
University of Western Sydney
School of Computing and Information Technology

The Characterization on the Uniqueness of
Answer Set for Prioritized Logic Programs

Yan Zhang and Yun Bai�
yan,ybai � @cit.uws.edu.au

JULY 2003

TECHNICAL REPORT NO. CIT/33/2003

Abstract

Prioritized logic programming has illustrated its rich expressiveness and flexibility in knowledge representation and
reasoning. However, some important aspects of prioritized logic programs have yet to be thoroughly explored. In this
paper, we investigate basic properties of prioritized logic programs in the context of answer set semantics. Specifically,
we propose a characterization on the uniqueness of answer set for prioritized logic programs, which has a weaker form
than the traditional local stratification for general logic programs.
keywords: foundation of logic programming, knowledge representation, semantics

1 Introduction
Prioritized logic programming has illustrated its rich expressiveness and flexibility in knowledge representation, rea-
soning about action and logic program based updates [2, 5, 7, 8]. However, some important aspects of prioritized
logic programs have yet to be thoroughly explored. In this paper, we investigate several properties of prioritized logic
programs in the context of answer set semantics. Specifically, we propose a characterization on the uniqueness of
answer set for prioritized logic programs. We show that our characteristic condition is weaker than the traditional
local stratification for general logic programs [1]. The paper is organized as follows. Section 2 briefly reviews the
syntax and semantics of prioritized logic programs. Section 3 proves a unique answer set theorem for prioritized logic
programs. Finally, section 4 concludes the paper with some remarks.

2 Prioritized Logic Programs
To begin with, we first briefly review prioritized logic programs (PLPs) proposed by the author recently [7]. To
specify PLPs, we first introduce the extended logic program and its answer set semantics developed by Gelfond and
Lifschitz [4]. A language � of extended logic programs is determined by its object constants, function constants and
predicates constants. Terms are built as in the corresponding first order language; atoms have the form P � t �����	���
� tn � ,
where ti (��
 i
 n) is a term and P is a predicate constant of arity n; a literal is either an atom P � t �������	�
� tn � or a
negative atom � P � t � �����	�
� tn � . A rule is an expression of the form:

L ��� L � �����	�
� Lm � notLm � � �	���	�
� notLn � (1)

where each Li (��
 i
 n) is a literal. L � is called the head of the rule, while L � ���	���
� Lm,not Lm � � �	����� , not Ln is
called the body of the rule. Obviously, the body of a rule could be empty. A term, atom, literal, or rule is ground if no
variable occurs in it. An extended logic program � is a collection of rules.

To evaluate an extended logic program, Gelfond and Lifschitz proposed answer set semantics for extended logic
programs. Let � be an extended logic program not containing not and Lit the set of all ground literals in the language
of � . The answer set of � , denoted as Ans ��� � , is the smallest subset S of Lit such that (i) for any rule L � � L �	���	���
� Lm

from � , if L �����	����� Lm � S, then L � � S; and (ii) if S contains a pair of complementary literals, then S � Lit. Now
let � be an arbitrary extended logic program. For any subset S of Lit, let � S be the logic program obtained from �
by deleting (i) each rule that has a formula not L in its body with L � S, and (ii) all formulas of the form not L in the
bodies of the remaining rules1. We define that S is an answer set of � , denoted by Ans ��� � , iff S is an answer set of� S, i.e. S � Ans ��� S � .

It is easy to see that an extended logic program may have one, more than one, or no answer set at all. The language� P of PLPs is a language � of extended logic programs [4] with the following augments:
- Names: N � N � � N ���	���	� .
- A strict partial ordering � on names.
- A naming function , which maps a rule to a name.
A prioritized logic program (PLP) ! is a triple ���"�# $�%� � , where � is an extended logic program, is a naming
function mapping each rule in � to a name, and � is a strict partial ordering on names. The partial ordering � in !
plays an essential role in the evaluation of ! . We also use !&�'� � to denote the set of � -relations of ! . Intuitively �
represents a preference of applying rules during the evaluation of the program. In particular, if $� r � �($� r) � holds
in ! , rule r would be preferred to apply over rule r) during the evaluation of ! (i.e. rule r is more preferred than rule
r)). Consider the following classical example represented in our formalism:

!*� :
N �,+ Fly � x � � Bird � x � , not � Fly � x � ,
N � +-� Fly � x � � Penguin � x � , not Fly � x � ,
N ./+ Bird � Tweety � � ,

1We also call 0 S is the Gelfond-Lifschitz transformation of 0 in terms of S.

2

N 1/+ Penguin � Tweety � � ,
N ��� N � .

Obviously, rules N � and N � conflict with each other as their heads are complementary literals, and applying N � will
defeat N � and vice versa. However, as N � � N � , we would expect that rule N � is preferred to apply first and then
defeat rule N � after applying N � so that the desired solution � Fly � Tweety � can be derived.

In a PLP or an extended logic program, we usually view a rule including variables to be the set of all ground
instances of this rule formed from the set of ground literals in the language.

Definition 1 Let � be a ground extended logic program and r a rule with the form L � � L �������	�
� Lm, not Lm � �2���	��� ,
not Ln (r does not necessarily belong to �). Rule r is defeated by � iff � has an answer set and for any answer set
Ans ��� � of � , there exists some Li � Ans ��� � , where m 34��
 i
 n.

The evaluation of a PLP will be based on its ground form. That is, for any PLP !5�6���7�' $�8� � , we consider its
ground instantiation !) �9���) �') �%�) � , where �) ,) and �) are ground instantiations of � , and � respectively2.
However, this requires some restriction on a PLP since not every PLP’s ground instantiation presents a consistent
information with respect to the original PLP.

Given a PLP !:�;���"�# $�%� � . We say ! is well formed if there does not exist a rule r) that is an instance of two
different rules r � and r � in � and $� r � � �< $� r � �=� !>�#� � . In the rest of this paper, we will only consider well
formed PLPs in our discussions, and consequently, the evaluation for an arbitrary program !?�?���"�# $�%� � will be
based on its ground instantiation !) �<���) �#) �%�) � . Therefore, in our context a ground prioritized (or extended) logic
program may contain infinite number of rules. In this case, we will assume that this ground program is the ground
instantiation of some program that only contains finite number of rules.

Let us consider program !@� once again. Since N � � N � and N � is defeated by !*�BA�C N �%D (i.e. the unique answer set
of !E�FA(C N �%D is C Bird � Tweety � , Penguin � Tweety � , � Fly � Tweety � D), rule N � should be ignored during the evaluation
of !*� .
Definition 2 Let !:�6���"�# $�8� � be a prioritized extended logic program. !HG is a reduct of ! with respect to � if
and only if there exists a sequence of sets � i (i �4�B���2���	���) such that:

1. �*�I�(� ;

2. � i �J� i K �LAMC r ��� r � ���	���ON (a) there exists r � � i K � such that
for every j (j �P�2�
QB���	���), $� r � �R $� rj �F� !&�'� � and
r �����	���
� are defeated by � i K �LARC r ��� r � �	����� D , and (b) there
does not exist a rule r) � � i K � such that N � rj � � N � r) �
for some j (j �S�-�TQU�	�����) and r) is defeated by � i K � ARC r) D-D ;

3. ! G �4V"Wi X � � i .

In Definition 2, ! G is a ground extended logic program obtained from � by eliminating some rules from � . In
particular, if $� r � �($� r � � , $� r � �$ $� r � � , �	��� , and � i K �YAJC r ��� r � ���	��� D defeats C r �	� r � �����	� D , then rules r ��� r � ���	���
will be eliminated from � i K � if no less preferred rule can be eliminated (i.e. conditions (a) and (b)). This procedure
is continued until a fixed point is reached. It is worth to note that the generation of a reduct of a PLP is based on
the ground form of its extended logic program part. Furthermore, if $� r � � �4 $� r � � holds in a PLP where r � or r �
includes variables, then $� r � � �Z $� r � � is actually viewed as the set of � -relations $� r) � � �Z $� r)� � , where r) � and r)�
are ground instances of r � and r � respectively.

Definition 3 Let ![�<���7�' $�8� � be a PLP and Lit the set of all ground literals in the language of ! . For any subset
S of Lit, S is an answer set of ! , denoted as AnsP �\! � , iff S � Ans �\! G � for some reduct ! G of ! . Given a PLP ! , a
ground literal L is entailed from ! , denoted as !]N � L, if L belongs to every answer set of ! .

Using Definitions 2 and 3, it is easy to conclude that ! � has a unique reduct as follows:

! G� �^C�� Fly � x � � Penguin � x � , not Fly � x � ,
Bird � Tweety � �(� Penguin � Tweety � �_D ,

from which we obtain the following answer set of ! � :
2Note that if `Fa is a ground instantiation of ` , then b�c r d�egfhbic r j%egkl`Icmfne implies b&a\c r a d eLfnaobic r aj epkl`Yaqcrfna\e , where r ad and r aj are

ground instances of r d and r j respectively.

3

AnsP �\!*� � �^C Bird � Tweety � , Penguin � Tweety � �
� Fly � Tweety � D .
Now we consider another program ! � :

N � + A � ,
N �*+ B � not C,
N ./+ D � ,
N 1 + C � not B,
N � � N ��� N .�� N 1 .

According to Definition 2, it is easy to see that !*� has two reducts:

C A � , D � , C � not B D , andC A � , B � not C, D �sD .
From Definition 3, it follows that !E� has two answer sets: C A � C � D D and C A � B � D D .
3 Basic Properties of Prioritized Logic Programs
In this section, we illustrate several basic properties of prioritized logic programs. As we mentioned earlier, when we
evaluate a PLP, a rule including variables is viewed as the set of its all ground instances. Therefore, we are actually
dealing with ground prioritized logic programs that may consist of infinite collection of rules. We first introduce some
useful notations. Let � be an extended logic program. We use ti��� � to denote the class of all answer sets of � .
Suppose !^�<���7�' $�8� � is a PLP. From Definition 2, we can see that a reduct ! G of ! is generated from a sequence
of extended logic programs: �P�4�@���u� � �u�E� , �	��� . We use C	� i D (i �P�B���2�
QB���	���) to denote this sequence and call it a
reduct chain of ! .

Proposition 1 Let !:�6���7�' $�8� � be a PLP and C�� i D (i �v�U�	�-�TQU�	���%�) its reduct chain. Suppose � has an answer
set. Then for any i and j where i � j, ti��� j �Fw ti��� i � .
Proof 1 Let C	� i D (i �4�B���2�
QB�����	�) be a reduct chain of ! . Suppose Sj is an answer set of � j for some j xy� . To prove
the result, it is sufficient to show that Sj is also an answer set of � j K � . According to Definition 2, � j is obtained by
eliminating some rules from � j K � where all these eliminated rules are defeated by � j. So we can express:

� j �J� j K � AMC r � � r �����	��� D .
Since r ��� r � ���	��� are defeated by � j , we can write rules r ��� r � �����	� to the following forms:

r � + L � �z�	��� , not L) � ���	��� ,
r �*+ L �*�z�	��� , not L) � ���	��� ,���	� ,

where L) � � L) � ���	��� � Sj. Now consider Gelfond-Lifschitz transformation of � j in terms of Sj. It is clear that during
the transformation, each rule in � j including not L) � , not L) � , ���	� in its body will be deleted. From here it follows that
adding any rule with not L) � not L) � , ����� in its body will not play any role in the evaluation of the answer set of the
program. So we add rules r ��� r � �	���	� into � j, This makes � j K � . Then we have � Sj

j �J� Sj
j K � . So Sj is also an answer set

of � j K � .
Proposition 1 shows an important property of the reduct chain of ! : each � i is consistent with � i K � but becomes

more specific than � i K � in the sense that all answer sets of � i are answer sets of � i K � but some answer sets of � i K �
are filtered out if they conflict with the preference partial ordering � .

Example 1 Consider a PLP ! . �^���"�# $�8� � :
N � + A � not B,
N � + B � not A,
N . + C � not B, not D,
N 1/+ D � not C,
N �I� N � � N . � N 1 .

From Definition 2, we can see that !{. has a reduct chain C�� i D (i �(�U�	�-�TQ):
4

� � :
A � not B,
B � not A,
C � not B, not D,
D � not C,� � :
A � not B,
C � not B, not D,
D � not C,� � :
A � not B,
C � not B, not D.

It is easy to verify that �@� has three answer sets C A � C D , C B � D D and C A � D D , � � has two answer sets C A � C D andC A � D D , and �*� has a unique answer set which is also the answer set of !E. : C A � C D .
The following theorem shows the answer set relationship between a PLP and its corresponding extended logic

programs.

Theorem 1 Let !^�<���7�' $�8� � be a PLP and S a subset of Lit. Then the following are equivalent:

1. S is an answer set of ! .

2. S is an answer set of each � i for some reduct chain C	� i D (i �$�U�	�-�TQU�	���%�) of ! .

Proof 2 (1 | 2) Let ! G be a reduct of ! obtained from a reduct chain C	� i D (i �?�U�	�-�TQU�	���%�) of ! . By applying
Theorem 3 in section 3, it is easy to show that any reduct chain of ! is finite. Therefore, there exists some k such thatC	� i D (i �P�B���2�
QB�����%��� k) is the reduct chain. This follows that ! G �4� k w � i (i �9�2�����	�
� k). So from Proposition 1,
an answer set of !>G is also an answer set of � i (i �P�2�����	�
� k).

(2 | 1) Given a reduct chain C�� i D (i �P�B���2�
QB���	�%�) of ! . From the above, since C�� i D (i �P�B���2�
QB���	���) is finite, we
can assume that C	� i D (i �$�U�	�-�TQU�	���	�'� k) is the reduct chain. As � j w � i if j x i, it follows that V k

i X � � i �J� k. So the
fact that S is an answer set of � k implies that S is also an answer set of ! .

Corollary 1 If a PLP !^�<���7�' $�8� � has an answer set S, then S is also an answer set of � .

Proof 3 From Theorem 1, it shows that if ! has an answer set S, then S is also an answer set of each � i for ! ’s a
reduct chain C	� i D (i �$�U�	�-�TQU�	���%�), where �*�I�J� . So S is also an answer set of � .

The following theorem presents a sufficient and necessary condition for the answer set existence of a PLP.

Theorem 2 Let !^�<���7�' $�8� � be a PLP. ! has an answer set if and only if � has an answer set.

Proof 4 According to Corollary 1, we only need to prove that if � has an answer set, then ! also has an answer set.
Suppose � has an answer set and C	� i D (i �4�B���2�����	�) is a reduct chain of ! . From the construction of C	� i D (Definition
2), it is easy to see that every � i (i �P�U�	�-�	�����) must have an answer set. On the other hand, as we have mentioned in
the proof of Theorem 1, ! ’s reduct chain is actually finite: C�� i D (i �S�U�	�-�	������� k). That follows ! G �P� k . Since � k

has an asnwer set, it concludes ! has an answer set as well.

Proposition 2 Suppose a PLP ! has a unique reduct. If ! has a consistent answer set, then ! ’s every answer set is
also consistent.

Proof 5 The fact that ! has a consistent answer set implies that ! ’s reduct ! G (note ! G is an extended logic
program) has a consistent answer set. Then from the result showed in section 2 of [6] (i.e. if an extended logic
program has a consistent answer set, then its every answer set is also consistent), it follows that ! G ’s every answer
set is also consistent.

5

4 A Unique Answer Set Theorem
Now we try to provide a unique characterization of the answer set for a prioritized logic program. To investigate this
issue, we first extend the concept of local stratification for general logic programs [1] to extended logic programs.

Definition 4 Let � be an extended logic program and Lit be the set of all ground literals of � .

1. A local stratification for � is a function stratum from Lit to the countable ordinals.

2. Given a local stratification stratum, we extend it to ground literals with negation as failure by setting
stratum � not L � � stratum � L � 3$� , where L is a ground literal.

3. A rule L � � L ���	���	�
� Lm, not Lm � �����	��� , not Ln in � is locally stratified with respect to stratum if

stratum � L � �F} stratum � Li � , where ��
 i
 m, and
stratum � L � � x stratum � notLj � , where m 3(�*
 j
 n.

4. � is called locally stratified with respect to stratum if all of its rules are locally stratified. � is called locally
stratified if it is locally stratified with respect to some local stratification.

Let � be a ground extended logic program and r be a rule in � of the form:

L � � L �������	�
� Lm, not Lm � ���	����� , not Ln.

We use pos � r � to denote the set of literals in the body of r without negation as failure C L �������	�
� Lm D , and neg � r � the
set of literals in the body of r with negation as failure C Lm � ���	���	�
� Ln D . We specify body � r � to be pos � r �n~ neg � r � . We
also use head � r � to denote the head of r: C L ��D . Then we use lit � r � to denote head � r �g~ body � r � . By extending these
notations, we use pos ��� � , neg ��� � , body ��� � , head ��� � , and lit ��� � to denote the unions of corresponding components
of all rules in � , e.g. body ��� � ��� r ��� body � r � . If � is a non-ground program, then notions pos ��� � , neg ��� � , body ��� � ,
head ��� � , and lit ��� � are defined based on the ground instantiation of � .

Definition 5 Let � be an extended logic program and rp and rq be two rules in � . We define a set ��� rp � of literals
with respect to rp as follows:

� � �^C head � rp � D ;� i �s� i K � ~ C head � r � N head � r) �p� pos � r � where r � � and r) are those
rules such that head � r) �F� � i K �	D ;�i� rp � �4�"Wi X � � i.

We say that rq is defeasible through rp in � if and only if neg � rq �-� �i� rp �*��(� . rp and rq are called mutually defeasible
in � if rq is defeasible through rp and rp is defeasible through rq in � .

Intuitively, if rq is defeasible through rp in � , then there exists a sequence of rules r � � r �������	�
� rl ���	��� such that
head � rp � occurs in pos � r � � , head � ri � occurs in pos � ri � � � for all i �<�2���	��� , and for some k, head � rk � occurs in neg � rq � .
Under this condition, it is clear that by triggering rule rp in � , it is possible to defeat rule rq if rules r � �	���	�
� rk are
triggered as well. As a special case that �i� rp � �P� , rq is defeasible through rp iff head � rp �I� neg � rq � . The following
proposition simply describes the relationship between local stratification and mutual defeasibility.

Proposition 3 Given a ground extended logic program � . If � is locally stratified, then there are no mutually defea-
sible pairs of rules in � .

It is easy to observe that the converse of Proposition 3 does not hold. Consider an extended logic program consisting
of three rules

A � ,
B � notC � notA,
C � B � notA.

There does not exist two rules in this program that are mutually defeasible. But this program is not locally stratified.

Proposition 4 Let � be a ground extended logic program. If � is locally stratified, then � has a unique answer set3.

3Recall that if 0 has an inconsistent answer set, we will denote it as Lit.

6

The above result is easy to prove from the corresponding result for general logic programs showed in [3] based on
Gelfond and Lifschitz’s translation from an extended logic program to a general logic program [4]. It is observed that
for a PLP !:�;���7�' $�8� � , if � is locally stratified, then ! will also have a unique answer set. In other words, � ’s
local stratification implies that ! has a unique answer set. However, this condition seems too strong because many
prioritized logic programs will still have unique answer sets although their corresponding extended logic programs are
not locally stratified. For instance, program !�� presented in section 2 has a unique answer set but its corresponding
extended logic program is not locally stratified. But one fact is clear: the uniqueness of reduct for a PLP is necessary
to guarantee this PLP to have a unique answer set.

The above observation suggests that we should first investigate the condition under which a prioritized logic program
has a unique reduct. Then by applying Proposition 3 to the unique reduct of the PLP, we obtain the unique answer set
condition for this PLP.

Definition 6 Let !?�?���"�# �� � be an arbitrary PLP. A � -partition of � in ! is a finite collection C	�>���	�����T�u� k D ,
where �$�(��� ~ ���	� ~ � k and � i and � j are disjoint for any i �� j, such that

1. $� r � �M $� r) �p� !>�#� � implies that there exist some i and j (��
 i � j) such that r) � � j and r � � i;

2. for each rule r) � � j (j x��), there exists some rule r � � i (�,
 i � j) such that $� r � �M $� r) �F� !&�'� � .
Example 2 Consider a PLP !{1,�^���"�# $�8� � :

! 1 :
N � + A � not B, not C,
N �*+ B � not � C,
N . + C � not A, not � C,
N 1/+-� C � not C,
N �I� N � � N � � N 1O� N . � N 1 .

It is easy to verify that a � -partition of � in ! 1 is C�� � ���*���u�,.�D , where

� � :
N � + A � not B, not C,
N ./+ C � not A, not � C,�*� :
N �*+ B � not � C,� . :
N 1/+-� C � not C.

In fact, this program has unique answer set C B � C D .
Theorem 3 Every prioritized logic program has a � -partition.

Theorem 4 (Unique Answer Set Theorem) Let !S�S���"�# �� � be a ground PLP and C	�l�������	�u��� k D be a � -partition
of � in ! . ! has a unique reduct if there does not exist two rules rp and rq in � i and � j (i � j x��) respectively such
that rp and rq are mutually defeasible in � . ! has a unique answer set if ! has a unique locally stratified reduct.

Proof 6 According to Proposition 3, it is sufficient to only prove the first part of this theorem: ! has a unique reduct if
there does not exist two rules rp and rq in � i and � j (��� i � j) respectively such that rp and rq are mutually defeasible
in � .

We assume that ! has two different reducts, say ! Gn� ��� and ! G�� � � . This follows that there exist at least two different
rules rp and rq such that (1) rp � � i and rq � � j, where ��� i � j; (2) rq � ! G�� ��� , rq �� ! G�� � � , and rp �� ! Gn� ��� ; and (3)
rp � ! Gn� � � , rp �� ! Gn� �#� , and rq �� ! G�� � � . According to Definition 2, ! Gn� ��� and ! G�� � � are generated from two reduct
chains C	� � ���� �u� � ���� �	���	� D and C�� � � �� �u� � � �� ���	��� D respectively.

Without loss of generality, suppose that for all ��
 i � k, � � ���i �(� � � �i , and

� � ���k �J� � ���k K � AsC r ���	���	�
� rl � rp �	���	� D ,
� � � �k �J� � � �k K � AsC r � �	���	�
� rl � rq �	���	� D ,

7

where we set � k K � �^� � ���k K � �^� � � �k K � and the only difference between � � ���k and � � � �k is due to rules rp and rq. Let rp

and rq have the following forms:

rp + Lp �����	� , not L)p �	����� ,
rq + Lq �����	� , not L)q �	����� .

Comparing � � ���k and � � � �k , it is clear that the only difference between these two programs is about rules rp and rq.
Since Since � � ���k defeats rp and � � � �k defeats rq, it follows that L)q � S � ���k and L)p � S � � �k , where S � ���k and S � � �k are answer

sets of � � �#�k and � � � �k respectively. Then there must exist some rule in � � �#�k of the form:

r � ��� + L)p ���	��� ,
and some rule in � � � �k of the form:

r � � � + L)q ���	��� .
Furthermore, since � � ���k APC rp � rq D does not defeat rule rp and � � � �k APC rp � rq D does not defeat rule rq (otherwise
� � �#�k �(� � � �k), it is observed that rule rq triggers rule r � ��� in � � ���k that defeats rp, and rule rp triggers rule r � � � in � � � �k
that defeats rq. This follows that rp and rq are mutually defeasible in � .

5 Concluding Remarks
In this paper we investigated basic properties of PLPs under answer set semantics and provided a unique characteriza-
tion for the answer set of PLPs. It should be noted that although the uniqueness of answer set for general and extended
logic programs has been studied previously, this paper presents the first investigation on this issue for prioritized logic
programs. The detailed comparison between our prioritized logic programs and other related proposals is beyond
the scope of this paper. Here we only illustrate the most important feature of our approach in preferred defeasible
reasoning. The major difference between our approach and other approaches is that by viewing the preference to be
defeasible, our approach guarantees that every prioritized logic program has an answer set iff the underlying extended
logic program has one - this principle is essential for dealing with logic program update in many situations as we have
shown in [8]. So in general our approach provides a flexible framework for prioritized defeasible reasoning.

References
[1] K.R. Apt and R.N. Bol, Logic programming and negation: A survey. Journal of Logic Programming, 19,20 (1994)

9-71.

[2] G. Brewka and T. Eiter, Preferred answer sets for extended logic programs. Artificial Intelligence, 109 (1999)
297-356.

[3] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming. In Proceedings of the Fifth Joint
International Conference and Symposium, pp 1070-1080. MIT Press, 1988.

[4] M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases. New Generation
Computing, 9 (1991) 365-386.

[5] B.N. Grosof, Prioritized conflict handling for logic programs. In Proceedings of the 1997 International Logic
Program Symposium (ILPS’97), pp 197-212. MIT Press, 1997.

[6] V. Lifschitz and H. Turner, Splitting a logic program. In Proceedings of Eleventh International Conference on
Logic Programming, pp 23-37. MIT Press, 1994.

[7] Zhang and N.Y. Foo, Answer sets for prioritized logic programs. In Proceedings of the 1997 International Logic
Programming Symposium (ILPS’97), pp 69-83. MIT Press, 1997

[8] Y. Zhang, Logic program based updates. Manuscript, 2003.

8

