An electric double layer1 (DL) is a narrow localized region within a plasma,
not directly attached to a wall, which can sustain a large potential difference
(see Raadu 1989, and references therein). Although the global charge of a
double layer vanishes and the surrounding plasma has no significant electric
field, the quasi-neutrality within the double layer breaks down: the double layer
is actually called “double layer” because it is composed of a layer of positive
charge, “bending” the plasma potential like a normal sheath, and a layer of
negative charge, “bending” the plasma potential back in the other direction, in
order to join to the null-electric-field plasma. On each side of the double layer,
the plasma may be perturbed by extended pre-sheaths, matching the conditions

1“Double layers” are also referred to as “double sheaths”, “internal sheaths” or even simply
as “sheaths” or “plasma potential discontinuities”.
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16 Chapter 1. Introduction

Figure 1.1: Typical plasma potential across an electric double layer (solid line), cor-
responding electric field (dashed line) and charge density (dotted line).

at the edges of the double layer to those of the undisturbed plasma, in the same
fashion as a normal sheath. A typical double-layer potential profile and the
associated electric field and charge density profiles are shown schematically in
figure 1.1. It is generally accepted that double layers must fulfill the three
conditions below

1. The double-layer potential drop ΦDL must obey |ΦDL| > kBTe/e, where
kB is the Boltzmann constant, Te is the downstream2 electron temperature
and e is the elementary charge.

2. The electric field must be much stronger inside the double layer than
outside and the global charge of the double layer must vanish.

3. Quasi-neutrality is locally violated at the position of the double layer.

Another typical, although not strictly necessary, condition is that the collisional
mean free path is much longer than the double-layer thickness.

Double layers have been found in a variety of laboratory plasmas such as in
constricted plasmas (Langmuir 1929), Mercury discharges (Stangeby and Allen
1973), Q-machines (Sato et al. 1976), triple plasma devices (Coakley et al. 1978),
expanding plasmas (Charles and Boswell 2003) etc. Their role in astrophysics
is also considerable as they are thought to be present in the magnetosphere and
responsible for the acceleration of electrons onto the upper atmosphere, creating
the fantastic aurora (Alfvén 1958, Albert and Lindstrom 1970, Temerin et al.
1982). Various theories on the formation of solar flares also involve double
layers (Alfvén and Carlqvist 1967). Finally it was also recently proposed that
double layers may play a significant role in supplying and accelerating plasma
in magnetic coronal funnels (Boswell et al. 2006).

2The low-potential side of the double layer is generally referred to as “downstream”, while
the high-potential side of the double layer is generally referred to as “upstream”.
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The strength of experimental double layers ranges from very strong, with
eΦDL/kBTe as large as 2000 (Sato et al. 1981) or relatively weak, with eΦDL/kBTe

on the order of 1 (Chan et al. 1984). Properties of double layers can be very
different one from another; for example, the potential drop associated with the
double layer can be one-dimensional (Hershkowitz et al. 1981), two-dimensional
(U-shaped) (Baker et al. 1981) or three-dimensional etc. Finally, they can be
stable, propagating or transient and magnetized or not.

Classification

The large number of different types of double layers discovered in space, exper-
iments, simulation and theories and the various names which may have been
given to the same species of double layer over the last 50 years make their
classification rather cumbersome. The classification presented here is probably
not comprehensive but gives an overview of the various double layers that may
be encountered. The classification is given in terms of double-layer strength
eΦDL/kBTe, electron drift velocity vD compared to the electron thermal ve-
locity vth and monotonic behavior of the double-layer potential distribution Φ.
Two main classes of double layers can be defined according to their strength:
weak and strong double layers, each of these classes being composed of several
distinct families. The formation of strong double layers requires the existence
of four distinct groups of particles (trapped and accelerated electrons and ions),
while weak double layers may be constructed with only three out of these four
groups.

i) eΦDL/kBTe > 1, vD > vth, monotonic Φ. These double layers are gen-
erally referred to as strong and have been investigated theoretically (Langmuir
1929, Andrews and Allen 1971), experimentally (Quon and Wong 1976) and by
computer simulations (Coakley et al. 1978, Hubbard and Joyce 1979).

ii) eΦDL/kBTe > 1, vD < vth, monotonic Φ. This category of double layers
is also referred to as strong. However, it seems that these low-electron-drift-
velocity strong double layers are much less common than the previous category.
Hollenstein et al. (1980) have observed such double layers experimentally. Nev-
ertheless, it seems that strong double layers are generally observed when the
electron drift is sufficiently large.

iii) eΦDL/kBTe < 1, vD < vth, non-monotonic Φ. What is meant by non-
monotonic is that a potential dip exists on the low-potential side of the double
layer. These double layers form a particular family of the class of weak dou-
ble layers and are referred to as ion-acoustic double layers (IADLs). IADLs are
basically explained by a small electron drift generating ion-acoustic waves, prop-
agating in the direction of the electron drift, whose amplitude increases while
slowing down and whose potential distribution evolves to a double-layer-like
structure. IADLs were first observed by Sato and Okuda (1980) in particle-in-
cell simulations for sufficiently long systems and where the conditions vD < vth

was verified. Chanteur et al. (1983) found that IADLs could be well explained
modified Korteweg-de Vries (mKdV) equations. Temerin et al. (1982) presented
satellite data suggesting that the auroral electron acceleration was associated
with a series of small IADLs rather than a large single large structure. Chan
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et al. (1984) reported the first laboratory evidence of such structures. The ex-
istence of IADLs was then confirmed by many subsequent experiments (Sekar
and Saxena 1985)3, analytical studies (Roychoudhury and Bhattacharyya 1989).
The existence of IALDs in plasmas containing negative ions were also predicted
analytically (Mishra et al. 2002, Gill et al. 2004).

iv) eΦDL/kBTe < 1, vD < vth, monotonic Φ. This family of double layers is
also part of the class of weak double layers and are very similar to IADL, but
their particularity is that their potential distribution is monotonic, i.e. there
is no potential dip on the low-potential side of the double layer. These dou-
ble layers are referred to as slow-ion-acoustic double layers (SIADL) and their
existence was first predicted by Perkins and Sun (1981) and then confirmed ex-
perimentally by Chan et al. (1986). Finally, we should mention the existence of
slow-electron-acoustic double layers (SEADL) which are double-layer solutions
of electron acoustic waves. Goswami et al. (1986) predicted their existence an-
alytically in the case of plasma composed of one species of ions and two species
of electrons (hot and cold).

1.1.2 Double layers: theory

Generally, various formalisms are used to describe double layers. Steady-state
one-dimensional double layers may be described as solutions of the Vlasov-
Poisson equations. Double layers may also be described by the Bernstein-
Greene-Kruskal (BGK) method for finding non linear electrostatic waves. Also
the dynamics of some very weak double layers can be described using the modi-
fied Korteweg-de Vries equation (mKdV), in which case the double layer appears
to be a particular type of soliton etc. In this section, only a few of the consid-
erable number of theoretical approaches that can be found in the literature are
presented.

BGK double Layers

Bernstein et al. (1957) proved the existence of a class of solutions to the
Vlasov equations (BGK solutions) containing potential structures with the three
double-layer conditions given above. They showed that any arbitrary one-
dimensional potential distribution could be constructed if a suitable number
of trapped particles was added to the system. Although four groups of par-
ticles are generally present in BGK double layers (free and trapped electrons
and ions), in principle three groups suffice to maintain double-layer structures
(at least, this is the case for weak double layers). The BGK formalism only
describes the steady-state double layer, but not the dynamical aspect of its
formation; in other words, in principle a particular BGK double layer may be
reached in many different ways (instability, creation of trapped particles etc.).

The first self-consistent BGK double-layer solution was constructed by Lang-
muir (1929). However, at that early stage, Langmuir did not know that his
solution would be part of the wider class of BGK solutions. Nevertheless, in

3In the paper by Sekar and Saxena (1985) IADLs are referred to as asymmetric ion holes.
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Figure 1.2: The potential distribution Φ(x), ion and electron phase space distribution
across a double layer with potential Φ0 and an internal electric field E. As indicated by
the arrows and the separatrixes (‘dashed’ and ‘barred’), there are phase space regions
of transmitted and reflected particles for both species. It is physically important to
distinguish between particles from different sources (at x → ±∞) as indicated by the
hatched and clear areas in phase space: at the boundaries (‘barred’ contours), there
can be a sharp jump in phase space density, in principle a discontinuity, but in reality
smoothed to some extent by fluctuations and diffusion processes. Outside the narrow
transition region indicated by the vertical bars, the phase space densities on either
side have no physical relation, being related to particles from widely separated sources
(Raadu and Rasmussen 1988).
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his theory, by the use of counter-streaming free electrons and ions, Langmuir
could sustain a double layer; it is now known that this solution was unstable.

Langmuir described double layers formed between an electron-emitting cath-
ode and an ion-emiting anode. He predicted that to ensure the neutrality in
the system described above, the electron current Ie and the ion current Ii had
to be related by

Ie =
√

mi

me
Ii, (1.1)

where me and mi are the electron and ion masses, respectively. Although this
condition looks like a current condition, it is essentially a charge condition.

Andrews and Allen (1971) obtained conditions to embed the double layer
within a quasi-neutral plasma using four groups of charged particles [rather than
the two groups used by Langmuir (1929)]: thermal and accelerated electrons
and ions.

Knorr and Goertz (1974) showed that, given three groups of particles and a
potential structure, the fourth group of particles could be uniquely determined.
They essentially gave an example of a BGK solution, demonstrating BGK’s
assertion that arbitrary potential distributions could be constructed with the
right four group of particles.

Recently, Lieberman and Charles (2006) have developed a theory similar
to that of Andrews and Allen (1971), introducing a fifth species of particles,
ensuring the current-free nature of the double layer. The fifth species is a
counter-streaming group of electrons, formed by reflection on the sheath at the
insulated wall of the electrons accelerated through the double layer.

A number of similar theories can be found in the literature, where the au-
thors construct arbitrary potential structures, by using a number of appropriate
particle populations. However, one necessary condition for the existence of the
BGK double layer is that trapped populations of electrons and ions can be main-
tained. This can be done in various ways, such as by the use of electrostatic
potential troughs, magnetic mirrors, collisions causing backscattering etc.

Sagdeev potential and reductive perturbation method

Another general approach to describe the structure of steady-state plane parallel
(one-dimensional) double layers consists in a direct integration of Poisson’s
equation and the time independent Vlasov equations for the separate particle
components. This method was introduced by Sagdeev (1966) to describe shock
waves in collisionless plasmas, as explained, for example, by Chen (1984, p.
297). This methods gives necessary conditions for the existence of double layers.
Poisson’s equation reads

−ε0
d2Φ
dx2

= ρ(x). (1.2)

If the charge density ρ can be expressed as a function of the electrostatic po-
tential Φ, the Sagdeev potential can be defined as

V (Φ) ≡
∫ Φ

ρ(φ) dφ, (1.3)
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and Poisson’s equation can be integrated once with respect to the potential Φ,
yielding

1
2
ε0

(
dΦ
dx

)2

+ V (Φ) = Π, (1.4)

where Π is a constant of integration. The behavior of this equation was made
clear by Sagdeev (1966) and may be regarded as the total energy of a fictitious
particle whose position is Φ and whose velocity is dΦ/dx, the time being given
by x. The potential energy of this fictitious particle is V (Φ). The charge density
must vanish at the edges of the double layer, hence the boundary conditions
are

dV

dΦ
(0) =

dV

dΦ
(ΦDL) = 0, (1.5)

where the potential was defined to be Φ = 0 and Φ = ΦDL at the edges without
loss of generality. In addition, the electric field also vanishes at the edges of the
double layer, which yields

V (0) = V (ΦDL) = Π, (1.6)

also ensuring that the overall charge in the double layer vanishes; this condition
is known as the generalized Langmuir condition. To guarantee real solutions,
the Sagdeev potential also requires that (dΦ/dx)2 > 0, hence equation 1.4 yields

V (Φ) < Π (1.7)

for any potential in the double layer. In short, the conditions of existence of
a double layer given by equations 1.5, 1.6 and 1.7 require that the Sagdeev
potential has two maximum values at Φ = 0 and Φ = ΦDL.

In cases where the net charge ρ is differentiable with respect to the potential
Φ, the Sagdeev potential V then admits a second derivative at the double-layer
edges and the existence condition 1.7 may be expanded to the second order
yielding the generalized Bohm criteria

d2V

dΦ2
(0) < 0 and

d2V

dΦ2
(ΦDL) < 0, (1.8)

In summary, the Sagdeev approach gives exact necessary conditions for the
existence of double layers of arbitrary amplitude. However, the Sagdeev po-
tential is not always definable, as it requires that the charge density can be
expressed as a function of the plasma potential, which depends on the assump-
tions on the particle transport. Also, this method only treats the steady state
and does not describe the underlying mechanisms leading to the double layer.

For completeness, although not directly related to the Sagdeev approach, the
reductive perturbation method is also mentioned below. For weak double layers,
the Sagdeev potential may be expanded to the fourth order in 1.4, yielding

1
2

(
dΦ
dx

)2

+ A1Φ2 + A2Φ3 + A3Φ4 = 0, (1.9)
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where Π is set to zero and the coefficients A1, A2 and A3 depend on physical
parameters, such as temperature, density etc. Double-layer existence condi-
tions 1.5 and 1.6 (with Π = 0) lead to

A1

A3
= Φ2

DL and − A2

2A3
= ΦDL, (1.10)

which is injected into 1.9 and factorized; this yields

1
2

(
dΦ
dx

)2

+ A3Φ2(Φ− ΦDL)2 = 0 (A3 < 0), (1.11)

and a typical solution is

Φ(x) =
1
2
ΦDL

[
1− tanh

(
ΦDL

√
|A3|
2

x

)]
(A3 < 0). (1.12)

This method, that offers conditions for the existence of weak double layers,
has been used widely in the literature and is related to the Kortweg-de Vries
equations. However, it should be kept in mind that this method is only valid for
weak double layers and that neglecting the higher order terms in the expansion
of the Sagdeev potential (equation 1.9) may lead to wrong qualitative results
in cases other than weak double layers (Verheest 1993, for example).

1.1.3 Double layers: simulations

Because of the highly non-linear aspect of double layers, existing theories gener-
ally deal with steady-state double-layer solutions. Computer simulations have
played, and still play a very important role in understanding the formation
mechanisms and the non-linear dynamics of double layers. Double layers have
been studied by computer simulation since the early 1970s. The first numerical
simulation of plasma double layer reported is that of Goertz and Joyce (1975).
In this paper, the authors make use of a one-dimensional particle-in-cell simula-
tion in which particles that move out of the system are given back their original
velocity and put back into the system on the left or right end depending on
the sign of the initial velocity4. Electrons and ions are initially loaded with
a Maxwellian velocity distribution function with the same temperature; the
initial electron distribution function is shifted in velocity so that the electrons
drift with a certain velocity. The electric field and potential are set to zero at
the left boundary, as well as the electric field at the right boundary, while the
potential at the right boundary is not imposed. Under certain conditions, a
large potential difference was observed across the system and was interpreted
as being a double layer.

The second double-layer simulation reported is that of DeGroot et al. (1977),
unfortunately, the details of their algorithm are given in an unpublished report.

Finally, the third double-layer simulation reported is that of Joyce and Hub-
bard (1978), where, once again, the authors use the particle-in-cell scheme to

4Note that the boundary conditions used by Goertz and Joyce (1975) are not periodic, as
opposed to what was commonly done at this early stage of particle-in-cell simulations.
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simulate a bounded system, but this time, a constant electric field is added at
each point of the grid. According to the authors, their simulation may be re-
garded as an experimental setup where grids with a certain potential were added
at the boundaries. Under these conditions, they have observed the formation
of double layers which profile was very similar to that investigated theoretically
by Knorr and Goertz (1974) who had treated the double layer as a laminar,
time-independent electrostatic shock.

Many subsequent double-layer simulations have followed, mostly using par-
ticle-in-cell technics (Sato and Okuda 1980, Borovsky 1981, Borovsky and Joyce
1982, Nanbu and Serikov 1997) or Vlasov simulations (Singh 1982, Singh and
Schunk 1984, Newman et al. 2001).

1.1.4 Double layers: experiments

Hershkowitz (1985) has written an excellent review on electric double layers in
laboratory experiments; many subsequent experiments have of course followed.
In this section, a brief overview of experimental double layers is presented.

Electric double layers have been studied experimentally for many years. A
well-known example is the plasma potential discontinuity that may exist at an
abrupt change of diameter of the discharge tube: Andersson (1977) have mea-
sured the electron energy distribution function in front and behind the double
layer, that they call “sheath”, appearing at the sudden change in diameter of
the discharge tube.

In this kind of multi-diameter discharge tube, the plasma in each section
has different properties, a double layer may then appear at the constriction
to match these different plasmas (Langmuir 1929). In this case, the double
layer has two main purposes, namely i) increase the effective matching area
by bulging out into the bigger chamber and ii) accelerate electrons from the
cathode plasma into the smaller chamber to “boost” the ionization (Andrews
and Allen 1971).

Plasma potential discontinuities have also been observed in arc plasma
columns without any external disturbance from a tube constriction, where the
formation of the discontinuity was only triggered by the current drawn through
the plasma (Torvén and Babić 1975).

In this kind of tube discharge, double layers were visually apparent, however
measuring the electron energy distribution function or the plasma potential was
rather difficult because of the characteristics of the discharge tubes. Another
problem was that ionization effects throughout the discharge tube tended to
dominate observed phenomena. These issues were remedied by the use of both
Q-machines (Sato et al. 1981) and double (Quon and Wong 1976) and especially
triple (Coakley et al. 1978) plasma devices. As opposed to discharge tubes,
where ionization take place throughout the device, in Q-machines and multiple
plasma devices, the plasma can be produced in a different chamber from that
sustaining the double layer.

Quon and Wong (1976) were the first to introduce a new type of device to
investigate double layers. Their double plasma device gave strong experimen-
tal evidence supporting the fact that double layers may be regarded as BGK
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structures. The experiment consisted of two plasmas separated by two grids,
with plasma sources in both regions. The anode potential of each region was
controlled independently from the other and the separation grids were biased.
Steady state double layers were achieved by adjusting the plasma densities in
each region and by adjusting the potential of the high potential source anode.
However, as in discharge tube experiments, ionization was present through-
out the discharge, including at the double layer position, hence dominating its
characteristics. Producing BGK double layers in laboratory plasmas5 consists
of specifying the electron and ion distribution functions at the double layer
boundaries, which must be chosen to be consistent with the potential and dis-
tribution function at the plasma boundaries. This requires precise control of the
plasma density, temperature and most importantly electron and ion drift veloc-
ities. Since the plasma was produced by ionization throughout both chambers
of the double plasma device, BGK double layers that depend only on plasma
parameters at the chamber boundaries, could not be strictly created in this
double plasma device.

Coakley et al. (1978) have significantly improved the formation of BGK
double layers by the use of triple plasma devices, which are in essence a double
plasma device with a center chamber. Generally, triple plasma devices consist
of three distinct plasmas separated by two pair of grids. Hershkowitz et al.
(1980) have shown that ionization could be restricted to the source chambers,
hence allowing the formation of a double layer in an ionization-free region. The
fundamental concept of triple plasma devices to study double layers is to achieve
separate control of the ion and electron distribution functions and the plasma
potential at each boundary, hence allowing strict BGK double layers.

An interesting feature of BGK solutions that is verified experimentally is
that the plasma density presents a minimum at the position of the double layer,
as opposed to the classical ambipolar potential which follows the plasma density,
as it derives from plasma flowing out of regions without trapped particles.

Double layers formed in Q-machine experiments and double plasma devices
are generally associated with a relatively small potential drop, with eΦDL/kBTe

on the order of 3-5 and are commonly referred to as “weak” double layers (Quon
and Wong 1976). In triple plasma devices, double layers with a relatively large
associated potential drop, with eΦDL/kBTe on the order of 10 or more, are
generally referred to as “strong” double layers (Coakley et al. 1978); however,
note that “weak” double layers have also been reported in triple plasma device
(Hershkowitz et al. 1981). “Very strong” or “ultrastrong” double layers, with
eΦDL/kBTe on the order of 2000, have also been observed (Sato et al. 1981).
However, it should be kept in mind that depending on the scientific community
concerned, double layers which are referred to as “weak” by certain researchers
may be referred to as “strong” by others.

Experimental double layers may exist under various conditions. i) In steady
state, double layers can be BGK solutions (Bernstein et al. 1957), entirely

5What is meant by “BGK double layers” in this context, i.e. for experimental double
layers, is double layers that are formed experimentally in the same way as the BGK theoretical
approach, i.e. by creating the appropriate groups of particles, compatible with a double-layer
potential distribution.



1.1. Electric double layers in plasmas 25

controlled by both the electron and ion distribution functions and generally
requiring four groups of particles, namely trapped and free electrons and ions.
ii) Double layers can also be the result of turbulence (Chan and Hershkowitz
1982) or phase space vortices such as electron or ion holes (Pecseli and Trulsen
1982). iii) Finally, double layers may be the result of ionization on the high
potential side of the double layer (Sekar and Saxena 1984)6, which can be en-
hanced by the energy gain that electrons receive when they accelerate across the
double layer. Experiments have now demonstrated that all three alternatives
are possible and sometimes occur in combinations. It should be kept in mind
that the existence of double layer [i), ii) or iii)] is different from the initial con-
ditions that create it; for example, instabilities may well lead to BGK double
layers.

1.1.5 Double layers: in space

In this section a few examples of the formation of double layers in space, from
the Earth magnetosphere to the sun corona, are presented. The role of double
layers in astrophysics goes far beyond these few examples. Raadu (1989) gives
many more applications. Double layers in space are still a very active topic.

Although Alfvén (1958) had suggested that double layers may exist in the
magnetosphere and could possibly be responsible for the acceleration of elec-
trons onto the upper atmosphere that create the visible Aurora, data supporting
this assumption were not available until the 1970s. Albert and Lindstrom (1970)
confirmed Alfven’s assumption from the pitch angle distribution of electrons
in the ionosphere above the visible aurora. Mozer et al. (1977) and Temerin
et al. (1982) reported the first direct measurements obtained with a satellite
showing the presence of double-layer-like potential structures at altitudes of
3000-8000 km.

Solar flares are the results of a sudden irreversible release of energy in the
corona and the chromosphere of the sun; they lead to particle acceleration and
to a transient heating of the chromosphere. The formation of a double layer in
a current carrying loop in the solar corona has been proposed as a mechanism
for energy release in a solar flare (Jacobsen and Carlqvist 1964, Alfvén and
Carlqvist 1967).

Finally it was recently proposed that double layers may play a significant
role in supplying and accelerating plasma in magnetic coronal funnels (Boswell
et al. 2006).

1.1.6 Summary

Double layers can be formed experimentally in a wide variety of shapes and
sizes in both stable and moving structures. They can be one, two or three-
dimensional structures and can exist in magnetized or unmagnetized plasmas.
Their existence can be described in terms of BGK solutions, turbulence or

6The potential discontinuity that Sekar and Saxena (1984) observed was actually transient
and due to a minute amount of gas leaking in the system when moving the probe and that
was suddenly ionized.
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ionization or combinations of all three. In each of these possibilities, the trig-
gering may be different (for example BGK double layers may well be triggered
by instabilities). They can be current driven or current free and can have a
monotonic potential step, or present potential dips that are non-monotonic.
They can exist in single ion plasmas or multi-species plasmas, such as plasmas
containing negative ions. Depending on their strength, various analytical for-
malisms can be used to describe their dynamical aspect or simply their steady
state. Most of the double layers that have been predicted analytically or by
computer simulations have also been observed in space or the laboratory.

1.2 Modeling plasmas

Experiments provide many insights for the comprehension of phenomena oc-
curring in plasmas, however, this is not always sufficient. The main reason for
this is that measurements are not necessarily an easy task and in essence mea-
surements always tend to disturb or disrupt the plasma, which is particularly
the case when the size of the probes are of the same order as the phenomenon
of interest. For simple physical reasons, introducing new diagnostics into an
experiment can also be relatively cumbersome and a really challenging task.
Under certain conditions, modeling can be a very good complement to experi-
ment or even, sometimes, a substitute to improve the comprehension of plasma
physics.

In physics, the word “model” is used to indicate a set of equations, data, and
assumptions, that gives a mathematical representation of the major features of
a certain physical phenomenon. By solving the model equations, the physical
phenomenon is simulated.

Modeling plasmas has been approached in many different ways and the var-
ious types of model that have been developed often have quite dissimilar aims.
Plasma models generally fall into one of the four categories or a combination of
some of these four: equivalent circuit models, analytical models, fluid models
and kinetic models.

1.2.1 Equivalent circuit models

Equivalent circuit models are relatively appealing because of their apparent
simplicity. Plasmas have well-defined electrical properties that can be repro-
duced using equivalent circuits with the appropriate electrical components such
as resistors, capacitors, inductors etc. Experimental or theoretical values can
be directly used in the equations, allowing the determination of, for instance,
the sheath voltage as a function of input parameters such as the source voltage,
the frequency, the pressure etc. without the need of understanding the funda-
mental mechanisms underlying the plasma. The disadvantage of this approach
is that it can not provide insight into complex phenomena. Many examples
of such models can be found in the literature. Logan et al. (1977) proposed
an equivalent circuit model for an rf sputtering system combined with empir-
ical fittings of the plasma density, sheath thickness and power. Wood (1991)
used an equivalent circuit model to investigate the perturbations introduced by
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a probe floating in the plasma. Godyak et al. (1991) proposed a generalized
circuit model.

1.2.2 Analytical models

Although a particular plasma may be fully described by the appropriate Boltz-
mann equation, solutions to such a general formulation are almost always ob-
tained numerically and drastic assumptions and simplification must be made.
The aim of analytical models is to derive some of the plasma properties from the
knowledge of the underlying physical processes. Most of the time the whole dis-
charge is not fully described, but rather a specific region of interest, such as the
sheath, an electric double layer etc. For example, Tonks and Langmuir (1929)
developed the first analytical models of dc (direct current) plasmas. By using
a simplified kinetic model, where the electrons were taken to be Maxwellian
and the ions described as a cold fluid, coupled to Poisson’s equation, they have
derived the so-called plasma-sheath equation. Another well-known analytical
model describing the sheath was derived by Bohm (1949), who found the exis-
tence of the pre-sheath, joining the bulk plasma to the sheath etc.

1.2.3 Fluid models

Fluid models make assumptions on the particle distribution function, allowing
the solution of moment equations rather than the full Boltzmann equation.
Each moment equation is obtained by multiplying the Boltzmann equation by
increasing powers of the velocity and integrating over velocity space. Generally,
only the first three moments7 are used, namely, continuity, momentum and
energy conservation. Each moment equation added to the set of equations
leads to the introduction of a new unknown; thus a closure assumption is always
required. The moment equations are coupled to Poisson’s equation to describe
the behavior of a plasma.

Various approaches have been adopted in these models. Boeuf (1987) as-
sumed that the transport coefficients (drift velocity and diffusion coefficients)
and ionization depend only on the local electric field. Graves and Jensen (1986)
assumed a Maxwellian distribution for the electrons etc.

The main drawback of these models is that the electron distribution function
cannot be self-consistently calculated. This is a serious issue for low-pressure
discharges where the electron energy distribution function can be highly non-
local8. However, under the appropriate conditions, fluid models have proved to
be very useful and computationally efficient (as opposed to particle simulations
for example) and have been used extensively over the past 20 years (Meyyappan
and Kreskovsky 1990, Passchier and Goedheer 1993, Boeuf and Pitchford 1995,
etc.).

7The “first three moments of the Boltzmann equation” are also referred to as “the transport
equations”.

8What is meant by “non-local” is that the electron energy distribution function does not
depend only on the local electric field.
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1.2.4 Kinetic models

Simulations directly dealing with the particle kinematics are potentially the
most powerful for studying low pressure plasmas for which the electron energy
distribution function is likely to be non-Maxwellian. The calculation of the
electron energy distribution function can be achieved in various ways. These
include i) Monte Carlo simulations, where a large number of particles are fol-
lowed one by one through an externally imposed electric field (Kushner 1983,
for exmaple), ii) particle-in-cell simulations, where charged particles evolve in
their own self-consistent electric field (Birdsall and Langdon 1985, Hockney and
Eastwood 1988), iii) convective schemes (Sommerer et al. 1989) and Boltzmann
solvers, that directly solve the Boltzmann equation (Hagelaar and Pitchford
2005). These techniques can be combined, for example Monte Carlo techniques
are commonly used together with particle-in-cell simulation to handle charged
particles-neutral collisions (Vahedi and Surendra 1995).

Full particle models, such as particle-in-cell, are very powerful as both the
plasma potential and the particle transport are resolved self-consistently, but
their main disadvantage is that they require more computational time compared
to fluid models.

1.2.5 Hybrid models

Hybrid simulations use two or more of the techniques discussed above. For
example by using particle-in-cell together with fluid techniques, one can take
advantage of both computational speed, with less strong assumptions on the
particle transport. Strictly speaking, all modern particle-in-cell simulations are
actually hybrid simulations combining the basic particle-in-cell scheme with
Monte Carlo techniques to treat collisions; however, they are generally not
referred to as such.

Hybrid models generally refer to models where the electrons are treated
as fluid while the ions are treated as particles or vice et versa. For example,
Porteous and Graves (1991) have developed a two-dimensional hybrid model of
an inductive plasma including magnetic confinement. In this model, electrons
are considered as fluid and assumed to have a Maxwell-Boltzmann distribution,
while the ions are treated as particles. Porteous et al. (1994) also used this code
to model ECR (Electron Cyclotron Resonance) reactors etc. Hybrid models
with fluid ions and Monte Carlo electrons are also relatively popular, as they
allow the electron energy distribution function to be calculated, which is then
used to calculate the collision rates and the transport coefficients used in fluid
equations (Sommerer and Kushner 1992, for example).

1.3 Scope of this thesis

In essence, what this thesis has attempted to do is to present simulations of both
electropositive and electronegative double layers in such a way that the basic
physics underlying and accompanying these phenomena can be investigated and
better understood. It is in this spirit that various models were developed.
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The present thesis is composed of two distinct parts. The first part (Chap-
ters 2, 3 and 4) focuses on current-free double layers, while the second part
focuses on double layers in electronegative plasmas (Chapters 5 and 6).

As stated previously, most of the double layers observed in space, labora-
tory experiments and theoretical models are generally imposed by a potential
difference or by drawing a current through the plasma. Charles and Boswell
(2003) showed experimentally that a stationary double layer could be created
in a current-free plasma, expanding along a diverging magnetic field. In this
case, the double layer is not imposed and is sustained by the plasma itself. Fol-
lowing this recent discovery, current-free double layers have been the subject of
intense research by many groups. A particle-in-cell simulation including Monte
Carlo collisions techniques, together with a model for inductive heating, were
developed to investigate the possibilities of forming double layers in current-
free plasmas. The inductive heating model included in the one-dimensional
particle-in-cell simulation consists of a non-uniform rf (radio-frequency) elec-
tric field perpendicular to the electron motion. The phenomenology, such as
stochastic heating, resulting from such a transverse heating mechanism are in-
vestigated by the use of an analytical model (Chapter 2). The primary aims of
the particle-in-cell simulation are i) to gain insight in the fundamental mech-
anisms underlying the formation of the current-free double layer observed by
Charles and Boswell (2003) (Chapter 3) and ii) to investigate the particle trans-
port, and especially the formation of an ion beam, in a current-free double-layer
plasma (Chapter 4).

Plihon et al. (2005b) have reported the formation of propagating double
layers in experimental electronegative plasmas. These authors have fully deter-
mined the window of parameters, such as the neutral gas pressure, the relative
concentration of SF6, the input power etc. for which these propagating double
layers form. A self-consistent model, where a Monte Carlo simulation for parti-
cle electrons is coupled to a classical hybrid model was developed (Chapter 5).
This model shed light on the mechanisms underlying the formation of prop-
agating double layers and demonstrate the importance of certain parameters,
such as the electronegativity, the chamber diameter, the heating mechanism
etc. (Chapter 6).

These simulations and models have thrown considerable light on the mech-
anisms responsible for the formation of the double layers and have lead to a
number of publications. Although by no means exhaustive, and naturally lim-
ited by the available computing resources, this work has represented the first
attempt to understand the basic physics of the current-free double layers by
simulations.





Chapter 2

Electron heating in a
non-uniform transverse ac
electric field1

2.1 Motivation

Electrons in a uniform alternating current (ac) electric field of the form E =
E0 cos(ωt) are not heated as they are constantly accelerated and decelerated
in phase with the field, unless they undergo collisions, for example with the
background gas. Electron collisions with other particles destroy the phase co-
herence, thus leading to a net transfer of power from the field to the electrons.
The fundamental mechanism that converts the electric field energy to thermal
energy is the breaking of the phase-coherence between the field and the elec-
tron motion by collisions; this mechanism leads to an ohmic power transfer.
The average ohmic power absorbed per electron is

P = −e < v ·E >t, (2.1)

where e is the elementary electron charge, v the systematic velocity of the
electrons2 and E the electric field. The symbol < >t denotes the time average.
The systematic velocity v is generally derived from a momentum conservation
equation

∂v

∂t
+ νv = −eE

me
, (2.2)

where ν in the friction term is the momentum transfer frequency and me the
electron mass. Equation 2.2 is solved for v and v ·E is averaged in time, leading
to the well-known Joule heating law of power absorbed per electron in a uniform
ac electric field

P =
1
2

(eE0)2

meω

ν/ω

1 + (ν/ω)2
, (2.3)

1The work presented in this chapter was done in close collaboration with Dr. Gerjan Hage-
laar during a research visit to the “Centre de Plasma et de leurs Applications de Toulouse”.

2What is meant by “systematic velocity” is the average velocity of the ensemble of electrons,
due to the electric field and collisions, as opposed to the thermal velocity.
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where E0 is the amplitude of the electric field and ω its frequency. Details of this
classical calculation can be found in the literature (for example, see Lieberman
and Lichtenberg 2005, p. 98).

Collisionless heating3 of electrons in spatially non-uniform ac electric fields
has been known for over 60 years, since Landau (1946) showed the collision-
less damping of electrostatic waves in warm plasmas. Due to the spatial non-
uniformity of the electric field, each individual electron sees a non-periodic field,
resulting in a loss of the phase-coherence between the electron motion and the
field, resulting in stochastic heating. Collisionless heating has been thoroughly
investigated, as it appears in many situations where the ac electric field is non-
uniform (rf sheath, skin depth layer etc.). A very interesting overview of this is
given by Lieberman and Lichtenberg (2005) in Chapter 18 of the second edition
of their book.

In the work presented later in this thesis (Chapter 3 and 4), a one-dimensional
particle-in-cell simulation with three dimensions of velocity, including charged
particle - neutral collisions4 is used. In short, the electrons are allowed to move
freely along the x axis, and are heated by a non-uniform rf electric field, acting
in the y direction, perpendicular to the electron motion; energy and momentum
are transfered to the other x and z directions via electron-neutral collisions. In
the present chapter, the possible effects, such as stochastic heating, resulting
from such a heating mechanism are investigated; this is done by developing an
analytical model, the validity of which is then proven by the use of a Monte
Carlo simulation.

The analytical work presented in this chapter is somewhat similar to the
theory originally developed by Pippard (1949), which has been used to calculate
the stochastic heating within the skin depth in low-pressure inductive discharges
(Weibel 1967, Turner 1993, Godyak et al. 1993). However, in that case, the
electric field was set to decay exponentially, while in the present case, the non-
uniformity of the field is either a cosine function of space or a step function of
space.

It should be kept in mind that the goal here is to investigate the possible
effects resulting from such a transverse heating mechanism in electrostatic sim-
ulations. In reality, the situation would be far more complex as, for example,
a magnetic field is associated with such an ac electric field. Although it was
shown by Aliev et al. (1997), Cohen and Rognlien (1996ba) and Lieberman
and Lichtenberg (2005, p. 700-703)5 that the magnetic field associated with the
electric field rotates the “kick” in the direction of the electron motion irrespec-
tive of the electric field direction, this effect is not considered as it would not
be captured by the electrostatic simulation.

3Collisionless heating is also referred in the literature as stochastic or anomalous heating.
4The particle-in-cell (PIC) simulation scheme is thoroughly described in Chapter 3, how-

ever, its full understanding is not required to follow the present chapter.
5A number of typos remain in the original paper by Aliev et al. (1997); these have been

corrected by Lieberman and Lichtenberg (2005, p. 700-703).
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2.2 Analytical model

2.2.1 Another approach to derive the Joule heating law

In this section another approach to that of Section 2.1 to derive the power
absorbed per electron in a uniform ac electric field is proposed. This other
approach will be later adapted to the case of a non-uniform ac electric field,
where the classical derivation of the power would be rather cumbersome if not
impossible.

Let us consider an electron moving freely at a constant velocity along the
x direction. There is no electric field in the direction of motion of the electron,
but a uniform ac electric field in the perpendicular direction, labeled the y
direction. The electron motion is bounded and from time to time the electron
is reflected by a wall or a plasma sheath (the boundaries along x are assumed
to be completely reflecting). The background neutral gas is uniform and the
electrons undergo isotropic elastic collisions with neutrals only, at a constant
collision frequency ν6; after a collision, the electron has completely “forgotten”
its original momentum.

In this approach, the power absorbed by the electron during a free flight, i.e.
between two collisions, is calculated. All the random parameters, such as the
free-flight time, phase of the field etc. are then averaged over their distributions.

The ac electric field along y is given by

E = E0 cos(ωt− φ), (2.4)

where E0 and ω are the amplitude and the frequency of the ac electric field,
respectively. The electron is born at phase φ of the field. Between two collisions,
i.e during the free flight, the y-velocity of the electron is given by

∂v

∂t
= −eE

me
. (2.5)

It is assumed that v = v0 at t = 0. Equation 2.5 is solved for v

v = v0 −
eE0

meω
[sin(ωt− φ) + sin φ] . (2.6)

The electron starts its free-flight at any phase φ of the field; the product vE is
thus averaged over the whole distribution of φ, uniformly distributed between
0 and 2π. Note that the distribution of the phase φ is uniform because the col-
lision frequency ν was taken to be energy independent. By using equations 8.1
(Appendix 8.1, p. 133), it is found that all the terms in < vE >φ are null except
< cos(ωt− φ) sinφ >φ, which leads to

< vE >φ= −1
2

eE2
0

meω
sin(ωt), (2.7)

6The electron-neutral collision cross section is proportional to the inverse of the electron
velocity.
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Figure 2.1: Schematic of the model: electrons move freely along the x direction at
a constant velocity vx between two reflecting boundaries separated by a distance d
(the velocity vx is constant between two collisions with neutrals). An ac electric field
E heats the electrons in the y direction, perpendicular to the electron motion. The
amplitude Ê0 of the electric field decays as a cosine function of space, is maximum in
x = 0 and is equal to zero in x = d.

which is then averaged in time over the free-flight time distribution

< vE >φ,t= ν

∞∫
0

exp(−νt) < vE >φ dt. (2.8)

Equation 2.8 is calculated using equation 8.2 (Appendix 8.1, p. 133). Then,
using equation 2.1 and rearranging yields

P =
1
2

(eE0)2

meω

ν/ω

1 + (ν/ω)2
, (2.9)

which is exactly the same expression as that given by equation 2.3, proving the
validity of this approach.

2.2.2 Power absorbed per electron in a non-uniform ac electric
field: smooth transition

In section 2.2.1, the validity of another approach to calculate the power ab-
sorbed per electron in an electric field was demonstrated. Here, this method is
applied to a non-uniform electric field. Once again the electric field is given by

E = Ê0 cos(ωt− φ), (2.10)

where the amplitude Ê0 is a cosine function of space in the direction x of the
electron motion (figure 2.1). The reason why a cosine function is chosen for
the present investigation is that it yields a complete analytical solution and its
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derivation is not excessively cumbersome. The wave length of the amplitude
variation is λ, and

Ê0 = E0

[
1 + cos

(
2πx

λ
− Φ

)]
. (2.11)

The assumptions are the same as in Section 2.2.1, and in addition, the distance
between the two reflecting walls is d = λ/2. As the velocity vx of the electron
along the x direction is constant, the position x of the electron is given by
x = vxt and Ω = 2πvx/λ can be defined, hence the ac electric field can be
written

E = E0 [1 + cos(Ωt− Φ)] cos(ωt− φ). (2.12)

Solving 2.6 for the field given by 2.10 gives

v = v0 −
eE0

2me(Ω + ω)
{sin[(Ω + ω)t− (Φ + φ)] + sin(Φ + φ)}

− eE0

2me(Ω− ω)
{sin[(Ω− ω)t− (Φ− φ)] + sin(Φ− φ)}

− eE0

meω
[sin(ωt− φ) + sin φ].

(2.13)

The product vE is composed of 21 terms. When this product is averaged over
the uniform distribution of φ and Φ (equation 8.1, Appendix 8.1, p. 133), most
of these terms cancel out, and there remains

< vE >φ,Φ= −1
2

eE2
0

meω
sin(ωt)− 1

8
eE2

0

me(Ω + ω)
sin[(Ω + ω)t]

− 1
8

eE2
0

me(Ω− ω)
sin[(Ω− ω)t],

(2.14)

which is then averaged in time over the free-flight time distribution by using
equation 2.8 (equation 8.2 Appendix 8.1, p. 133),

P =
(eE0)2

2me

{
ν

ν2 + ω2
+

1
4

[
ν

ν2 + (Ω + ω)2
+

ν

ν2 + (Ω− ω)2

]}
, (2.15)

which is the expectation value of the power absorbed by an electron moving
along x at a velocity vx, such that its angular frequency of oscillation between
the two reflecting walls is Ω = πvx/d = 2πvx/λ. Equation 2.15 can be decom-
posed into two terms P = Pohm + Pstoch where Pohm and Pstoch are the ohmic
and stochastic contributions to the total absorbed power, respectively. Note
that this decomposition is rather arbitrary and may be argued. Nevertheless,
the decomposition presented here is essentially to give a feeling of the signifi-
cance of stochastic effects compared to the purely collisional effects. The ohmic
contribution is obtained by considering that the electron is motionless at the
position x; the average power absorbed by this electron is given by equation 2.9,
where the amplitude E0 is replaced by the local amplitude Ê0, given by equa-
tion 2.11. This “local” power is then averaged over space between 0 and λ,
leading to

Pohm =
3
4

(eE0)2

me

ν

ν2 + ω2
, (2.16)
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Figure 2.2: 3D mapping of the normalized power P/P0 absorbed per electron, with
P0 = (eE0)2/(2meω), as a function of Ω/ω and ν/ω.

and thus

Pstoch =
(eE0)2

2me

{
−1

2
ν

ν2 + ω2
+

1
4

[
ν

ν2 + (Ω + ω)2
+

ν

ν2 + (Ω− ω)2

]}
.

(2.17)
Interestingly, the first term in equation 2.17 is independent of Ω and is al-
ways negative. In other words, under certain conditions, electrons may also be
“stochastically cooled”.

Figure 2.2 shows the normalized power absorbed per electron, as a function
of Ω and ν, for a given ac frequency ω. The red and black (or grey and black)
surfaces show the ohmic contribution and the total power, respectively. A
resonance in the stochastic heating is observed for Ω = ω. Stochastic cooling is
observed for Ω/ω > 1. However, once again, it should be noted that splitting
the total power absorption into two terms (ohmic and stochastic) maybe argued
as this really depends on the definitions of these two terms.

At low pressure, when ν/ω → 0, the power can be approximated by

P
ν/ω→0∼ (eE0)2

8me
π [δ(Ω + ω) + δ(Ω− ω)] , (2.18)

where δ is Dirac’s function defined by

δ(x) =
1
π

lim
ε→0

ε

ε2 + x2
(2.19)

and having the property
∞∫

−∞

f(x)δ(x− a) dx = f(a), (2.20)

for any function f .
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Figure 2.3: Normalized power S/S0, with S0 = (eE0)2/(2meω), averaged over a
Maxwellian distribution, for various ν/ω from 0 to 10.

When Ω/ω → 0, i.e. when the electrons are still (no motion along x), the
power can be approximated to first order by

P
Ω/ω→0∼ 3

4
(eE0)2

me

ν

ν2 + ω2
, (2.21)

which shows that the stochastic contribution vanishes when the electrons are
immobile (no motion along x).

2.2.3 Averaging over a Maxwellian distribution

The power derived above (Equation 2.18) is for a particular oscillation frequency
Ω = 2πvx/λ along x; here, the power is averaged over Ω, assuming a Maxwellian
distribution of the electron velocity vx. It should be kept in mind that averaging
over a Maxwellian distribution seems rather difficult to justify a priori. Indeed,
the x-directed electron velocity distribution function may well be affected by
the heating mechanism itself and be highly anisotropic and non-Maxwellian.
Nevertheless, this assumption is kept for the moment and will be verified a
posteriori with the Monte Carlo simulation. The Maxwellian distribution fx(vx)
is given by

fx(vx) =
1

vth
√

π
exp

(
− v2

x

v2
th

)
, (2.22)

where vth is the thermal velocity given by

vth =
√

2kBTe

me
. (2.23)
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Figure 2.4: 3D mapping of the normalized power S/S0, with S0 = (eE0)2/(2meω),
averaged over a Maxwellian distribution, as a function of Ωth/ω and ν/ω.

Let S =< P >vx be the total power averaged over a Maxwellian distribution of
vx.

S =

∞∫
−∞

fx(vx)P (vx) dvx. (2.24)

The integration cannot be done analytically in the general case, however, it can
be performed in the limit of ν/ω → 0, and using 2.18 for P (vx). The integral
I± can be approximated by

I± =

∞∫
−∞

µ

µ2 + (ζ ± ξ)2
exp

(
−ζ2

)
dζ

µ→0∼ π

∞∫
−∞

δ(ζ ± ξ) exp
(
−ζ2

)
dζ

= π exp
(
−ξ2

)
.

(2.25)

In the collisionless case, the power averaged over a Maxwellian is therefore

S
ν/ω→0∼ (eE0)2

8m

√
2π

1
Ωth

exp
(
− ω2

2Ω2
th

)
, (2.26)

where Ωth is the “thermal” transit frequency through a spatial oscillation of the
field amplitude, or the “thermal” frequency of oscillation of the electron along
the x direction.

Ωth =
√

2πvth

λ
=

2π

λ

√
kBTe

me
. (2.27)

Figure 2.3 and 2.4 show the total (ohmic and stochastic) power S absorbed
per electron for a Maxwellian distribution of velocity. The collisionless case
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where ν/ω → 0, was obtained analytically using 2.26, while the other cases are
the result of the numerical integration of 2.15 over a Maxwellian distribution
of electrons. The power S is normalized and is represented as a function of
Ωth/ω proportional to the square-root of the electron temperature. At low
pressure (ν/ω < 1), a resonance of the stochastic contribution is observed for
Ωth/ω = 1; for example, for an electron temperature of 3 eV and λ = 0.2, the
ac field resonance frequency is ω/2π ∼2.5 MHz. At high pressure (ν/ω > 1),
the absorbed power is essentially ohmic.

2.2.4 Power absorbed per electron in a non-uniform ac electric
field: abrupt transition

For the work presented in Chapter 3, a non-uniform ac field similar to that
described above is used, but the amplitude of the field does not vary smoothly
as a cosine function of space, but is a step function

Ê0 = E0 if x/d < h,
= 0 otherwise,

(2.28)

where h is the relative “heating length”. Let us call τ = 2d/vx the oscillation
period along x. The same approach as before can be used to express the ab-
sorbed power as a function as the relative heating length h and the oscillation
period τ . The calculation is rather long and was derived by Hagelaar (2005b)
and leads to

P =
(eE0)2

2meω

{
h(ν/ω)

1 + (ν/ω)2
+ Π (Λ + Σ)

}
, (2.29)

where

Π =
1

ωτ [1 + (ν/ω)2]2 [cosh(ντ)− cos(ωτ)]
,

Λ =2(ν/ω) {sin(ωτ)− cosh(hντ) sin [(1− h)ωτ ]− cosh [(1− h)ντ ] sin(hωτ)} ,

Σ =
[
1− (ν/ω)2

]
{sinh(ντ)− sinh(hντ) cos [(1− h)ωτ ]− sinh [(1− h)ντ ] cos(hωτ)} .

(2.30)

Equation 2.29 can be numerically integrated over a Maxwellian distribution of
vx, and in the same fashion as in Section 2.2.3, significant stochastic heating is
observed at low pressure (ν/ω < 1), and for a given electron temperature, the
efficiency of the heating can be optimized, as there exists an optimal ac field
frequency leading to a maximum in stochastic heating.

2.3 Monte Carlo model

In Monte Carlo simulations, a number of individual electrons are followed, one
by one, on their way through a plasma or any other medium. The occurrence
and effect of collisions, for example with the background gas are treated by
random numbers. The principles of Monte Carlo simulations are detailed in
Chapter 5, and are not required for the following development.
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Figure 2.5: Electron mean energy, normalized to the relative heating length h as a
function of h; E∗ = E/h, where E is the electron mean energy, obtained with both
the analytical model (open circles) and the Monte Carlo simulation (black dots). The
dashed line shows the normalized electron mean energy that an electron would have
in a system of length h and a uniform ac electric field (the electron mean energy is
proportional to the volume of heating).

2.3.1 Good agreement with the analytical model

By using a Monte Carlo simulation, the situation described in Section 2.2.4 is
simulated, namely, the state of an electron trapped between two reflecting walls
separated by d =10 cm is measured over a relatively long time scale (300 ms).
The electron undergoes elastic isotropic collisions with neutrals at a constant
frequency ν = 107 s−1. Elastic energy loss only is assumed as in the case of a
constant collision frequency, this yields a Maxwellian distribution (as assumed
for the analytical model). A relatively large neutral to electron mass ratio is
chosen (1000) to ensure that electron-neutral collisions are isotropic in the lab
frame, as well as is the center-of-mass frame. The electrons are heated by a
non-uniform ac electric field. The amplitude of the field is E0 = 20 V/m for
x < hd and null otherwise, and its frequency is ω/2π = 10 MHz.

The white circles in figure 2.5 show the electron mean energy predicted
by the analytical model (equation 2.29), while the black dots show the mean
energy using the Monte Carlo simulation described above. A very good agree-
ment is observed, which is in essence not too surprising as the same quantities
were calculated, using two different approaches (an analytical approach and a
random-number-based numerical approach). For the analytical approach, the
x-directed electron velocity distribution function was assumed to be Maxwellian
and this was not justified a priori. The results of the Monte Carlo simulation
seem to suggest a posteriori the validity of this assumption, as well as the va-
lidity of the whole analytical model. The dashed line shows the mean energy
that an electron subject to a uniform heating over a relative length h would
acquire. This shows that electrons can absorb significant power in addition to
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Figure 2.6: Potential profile Φ (dotted line) and directed electron mean energy profiles
along the x (solid line), y (dashed line) and z (dashed-dotted line) directions.

classical ohmic power, especially for relatively small heating regions.

2.3.2 Anisotropy introduced by the stochastic heating

The use of the Monte Carlo model above allows one to investigate more com-
plex situations that would not be easily described analytically. For example,
consider now a system where the electron parallel motion along the x direction
is affected by the presence of a spatially non-uniform electric field Ex(x) (the
corresponding potential Φ(x) is shown by the dotted line in figure 2.6), leading
to a time-varying velocity vx along x. Also, instead of using reflecting bound-
aries, absorbing boundaries separated by 10 cm are now used. The left-hand
side boundary potential is 10 V, while the right-hand side boundary potential
is 0 V. Electrons are injected with a spatial distribution following exp(Φ) and
with a 0.1 eV Maxwellian velocity distribution. Each electron is followed indi-
vidually until it reaches either wall. Also, although it is not of great relevance
here, various electron-neutral collisions, such as elastic, exciting and ionizing
collisions are taken into account. Finally, because various energy sinks, such
as inelastic collisions, are now considered, the perpendicular ac electric field
amplitude is significantly increased in order to balance them and is 150 V/m
from 0 to 5 cm and null from 5 to 10 cm.

Figure 2.6 shows the x, y and z-directed electron mean energies. Here,
we will not focus on small artifacts of this simple model such as the peculiar
behavior of the electron mean energy in the vicinity of the right wall, but
rather concentrate on the y-directed (direction of the heating) electron mean
energy. The y-directed electron mean energy, seems to be more important where
the electrons are not heated. Both, stochastic and ohmic heating introduce
anisotropy in the energy. Electrons that can reach the right-hand side of the
system are those which have larger parallel energy as they need to climb a
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significant potential wall. Energetic electrons are sensitive to stochastic heating
as they can reach any region of the system and therefore “see” the nonuniform
ac electric field. By contrast, low-energy electrons are electrostatically trapped
on the left-hand side, hence are only able to see a uniform ac electric field. Under
the present conditions (low-pressure), stochastic heating is more efficient than
ohmic heating, hence energetic electrons become “more anisotropic” than those
that are trapped on the high-potential side as they are heated more. These
“more anisotropic” energetic electrons are present on both sides of the system.
This is clearly visible on the low-potential side of the system, where the y-
directed electron mean energy Ey is 1 eV larger than Ex. However, because
these “more anisotropic” energetic electrons are much less numerous than the
low-energy trapped electrons on the high-potential side, they are much more
visible in this region; Ey is only 0.5 eV larger than Ex. This gives the illusion
that, in the heating direction, electrons are somewhat cooler where they are
heated than where they are not. This should be kept in mind when using such
a heating mechanism in more complex situations (Chapter 3 and 4).

2.4 Discussion and conclusion

In this Chapter, the effects of a non-uniform ac electric electric field, perpen-
dicular to the one-dimensional motion of electrons was investigated by an an-
alytical approach. It was found that, due the non-uniformity of the field, the
heating mechanism is much more complex than classical ohmic heating and
is dominated by stochastic effects, especially when the neutral pressure is low
(collision frequency below the field frequency). This analysis is of particular rel-
evance as most of the simulations that were developed and used for the present
thesis make use of such a transverse electric field to model inductive heating;
more generally these results are valid in any one-dimensional particle plasma
simulation where the electrons are heated by a non-uniform ac electric field
perpendicular to the electron motion. However, it should be kept in mind that
in real system, the magnetic field associated with the time-varying electric field
would presumably change the above conclusions significantly. In future, the
possible effects of the magnetic field should be investigated.



Chapter 3

Formation of current-free
double layers in
one-dimensional
particle-in-cell simulations

3.1 Current-free double layers in Chi-Kung

An electric double layer1 (DL) is a narrow localized region in a plasma which
can sustain a large potential difference (see Raadu 1989, and references therein).
The earliest work on double layers was reported by Langmuir (1929). Alfvén
(1958) suggested about 50 years ago that double layers could be responsible
for the acceleration of electrons onto the upper atmosphere creating the visi-
ble aurora. Evidence supporting Alfven’s hypothesis was given by Albert and
Lindstrom (1970) and Temerin et al. (1982). Since then, electric double layers
have been studied experimentally (Hershkowitz 1985, and references therein),
theoretically (Andrews and Allen 1971, Hasan and Ter Haar 1978, Torven 1981,
Lieberman and Charles 2006) and by computer simulation (Knorr and Goertz
1974, Goertz and Joyce 1975, Joyce and Hubbard 1978, Newman et al. 2001).
In most of these cases, the double layer is created by imposing a potential
difference or by drawing a current through the system.

Until the late 1970s, it was commonly believed that a necessary condition for
the formation of double layers was that the electron drift velocity had to exceed
the electron thermal velocity. Evidence supporting this assumption were ob-
tained theoretically (Knorr and Goertz 1974), by computer simulations (Goertz
and Joyce 1975, DeGroot et al. 1977) and laboratory experiments (Quon and
Wong 1976, Coakley et al. 1978). However, Mozer et al. (1977) observed large
potential drops along the auroral field lines, where the electron drift velocity
was much less than the electron thermal velocity, suggesting that the absence of
a (large) current was not in contradiction with the formation of double layers.
Inspired by this peculiar observation, Sato and Okuda (1980) showed, by us-

1“Double layers” are also referred to as “double sheaths” or “internal sheaths”.
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Figure 3.1: (a) Schematic of Chi-Kung, a horizontal helicon system, showing major
components and (b) Bz component of the dc magnetic field along axis for the high
(solid line) and low (dotted line) field cases (Charles and Boswell 2003).

ing a particle-in-cell simulation with periodic boundary conditions, that double
layers may form even if the electron drift velocity was smaller than the electron
thermal velocity.

Perkins and Sun (1981) were the first ones to suggest over 20 years ago, by
an analytical model, that current-free (with no net current at all) double layers
could exist. The authors found solutions of the Vlasov equation that would
satisfy a set of conditions, such as the existence of an abrupt potential drop
surrounded by quasi-neutral plasma with no electric field.

Hatakeyama et al. (1983) seem to be the first ones to report an experimental
stable current-free double layer. However, in their experiment, although the
double layer was not imposed by drawing a current through the plasma or by
imposing a potential difference, the double layer was forced by creating two
plasmas with two different temperatures interacting with each other.

Hairapetian and Stenzel (1990) have also reported the experimental for-
mation of stationary current-free double layers. In their experiment, a very-
low-pressure two-temperature plasma was created and allowed to expand into
a longer chamber. By carefully adjusting the two distinct temperatures, the
authors could form a stationary double layer. However, this double layer was
“only” stationary during the duration of the pulse, i.e. for 1 ms. Sato and
Miyawaki (1992) have theoretically investigated a situation similar to that of
Hairapetian and Stenzel (1990), that is a plasma composed of two populations
of electrons with two distinct temperatures. These authors have derived a min-
imal electron temperature ratio compatible with a double layer.

Charles and Boswell (2003) showed that a stationary2 double layer could

2“Stationary” means that the double layer stays there once it is created, as opposed to the
double layer formed by Hairapetian and Stenzel (1990), which is stationary “only” during the
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Figure 3.2: (a) Plasma potential and (b) plasma density measured with the energy
analyzer along the z-axis for 0.2 mTorr pressure, 250 W rf power and high field [fig-
ure 3.1(b)] conditions, respectively (Charles and Boswell 2003).
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spontaneously form in a current-free plasma, expanding along a diverging mag-
netic field. The first current-free double-layer experiment was performed in
the horizontal helicon system, Chi-Kung (Charles and Boswell 2003) shown in
figure 3.1. It consists of a 15-cm-diameter, 31-cm-long helicon source joined
contiguously to a 32-cm-diameter, 30-cm-long grounded aluminum diffusion
chamber. Two solenoids around the source are used to create a magnetic field
of about 130 G3 in the source center decreasing to a few tens of gauss in the
diffusion chamber. The current-free double layer, shown in figure 3.2, can be
generated for pressures less than about 1 mTorr. A supersonic ion-beam has
been measured downstream of this double layer for both argon (Charles and
Boswell 2004a, Charles 2005b) and hydrogen (Charles 2004) discharges. Charles
and Boswell (2004b) showed that the current-free double layer was formed in
the first 100 µs of the discharge; Charles (2005a) also showed that this was
accompanied by some charging of the source walls. The current-free double
layer has many potential applications, such as in plasma processing (Charles
2006), plasma propulsion (Gesto 2005, Gesto et al. 2006, Charles et al. 2006)
and space plasma (Boswell et al. 2006).

The formation of double layers in current-free plasmas and associated ion
beams were confirmed by similar experiments (Cohen et al. 2003, Sun et al.
2004, Sutherland et al. 2005). In particular, Sutherland et al. (2005) showed
that the double-layer strength could be scaled by a factor of at least 2 in a
bigger system and that the double layer presumably forms in the vicinity of
maximal gradient of the magnetic field.

In this chapter, particle-in-cell simulation techniques are used to investigate
the possibilities of forming double layers in current-free plasmas. The original
aims of the simulation were i) to gain insight in the fundamental mechanisms
underlying the formation of the current-free double layer observed by Charles
and Boswell (2003) (this chapter) and ii) to investigate the particle transport,
and especially the formation of an ion beam, in a current-free double-layer
plasma (Chapter 4).

3.2 Particle-in-cell simulations

3.2.1 Introduction and background

The particle-in-cell (PIC) scheme is a purely kinetic representation of a sys-
tem containing ions and electrons, allowing a self-consistent representation of
virtually any plasma.

Birdsall (1991) and more recently Verboncoeur (2005) have written two com-
prehensive and very interesting reviews on particle-in-cell simulations. Both of
them include roots of particle simulations and the basic techniques. Verbon-
coeur’s review also treats recent advances made in the field.

duration of the pulse, i.e. 1 ms.
3The B field reported in the earliest papers on the current-free double layer by Charles

and Boswell were wrong by a factor of two; the maximal value of the field was 130 G in the
source and not 250 G as shown in figure 3.1.



3.2. Particle-in-cell simulations 47

The early days of particle simulations go back to calculations performed
by Buneman (1959) and Dawson (1962) with only a few hundreds of particle
electrons to study instabilities and thermalizing properties, respectively. In
these models, the electrical forces due to the space charges were calculated using
Coulomb’s law. These models are referred to as particle-particle models, as the
interactions between a particle and all the others are taken into account, which
is, of course, very computationally expensive. This was improved by the use of
particle-mesh models, where the charges are accumulated on a spatial grid on
which Poisson’s equation is solved; these models are referred to as cloud-in-cell
or particle-in-cell.

The development of modern PIC took place in the late 1960s (Birdsall and
Fuss 1969), 1970s (Langdon and Birdsall 1970) and early 1980s. The earliest
work attempting to include Monte Carlo collisions (electron-neutral collisions)
in a PIC simulation was done by Burger (1967) and led to many subsequent
works (Vahedi et al. 1993ba, Vahedi and Surendra 1995). Most of the theoreti-
cal work on the effects of the spatial grid (Langdon and Birdsall 1970) and the
analysis of the time integration (Langdon 1979) was done in the 1970s. Tech-
niques used in modeling bounded plasmas have been well described in a number
of books and publications (Hockney and Eastwood 1988, Birdsall and Langdon
1985, Vahedi et al. 1993ba). For many years plasma simulations were used to
simulate the plasma bulk, neglecting the sheaths, hence, the use of periodic
boundary conditions was very popular. Realistic absorbing boundary condi-
tions were first introduced by Birdsall and Langdon (1985), and improved by
the use of electron secondary emission (Hagstrum 1956, Harrower 1956, Suren-
dra et al. 1990, Surendra et al. 1990) and by the inclusion of an external circuit
(Verboncoeur et al. 1993) for a more accurate representaion of processing sys-
tems.

The time step and the cell size of full particle-in-cell simulations, where
both ions and electrons are treated as particles, have to resolve both the elec-
tron plasma frequency and the Debye length, to ensure stable and accurate
simulations. These extremely stiff conditions become a real issue when sim-
ulating high density plasmas, as the plasma frequency is proportional to the
square root of the plasma density. In addition, when dealing with phenomena
related to ion transport or whose time scale is large, for example on the order
of millisecond, full particle-in-cell simulations become really cumbersome, as
they can require several billions of time steps and several days of calculation.
Increasing the speed of particle-in-cell simulations is a challenging issue that
has been going on for years. As early as in the beginning of the 1980s, Cohen
and Freis (1982) and Langdon et al. (1983) have developed a so-called implicit
scheme for PIC simulations allowing use of larger time steps than with the
classical explicit scheme. Accelerating PIC simulation can also be done by the
use of adaptive grids and time scales, electron sub-cycling (Adam et al. 1982),
consisting of moving the much heavier ions less often than the electrons. More
recently, the use of variable macro-particle weight (Coppa et al. 1996, Shon
et al. 2001) was developed. A very interesting review on physical and numeri-
cal technics to accelerate full PIC simulation was written by Kawamura et al.
(2000). In Chapter 5, an alternative to accelerate PIC simulation is proposed.
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Figure 3.3: Classical particle-in-cell (PIC) scheme and extra modules.

As other kinetic methods, PIC is very attractive since it provides a self-
consistent solution of the fields and particle dynamics using only first principles
(Poisson’s equation and Newton’s law) without making any assumptions on the
charged particle transport. Particle-in-cell simulations are particularly useful
when modeling non-equilibrium plasmas, such as breakdown (Vender et al.
1996) or when modeling plasmas for which the electron transport is not known
a priori. The use of PIC simulations generally falls into one of the following two
categories. i) PIC can provide insight in areas where the theory is incomplete or
inaccurate or when its assumptions cannot be verified experimentally. ii) PIC
can be used as an extension to experiment and compared directly to experiment,
giving results to clarify or explain the underlying mechanisms involved in some
experimental plasmas. This second category is still limited by the complexity
of the real plasma chemistry, the more or less complex geometry of the system,
the real surface behavior etc., that have to be simplified to make the simulation
tractable.

3.2.2 General particle-in-cell scheme

Particle-in-cell is a purely kinetic representation of a system containing ions and
electrons, considered as individual particles, moving under the influence of their
own self-consistent electric field (Birdsall and Fuss 1969, Langdon and Birdsall
1970, Hockney and Eastwood 1988, Birdsall and Langdon 1985). PIC simula-
tions use the first principles (Poisson’s equation and Newton’s laws) only. Each
particle of the simulation is actually a macro-particle allowed to represent a large
number of real particles (on the order of 109 or 1010 particles per macro-particle
for one-dimensional simulations; this number can be decreased even more with
the improvement of computational resources) and which can move inside the
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simulated domain. With a small number of these macro-particles (typically
between 104 and 105 for one-dimensional simulations), a realistic steady-state
plasma can be obtained in a few hours on a modern desktop computer.

Let us describe the general one-dimensional PIC scheme assuming a planar
geometry. The simulated region is divided into Nc cells resulting in a grid of
Nc + 1 nodes. Electric field only is considered (electrostatic simulation), thus
each particle is pushed (accelerated and moved) using Newton’s law

m
dv

dt
= qE, (3.1)

where m is the mass of the particle, q its charge and v its velocity. The electric
field E is given by

E = −∂Φ
∂x

, (3.2)

and where the potential Φ is integrated from Poisson’s equation

∂2Φ
∂x2

= − ρ

ε0
= − e

ε0
(ni − ne), (3.3)

where ni and ne are the ion and the electron densities, respectively; e is the
elementary charge and ε0 the vacuum permittivity. Physical quantities, such
as the potential, the electric field, the position, the velocity. are normalized
according to the characteristic quantities of the system, such as the cell size ∆x,
the time step ∆t, the elementary charge e etc. Scaling the physical quantities i)
decreases the number of operations, such as multiplications by physical constant
ii) and minimizes round-off errors.

The steps of the conventional PIC scheme with additional modules are sum-
marized in Figure 3.3 and are described below.

Charge assignment and field interpolation

The charge density ρ is assigned to each node of the grid by accumulation of
the charges of the various species (electrons and ions). The accumulation of
the charges can be done following various models such as Nearest-Grid-Point
(NGP), Cloud-in-Cell (CIC) etc. These models are discussed in detail in Hock-
ney and Eastwood (1988) and Birdsall and Langdon (1985).

It is generally accepted that the best tradeoff between computational cost
and accuracy is the CIC scheme. It is a first-order weighting model involving
the two nearest grid points. The charge density on each mesh point is cal-
culated by linearly distributing the charge of each macro-particle to its two
nearest grid points. Likewise, the electric field at a given position is obtained
by interpolating the two nearest field values.

Charge gathering and evaluation of the electric field at the position of a
macro-particle have to use the same interpolation kernel (NGP, CIC etc.), as it
was shown that using different interpolation kernels leads to self-forces4 (Bird-
sall and Langdon 1985) and higher heating rates (Mardahl and Verboncoeur
1997).

4 Self-force means that a charged particle creates a force on itself.
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Electric potential and electric field on the nodes

The electric potential is calculated by solving Poisson’s equation discretized as
follows

Φi−1 − 2Φi + Φi+1

∆x2
= −ρi

ε0
, (3.4)

where ∆x is the cell length and i the index of the considered node. Equation 3.4
leads to a tri-diagonal system of equations, which can be solved by any classical
algorithm for tri-diagonal systems (see Press et al. 1992, for example ). The
electric field is then obtained by using the following finite-difference equation

Ei = −Φi+1 − Φi−1

2∆x
. (3.5)

For the first (resp. last) node, the electric field is a linear extrapolation of the
field of the second and third (resp. penultimate and antepenultimate) nodes;
various boundary condition models are proposed and discussed by Verboncoeur
et al. (1993).

Particle pushing

Particles are accelerated by integrating Newton’s law (equation 3.1) discretized
as follows

vt+ 1
2

= vt− 1
2

+
qEt∆t

m
. (3.6)

Particles are then moved according to

xt+1 = xt + vt+ 1
2
∆t. (3.7)

Equations 3.6 and 3.7 lead to the classical leap-frog scheme where positions and
velocities are not known simultaneously.

To allow stable and accurate simulations of cold plasmas, the time step and
the size of the cell have to meet the following criteria (Birdsall and Langdon
1985, Hockney and Eastwood 1988)

ωp∆t� 2,

∆x < λD,
(3.8)

where ωp is the electron plasma frequency

ωp =

√
nee2

meε0
, (3.9)

and λD the Debye length

λD =
√

ε0kBTe

e2ne
. (3.10)
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Table 3.1: Electron-neutral and ion-neutral collisions in argon.

Elastic scattering e + Ar → e + Ar
Excitation e + Ar → e + Ar∗

Ionization e + Ar → e + Ar+ + e
Charge exchange Ar+ + Ar → Ar + Ar+

Elastic scattering Ar+ + Ar → Ar+ + Ar

Monte Carlo Collisions

Although it was recently shown by Turner (2006) that, under certain condi-
tions, it may seriously degrade kinetic properties of the PIC, neutral-charged
particle collisions in a PIC simulation are commonly handled by a Monte Carlo
Collision scheme (MCC). The usual Monte Carlo5 (MC) technique makes use
of random number sequences for the modeling of stochastic events; the way col-
lision events are treated by MC is fully described in Chapter 5. Although only
one spatial dimension is considered in the simulation, collisions are in essence
a three-dimensional phenomenon, hence particle are followed keeping the three
dimensions of velocity; this kind of model is commonly referred to as 1D3V.

In the particular PIC developed here, the MCC model developed by Va-
hedi and Surendra (1995) for the various collisions in argon was implemented.
Table 3.1 shows the collisions which are taken into account in this model; this in-
cludes electron-neutral collisions (elastic, exciting and ionizing) and ion-neutral
collisions (elastic and charge exchange). In short, high-energy electron-neutral
collision scattering angles are very small (forward scattering), while low-energy
electron-neutral collisions are isotropic. At high energy (more than 1 eV) ion-
neutral charge exchange collisions are predominant and are anisotropic in the
center-of-mass frame. At low energy, ion-neutral elastic collisions are dominant
and are isotropic in the center-of-mass frame.

Accurate electron-neutral and ion-neutral collision cross sections are used
to ensure realistic simulations; data can be found in Tachibana (1986) and Pack
et al. (1992) for electron-neutral collisions and in Phelps (1994) for ion-neutral
collisions. The cross sections of the various collisions are shown in figure 5.8
and 5.2 (Chapter 5). Coulomb collisions are not included in the present study.

3.3 Simulation of an inductively coupled plasma

The classical PIC/MCC scheme presented above was implemented; for the
present work, absorbing boundaries that can be either floating6 or grounded
were used. Two extra modules that were developed for the double-layer inves-
tigation, namely a heating mechanism and a double-layer model, are presented
in this section and the following section, respectively. The implementation of

5The name Monte Carlo is a reference to the famous casinos.
6For the floating boundary, we include a capacitor in series on the left-hand side wall. Note

that the boundary is not strictly floating as a capacitor can conduct current at high frequency.
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the whole model, developed for the present thesis, is called JanuS 7, the code is
multi-platform, object-oriented and written in C++. JanuS is made available
as a package, including a comprehensively commented input file.

As it was chosen to model real ionization events (rather than simply “drop-
ping” new particles into the simulation), a source of energy has to be provided:
the electrons have to be heated. One-dimensional PIC simulations are com-
monly concerned with capacitive coupling, where an rf voltage of some hun-
dreds of volts is applied to one of the boundaries. This mechanism has been
thoroughly studied (Vender 1990, Vender and Boswell 1990, Lieberman and
Lichtenberg 2005) and creates a moving sheath that heats the electrons. The
drawback of this process is that it leads to strongly affected plasma potentials
and electron distributions.

In this section, an adaptation to PIC simulations of the transverse heating
mechanism introduced in Chapter 2 is presented. This scheme is intended
to model inductive excitation, similar to that described by Turner (1993), but
without solving electromagnetic field equations; this scheme has been published
by Meige et al. (2005a). Some advantages of this scheme are that it avoids rf
excursions of the plasma potential, characteristic of capacitive coupling and is
somewhat closer to the current-free double-layer experiment.

3.3.1 Inclusion of a transverse rf field in 1D PIC simulations

An rf electric field E is applied in the direction perpendicular to the spatial di-
mension x of the PIC allowing the electrons to heat in the y direction, momen-
tum and energy being transferred to the other x and z directions via electron-
neutral collisions.

The amplitude E0 of the electric field is a step function of space: it is finite
in the “source” (left half of the simulation) and zero in the “diffusion chamber”
(right half of the simulation). The main difference with the perpendicular heat-
ing introduced in Chapter 2 is that the electric field amplitude is not constant
in time to avoid electron overheating: with a constant electric field amplitude
the work done by the electric field would increase with the electron density,
which is non physical and would lead to unstable simulations. Instead, the
current amplitude J0 is chosen to be the control parameter fixing the electric
field amplitude. The total current density J in the source is

J = J0 sin(ω0t) = Jd + Jc, (3.11)

where ω0 is the electric field frequency; the displacement current Jd and the
conduction current Jc are given by

Jd = ε0
∂E

∂t
,

Jc = eΓe,
(3.12)

where Γe is the y-directed electron flux. Equation 3.11 is integrated over the
source region. The integral of the displacement current and total current

7Janus is the Roman god of gates and doors, beginnings and endings, and hence represented
with a double-faced head, each looking in opposite directions.
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J0 sin(ω0t) are trivial, as the electric field and J0 are uniform in the source;
the integral of the conduction current comes simply from the summation of the
y-directed velocities over the particles in the source region. Finally this yields

∂E

∂t
=

1
ε0

[J0 sin(ω0t)− eΓe] . (3.13)

The perpendicular electric field E, is simply evaluated numerically at each time
step of the PIC simulation by using the finite difference corresponding to 3.13
that is incorporated in the PIC scheme by using an expression similar to 3.6,
but for the y-directed velocities and only for the electrons being in the source.
Because of their large mass the ions8 are not affected by the rf field; hence to
save computer time, the heating algorithm simply does not apply to them.

3.3.2 The transverse heating mechanism in practice

In the following, it is shown that the introduction of the transverse heating
mechanism in the PIC simulation allows a stable plasma to be sustained with-
out introducing any noticeable pathology; this is done by conducting a set of
simulations where the heating region (source) is located in the left half of the
10-cm-long system, with a current density of J0 =100 A/m2 and an rf frequency
of ω0/2π = 10 MHz.

The simulations are allowed to run for several thousand rf cycles in order
to reach a high degree of convergence. The number of macro-particles used is
between 150 000 and 200 000, with 250 cells along the x axis and a time step
of 5 × 10−11 s, allowing the simulations to meet the well-known stability and
accuracy criteria of the PIC scheme (equation 3.8).

Figure 3.4 shows the plasma potential profiles along the axis of the sim-
ulation, for various positions of the heating region and a neutral pressure of
1 mTorr. For relatively large source regions (larger than a quarter of the sys-
tem in the present conditions) the plasma potential is quite uniform and sym-
metrical about the center of the simulation (solid, dashed and dotted-dashed
lines).

Figure 3.5 shows the plasma potential profiles along the axis of the simula-
tion for various neutral pressures ranging from 0.5 to 5 mTorr and where the
heating region is located in the first quarter of the system, from 0 to 2.5 cm.
When the neutral pressure is increased, the plasma potential ceases being sym-
metrical and the potential decreases away from the source. The electron energy
distribution function of such “inductively” coupled plasmas and the possibilities
of stochastic heating are investigated in detail in Chapter 4.

Finally, it should be pointed out that although this inductive heating scheme
works, it may well be improved and made more realistic. For example, rather
than having an abrupt transition between the heating region and the field free
region, it may be more realistic to have an exponentially decaying electric field
amplitude. Also, and as it was already mentioned in Chapter 2, it was shown
that, in reality, the magnetic field associated with the electric field rotates the

8For argon, the ion mass is almost five orders of magnitude greater than that of the
electrons.
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Figure 3.4: Plasma potential spatial profiles for various positions of the heating region
and a neutral pressure of 1 mTorr.

Figure 3.5: Plasma potential spatial profiles for various neutral pressures; the heating
region is located in the first quarter of the system, from 0 to 2.5 cm.
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Figure 3.6: (a) Schematic of Chi-Kung, the helicon system where the current-free dou-
ble layer was measured experimentally for the first time (Charles and Boswell 2003).
(b) One-dimensional numerical model to form a current-free double layer. In the simu-
lation, the electrons in the source are heated by a uniform rf electric field perpendicular
to the spatial dimension of the simulation and the double layer is created by a particle
loss process in the diffusion chamber; the loss process creates a density drop and an
associated potential drop, with the properties of a double layer.

“kick” in the direction of the electron motion irrespective of the electric field
direction (Aliev et al. 1997, Cohen and Rognlien 1996ba). This effect is not
considered in the scheme presented above and could be included in a more
sophisticated one.

3.4 Formation of the current-free double layer9.

To form a current-free double layer, an energy-independent particle loss process
was introduced into the PIC scheme. The particle loss process removes electron-
ion pairs in the same vicinity, following a certain loss frequency profile νloss

10.
The loss frequency that was used is a function of space and was typically null in
the source (left-hand side of the simulation), maximum at the source-diffusion
chamber interface and slightly decreasing in the diffusion chamber (right-hand

9This section, in slightly altered form, has been published in Meige et al. (2005a)
10The loss frequency is a loss probability per unit of time.
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Table 3.2: Standard parameters of the simulation.

Quantity Value
neutral pressure 1 mTorr
rf frequency (ω0/2π) 10 MHz
current density amplitude (J0) 100 A/m2

system length 10 cm
cell number 250
total duration 25-100 µs
time step 5× 10−11 s
ion mass (argon) 6.68× 10−26 kg
room temperature 297 K
capacitance 22 nF

(a) (b)

Figure 3.7: Typical PIC simulated current-free double layer: (a) plasma density and
(b) plasma potential as a function of positions.

side of the simulation); this is shown in the schematic 3.6(b). Although the
loss process does not present any obvious physical justification and does not
explain the current-free double layer observed by Charles and Boswell (2003),
it produces an axial decrease in the plasma density and an associated potential
drop with the properties of a current-free double layer.

3.4.1 Development of the steady state

Simulations are initiated by loading a certain number of macro-particles (typi-
cally 10 macro-particles of each species per cell) between the floating left wall
and the earthed right wall and are allowed to run for several hundred of, even
thousand of, rf cycles in order to reach high degree of convergence. The stan-
dard parameters that were used are shown in table 3.2 and the typical plasma
densities that were dealt with were on the order of 1015 m−3 in the source,
which is an order of magnitude smaller than in the experiment.

Figure 3.7 shows the density and potential profiles with the standard pa-
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rameters (table 3.2) and a loss frequency of 10−6 s−1 at the source-diffusion
chamber interface. The plasma density and potential profiles are averaged over
10 rf cycles and given with respect to the grounded wall. Similar structures
are observed in both the densities and the potential: the electron density de-
creases by an order of magnitude from the source region (upstream plasma) to
the diffusion chamber (downstream plasma). The density drop is locally ac-
companied by a breakdown of quasi-neutrality. The electron to ion mass ratio
me/mi ∼ 1.4 × 10−5 is much smaller than the relative deviation from quasi-
neutrality ∆n/n ∼ 5× 10−2, where ∆n is the average deviation from the exact
charge neutrality and n the plasma density. Hence, the density drop and the
associated potential drop have the characteristic of a double layer (Block 1978,
p. 68).

The upper and lower limits of the non-neutral region are used to precisely
determine the width and the position of the double layer and evaluate the den-
sity and potential drops. The potential drop associated with the density drop is
∼12 V and is accompanied by a charging of the source of about 10 V. Commonly,
double layers are characterized by the ratio eΦDL/kBTe and the thickness over
which the potential drop occurs. In the present case eΦDL/kBTe ∼ 2.8, a char-
acteristic of strong11 double layers 12, and its thickness is less than 20 Debye
lengths, which is rather small.

Let us derive the expected double-layer potential drop as a function of the
density drop and the current through the double layer by adapting the classi-
cal derivation of the sheath potential to the present case (see Lieberman and
Lichtenberg 2005, p. 172). ∆Γ is the net current through the double layer

∆Γ = Γe − Γi, (3.14)

where Γe and Γi are the electron and ion fluxes through a plane located at the
downstream edge of the double layer. The ions are assumed to be collisionless in
the double layer since their mean free path under the present conditions is ap-
proximatively 3 cm, which is much larger than the double-layer thickness. The
ions are assumed to enter the double layer with the sound speed cs (discussed
in Chapter 4)

cs =
√

kBTe

mi
, (3.15)

where mi is the ion mass. The ion flux is then given by

Γi = αncs, (3.16)

where n is the downstream density and α the upstream to downstream density
ratio. The electrons are assumed to be Maxwellian (discussed in Chapter4) and
their net flux is given by the sum of the flux coming from the upstream side

11Although laboratory double layers of such a strength are generally qualified as being
strong, the space plasma physicist community would qualify the present double layer as being
weak.

12For the ratio eΦDL/kBTe, the downstream “Boltzmann temperature” obtained in Chap-
ter 4, i.e. Te = 4.2 eV, was used.
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and the flux coming from the downstream side

Γe =
1
4
nve

[
α exp

(
−eΦDL

kBTe

)
− 1
]

, (3.17)

where ΦDL is the potential drop across the double layer and ve is the electron
mean energy equal to

ve =
√

8kBTe

πme
. (3.18)

Substituting equations 3.16 and 3.17 into 3.14 and rearranging yields

eΦDL

kBTe
= − ln

(
γ +

√
2πme

mi
+

1
α

)
, (3.19)

where γ is the ratio between the net current ∆Γ and the upstream electron
current Γe,up

γ =
∆Γ
Γe,up

=
∆Γ

1
4αnve

. (3.20)

As the double layer is current free (discussed later), γ = 0. For α < 20, equation
3.19 can be approximated within a 5% error by

eΦDL

kBTe
∼ lnα, (3.21)

Under the present conditions, α ∼ 15, hence eΦDL/kBTe ∼ 2.7, which is in
good agreement with the value measured in the simulation (see above) and the
experiment (Charles and Boswell 2003).

When α becomes very large, the influence of the downstream plasma is
negligible, the asymptote of equation 3.19 is the classical wall sheath potential,
where eΦDL/kBTe ∼ 4.7 for argon.

Figure 3.8 shows the time development of the current-free double layer.
Although the potential drop can be observed at the very beginning of the dis-
charge, a solitary propagating ion acoustic wave forms in the first µs of the
simulation in the vicinity of the potential drop and propagates away towards
the diffusion chamber at approximatively the ion sound speed and dies some-
where in the downstream plasma. The double layer forms and reaches a steady
state after approximatively 15 µs, which is much faster than experimentally ob-
served, where the double layer seems to form in ∼ 100 µs (Charles and Boswell
2004b). But once again, the real mechanisms underlying the experimental dou-
ble layer are presumably very different from a simple particle loss process.

3.4.2 Current-free nature of the double layer

Figure 3.9 shows the plasma potential profiles for loss frequencies, from 0 to
106 s−1. For a loss frequency of 106 s−1 (dotted line) a double layer with a
potential drop of around 12 V over a distance of less than 20 Debye lengths is
observed, while no double layer is observed below about this threshold. Double
layers are generally thick compared to the Debye length λD, their width is
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Figure 3.8: Time evolution of the plasma potential profile at the formation of the
double layer. A solitary wave formed in the vicinity of the low potential-side of the
double layer and propagating towards the right wall is observed. It propagates at about
the ion sound speed and decays away from the double layer.

Figure 3.9: Plasma potential spatial profiles for various loss frequencies, ranging from
0 to 106 s−1, at a pressure of 1 mTorr.
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Table 3.3: Electron temperatures Te in the double-layer particle-in-cell simulations
for various neutral pressures P , and corresponding rate coefficients R and ionization
frequencies νiz .

P (mTorr) 0.1 1 10
Te (eV) 38 6 4
R (×10−15 m3/s) 100 5 1
νiz (×105 Hz) 3.3 1.6 3.3

Figure 3.10: Double-layer potential drop as a function of the loss frequency, normal-
ized to the ionization frequency.

generally on the order of
√

mi/meλD, which is ∼ 270λD in argon; however,
double layers whose thickness was 30λD have been observed in argon (Block
1978). By changing the shape of the loss frequency profile, the thickness of the
double layer can be increased, but cannot be reduced further.

Figure 3.10 represents the double-layer potential drop as a function of the
loss frequency normalized to the ionization frequencies, given in table 3.3, for
various neutral pressures ranging from 0.1 to 10 mTorr. No potential drop is
observed for loss frequencies below the ionization frequency, while above this
threshold, the potential drop is proportional to the logarithm of the loss fre-
quency; this was recently confirmed by Lieberman (2006a, private communica-
tion) using his analytical model of the current-free double layer.

Figure 3.11 represents the source end wall potential (floating boundary con-
dition) corresponding to the potential drops shown in figure 3.10; this shows
that the formation of the double layer is accompanied by a significant charging
of the source wall.

The plasma potential obtained for identical parameters are shown in fig-
ure 3.12. The source end wall is floating in one case (dashed line), while it is
grounded in the other case (solid line). In both cases the spatial potential pro-
file and the double-layer potential drop are very similar. However, the sheath
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Figure 3.11: Source wall potential as a function of loss frequency.

Figure 3.12: Spatial plasma potential profiles. The solid and dashed lines represent
the grounded and floating source end wall, respectively.
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Figure 3.13: Plasma potential profiles for various right wall positions, ranging from
7.5 to 15 cm.

on the right boundary is very low when both walls are grounded (solid line),
indicating that a net electron current is flowing to the right boundary; for the
present conditions, the net current flowing is 0.21 A/m2. Naturally, when the
left boundary floats, no current flows through the system and the double layer
is current free.

Let us suppose for the moment that the electrons are in Bolzmann equilib-
rium with a uniform electron temperature Te (discussed in Chapter 4). Also, it
is assumed that the ions enter the left wall sheath with the sound speed cs and
the right wall sheath with a velocity vi that may be greater than cs because of
possible acceleration through the potential drop of the double layer (Chapter 4).
A simple flux balance (similar to the calculation above) shows that

eΦw

kBTe
∼ ln

(
α

cs

vi

)
≤ eΦDL

kBTe
, (3.22)

where α is the upstream to downstream density ratio and Φw the left wall
potential. If the right wall is far enough from the double layer (a few ion mean
free paths), we have vi = cs, hence equation 3.22 shows that the left wall charges
up to a potential corresponding to the double-layer potential drop.

Figure 3.13 shows the plasma potential profiles for various right wall posi-
tions, ranging from 7.5 to 15 cm ( from 2.5 cm to 10 cm from the double layer).
The position of the double layer is not affected by the position of the right
grounded wall. The broken lines show that, if the right wall is a few ion mean
free paths away from the double layer, the precise position of the wall has little
influence on the potential profile; the wall was even moved 50 cm away from
the double layer, and the plasma potential, as well as the potential drop did not
present any significant differences. By extrapolation, it can be supposed that
the right wall can be moved away from the current-free double layer indefinitely
without changing its properties.
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On the other hand, if the the right wall is less than about an ion mean
free path away from the double layer (as for the 7.5 cm case), then the average
velocity vi of the ions entering the sheath is greater than the sound speed cs,
as they are accelerated by the potential drop of the double layer (Chapter 4).
As a consequence of the current-free nature of the plasma, and as shown by
equation 3.22, having vi > cs produces a decrease of the left wall potential Φw,
hence a decrease of the whole potential profile; this is shown by the solid line in
figure 3.13, where the whole plasma potential profile is shifted down by a few
volts, with respect to the other profiles.

3.5 Thoughts on possible important parameters in
the formation of the current-free double layer

The original aims of the simulation were i) to gain insight in the fundamental
mechanisms underlying the formation of the current-free double layer observed
by Charles and Boswell (2003) and ii) to investigate the particle transport,
and especially the formation of an ion beam, in a current-free double-layer
plasma. Hence, the primary concern of the present work was the spontaneous
formation of a current-free double layer as a result of a non-trivial combination
of phenomena, resulting in a non-linear behavior, rather than the formation of
a double layer being more or less the direct consequence of what was “put”
in the simulation, as was done when using the artificial particle loss process.
In the following, attempts to spontaneously form current-free double layers,
thoughts on possible important parameters and hints for future investigation
are presented.

3.5.1 Sudden geometric expansion

In cylindrical systems, in the absence of confining magnetic field, radial particle
losses are a decreasing function of the radius; hence, ignoring the effect of
the magnetic field in the double-layer experiment described by Charles and
Boswell (2003), because the source radius is smaller than the diffusion chamber
radius, particle radial losses may be larger in the source than in the diffusion
chamber. As it was originally shown by Andrews and Allen (1971), this kind
of systems, i.e. a sudden geometric expansion, is propitious to the formation of
double layers. Following up with this idea, Lieberman and Charles (2006) have
developed a theory for the formation of the current-free double layer. In short,
the authors obtained conditions to embed a double layer in a quasi-neutral and
current-free plasma, using five groups of charged particles. The first four groups
of particles are thermal and accelerated electrons and ions. The accelerated
ions are mono-energetic while the accelerated electrons are “beam-like” and
formed downstream from a “nearly” half-Maxwellian electron distribution. The
fifth group of particles is the counter-streaming group of electrons, formed by
the reflection on the sheath at the insulated wall of the “beam-like” electrons.
The fifth group of particles ensures the current-free nature of the double layer.
Finally the particle balance upstream of the double layer is found to determine
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the double-layer potential drop. In this paper, the authors show that one of
the raisons d’être of the double layer is to accelerate the downstream electrons
towards the source, in order to “boost” the upstream ionization and balance
the important losses of particles to the walls.

It would be interesting to validate the theory by using a one-dimensional
particle-in-cell simulation including a particle loss process accounting for the
radial losses in the experiment. The particle loss process would be very different
to that previously described: i) the loss process should be energy-dependent, as
the electrons with a kinetic energy greater than the local plasma potential only
may escape to the walls. ii) Also, the loss frequency should be a decreasing
function of the local chamber radius, i.e. the loss frequency should be larger in
the source than in the diffusion chamber. An estimation of the loss frequency
corresponding to radial losses is derived in Chapter 5.

In such a model, the static magnetic field would not be taken into account.
However, Charles and Boswell (2003) have shown that the formation of the
current-free double layer was only possible for sufficiently important diverging
magnetic field, it is not clear why this is the case. In other words, the role
played by the magnetic field in the formation of the current-free double layer
is not yet understood. For example, although the theory for the formation
of current-free double layers, developed by Lieberman and Charles (2006), is
in very good agreement with the previous current-free double-layer experiment
results, the model does not show any requirement of a static diverging magnetic
field. Actually, it even seems that the presence of a magnetic field goes against
their theory as it may reduce significantly the radial particle losses in the source.
Nevertheless, it may well be that the magnetic is “only” required to allow the
formation of the five groups of particles.

3.5.2 Possible significant role of the magnetic force

In Charles and Boswell’s experiment, the magnetic field decays from 120 G in
the source to 20 G over ∼15 cm, hence it can be expected that the magnetic
force plays a significant role in the formation of the double layer. To verify this
with the PIC simulation, most of the physical parameters have to be scaled
down to keep the simulations tractable. The characteristic length of decay
of the magnetic field should also be scaled down accordingly and has to be
much sharper in the simulation than in reality. Physically the sharpness of
the magnetic field decay out of the solenoid is controlled by the radius of the
solenoid; the sharpness increases with a decrease of the solenoid radius.

Scaling the magnetic field is therefore not an issue, however, its strength and
sharpness in the simulation should be compatible with a good conservation of
the magnetic moment for the electrons, as in the experiment; the characteristic
length of decay has to be large (10 times larger) compared to the electron
gyro-radius. A more quantitative criterion can be given(

1
ωce

∂ωce

∂x

)(
ve

2π

ωce

)
� 1, (3.23)

where the first term of the left-hand side is the fractional change in the cyclotron
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Figure 3.14: Cartoon of the expanding magnetic field lines and corresponding mag-
nitude.

frequency ωce (or in the magnetic field B) when the electron move a distance ∂x,
and the second term is the distance moved along x in the time of a gyro-motion,
where ve is a characteristic velocity of the electrons.

Because the simulation is 1D the gyro-motion is of course not resolved and
the motion of the guiding center alone is calculated. The following algorithm
ensures conservation of energy but not conservation of magnetic moment. We
tried to investigate a more sophisticated model where both magnetic moment
and energy where conserved, but had insufficient time and this should be in-
vestigated further in future. Nevertheless, it should be kept in mind that the
real goal here is to estimate the possible effects of the magnetic force convert-
ing perpendicular energy into parallel energy in the direction of the magnetic
expansion.

Let us consider a diverging magnetic field B symmetric about the x axis and
whose magnitude decreases with x, as shown in figure 3.14. In reality, because
of the conservation of the magnetic moment, electrons receive a net force F ‖
accelerating them towards the direction of expansion

F ‖ = −1
2

mv2
⊥

B

∂Bx

∂x
ex; (3.24)

simultaneously a force F⊥ ensures that the gain (resp. loss) in parallel energy
is accompanied with a loss (resp. gain) of perpendicular energy (see Chen 1984,
p. 30, for example). The ions are taken non-magnetized, their gyro-radius be-
ing much larger than the characteristic length of the present system. Because
the PIC simulation is one dimensional, electrons do not have a cyclotron rota-
tion movement and it is simply considered that v⊥ =

√
v2
y + v2

z . The on-axis
magnetic expansion is to be simulated; hence, ‖Bx‖ can be approximated by
‖B‖ in 3.24. All the electrons in the simulation “feel” the force F ‖, acceler-
ating them in the direction of expansion, conservation of kinetic energy being



66 Chapter 3. Current-free double layers in 1D PIC simulations

(a)

(b) (c)

Figure 3.15: (a) Model of the magnetic field magnitude, (b) plasma density and (c)
plasma potential with a PIC simulation including a simple model of conservation of
the magnetic moment.

ensured “manually” by decreasing (resp. increasing) the perpendicular energy
accordingly when moving in the direction of expansion (resp. contraction).

Figures 3.15(b) and 3.15(c) show the density and potential profiles obtained
with the magnetic field magnitude profile shown in figure 3.15(a). A significant
drop is observed in both the densities and the potential at the position of the
magnetic field drop. Both the density and the potential profile are very similar
to that observed by Charles and Boswell (2003) and this approach seems to be
very promising. However, this should not be mis-interpreted and one should
not immediately conclude that the magnetic force is responsible for the current-
free double layer in the experiment. i) First, the expansion itself of the plasma,
due to the diverging magnetic field was not included in the model above. ii)
The present model is rather simple and although it ensures conservation of
energy, for the reasons mentioned earlier on, the adiabaticity is not conserved
(a time resolution of the magnetic moment µ shows that it is not constant). iii)
Also, the criterion proposed before (equation 3.23) and for which adiabaticity
would be conserved, is hardly satisfied. iv) Finally, in Chapter 4, the possible
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loss of adiabaticity when electrons of the experimental device hit the walls
of the diffusion chamber and the resulting magnetically-trapped population
of electrons are also discussed. Unfortunately, this was not considered until
recently and is not taken into account in the present model and investigated in
depth in the present thesis; this shall be investigated further in future.

Nevertheless, although the model is rather simple and fails to account for
various phenomena, a current-free double layer is formed. This approach is
therefore extremely promising and it would be worthwhile investigating fur-
ther the possible effects of the magnetic force on the current-free double layer
observed by Charles and Boswell (2003).

It seems that until quite recently the importance of the magnetic field in the
formation of the current-free double layer was under-estimated. There has been
considerable interest recently in investigating the possible effects of the magnetic
force (Hagelaar 2005a, Lieberman 2006b, Chen 2006). Also, a very recent paper
by Fruchtman (2006) has shown that the magnetic-field force increases the
plasma thrust along the flow in the case of a current-free double layer.

3.6 Conclusion

An rf electric field perpendicular to the spatial dimension was included in the
left half (source) of a PIC/MCC simulation to model inductive excitation of the
plasma without solving electromagnetic field equations. An advantage of this
scheme is that it avoids rf excursions of the plasma potential, characteristic of
capacitive coupling.

In addition to the localized inductive heating mechanism, an energy-inde-
pendent loss process was introduced in the right half (diffusion chamber) of the
simulation. Although the loss process does not present any obvious physical
justification and does not explain the current-free double layer observed by
Charles and Boswell (2003), it produces an axial decrease in the plasma density
and an associated potential drop with the properties of a current-free double
layer. The loss process was a way of creating and investigating a current-free
double layer. Also, one of the primary concerns was to investigate the particle
transport, and especially the formation of an ion beam in a current-free plasma
sustaining a double-layer; this is presented in Chapter 4

Finally, by using a simple algorithm converting the perpendicular energy
into parallel energy in the direction of the magnetic expansion, it was shown
that the magnetic force may play a significant role in the formation of the
current-free double layer. However, a recent theory on the formation of the
current-free double layer, in good agreement with the experiment has also shown
that, in principle, a static magnetic field was not required for the formation of
the double layer. The role of the geometric and magnetic expansion should be
investigated further by numerical simulation in future.





Chapter 4

Particle transport in the
current-free double layer

One of the primary motivations of the current-free double-layer particle-in-
cell simulation, where both electrons and ions are treated as particles, was
to investigate the particle transport in such a plasma and to compare it with
experimental data. In particular, the formation of an electron and an ion beam,
resulting from charged particles accelerated through the potential drop of the
double layer were of particular relevance. In the present chapter, both electron
and ion transport are investigated.

4.1 Depletion of the electron energy distribution func-
tion1

4.1.1 Background

The form of the escaping electron energy distribution function (eedf) has always
been the subject of considerable discussion, as has the Maxwellianization of the
electrons trapped between opposing sheaths. In capacitively-coupled plasmas,
two-temperature electron distribution functions are not rare and fall into two
categories. i) The first type, generally observed at some tens of mTorr, has a
concave shape, presents a more energetic tail than the bulk Maxwellian distribu-
tion and can be approximated as a sum of two Maxwellian distributions. Such
bi-Maxwellian distributions are thought to be the result of a combination of the
Ramsauer minimum in the electron-neutral elastic collision cross-section and the
distribution function non-locality, as was shown experimentally by Godyak and
Piejak (1990), Godyak et al. (1992) and confirmed by subsequent experiments
and particle-in-cell simulations by Turner et al. (1993). ii) The second type
has a convex shape and is observed at higher pressure, i.e. some hundreds of
mTorr. In this case, the distribution function presents a drop or break in the
slope, defining a sudden divergence away from the bulk Maxwellian distribu-
tion. The presence of this rapid drop for electron energies higher than a certain

1This section, in slightly altered form, has been published in Meige and Boswell (2006).
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threshold is generally attributed to inelastic collisions (Godyak and Piejak 1993,
Godyak et al. 1995).

In inductively-coupled plasmas (ICP), Godyak and Kolobov (1998) mea-
sured even more complex distributions, having a three-temperature structure.
Once again, the depletion at high energy, compared to Maxwellian, is in gen-
eral attributed to inelastic collisions and, at lower pressure, to the escape of
the fastest electrons, as it was shown by Granovski (1971) and Godyak et al.
(2002).

In low-pressure discharges, below a few mTorr, collisions and especially
inelastic collisions are rare and cannot alone explain the high-energy break in the
eedf. Biondi (1954) already showed over 50 years ago that the loss to the walls
might be responsible for the depleted tail of the distribution. He had identified
this phenomenon, that he named “diffusive cooling”, to be the main electron
cooling mechanism in the afterglow of his “ionised gas”. The effect of diffusive
cooling has been previously studied, both theoretically and experimentally, in
swarm physics (Robson 2000, Parker 1965, Rhymes and Crompton 1975) and
plasma physics by a number of models (Ashida et al. 1995 1996, Kolobov et al.
1997). In these studies, the loss of electrons to the walls was shown to be the
main energy loss mechanism, but the assumption of Maxwellian distributions
was made.

A more accurate kinetic approach was recently performed by Arslanbekov
et al. (2001) and Arslanbekov and Kudryavtsev (1998) where they showed that
two main mechanisms exist for electron and energy loss: the first they called
“cutoff effect” and occurs when the trapped electrons become free electrons
as the plasma potential collapses during the discharge afterglow. The second
effect occurs when the trapped electrons gain energy through electron-electron
collisions and are eventually pushed to energies higher than the plasma poten-
tial, thus becoming free electrons and escaping to the walls. Unlike the cutoff
effect that occurs during the afterglow of a discharge, the second effect occurs
even during the steady state. Kortshagen, Maresca and co-workers have exper-
imentally shown some of Arslanbekovs results (Kortshagen et al. 2002, Maresca
et al. 2002). However, these experiments were only conducted in the afterglow
regime of inductively-coupled plasmas, i.e. in transitory regimes.

In this section, the experimental measurements performed by Granovski
(1971) and Godyak et al. (2002), showing that at low pressure, the high-energy
depletion of the eedf is due to the fastest electrons escaping to the walls, are
confirmed by the use of the particle-in-cell simulation. It is shown that in
steady-state plasmas, when the electron mean free path, and more precisely the
energy relaxation length is of the order of or greater than the system length,
electrons trapped in the well formed by the two sheaths at the boundaries have
a Maxwellian distribution, while the high energy tail of the eedf is distinctly
depleted. Clear evidence that the depletion at high energy of the eedf is essen-
tially due to the loss of the most energetic electrons to the walls is presented.
The break energy, for which the depletion of the Maxwellian starts, occurs at
the local plasma potential. That this break point tracks the plasma potential
through the length of the simulation is due to the non-locality of the electron
distribution function.
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Figure 4.1: x-velocity component of the evdf fx represented in log scale, as a function
of the electron energy and at different positions in a double-layer plasma. The distri-
butions are Maxwellian for the low-energy group of electrons and present a depleted
tail at higher energy.

In the following, eedfs are given in terms of normalized electron velocity dis-
tribution functions (evdfs), resolved for the three different velocity components.
They are measured along the abscissa with a spatial average over a distance of
0.4 mm and a temporal average over 100 rf cycles. The ordinate is log scale
and a function of the electron energy, so that a Maxwellian distribution yields
a straight line. To recapitulate, the simulated system has a finite size of 10 cm
along the x direction, while it is infinite along the two other y and z directions,
which allows the actual effect of the walls on the eedfs to be determinated.

4.1.2 Double-layer plasma

The eedf the double layer obtained with the parameters given in table 3.2 and
shown in figure 3.7 are first investigated. As the bulk plasma itself is supporting
the 12 V double layer, this system presents an ideal opportunity to study the
eedf for different local plasma potentials.

Figure 4.1 shows the evdf as a function of the electron energy at different
positions in the plasma and it is quite clear that each of these distributions is
Maxwellian at low energy, but presents a depleted tail at higher energy. The
plasma potential profile along the system is shown as a solid line in figure 4.2
and about half way across the system, i.e. at 5 cm where the loss process
begins, the double layer can be seen at the interface between the source and the
diffusion chamber. Of particular relevance here, the break energy E∗ depends
on the position in the plasma and tracks the local plasma potential. This is
a direct consequence of the non-locality of the electron distribution, where the
eedf is not in equilibrium with the local electric field (Bernstein and Holstein
1954, Tsendin 1974, Kolobov and Godyak 1995).

To make this point very clear, the dotted and dashed lines in figure 4.2
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Figure 4.2: Energy E∗ of the evdf break for positive (dotted line) and negative (dashed
line) velocities as a function of position. The energy of the break tracks the plasma
potential Φ of the double-layer plasma (solid line).

show the evdf break energy, measured in eV, for both positive (right directed)
and negative (left directed) electron velocities, respectively. For both cases, the
energy corresponding to the break follows the local plasma potential. The evdf
break energy for negative velocities is found to occur at energies slightly higher
than for positive velocities, presumably due to the asymmetry of the plasma
potential profile and the potential difference between the left and right walls.
When both walls are grounded a much less pronounced difference between the
positive and negative velocities is observed.

4.1.3 Inductively-coupled plasma

To check that the loss process that creates the double layer does not introduce
non-physical features in the eedf, a simple inductively-coupled plasma (ICP)
is now investigated. The same parameters as in the previous section are used
with the “inductive” heating mechanism on the left half of the system but
the particle loss process on the right half was deactivated. Figure 4.3 shows
evdfs across the plasma which are Maxwellian distributions with a depleted
tail. Once again, as shown by figure 4.4, the evdf break energy E∗ tracks the
plasma potential, but unlike the double-layer case, the break energy for the
positive and negative velocities is the same. This tends to confirm that the
difference between positive and negative velocities in the double-layer case was
due to the highly non-symmetrical nature of the system.

Hence, for both the double-layer plasma and the ICP, the presence of a
sudden break in the eedf for high-energy electrons was shown and due to the
non-locality of the eedf, the energy of the break tracks the local plasma poten-
tial. As stated previously, at higher pressures, the break has been attributed to
atomic processes arising from inelastic collisions, and at lower pressure to the
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Figure 4.3: x-velocity component of the evdf fx represented in log scale, as a function
of the electron energy and at different positions in a simple inductively-coupled plasma.
The distributions are Maxwellian for the low-energy group of electrons and present a
depleted tail at higher energy.

Figure 4.4: Energy E∗ of the evdf break for positive (dotted line) and negative (dashed
line) velocities as a function of position. The energy of the break tracks the plasma
potential Φ of the simple inductively-coupled plasma (solid line).
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Figure 4.5: Three velocity components of the evdf measured in the bulk of the ICP
and plotted as a function of electron energy. The distribution is depleted, compared to
Maxwellian distribution, for the spatially limited velocity direction (fx, solid line). On
the other hand, evdfs corresponding to the velocity direction for which the plasma is
not bounded are Maxwellian (fy and fz, broken lines). The vertical dotted and dashed
lines show the inelastic energy threshold and the local plasma potential, respectively.

high-energy electrons lost to the walls.
Figure 4.5 shows the evdf in the bulk of the ICP for the three different

velocity components and the spatially limited velocity direction of the evdf
fx (solid line) alone displays a break at high electron energies. The evdf fy

and fz (broken lines) corresponding to the perpendicular directions, i.e. where
the plasma is not bounded, are almost Maxwellian, except for a very slight
inflexion, which is presumably due to rare inelastic collisions. If the significant
break observed in fx were also due to inelastic collisions, this would be clearly
seen in the fy and fz components. In other words the substantial break observed
in evdf of the spatially limited direction appears to be mostly due to the loss
of high-energy electrons to the walls.

As previously stated, the inductive heating mechanism acts in the perpen-
dicular direction of the simulation (Chapter 3) and, at low pressure, the energy
relaxation rate is much longer than the momentum relaxation rate. Conse-
quently, electrons suddenly acquiring enough momentum along x to be able to
reach the walls after a single elastic collision have a high probability of actually
escaping without undergoing another collision, and hence without being able
to repopulate the tail of the distribution function. These electrons lost to the
walls, i.e. the most energetic ones, depopulate the tail of the distribution.

For completeness, the numerical experiment was repeated for pressures be-
tween 0.1 to 100 mTorr. As expected from many experiments and glow dis-
charge theory, the bulk electron temperature decreases when the pressure in-
creases. Additionally, the evdf break moves to lower energies, corresponding
to the inelastic collision energy threshold, when increasing pressure. At low
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pressure, i.e. below a few mTorr, the plasma potential defines the limit of the
Maxwellianisation of the electrons, while at higher pressure the electron distri-
bution appears to be governed by the shorter electron mean free path of the
various elastic and inelastic processes.

4.1.4 Discussion

The fact that the electron energy distribution functions presented above for
both the double-layer plasmas and the ICP did not have any low-energy electron
population was not considered until now. This appears to be in contradiction
with the many experiments previously reported (Godyak et al. 2002).

At higher density, electron-electron Coulomb collisions are no longer negligi-
ble and would Maxwellianize the low-energy part of the distribution, and could
explain the absence of low-energy population in the results presented above.
However, under the conditions that were considered (low density), electron-
electron Coulomb collisions are negligible and were not included in the model.
To explain the absence of a low-energy peak in the distribution, we shall go back
to its origin in real experimental systems. Low-energy electrons are trapped by
the ambipolar electric field in the plasma bulk, thus they are prevented from
participating in the heating process taking place in the skin layer. As stated
previously, in the simulation the heating mechanism is located in the the whole
“source”, i.e. in the whole left half of the simulation. Therefore, unlike in real
inductively-coupled plasma, there are no trapped electrons and all the electrons
participate in the heating mechanism, which presumably explains the absence
of low-energy population.

In addition, in the previous simulations, after an ionization event, the energy
between the scattered and the created electron was chosen to be shared with a
probability not depending on the energy of the incident electron, hence favoring
the creation of relatively energetic electrons, which could presumably explain
the absence of a cold population even when the width of the heating region was
reduced to allow the existence of a non-heated trapped population of electrons.

To confirm this assumption, simulations where the heating region was as
small as 0.5 cm, where a significant fraction of the electrons do not participate
in the heating mechanism were run with a different energy-sharing algorithm.
Rather than equally sharing the energy between the scattered electron and the
newly created electron after an ionization event, an energy-dependent mecha-
nism, where the energy of the newly created electron is forced to be less than
1 eV was implemented. In this case a low-energy population of electrons was
observed. However, this population of low-energy electrons is far from being
as important as that experimentally measured and reported by Godyak et al.
(2002), for example. It may well be that electrons in the elastic energy range
suffer from numerical heating or that the simulations are simply not completely
steady state, although run for thousands of rf cycles. This issue is currently
being investigated by Legradic (2006) both experimentally and by computer
simulation.
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Figure 4.6: Electron density in log scale as a function of the plasma potential, so
that Boltzmann electrons yield a straight line. When the double layer is formed, two
distinct populations of electrons exist.

4.2 A Bolzmann equilibrium “by part”

In the previous section, it was shown that electrons trapped by the ambipolar
electric field have a Maxwellian distribution, while those whose energy is greater
than the plasma potential have a depleted distribution. Also, no electron beam
was observed on the high-potential side of the double layer. The presence of an
electron beam in the simulation and especially in the experiment is of particular
relevance as it would validate the theory recently developed by Lieberman and
Charles (2006) on the formation of the current-free double layer, as it requires an
electron beam. That such an electron beam was not observed in the simulation
is not too surprising as the electron density is much smaller downstream than
upstream; thus even if an electron beam was formed, it would result from
electrons accelerated from the downstream side, the relative density of the beam
(upstream) would be extremely small.

Figure 4.6 shows the electron density as a function of the plasma poten-
tial, so that Boltzmann electrons yield a straight line, for the typical double
layer obtained for the parameters given in table 3.2 (Chapter 3) and a loss
frequency of 106 s−1. Two distinct populations of Boltzmann electrons with
distinct “Boltzmann temperatures”2 are noticeable. A population of hot elec-
trons is observed on the high-potential side, with a temperature of 5.7 eV and
a colder population downstream of the potential drop, with a temperature of
4.2 eV. That the electrons are in Boltzmann equilibrium, even “by part”, tends
to confirm that no electron beam exists in the simulation.

A number of double-layer experiments have reported two electron temper-
atures; for example Chan and Hershkowitz (1983, and references therein) have

2What is meant by “Boltzmann temperature” is the inverse of the slope of the electron
density in log scale ln(ne) plotted as a function of plasma potential Φ.
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measured a high temperature on the high-potential side of the double layer and
have investigated this peculiar behavior into detail. They have shown that the
thermalization of the “bump-on-tail” distribution, due to the electrons acceler-
ated from the downstream to the upstream side, was not responsible for the two
distinct electron temperatures, and believes that turbulence in the double-layer
region, cold-electron convection and thermoelectric effects may play a signifi-
cant role in the temperature non-uniformity.

Charles and Boswell (2003) have also measured two distinct electron tem-
peratures when the current-free double layer was formed. Although this is still
not fully understood, it is presumably a combination of the electrons trapped
by the electrostatic potential of the double layer and a loss of the adiabaticity
(Lieberman 2006b, private communication). In short, there is a first population
of electrons, trapped upstream of the double layer by the electrostatic potential.
These electrostatically trapped electrons “see” the heating mechanism from the
source constantly, and are permanently heated. Some of these electrons may
escape the potential well and be accelerated towards the walls of the diffu-
sion chamber by the magnetic force converting their perpendicular energy into
parallel energy (conservation of the magnetic moment). At some point these ac-
celerated electrons reach the sheath at wall of the diffusion chamber and those
which are not lost to the wall suffer from specular reflections, hence loosing
their adiabaticity. Thus, instead of returning to the source following the same
way they came, these electrons are then trapped in the diffusion chamber by
the magnetic mirror, suffering from elastic collisions; the loss of energy in col-
lisions is not balanced as these magnetically trapped electrons never “see” the
heating mechanism. Eventually these electrons enter a loss cone and are able to
return to the source etc. In summary, it seems that an electrostatically-confined
hot electron population exist in the source and another magnetically-confined
colder electron population in the diffusion chamber.

In the present simulation, the two distinct electron temperatures observed
may be explained in a different way. They may be a consequence of a com-
bination of both the depletion and the non-locality of the x-directed electron
energy distribution function (Section 4.1). Upstream of the double layer, the
depletion of the distribution function starts for energies higher than ∼ 20 eV,
while it starts at ∼ 8 eV downstream of the double layer; hence the effective
temperature 3 of the distribution (figure 4.7) is higher upstream than down-
stream of the double layer, in good qualitative agreement with the “Boltzmann
temperature” given above. However, the “Boltzmann temperature” and the
“effective temperature” defined above are not equal; the qualitative trends are
the same, but the numbers are slightly different. This is presumably because
of the anisotropy of the eedf; for example, is the temperature derived from the
Boltzmann relation related to that derived from the x-directed eedf, or from
the full three-dimensional eedf (the 3D effective temperature is actually rather
uniform in the whole system).

3What is meant by “effective temperature” is the temperature that would have a
Maxwellian distribution with the same mean energy as the present non-Maxwellian distri-
bution.
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Figure 4.7: x, y and z-directed effective electron temperature spatial profiles.

In summary, the two distinct temperatures measured by Charles and Boswell
(2003) in the current-free double layer seem to have a different origin from that
observed in the present simulated current-free double layer. It seems unlikely
that the explanation given for the simulation could also be valid in the experi-
ment as the experiment chamber is much longer than in the simulation, resulting
presumably in a much less depleted eedf. However, the existence of two distinct
Boltzmann populations seems to be a good sign for both the experiment and
the simulation as it was shown by Verheest and Hellberg (1997) that double
layer cannot be supported by only one Boltzmann population irrespective of
the number of cold fluid species (ions).

It would be interesting to try and model with the PIC simulation the loss
of adiabaticity evoked above, in a similar way as presented in Chaper 3 as it
may trigger the spontaneous formation of a current-free double layer; however,
the possible significant role of this phenomenon was not proposed until recently
and cannot be investigated in depth in the present thesis.

4.3 The electrons seem to be hotter where they are
not heated

As mentioned in the previous section, according to their “Boltzmann tempera-
ture”, the electrons are more energetic on the high-potential side of the double
layer, where they are heated. The solid line in figure 4.7 shows that the 3D
effective temperature profile is rather uniform and does not seem to decrease
much on the low-potential side; on the contrary, before the net decrease of the
effective electron temperature on the downstream side, a slight increase just
after the double layer is first observed. This is due to a combination of two
effects being somewhat in competition: the respective increase and decrease of
the x and y-directed electron temperatures downstream of the double layer. i)
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The decrease of the x-directed electron effective temperature Tx (dashed line)
was already explained in the previous section; this is due to a combination of
the depletion and the non-locality of the x-directed eedf. ii) The increase of
the y-directed electron temperature Ty (dotted-dashed line) was also explained
earlier; recall from Chapter 2 that electrons with a low parallel energy are elec-
trostatically trapped in the source, while the fastest electrons are not and can
be affected by some sort of stochastic heating in the non-uniform perpendic-
ular rf electric field. Under the present conditions of pressure, the stochastic
heating dominates over the classical ohmic heating; hence, electrons that are
stochastically heated are more anisotropic than those that are not. These “more
anisotropic” energetic electrons are present on both sides of the system. This
is clearly visible on the low-potential side of the system, where the y-directed
electron mean energy Ey is 1 eV larger than Ex. However, because these “more
anisotropic” energetic electrons are much less numerous than the low-energy
trapped electrons on the high-potential side, they are more visible in this re-
gion; Ey is only 0.5 eV larger than Ex, hence giving the impression that electrons
are somewhat cooler where they are heated than where they are not.

4.4 Formation of an ion beam, comparison with ex-
periment4

The results obtained with the particle-in-cell simulation were consistent with the
retarding electric field analyzer (RFEA) measurements performed by Charles
(2004) in Chi-Kung that indicated a sharp discontinuity in the plasma potential
and the formation of a super-sonic ion beam. However, no experimental ion
phase space measurement was originally available for further comparison. A
LIF (laser-induced fluorescence) measurement of the ion phase space was later
performed and was in relatively good agreement with that obtained with the
PIC simulation.

Figure 4.8(a) shows the ion velocity distribution in phase space when the
current-free double layer is formed. The abscissa represents the position (spatial
dimension of the simulation) and the ordinate represents the ion velocity. The
same parameters as the “typical double layer” shown in figure 3.7 were used, the
potential drop across the double layer is approximately 12 V over a thickness
of less than 20 Debye lengths and it is associated with a charging of the source
up to 10 V. Throughout the simulation length, a low-energy population of ions
created by ionization and charge exchange collisions is observed. A high-energy
population of ions is observed downstream of the double layer and constitutes
an ion beam. These high-energy ions are those accelerated while traversing
the potential drop of the double layer. The sound speed cs in argon under
the present conditions (Te =5.7 eV) is ∼3.7 km/s. Figure 4.8(a) shows that
a pre-sheath upstream of the double layer first accelerates the ions up to the
sound speed; once the ion flow becomes super-sonic, the double layer forms
(the quasi-neutrality is locally violated) and the ions are then accelerated up to

4The results presented in this section were published in Meige et al. (2005a), Sun et al.
(2005) and Keesee et al. (2005).
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Figure 4.8: (a) Ion velocity distribution in phase space with the full PIC simulation
under the conditions of the double layer; a super-sonic ion beam is observed. Increased
brightness indicates increased density. (b) x-directed ion velocity distribution function
f(v) in arbitrary units at various positions.
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twice the sound speed (the average velocity of the ion beam is 8.1 km/s) after
less than 20 Debye lengths.

The acceleration of the background ion population to the floating and
grounded boundaries of the simulation volume where the ions fall through the
sheath is also evident at the sides of figure 4.8(a).

Figure 4.8(b) shows that the density of the ion beam decreases away from
the double layer as a result of ion-neutral collisions (charge exchange and elastic
collisions).

The ion argon velocity distribution function (ivdf) along the axis of Chi-
Kung (the ion phase-space density) was nonperturbatively measured (Keesee
et al. 2005) with a portable, tunable diode laser, LIF diagnostic and compared
to the simulation. Figure 4.9(a) shows the log of the LIF signal versus par-
allel ion flow speed and axial position in Chi-Kung in the conditions of the
double-layer formation; a strong acceleration of the ions is visible in the LIF
data (from 25 to 28 cm), which is in good agreement with the RFEA mea-
surement. Downstream of the double layer, the trapped ion population created
by ionization and charge-exchange collisions as well as its acceleration through
the sheath to the grounded end wall are also clearly visible. For all accessible
neutral pressures in Chi-Kung, the ion beam is not detectable by LIF beyond
the acceleration region, although the ion beam is clearly measured with the
RFEA. Previous measurements by Cohen et al. (2003) indicated that such low
density ion beams become undetectable within a few cm of the double layer by
low-power LIF because of the metastable density decreasing exponentially in
the expansion region.

For completeness and to be able to compare the ion phase space predicted by
the PIC simulation with experimental data, the LIF measurements of double-
layer formation were repeated in the higher-density, larger-diameter helicon
source, called HELIX (Sun et al. 2005). The plasma potential profile measured
with a rf-compensated, planar Langmuir probe and LIF measurements of the
parallel ivdf for a neutral pressure of 1.3 mTorr are shown in figure 4.9(b) and
(c). The ions accelerate through the presheath upstream of the double layer and
reach a peak energy of approximately 18 eV. The ivdf is well fitted by a single
Maxwellian distribution. Since the downstream plasma electron temperature is
5.0 eV, the ion beam is supersonic with a Mach number of roughly 2.0. The LIF
measurements indicate that the total ion acceleration occurs over approximately
20 cm with strong ion acceleration occurring over a much narrower region, 5
cm, located at the maximum of the magnetic field strength gradient.

4.5 Conclusion

Recall from Chapter 3 that one of the primary motivations for the particle-
in-cell simulation of a current-free double layer was to investigate the particle
transport in such a plasma. Although, the particle loss process introduced into
the PIC scheme does not present any obvious physical justification, it allowed a
current-free double layer to form, hence giving us the opportunity to investigate
in depth the particle transport.
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Figure 4.9: (a) Logarithm of amplitude of parallel ivdf (color bar) versus parallel
velocity and axial position as measured by LIF in the Chi-Kung experiment. (b)
double-layer potential difference (plasma potential - 9.8 V) versus axial position as
measured with a rf-compensated, planar Langmuir probe in HELIX (open triangles),
ion-beam energy as measured with LIF (open circles), predicted upstream potential
difference based on ion-beam data (solid triangles), and axial magnetic field strength
(solid line). (c) Logarithm of amplitude of parallel ivdf (color bar) versus parallel
velocity and axial position in HELIX. Figure components (a), (b), and (c) have been
aligned by location of the beginning of rapidly expanding magnetic field (Sun et al.
2005).
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For inductively-coupled plasmas (with or without an electric double layer),
it was shown that when the electron energy relaxation length is greater than the
system dimension, electrons lost to the walls are the main mechanism for the
high-energy depletion of the eedf. These results confirm earlier experimental
results by Granovski (1971) and Godyak et al. (2002). The depletion of the eedf
is of particular relevance as it has strong consequences on the electron flux to
the walls. This is often neglected in a number of so-called hybrid simulations,
where the electrons are assumed to have a Maxwell-Boltzmann distribution,
even at low pressure, leading to a miscalculation of quantities such as the plasma
potential, as demonstrated in Chapter 3.

No electron beam was observed on the high-potential side of the double
layer. The presence of an electron beam in the simulation and especially in
the experiment would validate the theory recently developed by Lieberman and
Charles (2006) on the formation of the current-free double layer, as it requires
an electron beam. That no electron beam was observed in the simulation is
presumably because of the very large upstream to downstream density ratio.
Although this was not checked, it may well be that an electron beam was formed
in the the double-layer simulation of Section 3.5.2; this shall be investigated
further in future.

Finally, the spatial structure, beam energy, character of the ion acceleration
region, and ion heating in the presheath predicted with PIC simulation of the
current-free double layer are all consistent with the LIF measurements. Both
the simulation and the experiment have shown the formation of a super-sonic
ion beam resulting from the ions accelerated through the double-layer potential
drop. Because of the formation of a super-sonic ion beam, the current-free
double layer has many potential applications, such as in plasma processing
(Charles 2006) and plasma propulsion (Gesto 2005, Gesto et al. 2006, Charles
et al. 2006) etc. For example, because the double layer is completely current
free, the electron and ion fluxes across the double layer are equal, which is of
great interest for space propulsion as there is no need to neutralize the ion beam
providing the thrust.





Chapter 5

An improved hybrid
Boltzmann–particle-in-cell
simulation

5.1 Introduction

Particle-in-cell (PIC) is a purely kinetic representation of a system contain-
ing ions and electrons, considered as individual particles, which move under
the influence of their own self-consistent electric field (Birdsall and Fuss 1969,
Langdon and Birdsall 1970, Hockney and Eastwood 1988, Birdsall and Langdon
1985). PIC simulations use first principles (Poisson’s equation and Newton’s
laws) only. Each particle of the simulation is actually a macro-particle which is
allowed to represent a large number of real particles (on the order of 109 or 1010

particles per macro-particle) and which can move inside the simulated domain.
With a small number of these macro-particles (typically between 104 and 105

for a 1D system), a realistic steady-state plasma can be obtained in a few hours
on a modern desktop computer.

The time step and the cell size of full particle-in-cell simulations, where both
ions and electrons are treated as particles have to resolve both the plasma fre-
quency and the Debye length to ensure stable and accurate simulations. These
extremely stiff conditions become a real issue when simulating high density plas-
mas as the plasma frequency is proportional to the square root of the plasma
density. The higher the density of the simulated plasma is, the shorter the time
step and the smaller the cells. For example, to simulate plasmas at a density of
1017 m−3, the time step should be as small as 10−11 s, which is still tractable as
long as one is interested in simulating phenomena reaching a steady state over a
few electron time scales. However, when dealing with phenomena related to ion
transport or of which time scale is large, e.g. of the order of the millisecond, full
particle-in-cell simulations become cumbersome, as they would require several
billions of time steps and several days of calculation.

Increasing the speed of particle-in-cell simulations is a challenging issue
that has been going on for years; Kawamura et al. (2000) have written a very
interesting review of the various techniques that are commonly used. As early
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as the beginning of the 80’s Cohen and Freis (1982) and Langdon et al. (1983)
had developed the so-called implicit scheme for PIC simulations allowing the
use of larger time steps than with the classical explicit scheme. More recently,
the use of variable macro-particle weight was developed (Cooperberg et al. 1994,
Coppa et al. 1996, Shon et al. 2001). Some techniques also involve optimization
of the codes with respect to the physical architecture of the computers (Liewer
and Decyk 1989, Bowers 2001) etc.

The speed of PIC simulations can also be increased by making a certain
number of assumptions on the electron transport. Under isothermal and colli-
sional conditions, the relationship between the density gradient and the plasma
potential agrees well with the simplified Boltzmann equation that reads

ne = n0 exp
eΦ

kBTe
, (5.1)

where ne is the electron density, n0 the electron reference density where the
potential is null, Φ is the plasma potential and Te is the electron tempera-
ture. This assumption can be implemented a priori and instead of solving the
electron transport self-consistently, one can assume that the electron density
is given by equation 5.1, which allows to jump over the electron plasma fre-
quency, hence saving a significant amount of computing time and smoothing
out any fluctuation in the time range less than the plasma frequency. The only
constraint on the time step remaining in this case is that it should be short
enough to prevent the particle ions from crossing a whole cell. Typically, for
the plasmas considered above, the time steps can be as large as 10−7 s, which is
several thousands times larger than the time step required for a full PIC under
the same conditions. In section 5.2.5, a necessary condition on the time step to
ensure stability and accuracy of the simulation is given. This kind of simulation
is called hybrid simulation as the different species are not treated in the same
way: electrons are treated as a fluid, described by the Boltzmann relation, while
ions are treated as particles. In the following, “hybrid Boltzmann-PIC” simu-
lations will be referred to as “classical hybrid” or simply “hybrid” simulations.
However, note that various other types of “hybrid” simulations exist, such as
fluid equations coupled to Monte Carlo simulations.

Hybrid simulations work quite well and have been used extensively in many
different fields of plasma physics such as plasma propulsion (Garrigues et al.
2000), plasma processing (Ventzek et al. 1993, Kwok et al. 2001), fundamental
plasma physics (Chabert and Sheridan 2000) etc.

In a very interesting paper, Cartwright et al. (2000) proposed an improve-
ment on the classical hybrid scheme accounting for depleted energy distribution
functions. The authors included in their scheme an energy equation to calculate
the electron temperature and an electron balance. They also proposed the in-
clusion of particle electrons to retain some kinetic effects. To some extend, this
paper presents a number of similarities with the work presented below, though
developed independently. A detailed comparison between the approach below
and that of Cartwright et al. (2000) would be interesting, but beyond the scope
of the present chapter and thesis.
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Figure 5.1: The solid and the dashed lines represent the plasma potential profiles
obtained with a full particle-in-cell (PIC) simulation and a hybrid simulation, respec-
tively. These two simulations were run under the same conditions. The self-consistently
electron temperature calculated with the PIC was used as a parameter in the hybrid.

Some of the disadvantages of most hybrid models is that they are not self-
consistent and the assumptions they are based on are not necessarily appro-
priate. i) They are not self-consistent because the electron temperature is not
calculated but is a parameter of the simulation and so is the particle creation
source term, i.e. the number of ions injected in the simulation per time step. In
principle, the temperature and the creation source term are somewhat related.
In classical hybrid simulations, they are both parameters, and their consistency
can only be verified a posteriori. ii) In addition, assuming that the electrons
have a Maxwell-Boltzmann distribution is not necessarily adequate. For exam-
ple, a real low-pressure (a few mTorr) and bounded plasma (where the electron
energy relaxation length is larger than the system) would have an electron en-
ergy distribution function depleted at energies higher than the plasma potential,
as shown in Chapter4. In such a case, assuming a Maxwell-Boltzmann distribu-
tion leads to an over-estimation of the electron flux to the wall and therefore to
an over-estimation of the plasma potential. This is shown in figure 5.1, where
the steady-state plasma potential profiles obtained with a full PIC and a clas-
sical hybrid model, under the same conditions of temperature (Te = 4.6 eV),
pressure (P = 1 mTorr) and plasma density (ne = 2.4 × 1015m−3) are com-
pared. For higher pressures, when the PIC electrons have a “more Maxwellian”
distribution, the two plasma potential profile are closer.

Another example, where the use of Boltzmann electrons may fail to account
for important phenomena, was recently investigated by Meige et al. (2005b). In
this paper we show that in Plasma Immersion Ion Implantation (PIII) systems
(Conrad et al. 1987, Chu et al. 1996), where a short rise time is applied to the
substrate, an electron shock wave may form, heating the electrons up to high
energies. Many of these fast electrons are expelled from the plasma leading to
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Figure 5.2: Ion-neutral collision cross sections in argon.

a high plasma potential and thus to a high surface electric field on the earthed
electrode which could give rise to non-negligible electron field emission. The
investigation of short-rise-time-pulse PIII systems is very commonly done by
the use of hybrid simulations (Kwok et al. 2001), hence failing to account for
any temporal fluctuations less than the plasma frequency, such as the electron
shock observed with the full PIC simulation.

In this chapter, the basic equations behind classical hybrid models are pre-
sented. Then, a novel scheme, where a Monte Carlo simulation for particle
electrons is coupled to the classical hybrid model is presented; this model al-
lows a self-consistent calculation of the electron energy distribution function,
accounting for non-Maxwellian distributions, the electron temperature and the
source term profiles. Finally, the results obtained with a full PIC simulation,
a standard hybrid simulation and the improved hybrid model presented here,
are compared. The results obtained with the novel scheme are in much better
agreement with the full PIC simulation than the classical non self-consistent
hybrid model.

5.2 Basic equations of the hybrid model

5.2.1 Linearization of Poisson’s equation

The hybrid simulation follows the same steps as a standard PIC simulation
(Birdsall and Fuss 1969, Langdon and Birdsall 1970, Hockney and Eastwood
1988, Birdsall and Langdon 1985). In short, (i) the charges are accumulated
on the mesh, (ii) Poisson’s equation is solved to find the corresponding electric
field, (iii) Newton’s law is used to push the particles according to the electric
field. These steps constitute one iteration. The iterations are repeated until
the simulation reaches the steady state. The ions are treated as particles, while
the electrons are assumed to be in Boltzmann equilibrium, i.e. their density is
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given by equation 5.1. Note that the ions undergo elastic and charge-exchange
collisions with neutrals, following the Monte Carlo scheme developed by Vahedi
and Surendra (1995) for PIC simulations and using the cross sections shown in
figure 5.2.

In the following, the time integration of Poisson’s equation coupled with the
Boltzmann relation is presented. Let upper indices refer to a moment in time
and let ∆t be a time step, with tk+1 = tk + ∆t. Assume that the values of the
quantities are known at tk and to be calculated at tk+1. Equations are given
for a one-dimensional system, however, one could easily generalize to two and
three-dimensional systems.

Poisson’s equation reads(
∂2Φ
∂x2

)k+1

= − ρ

ε0
= − e

ε0

(
nk

i − nl
e

)
, (5.2)

where ni is the ion density coming from the accumulation of the particle ion
charges on the mesh and ne the electron density given by the Boltzmann re-
lation. The electron density can be evaluated either at time tk (l = k) or at
time tk+1 (l = k + 1). Evaluation at time tk is explicit, since all quantities at
time tk are already known. This is computationally attractive, but can lead
to fluctuations or even instabilities in the calculation, unless restrictions are
applied to the time step ∆t. Evaluation at time tk+1 must be implicit, since no
values are known yet. Implicit treatment does not lead to fluctuations or insta-
bilities, but is harder to implement, since when the electron density is replaced
by its expression (equation 5.1), the potential Φ at time tk+1 appears on the
right-hand side in a non-linear way(

∂2Φ
∂x2

)k+1

= − e

ε0

(
nk

i − n0 exp
eΦk+1

kBTe

)
. (5.3)

This issue is generally worked around by taking the first order estimate ñk+1
e

of the electron density at tk+1

ñk+1
e = nk

e

[
1 +

e

kBTe

(
Φk+1 − Φk

)]
, (5.4)

which allows equation 5.3 to be linearized(
∂2Φ
∂x2

)k+1

− 1

λk
D

2 Φk+1 = − e

ε0

[
nk

i − nk
e

(
1− e

kBTe
Φk

)]
, (5.5)

where the local Debye length, λk
D is given by

λk
D =

√
ε0kBTe

e2nk
e

. (5.6)

The spatial integration of equation 5.5 is not presented here as it can be easily
done by any classical algorithm solving tri-diagonal systems (Press et al. 1992)
for 1D simulations or five-point equations (Shneider and Zedan 1981) for 2D
systems.



90 Chapter 5. An improved hybrid Boltzmann-PIC simulation

Figure 5.3: Time evolution of the plasma potentials using equation 5.12 (solid line)
and 5.17 (broken lines) to calculate n0. Critical damping is obtained for f = f0 =√

q∆t/p.

5.2.2 Calculation of the density reference n0

In hybrid models, the electron density reference n0 is very commonly imposed or
hidden in the normalization of variables. This is not an issue as long as Poisson’s
equation is not solved, i.e. as long as quasi-neutrality of the plasma is assumed,
but care should be taken when the Boltzmann relation is coupled with Poisson’s
equation as imposing n0 leads to a miscalculation of the sheath potential and
all the associated consequences. Here, various methods to estimate n0 are
proposed.

Steady-state value for n0

The most straightforward and probably the most stable method to estimate n0

is to assume (i) that at each instant the electron flux to the walls equals the ion
flux and (ii) that the ion flux is balanced by creation in volume (steady-state
regime). Let q be

q =
{

S

1
4
v exp

(
eΦ

kBTe

)
n · dS, (5.7)

where S is the surface of the system and v is the average electron velocity,

v =
√

8kBTe

πme
. (5.8)

Conditions (i) and (ii) above lead to

{

S

Γi · dS =
{

S

Γe · dS = qn0, (5.9)
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Figure 5.4: Time evolution of the electron density reference n0 calculated with
equation 5.12 (solid line) and 5.17 (broken lines). Critical damping is obtained for
f = f0 =

√
q∆t/p.

and {

S

Γi · dS =
y

V

Siz dV = SizV, (5.10)

respectively. In equations 5.9 and 5.10, Γi and Γe are the ion and electron fluxes
to the walls respectively and V the volume of the system. The source term Siz

is constant in time, uniform in space and is a parameter of the simulation
corresponding to the number of real ions injected in the simulation per unit
of time and volume. Equation 5.10 should also account for losses in volume if
required (e.g. attachment in the case of discharges with electronegative gases).
Combining and rearranging equations 5.9 and 5.10

n0 =
SizV

q
, (5.11)

or

n0 =
4SizL

v
[
exp

(
eΦL
kBTe

)
+ exp

(
eΦR
kBTe

)] . (5.12)

for a 1D system and where ΦL and ΦR are the left and right wall potentials,
respectively and L the length of the system. This demonstrates what was
previously stated: n0 and Siz cannot be imposed simultaneously, as for a given
Siz, there is one and only one value of n0 satisfying the steady-state null-current
condition.

This manner of estimating n0 is convenient to implement and leads to quite
stable simulations as its only time dependency is through the wall potentials ΦL

and Φr, which are also constant when grounded. The drawback of this method
is that the time development of the discharge (the breakdown) is not properly
simulated, hence, only the steady-state quantities are accurate. This could be
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slightly improved by computing the real ion flux to the walls at each time step,
which would allow any fluctuations on the ion time scale to be followed.

Real electron balance for an accurate time development of n0
1

When a proper time development of a discharge is required, one cannot simply
assume that the electron flux equals the ion flux. Indeed, this might be true
on average in the stationary regime, but it is not necessarily the case in the
transitory regime. Hence, the real electron flux to the walls has to be estimated.
Let p be

p =
y

V

exp
(

eΦ
kBTe

)
dV. (5.13)

The total number of electrons present in the system is Ne = n0p, while the
number of electrons lost during a time step is Nl = n0q∆t, q being defined by
equation 5.7. Hence, the fraction of electrons lost during a time step is given
by

Nl

Ne
=

q∆t

p
. (5.14)

This yields

Nk+1
e = Nk

e

(
1− q∆t

p

)
+ SizV∆t, (5.15)

where SizV∆t is the number of real electrons created in the volume during one
time step. This last term should also account for losses in volume if appropriate
(e.g. attachment in the case of discharges with electronegative gases, as in
Chapter 6). Trivially, nk+1

0 is given by

nk+1
0 =

Nk+1
e

p
. (5.16)

Using equation 5.15 and 5.16 to calculate n0 at each time step leads to insta-
bilities on the plasma potential that eventually damp out. These instabilities
are not physical and are just an artifact of the method. A stabilization term to
complete equation 5.15 and 5.16 was empirically found

nk+1
0 =

1
p

[
Nk

e

(
1− q∆t

p

)
+ SizV∆t + f

(
pnk

0 −Nk
e

)]
, (5.17)

where f is an arbitrary coefficient. Critical damping is obtained for f = f0 =√
q∆t/p. Figure 5.3 shows the time evolution of the plasma potentials using

equation 5.12 (solid line) and 5.17 (broken lines) to calculate n0 for different
values of f , while figure 5.4 shows the corresponding values of n0. Note that
this calculation of n0 was also successfully tried in the case of non-stationary
discharges, such as an capacitive rf discharge, where an rf potential is applied
at one of the boundaries. Note that Hagelaar (2006) has recently written an
report where the approach presented above is detailed.

1The calculation of n0 seems to be an unresolved and not a well-known issue, and to the
best of my knowledge, not discussed in the literature, except by Cartwright et al. (2000). The
expression of n0 given in this section is new. I would like to acknowledge my advisor Gerjan
Hagelaar for the useful discussions on this topic.
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5.2.3 Ion source term profile

In hybrid models, because the electrons are modeled as a fluid, no real colli-
sion events occur, and both the electron temperature and the particle creation
profiles are parameters of the simulations. The injection of new ions in the
simulation is therefore not accomplished in a self-consistent way and may or
may not be realistic. In all cases the integral of the particle creation source
term, i.e. the number SizV∆t of ions injected at each time step, has to be
imposed to allow the simulation to reach a steady state. This is equivalent to
fixing the power injected in the plasma. The velocity of the new ions injected
in the simulation is taken from a Maxwellian distribution at room temperature
(0.026 eV). Here, several methods to inject new ions are presented, from the
easiest to the most sophisticated.

i) The first method assumes that the source term profile is uniform. In this
case the new ions are created uniformly between the two boundaries irrespective
of the electron density and temperature.

ii) The real ionization source term is proportional to the electron density
and reads Siz = kiznnne, where nn and ne are the neutral gas and the electron
density. It can be assumed that the reaction rate kiz and the neutral gas density
nn are uniform and independent of the electron temperature. Hence, another
method is to inject the new ions with a probability proportional to the electron
density ne(x), which is slightly better.

iii) By integrating the cross sections corresponding to ionizing collisions
over a certain electron energy distribution (e.g. a Maxwellian distribution or
truncated Maxwellian distribution accounting for the high energy depletion),
an energy-dependent ionization rate kiz(E) can be obtained and fitted2. By
substituting a specified electron temperature profile E(x) (parameter of the
simulation) into the energy-dependent ionization rate kiz(E), a spatial ionization
rate kiz[E(x)] profile is determined. In this case, new ions are injected in the
simulation with a probability proportional to kiz[E(x)]ne(x). It should then be
verified a posteriori that

y

V

Siz dV =
y

V

kiznnne dV, (5.18)

where Siz and kiz are both parameters of the simulation. However, this is still
limited because the validity of the parameters can only be verified a posteriori.
In section 5.3, a method to calculate the ionization source term self-consistently
is proposed.

5.2.4 Ion radial loss to model 2D effects

In real plasma discharges, particle radial loss might play a significant role,
especially when the radius of the system is small compared to its length and
when no magnetic field exists to axially confine particles.

2Reaction rate coefficients k can generally be well fitted by a generalized Arrhenius function
of the energy E , of the form k(E) = exp(a + b ln E + c/E + d/E2 + e/E3).
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Figure 5.5: Comparison of the electron density profiles with the 2D model (solid
line), and the 1D model (broken lines) in the same conditions. For an infinite “virtual”
radius (dashed line), the density is rather uniform. For a “virtual” radius equal to that
used in the 2D model (dotted and dashed-dotted lines), the density profiles are similar
to that obtained with the 2D model.

Figure 5.6: Comparison of the plasma potential profiles with the 2D model (solid
line), and the 1D model (broken lines) in the same conditions. For an infinite “virtual”
radius (dashed line), the potential is rather uniform. For a “virtual” radius equal to
that used in the 2D model (dotted and dashed-dotted lines), the potentials are similar
to that obtained with the 2D model.
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Consider a system in which the radius is very large (infinite or a 1D system
with no radial loss) compared to its length and where ionization takes place
in the source (left half of the system) only. As shown by the dashed lines in
figures 5.5 and 5.6, the electron density and the plasma potential are rather
uniform and hardly decrease from the source to the diffusion chamber (right
half of the system), despite the fact that the plasma is created in the source.
This is because particles can only be lost at either end; hence, although particles
are created in the source, they eventually reach the diffusion chamber to fill it
up.

This is not the case anymore for a system in which the radius is small
compared to its length and where particles can move radially and be lost to
the walls before reaching the diffusion chamber. In this later case, differences
between the source and the diffusion chamber are enhanced by the particle
radial losses, as it is shown by the solid lines in figures 5.5 and 5.6, where the
radius is 6 cm (2D model).

In a hybrid model, the radial loss of particles is modeled for ions only; the
electron density, given by the Boltzann relation and coupled to the ion density
via Poisson’s equation automatically follows the ion density. Considering a real
system of radius R, the ion radial loss can be modeled for a 1D system as
follows. The real radial ion flux to the wall Γw is given by

Γw = Γs = nscs = αnbcs, (5.19)

where Γs, ns and cs are the ion flux, density and velocity at the sheath-presheath
interface. The ion density nb in the bulk of the plasma is given by the 1D model.
The coefficient α represents the finite divergence of the ion flux (creation and
loss in volume). It was empirically adjusted to match results obtained with a
2D hybrid model, α = 0.75 (as explained below). The ion sound speed cs is
given by cs =

√
kBTe/mi. Then, considering that the ion radial flux can be

seen as a loss in volume, an ion loss frequency can be defined

νi,loss =
2αcs

R
, (5.20)

where R is the “virtual” radius of the 1D system.
Figures 5.5 and 5.6 show the electron densities and the plasma potentials

obtained with the 2D model (solid line), and the 1D model (broken lines) under
the same conditions. For an infinite “virtual” radius (dashed line), the density is
essentially uniform. The dotted-dashed lines show the density and the potential
given by the 1D model, where the “virtual” radius and the ionization source
term (Siz = 2× 1018 m−3s−1) were equal to that used in the 2D model; α was
empirically adjusted to 0.75 in such a way that the density profile was as close
as possible to the axial density obtained with the 2D model. The ionization
source term was a factor of 3 higher in the 1D compared to the 2D model to
improve the matching of the density profiles; this is shown by the dotted lines.
Similar calculations were preformed for various densities and geometries and
it was found that α ∼ 0.75 and Siz,1D ∼ 3Siz,2D were generally sufficient to
simulate the axial behavior of a 2D geometry, with a 1D model.
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5.2.5 Stability criteria

A maximal value for the time step is to be found; this maximal time step has
to allow harmonic motion of an ion in its own electric field, assuming quasi-
neutrality of the plasma. Let us consider a single ion of mass mi in a cell of size
∆x. The ion is moved away from its original position of equilibrium, i.e. from
the center of the cell. Its position x is measured with respect to the center of
the cell and x is supposed to be small compared to the cell size. The “density”
of this single ion is accumulated on the two nodes A and B defining the cell,
thus the ion density at each node reads{

nA = 1
2 (1− 2x/∆x)

nB = 1
2 (1 + 2x/∆x)

(5.21)

If it is assumed that the plasma is quasi-neutral and that the electron are in
Boltzmann equilibrium, i.e. that their density is given by equation 5.1, the
electric field E created by the single ion reads

E =
kBTe

e∆x
(lnnA − lnnB), (5.22)

which can be approximated to first order if x is small compared to ∆x by

E = −4kBTe

e∆x2
x. (5.23)

Applying the law of motion eE = mi∂
2x/∂t2 yields

∂2x

∂t2
+

x

τ2
= 0, (5.24)

with

τ =
∆x

2

√
mi

kBTe
=

∆x

2cs
, (5.25)

where cs is the ion sound speed defined above.
The time step ∆t of the hybrid simulation has to be short to resolve the

harmonic motion of period τ described by equation 5.23, thus

∆t <
∆x

2

√
mi

kBTe
. (5.26)

5.3 Self-consistent calculations of the electron en-
ergy and source term profiles: model h2x

5.3.1 Introduction

Hybrid models, such as that presented in section 5.2, are widely used in many
fields of plasma physics like plasma propulsion (Garrigues et al. 2000), plasma
processing (Ventzek et al. 1993, Kwok et al. 2001), fundamental plasma physics
(Chabert and Sheridan 2000) etc. These models provide a complete, descrip-
tion of the discharge, at relatively low computational cost, using the Boltzmann
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(PIC ions and
Boltzmann electrons)

Monte Carlo
(PIC electrons)

Φ

Figure 5.7: The model h2x (hybrid 2×) is composed of two sub-models coupled to
each-other, allowing to self-consistently simulate low-pressure high-density plasmas. i)
The first sub-model is a classical hybrid model where the ions are treated as particles
while electrons obey the Boltzmann relation and determine the plasma potential. ii)
The second sub-model is a Monte Carlo for particle electrons which calculates the
electron temperature and the ionization source term.

relation to describe the electron transport, coupled to Poisson’s equation to de-
scribe the electric field. However, unlike full particle-in-cell simulations, hybrid
models are based on restrictive assumptions for the electron energy distribu-
tion function (eedf), as it is assumed that electrons have a Maxwell-Boltzmann
distribution with a certain temperature, thus failing (i) to account for possi-
ble more complex distributions, for example having an over-populated group of
low energy electrons or a depleted tail and (ii) to self-consistently calculate the
creation source term profiles.

In this section, we show how to self-consistently calculate the electron tem-
perature3 and the source term profile by coupling a Monte Carlo model for par-
ticle electrons to the classical hybrid model. In the following, the novel model
shall be called h2x, standing for hybrid 2× as it is a hybrid PIC-Boltzmann–
Monte Carlo.

5.3.2 Coupling the Monte Carlo to the hybrid model: model
h2x

As shown in figure 5.7, the general concept of h2x is to have two sub-models
coupled to each-other, each of them using the results of the other as input
parameters. Iterations between the two parts of the model are done until the
steady state is reached. Each part of the model transfers its results to the other
part at a regular period T , a parameter of the simulation. It was empirically
found that the update period T should be around 5 × 10−5 s as it has to be
sufficiently short to prevent any part of the model from diverging away from the
solution and long enough to allow the electron lives to be simulated properly
in the Monte Carlo sub-model.

Hybrid sub-model

The hybrid sub-model calculates the plasma potential profile Φ as described in
section 5.2 using the electron temperature previously calculated by the Monte
Carlo sub-model. The ions are created in the hybrid sub-model following the

3Here, the term “temperature” is used loosely, as the eedf may not be Maxwellian. What
is meant by “temperature” is “the temperature that would have a Maxwellian distribution
with the same mean energy”.
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ionization source term calculated in the Monte Carlo sub-model. The hybrid
sub-model runs for a predetermined period T and the plasma potential profile
is then averaged over this period and fed back into the Monte Carlo sub-model.

Monte Carlo sub-model

Since it only describes the electron transport, the Monte Carlo sub-model does
not give a complete description of the discharge and requires the input of several
plasma quantities such as the electric field. The electric field obtained with the
hybrid model is used for this purpose.

Compared to the number of ions followed in the hybrid sub-model, the
Monte Carlo sub-model simulates the path of a rather small number of indi-
vidual electrons, typically less than a thousand. The electrons are followed,
one by one, on their passage through the plasma. The occurrence and effect
of collisions are treated using random numbers. Elastic, exciting and ionizing
electron neutral collisions are taken into account in the model. The way these
collisions are treated is developed in section 5.3.3. The velocity of the argon
atoms is assumed to be negligible compared to the electron velocity. Further-
more the center of mass of the collision partners is assumed not to move in the
laboratory system.

At each iteration of the Monte Carlo, two types of electrons are used. i) The
first type is constituted of the electrons that were already present during the
previous iteration and that have not escaped to the walls. These electrons are
put back in the new potential well. Putting these “old” electrons in a new po-
tential well may lead to numerical cooling or heating, however this the best that
can be done, as no assumption should be made on the initial electron energy. ii)
The second type of electrons correspond to the “new” sample electrons injected
at each Monte Carlo iteration. Their number Ns is fixed and is a parameter of
the simulation. These “new” electrons are taken from the real ionization events
that occurred during the previous Monte Carlo iteration. If the number Niz of
real ionization events that previously took place is greater than Ns, the surplus
of these events is simply dropped. On the contrary, if Niz is smaller than Ns,
the real events are duplicated. In the improbable case of having no real events
at all, the “new” electrons are taken from a 2 eV Maxwellian distribution. The
number Ns of sample electrons should match the number Niz of ionizations
really taking place. This is explained in details in section 5.3.4.

At the end of a Monte Carlo iteration, the newly calculated electron tem-
perature and the source term profile are averaged over the period T and fed
back into the hybrid model for the next iteration to correct the electric field in
a self-consistent way.

Note that the newly computed electron temperature Tnew
e is actually fed

back into the hybrid side using the following algorithm

Tnew
e = αT old

e + (1− α)TMC
e , (5.27)

where T old
e is the previous electron temperature used in the hybrid, TMC

e is the
electron temperature calculated in the Monte Carlo and α is a coefficient of
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Figure 5.8: Electron-neutral collision cross sections in argon.

under-relaxation. The temperature should be allowed to change rapidly before
reaching steady state, and then should be quite stable. Thus, α is defined by

α = 1− exp
(
− t

τ

)
, (5.28)

where τ is the characteristic time over which the under-relaxation becomes
“strong”. Typically, τ = 50T , where T is the update period defined previously,
was used. This allows a very weak under-relaxation of the temperature during
the first micro-seconds, with an increasing strength as steady state is reached.

5.3.3 Simulation of an electron path

Here, the simulation of the path of an individual electron is described. Consider
a test electron somewhere in the plasma at a moment t = t0. The probability
P that the electron has no collision before time t is given by

P (t) = exp

− t∫
t0

νtt
′ dt′

 , (5.29)

where total collision frequency νt depends on both the position x and the energy
E of the electron, and reads

νt(x, E) =
∑

k

νk(x, E) =
∑

k

nn(x)σk(E)
√

2E
me

, (5.30)

where nn is the neutral gas density and where σk(E) represents the various cross
sections taken into account in the Monte Carlo and shown in figure 5.8. The
probability for the electron to undergo a collision, after t0, between t and t+dt
is given by

p(t)dt = P (t)− P (t + dt) = νt(t)P (t). (5.31)



100 Chapter 5. An improved hybrid Boltzmann-PIC simulation

Therefore a random collision time tc can be determined

tc∫
t0

p(t) dt = R1

∞∫
t0

p(t) dt, (5.32)

where R1 is a uniformly distributed random number between 0 and 1. The direct
calculation of tc would be cumbersome. The null collision method (Skullerud
1968) simplifies this calculation. In essence, this method introduces an imag-
inary collision type with frequency ν0 such that when added to the other col-
lision frequencies the total collision frequency becomes independent of energy
and position. This imaginary collision type is called null collision as it has
no real effect on the electron. The total collision frequency ν ′t, including ν0 is
therefore given by

ν ′t = ν0(x, E) + νt(x, E) = max
x,E

νt(x, E), (5.33)

which when applied to equation 5.32 yields

tc = t0 −
1
ν ′t

ln(1−R1). (5.34)

Between two collisions, i.e. between t0 and tc, the electron moves freely
according to the law of motion

∂2x

∂t2
= − e

me
E(x), (5.35)

which has to be integrated. As the electric field profile E is arbitrary, the
integration of equation 5.35 is done numerically using the well-known leapfrog
scheme (Birdsall and Fuss 1969).

Once the energy Ec and the position xc at the moment tc of the collision
are known, the nature of the collision is determined from another uniformly
distributed random number R2 between 0 and 1, taking into account the relative
probabilities of the various collision types. Since the null collision method is
used to find tc, one of the possible collision types is the null collision, which has
no effect on the electron. The other collision types affect the electron velocity
and energy.

The change in the direction of the electron velocity after a collision is de-
scribed by two angles, the azimuthal angle φ and the scattering angle χ which
are determined in the same way as Vahedi and Surendra (1995): considering
the differential cross section, one can estimate χ as follows

cos χ =
2E0 + Ec − 2(E0 + Ec)R3

Ec
, (5.36)

where E0 = 1 eV and R3 is another uniformly distributed random number
between 0 and 1. Equation 5.36 gives an anisotropic scattering angle, i.e. mostly
small angles (forward scattering) are obtained for energetic incident electrons,
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while the scattering is more isotropic for low energy electrons. The azimuthal
angle φ is uniformly distributed between 0 and 2π:

φ = 2πR4, (5.37)

where R4 is another uniformly distributed random number between 0 and 1.
The direction of the scattered velocity is obtained by geometric considerations

vscat = vinc cos χ + vinc × i
sinχ sinφ

sin θ
+ vinc × (i× vinc)

sinχ sinφ

sin θ
, (5.38)

where vinc, vscat and i are unit vectors parallel to the incident and scattered
velocities and the x axis, respectively. Also, cos θ is defined by cos θ = vinc · i.
The energy loss for all the collisions is given by

∆E =
2me

M
(1− cos χ)Ec, (5.39)

where me and M are the electron and neutral masses, respectively. In an
inelastic collision, the incident electron loses the energy corresponding to the
threshold and is then scattered.

5.3.4 Control of the electric field amplitude

The mechanism heating the electrons in the Monte Carlo sub-model is similar
to that described in Meige et al. (2005a). In short, an rf electric field is applied
in the y direction, perpendicular to the spatial dimension of the simulation,
x. Momentum and energy are transfered to the other x and z directions via
electron-neutral collisions.

The number Ns of sample electrons, i.e. the number of new electrons in-
jected into the Monte Carlo at each communication time, should match the
number Niz of ionizations really taking place. This is done by adjusting the
amplitude Ey,0 of the electric field, at each communication time as follows

Enew
y,0 = Eold

y,0

[
α + (1− α)

Ns

Niz

]
, (5.40)

where α is a coefficient of under-relaxation. The best compromise was met with
α = 0.2. This value of under-relaxation allows the amplitude of the electric field
to react fast enough, but without being too sensitive to the statistical noise.
However, this value was adequate for the range of parameters that were tried,
but the under-relaxation should not be strong at the beginning of the discharge
to allow the field to react quickly enough during the transitory regime, but
then should get increasingly stronger while approaching the steady state. Thus,
having α defined by equation 5.28 works also rather well.

5.3.5 Matching the Monte Carlo and hybrid electron densities

When the model was first developed, it was not expected to have to “adjust”
anything to force the electron density in the Monte Carlo and the hybrid to
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match, as it was thought to occur naturally. This was actually not the case at
all, as the electron density in the hybrid turned out to be several times smaller
than in the Monte Carlo. The reason for this is that in the hybrid sub-model,
the electrons have a Maxwell-Boltzmann distribution by definition, while on
the Monte Carlo side, due to the electrons lost to the walls and inelastic colli-
sions, the particle electrons have a depleted distribution. Hence, the electron
flux to the wall, used in the hybrid model was over-estimated, leading to an
under-estimation of n0 ( equation 5.12 or 5.17) and an over-estimation of the
plasma potential. Therefore, the over-estimated plasma potential, calculated
on the hybrid side and used as a parameter for the Monte Carlo led to an
over-estimation of the density of the more confined particle electrons.

The inconsistency between the electron densities of the two sub-models is
not a problem as such, as long as it is known. However, the over-estimation
of the plasma potential leads to a miscalculation of the ionization source term
profile as the electron life time was considerably over-estimated. To make this
point clear, an electron generally has a rather short time to undergo an ionizing
collision as its energy has to be above the ionizing threshold but below the
plasma wall potential, energy above which the electron would be lost to the
walls. When the plasma potential is over-estimated, even if it is only by a few
volts, the electron life time is completely miscalculated and so is the creation
source term.

Solving this issue was one of the most challenging tasks in developing the
model, as most of the attempts led to strong instabilities or worse. To fix
the issue, the over-estimation of the electron flux to the wall on the hybrid
side has to be adjusted, with respect to the Monte Carlo side of the model.
Knowing that the densities of the Monte Carlo and the hybrid should be equal,
a correcting coefficient on the electron flux to the wall Γe was introduced to
impose the equality,[

{

S

Γe · dS
]

corrected

= γ

[
{

S

Γe · dS
]

Maxwellian

, (5.41)

where γ is given by,

γnew = γold
(

ne,hyb

ne,MC

)0.05
if 2

∣∣∣ne,hyb−ne,MC

ne,hyb+ne,MC

∣∣∣ > 0.05,

= γold otherwise.
(5.42)

The coefficient γ adjusts itself very slowly to make the ratio ne,hyb/ne,MC tend
to 1. Also, γ is subject to hysteresis to avoid triggering oscillations, i.e. if the
relative difference between the two densities is less than 5%, γ is not changed.
Instead of calculating n0 with the Maxwellian electron flux as shown before by
equation 5.17, the “corrected” electron flux is used, giving

nk+1
0 =

1
p

[
Nk

e

(
1− γq∆t

p

)
+ SV∆t + f ′

(
pnk

0 −Nk
e

)]
, (5.43)

where f ′ = f ′0 =
√

γq∆t/p.
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Figure 5.9: Schematic of the section of a plasma discharge at a certain position x.
The local radius at the position x is R. The component of the electron speed parallel
to the wall is chosen to be vy (direction parallel to the heating rf electric field), while
the component perpendicular to the wall is chosen to be vz. The electrons that may
be lost within ∆t are within the ring of thickness vz∆t.

Before finding the solution above (equation 5.42), several other methods
were investigated, however, as stated before, they all led to strong instabilities.
For example, γ was first defined by

γnew = γold

[
α + (1− α)

ne,hyb

ne,MC

]
, (5.44)

where α was a coefficient of under-relaxation. If the under-relaxation was not
strong enough, any variation in one of the electron densities lead to an over-
reaction of γ, while too small over-relaxation lead to unstable oscillations as γ
was reacting to slowly to any changes.

5.3.6 Electron radial loss to model 2D effects

As already stated, the particle radial loss might play a significant role in some
discharges, especially when the radius of the system is small when compared to
its length and when no magnetic field exists to axially confine particles. When
the ion radial loss is activated in the hybrid sub-model, a similar mechanism
should exist for the particle electrons in the Monte Carlo sub-model.

Assume that for a given position along x there is a radially uniform elec-
tron distribution of density ne and that the wall axis is along z (the heating
mechanism acting along y). An electron having an energy greater than the
local plasma potential Φ has a certain probability to be lost radially. Finding
the number of electrons in the ring of thickness vz∆t (figure 5.9), where vz is
the electron velocity along z, yields an estimation of the electron radial loss
frequency

νe,loss = |vz/R| if Ez > Φ,
= 0 otherwise.

(5.45)
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Figure 5.10: Plasma potential profiles with a full particle-in-cell (PIC) simulation
(solid line), the standard hybrid simulation (dashed line) and the model h2x (dotted
line). The three simulations were run under the same conditions. The electron tem-
perature, calculated self-consistently with the PIC, was used as a parameter in the
hybrid.

5.4 Results and applications: comparison PIC, hy-
brid and h2x

Here, the results obtained with a full particle-in-cell simulation, a classical hy-
brid model and the model h2x are compared. The conditions of pressure (P =
1 mTorr), temperature (Te = 4.6 eV), plasma density (ne = 2.4×1015m−3) and
neutral gas (argon) are the same. The electron temperature self-consistently
calculated with the PIC model was used as a parameter in the classical hybrid
model.

Whilst a full PIC simulation requires several hours of calculation for the
present conditions, it is only a question of minutes for the classical hybrid
simulation and a few dozens of minutes for the model h2x. The numerical
constraints for the h2x model are not as strong as for the full PIC as nor the
time step or the cell size have to resolve the electron plasma frequency or the
Debye length, respectively. However, i) the time step in the hybrid sub-model
has to allow ion oscillations, as shown by equation 5.26 in section 5.2.5, which
leads to time steps on the order of 10−7 s. ii) The time step in the Monte Carlo
sub-model has to be small enough to prevent too many electrons from crossing
entire cells, which leads to time steps on the order of 5 × 10−10 s, although it
depends on the number of cells.

Figure 5.10 shows the steady-state plasma potential profiles for the different
models. The plasma potential given by the PIC simulation will be the reference
as PIC simulations have been thoroughly studied and their validly has been
proven. The plasma potential in the bulk, with respect to the grounded walls is
17.4 V. Hence the the ratio eΦ/kBTe = 3.8 and is smaller than the theoretical
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Figure 5.11: Electron mean energy profiles with a full particle-in-cell (PIC) simulation
(solid line) and the model h2x (dotted line). The two simulations were run under the
same conditions and are both self-consistent.

ratio of 5.2 obtained assuming a Maxwellian distribution (see Lieberman and
Lichtenberg 2005, p. 172). The reason for this is that the eedf in the PIC
simulation is not Maxwellian, the tail is depleted at high energies due to the
electron lost to the walls and electron-neutral inelastic collisions. The electron
flux to the walls and, as a result, the plasma potential and the ratio eΦ/kBTe

are therefore smaller than they would be assuming a Maxwellian-Boltzmann
distribution.

The dashed line shows the plasma obtained with the classical hybrid model
where the electrons are “forced” to have a Maxwell-Boltzmann distribution
by definition. The plasma potential is higher by almost 8 V and the ratio
eΦ/kBTe = 5.5 is therefore closer to the theoretical value. The difference be-
tween the hybrid model and the theoretical approach comes from the fact that,
under the present conditions, the ions are not completely collisionless in the
simulation, while they are assumed to be so in the theoretical approach. Com-
pared to the collisionless case, collisions reduce the ion flux to the walls, which
leads to a greater plasma potential. In summary, hybrid simulations are attrac-
tive for their low computational cost, but care should be taken when simulating
low-pressure plasmas where the real eedf would not actually be Maxwellian.

The dotted line shows the plasma potential obtained with h2x, the self-
consistent model. Although Boltzmann electrons are used in the hybrid sub-
model, the correcting coefficient calculated via the Monte Carlo sub-model (Sec-
tion 5.3.5) allows a more realistic electron flux to the walls to be calculated and
thus a more realistic plasma potential. The ratio eΦ/kBTe in the model h2x
is very close to that obtained the with PIC simulation. A small difference is
observed in the shape of the potential profile. Although the “height” of the
plasma potential profiles are the same for the PIC and the model h2x, the local
plasma potential is slightly lower in the model h2x around the sheath – pre-
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sheath region. This is presumably a consequence of the inconsistency between
the transport of the Boltzmann electrons and the particle electrons.

Figure 5.11 shows the electron mean energy profiles obtained with the PIC
and the model h2x. The electron mean energy for the PIC is, as expected,
rather uniform. This is not the case for that obtained with the model h2x
which presents a dip in the center of the discharge. This is presumably a
consequence of the shape of the plasma potential. Although the potential well
height is adapted for particle electrons via the correcting coefficient, its shape is
not, since it is calculated solving Poisson’s equation with Boltzmann electrons.
Low energy particle electrons are therefore slightly more confined in the center
of the discharge by the less flat potential profile, leading to a decrease of the
electron mean energy in the confinement region. In future, a solution to this
issue should be sought.

5.5 Conclusion

It was shown that classical hybrid simulations where ions are treated as parti-
cles and electrons are assumed to have a Maxwell-Boltzmann distribution, in
addition to not being self-consistent, may lead to a miscalculation of the plasma
potential.

An alternative to the fully-consistent computationally-expensive particle-in-
cell simulations and hybrid simulations was proposed. This novel scheme, that
was named h2x is composed of two coupled sub-models. Globally, the ions are
treated as particles, while the electrons are treated simultaneously as a fluid
obeying the Boltzmann relation and as particles.

Results obtained with the model h2x are in much better agreement with
the full PIC simulation than the classical non self-consistent hybrid model, as
it accounts for non-Maxwellian electron energy distribution functions.



Chapter 6

Simulations of double layers in
electronegative plasmas

6.1 What makes electronegative plasmas different?

Electronegative plasmas are those where electrons have the ability to attach
onto neutral atoms or molecules, thus forming a significant amount of negative
ions. (Franklin 2002)

Although the research work done on electronegative gases is historically
mostly driven by curiosity (see Emeleus and Woolsey 1970, and references
therein), the extreme interest in these electronegative plasmas is now essen-
tially led by the micro-chip industry.

Properties of electronegative plasmas are somewhat different from that of
electropositive discharges that owe most of their properties to the large mass
difference between the positive and negative charges. The reason why elec-
tronegative plasmas are so different from electropositive plasmas arises from
the fact that the negative ion mass is much larger than the electron mass and
their temperature is much lower than the electron temperature. Therefore the
sheaths slowing down the electrons, and accelerating the positive ions towards
the wall, reduces the negative ion wall flux to zero. Hence, negative ions are
essentially created and destroyed in the volume of the plasma, as opposed to
the other charged species that are essentially lost to the walls.

In the same way as the Bohm criterion is fundamental in electropositive
discharges, its equivalent in electronegative plasmas also plays a significant
role. At low pressures, an analogue to the Bohm speed was derived and is now
well established (Braithwaite and Allen 1988, Franklin and Snell 1992)

u2
s =

kBT+

m+
+

kTeT−
m+

ne + n−
T−ne + Ten−

, (6.1)

where Te, T− and T+ are the electron, negative ion and positive ion tempera-
tures, respectively; n− and ne are the respective densities and m+ the positive
ion mass. It was suggested and then shown by Braithwaite and Allen (1988)
that under certain conditions, typically γ = Te/T− > 10 and α > 3 at the
plasma edge, the plasma and the collisionless sheath could not join smoothly

107
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Figure 6.1: Schematic of the experimental setup (Plihon et al. 2005b).

and that the potential at the plasma edge becomes multi-valued. The plasma
core region is terminated by an electric double-layer potential structure fol-
lowed by spatial oscillations of the order of the Debye length which eventually
terminate in a standard positive-ion-electron sheath. Although the presence
of a double layer in front of the sheath has been observed in various models
(Kouznetsov et al. 1999, Sheridan 1999, Sheridan et al. 1999ba, Chabert and
Sheridan 2000, Boeuf 1987), the spatial oscillations following the double layer
are claimed to be an artifact of the fluid equations; they have been observed in
fluid models (Sheridan 1999, Sheridan et al. 1999b), but not in kinetic models
(Kouznetsov et al. 1999, Sheridan et al. 1999a, Chabert and Sheridan 2000).
Note that Kono (2001) showed that the spatial oscillations predicted by fluid
models may actually correspond to real temporal instabilities in kinetic models.

Although double layers appear to be a common feature and have been ex-
tensively studied in electropositive discharges, they are much less known in
electronegative plasmas.

6.2 Double-layer formation in the vicinity of the ex-
panding region of an electronegative plasma

Recent experiments by Plihon et al. (2005ab) have demonstrated that double
layers could form in the expanding region of an inductively coupled electronega-
tive plasma composed of an Ar/SF6 mixture. The experimental setup is similar
to that of Charles and Boswell (2003), but without the use of a static diverging
magnetic field. A schematic of the reactor is shown in figure 6.1. The system is
composed of a source chamber, a 30-cm-long 15-cm-diameter cylinder of pyrex
and surrounded by a double-saddle helicon antenna (Boswell 1970); the source
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Figure 6.2: Spatial evolution of the
plasma potential Vp and the electroneg-
ativity α = n−/ne, in (a) the no DL
case (6% SF6 mixture), and (b) the
DL case (9% SF6 mixture), at 1 mTorr,
600 W (Plihon et al. 2005a).

0 5 10 15 20 25 30
0

1

2

3

4

5

T
e 

(e
V

)

 

 

Z (cm)

0 5 10 15 20 25 30
1015

1016

1017

n
e

n
-

D
en

si
tie

s 
(m

-3
)

 

 

Z (cm)

n
+

(a)

(b)

Figure 6.3: Spatial evolution of the
particle densities and electron temper-
ature for a 9% SF6 mixture at 1 mTorr,
600 W (Plihon et al. 2005a).

is attached to a 26-cm-long 32-cm-diameter aluminum diffusion chamber. The
helicon antenna is powered by an rf power supply operating at 13.56 MHz and
capable of delivering 2 kW of forward power. The plasma is inductively heated
(the helicon source is not operated in helicon mode).

Plihon et al. (2005a) showed that a stable double layer is formed in the
vicinity of the expanding region of the system for a rather narrow range of
parameters. For a neutral gas pressure of 1 mTorr and an input power of 600 W,
stable double layers are formed for relative concentrations of SF6 between 8%
and 13%. For pressures below this window, no double layer is observed, while
above this window, propagating double layers are observed. Figure 6.2 shows
their measurement of the electronegativity α and the plasma potential Vp in
both the non-DL (a) and DL (b) cases. In the later case, a potential drop
of ∼ 7 V (at the discontinuity position) corresponding to the double layer is
observed accompanied by a maximum of the electronegativity of ∼ 12. A full
parametric investigation of the periodic formation of propagating double layers
is presented in Plihon et al. (2005b). As shown in figure 6.4, the propagating
double layers were born in the vicinity of the interface between the two chambers
and propagate downwards, in the diffusion chamber. The speed and frequency
of these propagating DLs are such that irrespective of the parameters, the
number of DLs simultaneously present in the system is constant. The speed of
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Figure 6.4: Spatiotemporal evolution of the plasma potential, two instability periods
for a 25% SF6 concentration plasma at 600 W and 1 mTorr. A 3D representation and
a gray level amplitude image are shown (Plihon et al. 2005b).

propagation is of the order of 150 m/s and the frequency is of the order of kHz.
The authors also compared their propagating double layers to the downstream
instabilities observed by Tuszewski and White (2003), Tuszewski et al. (2003)
and Tuszewski and Gary (2003). The two phenomena have many common
features such as the propagating speed, the range of frequency etc., but there are
also differences especially concerning the charged particle dynamics. Tuszewski
and Gary (2003) have shown that their downstream instability was consistent
with ion two-stream instabilities that would appear when positive and negative
ions develop sufficiently large relative drift velocities in the downstream region.

Note that the electronegativity values reported by Plihon et al. (2005ab)
were estimated assuming quasi-neutrality of the plasma. Recent experiments
by Plihon (2005, private communication) and Plihon (2006), using a probe-
based photo-detachment technique to directly detect negative ions in the plasma
showed that the maximum of the electronegativity is actually ∼ 1.3 in the case
of the stable double layer and ∼ 4 in the case of the propagating double layers.
The electronegativity may be greater than the values above by 40% at most,
depending on the dominant negative ion in the system, but is still smaller than
the original estimation.

The physical processes underlying the formation of (propagating) double
layers remain unclear, although it is now well established that double layers can
form in low-pressure electronegative plasmas (Kouznetsov et al. 1999, Sheridan
1999, Sheridan et al. 1999ba, Chabert and Sheridan 2000, Boeuf 1987). The
primary goal of this chapter is to investigate plasma discharges similar to that
of Plihon et al. (2005ab) so as to shed light on the critical parameters and the
conditions of formation of (propagating) electronegative double layers. This is
first done by the use of a two-dimensional hybrid model and for the sake of self-
consistency, the model h2x presented in Chapter 5 is then modified to handle
electronegative discharges.
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6.3 2D hybrid simulations of electronegative double
layers

6.3.1 Model

The two-dimensional (2D) hybrid model developed for the present study de-
scribes the electrons as a fluid obeying the Boltzmann relation while both posi-
tive and negative ions are treated as particles. This follows the classical hybrid
model scheme presented in Chapter 5. The main differences, essentially due to
the presence of a third species (the negative ions), are presented in this section.
The spatial discretization of Poisson’s equation is detailed in Appendix 8.3.

Due to the presence of the third species, namely the negative ions, a num-
ber of events, such as attachment, detachment and recombination, have to be
treated in addition to ionization. The attachment of electrons onto neutral
atoms or molecules is the mechanism that gives birth to negative ions in the
discharges. Negative ion loss processes in electronegative discharges fall in two
categories, namely the detachment of an electron from a negative ion and the
recombination of a positive and a negative ion. Certain gases, such as oxygen,
are detachment-dominated, others, such as SF6, are recombination-dominated.
In the present model, a mixture of Ar and SF6 is to be investigated and it is
assumed that the mixture Ar/SF6 is recombination-dominated.

The ionization, attachment and recombination source terms are given by

Siz = Kiznnne = νizne,

Satt = Kattnnne = νattne,

Srec = Krecn+n−,

(6.2)

respectively, where Kiz, Katt and Krec are the ionization, attachment and re-
combination rate coefficients, respectively; nn is the neutral gas density, νiz and
νatt are the ionization and attachment frequencies, respectively.

The various events (ionization, attachment and recombination) occur with
a probability following their respective source term profiles involving the local
electron density, the positive and negative ion densities. These densities are
results from the simulation while the various rate coefficients are parameters of
the simulation.

Although in reality the ionization and attachment rate coefficients depend
on the form of the electron energy distribution function and, to some extend,
on the electron temperature, the particular effect of each reaction is to be
investigated independently. Hence, ionization and attachment rate profiles are
taken as independent parameters of the simulation rather than being imposed
by a single temperature profile.

6.3.2 Formation of a stable double layer

Figure 6.5 is a schematic of the simulated domain. Plihon’s reactor was scaled
down by a factor of 2 for computational time reasons. Table 6.1 gives the
general parameters that were used for the present study.
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Figure 6.5: Schematic of the experimental setup and simulated domain. The gray
area represents the simulated domain.

Table 6.1: General parameters of the 2D hybrid simulations.

Quantity Value
system dimensions 30× 10 cm
cell number 75× 50
total duration 1-10 ms
time step 5× 10−8 s
macro-particle weight 5× 106 m−3

positive and negative ion mass (Ar) 6.68× 10−26 kg
positive and negative ion charge +e and −e
electron temperature (Boltzmann relation) 4 eV
room temperature 297 K
source term 2× 1018 m−3s−1

Krec 1.1× 10−10 m3s−1
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Figure 6.6: Steady-state plasma potential profile of a stable double layer.

Figure 6.6 shows the steady-state plasma potential in conditions where the
plasma sustains a double layer at the interface of the source and the diffusion
chamber. This double layer was obtained for the following conditions: the
ionization frequency was 1.1×105 s−1 in the source, decreasing to 2.2×104 s−1

in the diffusion chamber. The attachment frequency was null in the source and
1.1 × 105 s−1 in the diffusion chamber. The recombination rate was Krec =
1.1 × 10−10 m3 s−1, which is an extremely large value, but which was chosen
to make the recombination significant, as discussed later. In this case, time-
resolved densities and plasma potentials remain rather constant and the double
layer is stable. Although the geometrical transition from the source to the
diffusion chamber enhances the potential drop, it was found that the transition
itself was not a critical parameter for the formation of the double layer in the
simulation.

Figure 6.7 shows the spatially averaged densities over the source radius
corresponding to the case above. This shows that the double layer separates
a plasma essentially electropositive on the high-potential side from a highly
electronegative plasma on the low-potential side, which seems to be in good
qualitative agreement with the stable double layer reported by Plihon et al.
(2005a).

The solid line in figure 6.8 represents the same plasma potential as in fig-
ure 6.6, averaged over the source radius; a potential drop of about 15 V is
observed. The dashed line shows the plasma potential in the exact same con-
ditions but without negative ions. A smooth decrease of the plasma potential
corresponding to a classical diffusion profile is observed, but no double layer.

The double layer could only be formed when the source region was ionization-
dominated, while the diffusion chamber was attachment-dominated. However,
these conditions were not sufficient: the required significant downstream elec-
tronegativity can be obtained with i) low attachment and low recombination or
ii) high attachment and high recombination. The former case does not lead to
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Figure 6.7: Steady-state density profiles of a stable double layer.

Figure 6.8: Steady-state plasma potential profile of a stable electronegative double
layer (solid line) and of an electropositive plasma (dashed line) for the same parameters.
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the formation of the double layer.
In Plihon’s experiment, the electron temperature and densities are such that

the recombination source term is less, but of the order of the ionization source
term. However, with the present 2D model, simulations of such densities would
be extremely time consuming. Densities between 1014 and 1015 m−3 is the best
that could be achieved in a reasonable amount of time. For these low density
simulations, recombination with a realistic recombination rate (of the order of
10−13 m3s−1) is negligible compared to ionization. Hence, the recombination
rate was artificially increased to make it significant compared to ionization. In
this case only, a double layer was formed, suggesting that a double layer can
only appear when losses in volume are significant.

In summary, double layers could be formed by carefully adjusting ionization,
attachment and recombination rates. In the simulation, electronegative double
layers form when the three following conditions are met: i) high downstream
electronegativity ii) obtained with high attachment and high recombination
rates, rather than low attachment and low recombination (in which case no
double layer forms). iii) Finally, the source should be ionization-dominated,
while the diffusion chamber should be attachment-dominated.

The influence of various parameters, such as the relative positive to negative
ion masses, the presence of a dielectric in the source (as in Plihon’s experiment),
the shape of the ionization and attachment frequency profiles etc. was investi-
gated. It was found that the double layer was not much affected as long as the
basic feature ionization-dominated source and attachment-dominated diffusion
chamber was satisfied.

As already pointed out, the 2D model has a number of weaknesses: i) high
densities cannot be simulated in a reasonable amount of time, ii) consequently
double layers were found for only unphysical large recombination rates iii) and
the model is not self-consistent. In the next section, a self-consistent simulation
is described to provide better insight into the physical mechanisms and reveal
some of the critical parameters.

6.4 The model h2x applied to electronegative plas-
mas

6.4.1 Model

The simulation of electronegative double layers and more particularly the sim-
ulation of propagating double layers is rather challenging; the challenge arises
from various things such as the rather high plasma densities, the disparity be-
tween the negative ion and electron densities, the large time-scale oscillations,
the necessity of self-consistency etc.

In this section, the model h2x presented in Chapter 5 is modified to handle
electronegative discharges. A very simplified mixture of argon and SF6 is to be
simulated and, as in the previous section, in addition to ionization, the model
accounts for the various reactions such as attachment and recombination. Only
one type of negative ion with the same mass as the argon positive ion and with
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Figure 6.9: Electron-neutral collision cross-section with SF6; (a), (b) and (c) attach-
ment; (d), (e), (f) and (g) attachment; (h) ionization; (i) elastic collisions.

Figure 6.10: Attachment cross-section in SF6 (solid lines) and simplified total attach-
ment cross-section used in the 1D simulation (broken line)
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Table 6.2: General parameters of the 1D simulation of spontaneous formation of
propagating double layers. These parameters were used in the present investigation,
unless stated otherwise.

Quantity Value
system length 28 cm
cell number 70
total duration 10-100 ms
hybrid time step 5× 10−8 s
Monte Carlo time step 5× 10−10 s
macro-particle weight 1× 1014 m−3

positive and negative ion mass (Ar) 6.68× 10−26 kg
positive and negative ion charge +e and −e
room temperature 297 K
source term 4× 1021 m−3s−1

total neutral pressure 1 mTorr
Krec 10−13 m3s−1

“virtual radius”a 10 cm (uniform)

aSee Chapter 5 for the nomenclature “virtual radius”.

an opposite charge −e is considered.
The attachment source term profile is handled in the same way as the ion-

ization source term profile described in Chapter 5, i.e. by the Monte Carlo
sub-model. Simplified attachment cross-sections based on that of SF6 compiled
by Pitchford et al. were used. Figure 6.9 shows the electron-neutral collision
cross-sections in SF6, including elastic collisions (i), ionization (h), excitation
(d,e,f and g) and attachment (a,b and c). Figure 6.10 shows the attachment
cross-sections in SF6 and the simplified attachment cross-sections that were
used for the present simulations. In addition to undergoing collisions with ar-
gon neutral atoms, electrons can also undergo collisions with neutral SF6; the
cross-section corresponding to these collisions is shown by line (i) in figure 6.9.
The other exciting and ionizing collisions with SF6 are not considered. In the
following, the simplified electronegative background gas is loosely called SF6.

Recombination events are modeled in the same way as in the 2D model pre-
sented previously (Section 6.3). The recombination source term profile involves
a recombination rate Krec and the respective densities of negative and positive
ions. Positive and negative ions undergo elastic and charge-exchange collisions
with neutrals, with the same cross-section as argon.

6.4.2 Fully self-consistent electronegative double-layer simula-
tion

Using the model above, with the general parameters given in table 6.2 and a rel-
ative SF6 concentration of 15%, a high-density plasma sustaining spontaneous
propagating double layers was self-consistently simulated.

Figure 6.11(a) shows a snapshot of the plasma potential profile as a function
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(a) (b)

(c) (d)

Figure 6.11: Self-consistent spontaneous formation of propagating double layers in
an electronegative discharge. (a) Snapshot of the plasma potential profile presenting
a clear drop of ∼ 5 V; (b) snapshot of the corresponding electron temperature profile,
also presenting a drop; (c) snapshot of the electron (solid line), positive ion (dashed
line) and negative ion (dotted-dashed line) density profiles; (d) plasma potential as
a function of space and time when the electronegative propagating double layers are
formed.
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Figure 6.12: Reaction rate coefficients for ionization (solid line) and attachment
(dashed line) as a function of electron temperature. The ionization rate coefficients
were obtained by integrating the ionization cross-section of argon over a Maxwellian
distribution truncated above 20 eV to account for the depletion of eedf above the
plasma potential.

of position; in addition to the smooth decrease of the potential from the source
to the diffusion chamber, a series of potential “steps” and a clear potential drop
of ∼ 5 V are observed in the downstream region. This sudden potential drop
is extremely sharp and occurs within ∼ 1 cm. Figure 6.11(b) shows that the
potential drop is accompanied by an electron temperature drop; the high and
low-potential side temperatures are ∼ 5 eV and ∼ 3.5 eV, respectively, which
is surprisingly close to that experimentally measured by Plihon et al. (2005a).

Figure 6.11(c) shows the electron (solid line), positive (dashed line) and
negative (dotted-dashed line) ion densities. A series of spatial oscillations in
both positive and negative ion densities are observed on the downstream side.
These oscillations are successive regions of rarefaction of positive and negative
ions. Each of the ion density local minima correspond to a plasma potential
“step” [figure 6.11(a)]. The electronegativity α is around 1 in the source region
and as high as ∼ 8 between two successive double layers.

Finally, figure 6.11(d) shows the plasma potential resolved in space (hori-
zontal axis) and time (vertical axis). Five potential fronts, corresponding to
five double layers are observed and are propagating towards the source region.
A time-resolved analysis of the densities also shows that the spatial oscillations
mentioned before propagate towards the source region, following the potential
drops.

6.4.3 Parametric study of electronegative double layers

In the previous section, it was shown that the spontaneous formation of prop-
agating double layers in an electronegative plasma by the use of a full self-
consistent simulation was possible. In the present section, a parametric investi-
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Figure 6.13: Reaction frequencies corresponding to the rate coefficients given in fig-
ure 6.12, for a neutral pressure of 1 mTorr.

gation of the spontaneous propagating double layers is presented. For the sake
of simplicity, rather than coupling the two sub-models as was previously done,
a temperature profile similar to that obtained self-consistently is now used as
a parameter of the simulations (the electron Monte Carlo is deactivated). Fig-
ure 6.12 shows the ionization (solid line) and the attachment (dashed line)
reaction rate fits1 as a function of the electron temperature. Figure 6.13 shows
the corresponding reaction frequencies for a neutral pressure of 1 mTorr.

The temperature profile used in the following decreases from 4.5 eV in the
source to 3 eV in the diffusion chamber, following an arctan profile. The tem-
perature drop is located at 15 cm and is constant in time.

The effect of almost every parameter such as the positive and negative ion
masses, the concentration of SF6, the “virtual radius”, the temperature profile
etc. was investigated; the most relevant are reported here. Note that the
spatial resolution of the grid and the simulation time step were varied without
significantly affecting the results.

Double layers form at low pressure with high attachment and recom-
bination

Electronegativity: figure 6.14(a) shows a spatio-temporal representation of the
plasma potential profiles and figure 6.14(b) shows snapshots of the plasma po-
tential profiles as a function of space for various concentrations of SF6. Prop-
agating double layers do not form unless the relative concentration of SF6 is

1Reaction rate coefficients k can generally be well fitted by a generalized Arrhenius function
of the energy E , of the form k(E) = exp(a + b ln E + c/E + d/E2 + e/E3). Note however that
ionization may be more or less closely related to the electron temperature, as ionization is
essentially controlled by the tail of the distribution which does not necessarily reflect the bulk
electron distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Contour-plots of the plasma potential profiles as a function of space and
time, and snapshots of the plasma potential profiles, for various relative concentrations
of SF6 [(a) and (b)], recombination rate coefficients [(c) and (d)], and neutral gas
pressures [(e) and (f)].
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sufficiently large (& 30% under the present conditions), confirming that a min-
imal electronegativity is required.

Eedf: when the real eedf was calculated by the simulation (Section 6.4.2),
the minimal relative concentration of SF6 required for the formation of propa-
gating double layers (i.e. to reach sufficient electronegativity) was ∼ 15%. In
the present case, when the eedf is assumed to be Maxwellian, almost twice this
concentration ( & 30%) is required to observe the propagating double layers.
A reason for this is presumably that the eedf calculated by the Monte Carlo
sub-model was not Maxwellian and was presenting a low-energy population fa-
voring attachment to ionization, leading to sufficient electronegativity for the
formation of propagating double layers. This low-energy population of elec-
trons is not captured when assuming Maxwell-Boltzmann electrons. Thus, the
concentration of SF6 has to be increased accordingly in order to reach sufficient
electronegativity, compatible with the double layers. This provides evidence
supporting the fact that the eedf is a rather important parameter in the forma-
tion of electronegative double layers.

Potential drop: the second consequence of assuming Boltzmann electrons,
is that there is no net electron flux associated with the double layer. In reality
(experimentally or with particle electrons in the simulation) downstream elec-
trons may be accelerated through the double layer towards the high-potential
side. This may increase the upstream electron temperature and therefore en-
hance the potential drop of the double layer (for example by “boosting” the
ionization on the high-potential side). This may explain the fact that the po-
tential drops associated with the double layers observed here (where Boltzmann
electrons are assumed) are between 1 V and 2 V, rather than the 5 V observed
with the full self-consistent simulations, where the eedf was calculated. Also,
it should be mentioned that although the temperature drop is positioned at
15 cm, the double layers propagate, irrespective of the temperature drop po-
sition, suggesting that the temperature drop observed in Section 6.4.2 was a
consequence of the double-layer potential drop rather than the opposite. The
point of these two remarks is that it seems that “something” creates the double
layer, the double layer then generates a temperature drop and the temperature
drop enhances the original potential drop.

Recombination rate: figure 6.14(c) shows the plasma potential profiles as a
function of space and time while figure 6.14(d) shows snapshots of the plasma
potential profiles as a function of space for various recombination rate coef-
ficients Krec. The electronegativity is maintained constant by changing the
relative concentration of SF6 accordingly. For the range of Krec investigated,
the double-layer potential drop increases with Krec. In other words, for similar
electronegativities, propagating double layers are only observed for sufficiently
high attachment and recombination. This is in good agreement with what was
concluded in Section 6.3 and also with previously simulated electronegative
double layers (Sheridan et al. 1999b, Chabert and Sheridan 2000).

Pressure: finally, the total neutral gas pressure was varied from 0.1 to
10 mTorr, keeping the relative concentrations of argon and SF6 constant. Fig-
ures 6.14(e) and 6.14(f) show that above a critical pressure (& 5 mTorr) no
double layer was formed.
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(a) (b)

Figure 6.15: (a) Contour-plots of the plasma potential profiles as a function of space
and time, and (b) snapshots of the plasma potential profiles, for various temperature
drop positions.

Small-diameter and long chambers are propitious to the formation of
double layers

Chamber diameter: electron radial losses have presumably two main effects.
The first and most obvious, observed under the present conditions of pressure
(low pressure) is a depletion of the electron energy distribution function at
energies higher than the plasma potential (Chapter 4). In response, the electron
temperature tends to increase to “boost” the ionization, to counterbalance the
radial losses and maintain the plasma.

The second effect of the electron radial losses, somewhat related to the first
one, appears in particular when radial losses are combined with a localized
heating mechanism. In such a case the electron temperature may increase more
in the heating region than in the rest of the discharge, hence possibly leading
to a non-uniformity of the electron temperature, with a higher temperature
in the source than in the diffusion chamber. This phenomenon, observed irre-
spective of any geometric transition, is particularly propitious to the formation
of electronegative double layers where the source (diffusion chamber) should
be ionization-dominated (attachment-dominated), requiring a sufficiently high
(low) electron temperature, favoring ionization to attachment (attachment to
ionization). In addition, as mentioned in Chapter 5, ion radial losses tend to
enhance asymmetries in the system.

Geometric transition: The radial losses of particles is rather important for
the formation of electronegative double layers, as they really affect the eedf
previously shown to be a fundamental parameter. However, the geometric
transition between the source region and the diffusion chamber does not seem to
be a fundamental parameter in both the experiment (Plihon et al. 2005b) and
the simulation, as in both cases it was possible to form double layers without a
geometric transition.

Chamber length: changing the position of the temperature drop in the tem-
perature profile is a way of changing the relative length of the “source” and
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“diffusion chamber” in the simulation. Figure 6.15(a) shows the plasma po-
tential profiles as a function of space and time while figure 6.15(b) presents
snapshots of the plasma potential profiles as a function of space for various
positions of the temperature drop. Increasing the relative length of the diffu-
sion chamber leads to an increase in the number of propagating double layers
simultaneously present in the system. On the contrary, reducing the size of the
diffusion chamber leads to a decrease of the number of propagating double lay-
ers. When the diffusion chamber length is sufficiently decreased, no propagating
double layer forms.

Characterization of the propagating double layers

Direction of propagation: figure 6.16 shows various characteristics of typical
propagating double layers for an SF6 concentration of 40%. Figure 6.16(a) is a
3D mapping of the plasma potential as a function of time and space. Although
the present double layers propagate in the opposite direction, they appear to be
a phenomenon very similar to that observed by Plihon et al. (2005b) (figure 6.4,
p. 110), as discussed later.

Velocity of propagation: figure 6.16(b) is a contour-plot over 10 ms of the
plasma potential profile. As can be observed, the double layers always form
at the same critical position and propagate towards the source at ∼ 100 m/s.
Note that the simulation was run up to 100 ms without any major variation.

Electronegativity: figures 6.16(c) and 6.16(d) are snapshots of the plasma
potential and the electron, positive and negative ion densities. At the position
of each double layer, a region of positive and negative ion rarefaction can be
observed. Figure 6.16(e) shows a snapshot of the electronegativity α = n−/ne

at the same instant and the electronegativity is minimal at the positions of
the double layers, but maximal immediately downstream. The regions of high
electronegativity are trapped between two successive double layers, and are
pushed towards the source by the moving double layers.

Source term profiles: figure 6.16(f) shows the ionization (solid line), attach-
ment (dashed line) and recombination (dotted-dashed) source term profiles.
The source is ionization-dominated, while the diffusion chamber is attachment-
dominated. The recombination takes place mostly in the source, but also in the
high-electronegativity regions, where the ion densities are maximum.

Frequency: figure 6.17 shows a low-frequency activity around 2-4 kHz in
the downstream plasma. This activity corresponds to the train of propagating
double layers born at some critical downstream position and propagating to-
wards the source. In the range of pressures investigated, the frequency of the
propagating double layers was found to be weakly dependent on the neutral gas
pressure.

Bohm criterion: figure 6.18 shows a snapshot of the positive and negative
ion average velocities, v+ and −v−. The ion sound speed (or Bohm velocity) in
electronegative plasmas is given by equation 6.1. The average downstream ion
sound speed is shown by the horizontal line. At the positions of the propagat-
ing double layers, shown by the vertical lines, both positive and negative ions
reach the sound speed before entering the double layers from the high and low-



6.4. The model h2x applied to electronegative plasmas 125

(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Propagating double layers in an Ar/SF6 mixture, with an SF6 relative
concentration of 40% at 1 mTorr. (a) 3D mapping of the plasma potential profile
as a function of space and time; (b) contour-plot of the plasma potential profile as
a function of space and time, increased brightness indicates decreased potential; (c)
snapshot of the plasma potential profile showing successive double layers, propagating
from the diffusion chamber (right) to the source (left); (d) snapshots of the electron
(solid line), positive (dashed line) and negative (dotted-dashed line) ion density profiles;
(e) snapshot of the electronegativity α = n−/ne profile; (f) snapshots of ionization
(solid line), attachment (dashed line) and recombination (dotted-dashed line) source
term profiles.



126 Chapter 6. Simulations of double layers in electronegative plasmas

Figure 6.17: Frequency spectrum of the plasma potential at various positions in the
system. For positions on the right-hand side of the temperature transition (x > 15 cm),
a 2-4 kHz activity is observed.

Figure 6.18: Snapshot of the positive and negative ion average velocities, v+ and −v−,
as a function of position (broken lines). The vertical dotted lines show the positions of
the double layers, while the horizontal line shows the Bohm velocity.
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Table 6.3: (a) Plihon’s propagating double layers (b) and propagating double layers
reported in the present thesis.

Parameters (a) Plihon’s DL (b) Simulated DLs
%SF6 13-25% 15%a

Krec not a parameter criticalb

P c ∼ 5 mTorr ∼ 5 mTorr
Geometric transition not critical not critical
Small diameter ? criticald

Chamber length criticale criticale

Properties (a) Plihon’s DL (b) Simulated DLs
Frequency ∼ kHz ∼ 2 kHz
Velocity 150 m/s 100 m/s
Direction → ←
αf ∼ 5± 40% 4-6
Potential drop 7 Vg 5 Vh

Tup/Tdown 5/3.5 eVi 5/3.5 eV
Bohm criterionj ? satisfied

a Minimal concentration allowing the formation of double layers in the simulation. 15%
with fully self-consistent model; 30% when Boltzmann electrons are assumed.

b The simulation showed that DLs were formed only for sufficiently large recombina-
tion rate. DLs were observed in the simulation for realistic recombination rates (Krec =
10−13 m3s−1).

c Pressure P above which no double layer was formed.
d No double layer observed for large-diameter chambers.
e Sufficiently short diffusion chambers prevent the formation of double layers.
f Maximum of the electronegativity α obtained just downstream of the double layers.

Measured via photo-detachment for Plihon’s values (Plihon 2006).
g 7 V at the potential discontinuity, almost 10 V in total.
h 5 V with the fully self-consistent model, 1 V when Boltzmann electrons are assumed.
i Temperatures reported for the stable double layer.
j Bohm criterion for positive and negative ions.

potential sides, respectively. The ions are then accelerated through the double
layers up to approximatively twice the sound speed.

6.5 Discussion and conclusion

Plihon et al. (2005b) have experimentally characterized the propagating double
layers and fully determined the window of parameters, such as the neutral gas
pressure, the relative concentration of SF6, the input power etc. for which they
form. The self-consistent simulation has allowed the spontaneous formation of
propagating double layers that were shown to be a very similar phenomenon to
that of Plihon et al. (2005b). The main features of the propagating double layers
observed by Plihon et al. (2005b) and of those reported in the present thesis are
summarized in table 6.3. Despite the fact that these propagating double layers
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do not propagate in the same direction, they have many properties in common,
such as their velocity of propagation, frequency, electronegativity, temperature
drop etc. Also, they appear under the very similar conditions, such as neutral
gas pressure, relative SF6 concentration etc.

Hence, the simulation gave evidence supporting the observation that double
layers may spontaneously form in electronegative plasmas. i) To observe this,
both the experiment and the simulation have shown that a lower limit to the
electronegativity is required, which is achieved thank to a sufficient relative
concentration of SF6 and sufficient attachment. ii) The losses in volume of
both positive and negative ions via recombination also appear to be crucial.
The simulation showed that below a critical recombination rate, no double layer
could be formed. iii) The simulation also confirmed that the geometry of the
chamber, i.e. a change in diameter, does not seem to be a critical parameter.
iv) However, the diameter itself is crucial, since it can dramatically change the
electron energy distribution function that controls the attachment and therefore
the electronegativity. v) The simulation showed that for chambers below a
certain length, no double layer could be sustained, which is in good agreement
with the experimental observations. This may well be because positive and
negative charges need to develop a sufficient relative drift velocity, which can
be achieved only in sufficiently long chambers. vi) Finally the neutral gas
pressure is also a fundamental parameter, as no double layer was observed for
pressure above ∼ 5 mTorr.

As a concluding remark, it may be noted that Plihon et al. (2005b) had
compared their propagating double layers with the downstream instability re-
ported by Tuszewski et al. (2003), Tuszewski and White (2003) and Tuszewski
and Gary (2003), as they were a very similar phenomenon. Although they have
not explicitly measured a double layer, Tuszewski et al. (2003) have observed
that the plasma immediately downstream of the critical position, where the
downstream instability seems to be born, was transiently electropositive, sug-
gesting the existence of an internal sheath, i.e. a double layer. The double
layers obtained with the simulation were also very similar to that observed by
Tuszewski et al. (2003). The exact relationship between these three phenomena
should be investigated further in future.



Chapter 7

Conclusion

Electron or ion beams have many applications ranging from plasma processing
to electric propulsion for space applications etc. In plasma processing, electron
or ion beams are used to functionalize and modify surfaces for applications such
as microelectronics and bio-physics. In electric propulsion, the creation of an
ion flux provides thrust for the spacecraft Hence, the acceleration of charged
particles (electrons or ions) and understanding the mechanisms that can create
and maintain electric fields in plasmas is of particular interest. An interesting
and promising mechanism is the electric double layer, which is an electrostatic
phenomenon where a large electric field is contained between two opposite space
charge layers.

Traditionally, the understanding of physical phenomena, such as electric
double layers, is obtained by combining experimental observation with a sub-
sequent development of theoretical models. Gaining insight into complex dis-
charge phenomena became possible as a result of advances in modern computer
techniques and the use of computer simulations. As distinct from experiments
where a limited number of quantities can be measured, numerical simulations
provide direct access to most of the important parameters of the system under
investigation. As numerical models can only accommodate a limited number
of hypotheses, they are best used in conjunction with laboratory experiments.
Hence experiment and simulation, together, provide an excellent way to under-
stand the mechanisms underlying complex gas discharges.

The primary concern of this thesis was the development of numerical models
to investigate the basic physics underlying and accompanying two distinct types
of electric double layers in plasmas. In the first part of this thesis a simplified
numerical simulation of double layers in current-free plasmas was presented,
while in the second part, a self-consistent simulation confirmed earlier experi-
mental results demonstrating the spontaneous formation of propagating double
layers in electronegative plasmas.
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7.1 Inductive plasma simulation and current-free dou-
ble layer

Inductive plasmas were simulated by using a one-dimensional particle-in-cell
simulation including Monte Carlo collision techniques. To mimic the inductive
heating, a non-uniform rf electric field, perpendicular to the electron motion was
included into the classical particle-in-cell scheme. The system constituted by
the particle-in-cell scheme and the additional rf electric field was investigated.
It was shown that this heating mechanism allows to sustain plasmas, without
introducing any pathological features in the plasma potential or the electron
transport. An analytical model describing a similar situation was developed.
This analytical model showed that significant stochastic heating may arise from
such a non-uniform electric field perpendicular to the electron motion.

The first type of double layers investigated is that of Charles and Boswell
(2003) that form at the interface of the source and the diffusion chamber in a
current-free plasma expanding along the lines of a diverging magnetic field. The
investigation of current-free double layers is of particular relevance in various
space plasma phenomena as their existence would, for example, free theoreti-
cians of the need to find a current closure condition. Also, the existence of
an ion beam associated with the current-free double layer may lead to various
applications. For example, because the double layer is completely current free,
the electron and ion fluxes across the double layer are equal, which is of great
interest for space propulsion, and plasma acceleration in general, as there is no
need to neutralize the ion beam providing the thrust.

The Monte Carlo collisions / particle-in-cell simulation including the per-
pendicular heating mechanism shows that double layers can be sustained by
one-dimensional current-free plasmas. This adds a new phenomenon to those
simulated in the last few decades where the double layers were always associated
with applied potential difference or by drawing a current through the system.

The spatial structure, beam energy, character of the ion acceleration region,
and ion heating in the presheath of the current-free double layer predicted with
the simulation were all consistent with the LIF (Laser-Induced Fluorescence)
measurements that were subsequently performed. Both the simulation and the
experiment have shown the formation of a super-sonic ion beam resulting from
ions accelerated through the double-layer potential drop.

The simulation also gave an excellent opportunity to investigate the electron
transport in double-layer plasmas. Confirming earlier experimental results, the
simulation showed that when the electron energy relaxation length is greater
than the system dimension, electrons lost to the walls are the main mechanism
for the high-energy depletion of the eedf.

In the laboratory (and space) experiments there is the added complication
of an axial expanding magnetic field. By using a simple algorithm that converts
the perpendicular energy into parallel energy in the direction of the magnetic
expansion, the simulation showed that the magnetic force may play a significant
role in the formation of the current-free double layer. The role of the geometric
and magnetic expansion needs to be investigated further in future.
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7.2 Self-consistent hybrid model and electronegative
double layer

The second part of this thesis shows that classical hybrid simulations, where
ions are treated as particles and electrons are assumed to have a Maxwell-
Boltzmann distribution may lead to a miscalculation of the plasma potential. As
an alternative to the fully self-consistent, computationally-expensive, particle-
in-cell simulations, a novel hybrid simulation was proposed and shown to be in
much better agreement with the full particle-in-cell simulation than the classical
non self-consistent hybrid model.

This “improved” hybrid model was used to simulate electronegative plasmas
under the same conditions as Plihon et al. (2005b). Under these conditions,
propagating double layers were observed and provided evidence supporting the
notion that double layers may spontaneously form in electronegative plasmas.
The propagating double layers observed in the simulation share many common
features with those of Plihon et al. (2005b). Thus, it was possible to show
that critical parameters of the simulation were very much aligned with the
critical parameters of the experiment allowing a more enlightened approach to
the investigations both numerically and experimentally.

During the course of this work, a number of interesting phenomena related
to double layers were observed but not investigated in depth, hence opening
doors to new areas of research. For example, the role played by the magnetic
force in the formation of the current-free double layer, or the exact nature of the
propagating double layers observed in electronegative discharges. It would be
extremely interesting to investigate these phenomena in depth in future work.





Chapter 8

Appendix

8.1 Trigonometric identities and transcendental in-
tegrals

< sin(a− φ) cos(b− φ) >φ = 1
2 sin(a− b)

< sin(a− φ) sin(b− φ) >φ = 1
2 cos(a− b)

< cos(a− φ) cos(b− φ) >φ = 1
2 cos(a− b).

(8.1)

∞∫
0

exp(−νt) sin(ωt) dt =
1/ω

1 + (ν/ω)2
. (8.2)

8.2 Electron density in a Monte Carlo simulation

In the general case of a classical Monte Carlo model where a certain number
Ns of sample electrons are followed one by one from their creation to the end
of their life, the electron density in a cell is given by

ncell =
tres,cell

t

V
Siz dV

Vcell
, (8.3)

where tres,cell is the average time of residency per electron in a cell, i.e. the
cumulative time spent by the Ns electrons in a certain cell over Ns. The other
quantities are self-explanatory, Vcell is the cell volume, ∆x for a 1D simulation
and

t

V
Siz dV is the integral of the real ionization source term over the whole

volume, SizL for a 1D simulation of length L.
For the model h2x, Ns new electrons are injected in the Monte Carlo at

each communication time in addition to those that were already present from
the previous iteration. One might therefore expect a formula different from
equation 8.3; this is not the case. The number of sample electrons in the Monte
Carlo is still Ns, the other electrons, already present in the simulation from the
previous iteration, represent the “future life” of these new Ns electrons if their
whole life were simulated, and not only the first instants of their life during two
communication time steps. The electron density in the Monte Carlo sub-model
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j+1
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di−12di+1
2

d j+1
2

d j−12

Figure 8.1: Two-dimensional mesh of the hybrid model: the nodes of the mesh, where
the scalar quantities are calculated by default, are indicated by the black dots. Cells
are defined by four nodes (grey square); they are used to defined the geometry of the
domain. A so-called control volume is defined around each node, as represented by the
dashed square. The vectorial quantities are defined on the different faces of a control
volume, in between two nodes; this is represented by the white triangles, . and 4, for
the vector along the x and r directions, respectively.

Figure 8.2: This schematic shows that the wall control volumes, represented by the
dashed square, are half sized, and that they are null outside the plasma. Finally, the
grey arrows represent the allocation of such or such material of a cell to a node; the
four corners of a cell “electrode” are “electrode”, while for other materials (plasma or
dielectric), the material of the cell is allocated to its bottom-left-hand corner.

of the model h2x is thus given by equation 8.3, but were tres,cell represents the
cumulative time spent by all the electrons (“old” and “new”) electrons in a
certain cell during two communication time steps divided by the number Ns of
sample electrons.

8.3 Spatial discretization of Poisson’s equation

Equations solved in the present model are the same as that of Chapter 5, namely
Poisson’s equation coupled to the Boltzmann relation. The time discretization
has been thoroughly explained previously, so here the focus is put on the spatial
discretization. In the following, terms such as cells, nodes, control volumes
etc. are used, this nomenclature is defined in figure 8.1. The model assumes
a cylindrical symmetry and equations are solved on a 2D mesh defined by
the directions x and r, which is taken to be linear in x and r2 (the distance
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between two nodes of the grid goes as
√

r). The choice of such a grid allows
cells representing the same volume irrespective of their x and r position, and
therefore to have a uniform particle density described by a uniform macro-
particle number per cell.

The grid is composed of Nx (resp. Nr) cells and Nx + 1 (resp. Nr + 1)
nodes in the x (resp. r) direction. The index i (resp. j) refers to the x (resp.
r) direction. The distance from the node (i, j) to its neighbors are defined
on figure 8.1 and are called di+ 1

2
, di− 1

2
, dj+ 1

2
, dj− 1

2
. An arbitrary domain is

defined by assigning a material and characteristics to each cell of the grid.
The material can be either plasma, dielectric or electrode. The characteristics
are, for example, the relative permitivity of the dielectric, the potential of an
electrode etc. A node represents the same material and characteristics as the
cell of which it is the bottom-left-hand corner, except if the cell is an electrode,
in which case the four nodes of the cell are an electrode (this is represented by
the grey arrows in figure 8.2).

A so-called control volume is defined around each node of the mesh that is
in the plasma (figure 8.1). Each control volume Vi has four surfaces and they
are called Si+ 1

2
,j , Si− 1

2
,j , Si,j+ 1

2
, Si,j− 1

2
. As shown in figure 8.2, the control

volumes along the plasma boundaries are half sized. In the following, to lighten
the notations, a quantity Qi+ 1

2
,j (resp. Qi− 1

2
,j , Qi,j+ 1

2
and Qi,j− 1

2
) will be

represented either by this previous notation or by QE
i,j (resp. QW

i,j , QN
i,j and

QS
i,j), where the upper index stands for east (resp. west, north, south).

Finally, unless stated otherwise, scalar quantities, such as the potential and
the densities are calculated at the nodes (i, j), while vectorial quantities, such
as the electric field are defined between two nodes (i ± 1

2 , j ± 1
2). Poisson’s

equation is solved everywhere except in the electrodes.
As mentioned above, the Boltzmann relation is coupled to Poisson’s equa-

tion to determined the electric field which depends on the space charge density
ρ

∇ · (εE) = −∇ · (ε∇Φ) = ρ, (8.4)

where Φ is the potential and ε the dielectric constant. Rather than directly
using the finite difference corresponding to Poisson’s equation, the so-called
control volume technique detailed below is used. This technique was originally
developed for heat transfer and fluid flow calculations (Patankar 1980), the
technique is used here to solve Poisson’s equation for an arbitrary geometry
and mesh, the system of coordinates being included in the control volumes. In
order to discretize Poisson’s equation, given by 8.4, it is integrated over the
control volume of index i

y

Vi,j

∇ · (εE) dV =
y

Vi,j

ρ dV ⇔
{

Si,j

εE · dS = ρi,jVi,j , (8.5)

which leads to

εE
i,jE

E
i,jSE

i,j + εW
i,jE

W
i,jSW

i,j + εN
i,jE

N
i,jSN

i,j + εS
i,jE

S
i,jSS

i,j = ρi,jVi,j . (8.6)
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Substituting the electric field in equation 8.6 yields, for example

EE
i,j = −Φi+1,j − Φi,j

dE
i

, (8.7)

a classical five-point equation is obtained

aC
i,jΦi,j + aE

i,jΦi+1,j + aW
i,jΦi−1,j + aN

i,jΦi,j+1 + aS
i,jΦi,j−1 = Ai,j , (8.8)

where the east and central coefficients and right-hand side (rhs) of the equation
are given by

aE
i,j = −

εE
i,jSE

i,j

dE
i

, (8.9)

aC
i,j = −(aE

i,j + aW
i,j + aN

i,j + aS
i,j), (8.10)

and
Ai,j = ρi,jVi,j . (8.11)

An expression similar to 8.9 exists for the west, north and south coefficients.
In Chapter 5, it was explained how to linearize the coupling of Poisson’s

equation and Boltzmann relation. The central coefficient and the rhs of the
five-point equation above are modified according to equation 5.5 (Chapter 5)
to account for the time linearization

ãC
i,j = aC

i,j +
Vi,j

λ2
i,j

, (8.12)

Ãi,j = Ai,j + ãC
i,jΦ

old
i,j , (8.13)

where the symbol ∼ denotes the “modified” coefficients accounting for the lin-
earization of Boltzmann relation and where the local Debye length λi,j is given
by

λi,j =

√
e2ni,j

εi,jkBTe
, (8.14)

and where ni,j is the local electron density and Φold
i,j the potential calculated at

the previous iteration.
A specific treatment is done to the various coefficients at the boundaries.

For example, to fix the potential of an electrode, all the face coefficients are set
to 0, the central coefficient to 1 and the rhs of the five-point equation to the
electrode potential.

When the domain is defined, a relative permitivity is assigned to each cell of
plasma or dielectric. As seen previously (equations 8.8 and 8.9), when solving
Poisson’s equation the permitivity has to be known on the faces of each control
volume. They are estimated as follows

εx
i+ 1

2
,j

=
1
2

(
εcell
i,j + εcell

i,j−1

)
, (8.15)

and
εr
i,j+ 1

2

=
1
2

(
εcell
i,j + εcell

i−1,j

)
. (8.16)
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Finally. rather than using the conventional successive over-relaxation tech-
nique (SOR), the Modified Strongly Implicit method developed by Shneider
and Zedan (Shneider and Zedan 1981), and improved by Hagelaar (Hagelaar
2000), was used to solve the five-point equations coming from Poisson’s equation
(equation 8.8).
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