*
Jiri Rohn, List of publications (those marked red can be downloaded)


A Handbook of Results on Interval Linear Problems. Internet text available at http://www.cs.cas.cz/~rohn/publist/handbook.zip

Letter to the Editor. Reliable Computing 12 (2006), 245-246

M. Fiedler, J. Nedoma, J. Ramik, J. Rohn and K. Zimmermann, Linear Optimization Problems with Inexact Data. Springer-Verlag, New York 2006, ISBN 0-387-32697-9 (Contents) (Springer sample pages: Chapter 2, 44 p.)

Regularity of Interval Matrices and Theorems of the Alternatives. Reliable Computing 12 (2006), 99-105

How Strong Is Strong Regularity? Reliable Computing 11 (2005), 491-493

Perron Vectors of an Irreducible Nonnegative Interval Matrix. Linear and Multilinear Algebra 54 (2006), 399-404

Nonsingularity, Positive Definiteness, and Positive Invertibility Under Fixed-Point Data Rounding. Applications of Mathematics 52 (2007), 105-115

Linearni algebra a optimalizace. Nakladatelstvi Karolinum, Prague 2004, 199 p., ISBN 80-246-0932-0

Problem linearni komplementarity a kvadraticke programovani (strucny ucebni text). Technical Report No. 918, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2004, 12 p.

A Method for Handling Dependent Data in Interval Linear Systems. Technical Report No. 911, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2004, 7 p.

Linear Interval Equations: Midpoint Preconditioning May Produce a 100% Overestimation for Arbitrarily Narrow Data Even in Case $n=4$. Reliable Computing 11 (2005), 129-135

Linearni algebra a optimalizace na slidech. Technical Report No. 905, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2004, 456 p. (compressed form, 4 slides per page)

A Normal Form Supplement to the Oettli-Prager Theorem. Reliable Computing 11 (2005), 35-39

A Theorem of the Alternatives for the Equation $Ax+B|x|=b$. Linear and Multilinear Algebra 52 (2004), 421-426

Prehled nekterych dulezitych vet z teorie matic. Technical Report No. 895, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2003, 48 p.

Solvability of Systems of Linear Interval Equations. SIAM Journal on Matrix Analysis and Applications 25 (2003), 237-245

Systems of Interval Linear Equations and Inequalities (Rectangular Case). Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2002, 69 p.

Linearni programovani (strucny ucebni text). Technical Report No. 845, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 2001, 24 p.

J. Rohn, S. M. Rump and T. Yamamoto, Preface. Linear Algebra and Its Applications 324 (2001), 1-2

J. Rohn, S. M. Rump and T. Yamamoto (eds.), Special issue on linear algebra in self-validating methods. Linear Algebra and Its Applications 324 (2001), No. 1-3, 236 p.

Symbolic Algebraic Methods and Verification Methods (G. Alefeld, J. Rohn, S. Rump and T. Yamamoto, eds.). Springer-Verlag, Wien 2001, ISBN 3-211-83593-8 (Contents and Introduction)

G. Alefeld, J. Rohn, S. M. Rump and T. Yamamoto (eds.), Symbolic-Algebraic Methods and Verification Methods - Theory and Applications. Dagstuhl-Seminar-Report 260, IBFI, Schloss Dagstuhl, Wadern 2000, 34 p. (Overview)

Computing the Norm $\|A\|_{\infty,1}$ is NP-Hard. Linear and Multilinear Algebra 47 (2000), 195-204

G. Mayer and J. Rohn, On the Applicability of the Interval Gaussian Algorithm. Reliable Computing 4 (1998), 205-222

V. Kreinovich, A. Lakeyev, J. Rohn and P. Kahl, Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht 1998, ISBN 0-7923-4865-6 (Contents and Preface)

[98] On Overestimations Produced by the Interval Gaussian Algorithm. Reliable Computing 3 (1997), 363-368

[97] Bounds on Eigenvalues of Interval Matrices. Zeitschrift fuer Angewandte Mathematik und Mechanik 78 (1998), Supplement 3, S1049-S1050

[96] Complexity of Some Linear Problems with Interval Data. Reliable Computing 3 (1997), 315-323

[95] C. Jansson and J. Rohn, An Algorithm for Checking Regularity of Interval Matrices. SIAM Journal on Matrix Analysis and Applications 20 (1999), 756-776

[94] G. Rex and J. Rohn, Sufficient Conditions for Regularity and Singularity of Interval Matrices. SIAM Journal on Matrix Analysis and Applications 20 (1998), 437-445

[93] Overestimations in Bounding Solutions of Perturbed Linear Equations. Linear Algebra and Its Applications 262 (1997), 55-65

[92] Checking Properties of Interval Matrices. Technical Report No. 686, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 1996, 36 p.

[91] V. Kreinovich, A. Lakeyev and J. Rohn, Computational Complexity of Interval Algebraic Problems: Some Are Feasible and Some Are Computationally Intractable - A Survey. In: Scientific Computing and Validated Numerics (G. Alefeld, A. Frommer and B. Lang, eds.), Akademie Verlag, Berlin 1996, 293-306

[90] J. Rohn and G. Rex, Enclosing Solutions of Linear Equations. SIAM Journal on Numerical Analysis 35 (1998), 524-539

[89] The Conjecture "P$\neq$NP" and Overestimation in Bounding Solutions of Perturbed Linear Equations. Technical Report No. 644, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 1995, 5 p.

[88] Enclosing Solutions of Overdetermined Systems of Linear Interval Equations. Reliable Computing 2 (1996), 167-171

[87] Linear Programming with Inexact Data is NP-Hard. Zeitschrift fuer Angewandte Mathematik und Mechanik 78 (1998), Supplement 3, S1051-S1052

[86] Validated Solutions of Nonlinear Equations. Zeitschrift fuer Angewandte Mathematik und Mechanik 77 (1997), Supplement 2, S657-S658

[85] Complexity of Solving Linear Interval Equations. Zeitschrift fuer Angewandte Mathematik und Mechanik 76 (1996), Supplement 3, 271-274

[84] Linear Interval Equations: Computing Enclosures with Bounded Relative Overestimation is NP-Hard. In: Applications of Interval Computations (R. B. Kearfott and V. Kreinovich, eds.), Kluwer Academic Publishers, Dordrecht 1996, 81-89

[83] Linear Interval Equations: Computing Sufficiently Accurate Enclosures is NP-Hard. Technical Report No. 621, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 1995, 7 p.

[82] Validated Solutions of Linear Equations. Technical Report No. 620, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 1995, 11 p.

[81] NP-Hardness Results for Some Linear and Quadratic Problems. Technical Report No. 619, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague 1995, 11 p.

[80] J. Rohn and G. Rex, Interval $P$-Matrices. SIAM Journal on Matrix Analysis and Applications 17 (1996), 1020-1024

[79] NP-Hardness Results for Linear Algebraic Problems with Interval Data. In: Topics in Validated Computations (J. Herzberger, ed.), North-Holland, Amsterdam 1994, 463-471

[78] Checking Bounds on Solutions of Linear Interval Equations is NP-Hard. Linear Algebra and Its Applications 223/224 (1995), 589-596

[77] A Perturbation Theorem for Linear Equations. Commentationes Mathematicae Universitatis Carolinae 35 (1994), 213-214 (this is a preliminary announcement; click here for a proof)

[76] G. Rex and J. Rohn, A Note on Checking Regularity of Interval Matrices. Linear and Multilinear Algebra 39 (1995), 259-262

[75] An Algorithm for Checking Stability of Symmetric Interval Matrices. IEEE Transactions on Automatic Control 41 (1996), 133-136

[74] Checking Positive Definiteness or Stability of Symmetric Interval Matrices is NP-Hard. Commentationes Mathematicae Universitatis Carolinae 35 (1994), 795-797

[73] Enclosing Solutions of Linear Interval Equations is NP-Hard. Computing 53 (1994), 365-368

[72] J. Rohn and V. Kreinovich, Computing Exact Componentwise Bounds on Solutions of Linear Systems with Interval Data is NP-Hard. SIAM Journal on Matrix Analysis and Applications 16 (1995), 415-420

[71] J. Rohn and J. Kreslova, Linear Interval Inequalities. Linear and Multilinear Algebra 38 (1994), 79-82

[70] On Some Properties of Interval Matrices Preserved by Nonsingularity. Zeitschrift fuer Angewandte Mathematik und Mechanik 74 (1994), T688

[69] Cheap and Tight Bounds: The Recent Result by E. Hansen Can Be Made More Efficient. Interval Computations 4 (1993), 13-21

[68] Positive Definiteness and Stability of Interval Matrices. SIAM Journal on Matrix Analysis and Applications 15 (1994), 175-184

[67] A. Deif and J. Rohn, On the Invariance of the Sign Pattern of Matrix Eigenvectors Under Perturbation. Linear Algebra and Its Applications 196 (1994), 63-70

[66] A Note on Solvability of a Class of Linear Complementarity Problems. Mathematical Programming 60 (1993), 229-231

[65] Inverse Interval Matrix. SIAM Journal on Numerical Analysis 30 (1993), 864-870

[64] Stability of the Optimal Basis of a Linear Program Under Uncertainty. Operations Research Letters 13 (1993), 9-12

[63] S. Poljak and J. Rohn, Checking Robust Nonsingularity is NP-Hard. Mathematics of Control, Signals, and Systems 6 (1993), 1-9

[62] A Step Size Rule for Unconstrained Optimization. Computing 49 (1993), 373-376

[61] Interval Matrices: Singularity and Real Eigenvalues. SIAM Journal on Matrix Analysis and Applications 14 (1993), 82-91

[60] Stability of Interval Matrices: The Real Eigenvalue Case. IEEE Transactions on Automatic Control 37 (1992), 1604-1605

[59] An Algorithm for Finding a Singular Matrix in an Interval Matrix. Journal of Numerical Linear Algebra with Applications 1 (1992), 43-47; (unpublished erratum)

[58] Step Size Rule for Unconstrained Optimization. Report NI-92-04, Institute of Numerical Analysis, The Technical University of Denmark, Lyngby 1992, 11 p.

[57] On the Common Argument Behind the Finite Pivoting Rules by Bland and Murty. KAM Series 92-225, Faculty of Mathematics and Physics, Charles University, Prague 1992, 4 p.

[56] J. Rohn and A. Deif, On the Range of Eigenvalues of an Interval Matrix. Computing 47 (1992), 373-377

[55] A Theorem on $P$-Matrices. Linear and Multilinear Algebra 30 (1991), 209-211

[54] An Existence Theorem for Systems of Linear Equations. Linear and Multilinear Algebra 29 (1991), 141-144

[53] Nonsingularity Under Data Rounding. Linear Algebra and Its Applications 139 (1990), 171-174

[52] Interval Solutions of Linear Interval Equations. Aplikace matematiky 35 (1990), 220-224

[51] Nonsingularity and $P$-Matrices. Aplikace matematiky 35 (1990), 215-219

[50] Real Eigenvalues of an Interval Matrix with Rank One Radius. Zeitschrift fuer Angewandte Mathematik und Mechanik 70 (1990), T562-T563

[49] Characterization of a Linear Program in Standard Form by a Family of Linear Programs with Inequality Constraints. Ekonomicko-matematicky obzor 26 (1990), 71-73

[48] A Short Proof of Finiteness of Murty's Principal Pivoting Algorithm. Mathematical Programming 46 (1990), 255-256; Erratum, Mathematical Programming 57 (1992), 477

[47] Systems of Linear Interval Equations. Linear Algebra and Its Applications 126 (1989), 39-78

[46] A Farkas-Type Theorem for Linear Interval Equations. Computing 43 (1989), 93-95

[45] On Nonconvexity of the Solution Set of a System of Linear Interval Equations. BIT 30 (1989), 161-165

[44] Linear Interval Equations: Enclosing and Nonsingularity. KAM Series 89-141, Faculty of Mathematics and Physics, Charles University, Prague 1989, 16 p.

[43] On Singular Matrices Contained in an Interval Matrix. Ekonomicko-matematicky obzor 25 (1989), 320-322

[42] An Asymptotic Result for Linear Interval Systems. BIT 29 (1989), 372-374

[41] On Sensitivity of the Optimal Value of a Linear Program. Ekonomicko-matematicky obzor 25 (1989), 105-107

[40] A Two-Sequence Method for Linear Interval Equations. Computing 41 (1989), 137-140

[39] New Condition Numbers for Matrices and Linear Systems. Computing 41 (1989), 167-169

[38] S. Poljak and J. Rohn, Radius of Nonsingularity. KAM Series 88-117, Faculty of Mathematics and Physics, Charles University, Prague 1988, 11 p.

[37] Nearness of Matrices to Singularity. KAM Series 88-79, Faculty of Mathematics and Physics, Charles University, Prague 1988, 4 p.

[36] Sensitivity Characteristics for the Linear Programming Problem. In: Seminarbericht Nr. 94 (K. Lommatzsch and K. Zimmermann, eds.), Humboldt-Universitaet, Berlin 1988, 135-137

[35] Solving Systems of Linear Interval Equations. In: Reliability in Computing (R. E. Moore, ed.), Academic Press, New York 1988, 171-182

[34] Eigenvalues of a Symmetric Interval Matrix. Freiburger Intervall-Berichte 87/10, Albert-Ludwigs-Universitaet, Freiburg 1987, 67-72

[33] Formulae for Exact Bounds on Solutions of Linear Systems with Rank One Perturbations. Freiburger Intervall-Berichte 87/6, Albert-Ludwigs-Universitaet, Freiburg 1987, 1-20

[32] Inverse-Positive Interval Matrices. Zeitschrift fuer Angewandte Mathematik und Mechanik 67 (1987), T492-T493

[31] Inner Solutions of Linear Interval Systems. In: Interval Mathematics 1985 (K. Nickel, ed.), Lecture Notes in Computer Science 212, Springer-Verlag, Berlin 1986, 157-158

[30] A Note on the Sign-Accord Algorithm. Freiburger Intervall-Berichte 86/4, Albert-Ludwigs-Universitaet, Freiburg 1986, 39-43

[29] Testing Regularity of Interval Matrices. Freiburger Intervall-Berichte 86/4, Albert-Ludwigs-Universitaet, Freiburg 1986, 33-37

[28] A Note on Solving Equations of Type $A^Ix^I = b^I$. Freiburger Intervall-Berichte 86/4, Albert-Ludwigs-Universitaet, Freiburg 1986, 29-31

[27] Miscellaneous Results on Linear Interval Systems. Freiburger Intervall-Berichte 85/9, Albert-Ludwigs-Universitaet, Freiburg 1985, 29-43

[26] Some Results on Interval Linear Systems. Freiburger Intervall-Berichte 85/4, Albert-Ludwigs-Universitaet, Freiburg 1985, 93-116

[25] Interval Linear Systems. Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universitaet, Freiburg 1984, 33-58

[24] Proofs to "Solving Interval Linear Systems". Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universitaet, Freiburg 1984, 17-30

[23] Solving Interval Linear Systems. Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universitaet, Freiburg 1984, 1-14

[22] P. Simak, J. Rohn, Vypocet parametru viceprvkoveho rheologickeho modelu. In: Vyuziti malych pocitacu pro reseni problematiky zakladani a mechaniky zemin (P. Simak, ed.), Vyzkumny ustav pozemnich staveb, Praha 1984, 105-107

[21] J. Rohn, P. Simak, Vyuziti pocitace EG 3003 pro geotechnicke vypocty a statisticke hodnoceni. In: Vyuziti mikropocitacu pro reseni problematiky zakladani a mechaniky zemin (P. Simak, ed.), Vyzkumny ustav pozemnich staveb, Praha 1983, 105-108

[20] An Algorithm for Solving Interval Linear Systems and Inverting Interval Matrices. Freiburger Intervall-Berichte 82/5, Albert-Ludwigs-Universitaet, Freiburg 1982, 23-36

[19] Productivity of Activities in the Optimal Allocation of One Resource. Aplikace matematiky 27 (1982), 146-149

[18] On the Interval Hull of the Solution Set of an Interval Linear System. Freiburger Intervall-Berichte 81/5, Albert-Ludwigs-Universitaet, Freiburg 1981, 47-57

[17] Dual Complementarity in Interval Linear Programming Problems. Ekonomicko-matematicky obzor 17 (1981), 86-89

[16] Strong Solvability of Interval Linear Programming Problems. Computing 26 (1981), 79-82

[15] Interval Linear Systems with Prescribed Column Sums. Linear Algebra and Its Applications 39 (1981), 143-148

[14] An Existence Theorem for Systems of Nonlinear Equations. Zeitschrift fuer Angewandte Mathematik und Mechanik 60 (1980), 345

[13] Input-Output Model with Interval Data. Econometrica 48 (1980), 767-769

[12] Duality in Interval Linear Programming. In: Interval Mathematics 1980 (K. Nickel, ed.), Academic Press, New York 1980, 521-529

[11] Input-Output Planning with Inexact Data. Freiburger Intervall-Berichte 78/9, Albert-Ludwigs-Universitaet, Freiburg 1978, 16 p.

[10] Correction of Coefficients of the Input-Output Model. Zeitschrift fuer Angewandte Mathematik und Mechanik 58 (1978), T494-T495

[9] Dosazeni maximalni dojivosti pri nevyrovnanych obsazich zivin v silazovanych objemnych krmivech v zimnim obdobi. Zemedelska ekonomika 24 (1978), 313-318

[8] J. Rohn, I. Sklenar, Automatizovany system sestavovani planu krmeni dojnic. Zemedelska ekonomika 23 (1977), 49-57

[7] Optimalizace produkce mleka. Ekonomicko-matematicky obzor 13 (1977), 444-450

[6] Intervalovy pristup k meziodvetvovemu modelu. In: Sbornik referatu o spolupraci matematicko-fyzikalni fakulty s praxi (L. Paty, ed.), Univerzita Karlova, Praha 1976, 33-35

[5] Soustavy linearnich rovnic s intervalove zadanymi koeficienty. Ekonomicko-matematicky obzor 12 (1976), 311-315

[4] Doplnovani vapniku a fosforu v krmne davce dojnic mineralni prisadou. Zemedelska ekonomika 21 (1975), 105-111

[3] J. Bouska, J. Rohn, Reseni jedne ulohy na strukturnim modelu pri intervalovem zadani parametru a konstant. In: IV. konference o matematickych metodach v ekonomii, Harmonia 1974 (J. Bouska, ed.), Ekonomicky ustav CSAV, Praha 1975, 135-156

[2] Iteracni metoda reseni soustavy nelinearnich rovnic. Acta Polytechnica IV, CVUT, Praha 1973, 77-80

[1] Oddelitelnost systemu otevrenych konvexnich mnozin. In: II. celostatni konference o matematickych metodach v ekonomii, Harmonia 1972 (J. Bouska, ed.), Ekonomicky ustav CSAV, Praha 1973, 243-250

K. Zimmermann, J. Segethova, Z. Renc, J. Rohn, Studijni text k postgradualnimu studiu "Matematicke a programovaci prostredky ASR". Skriptum, MFF UK, Praha 1986

V. Mikolas, J. Rohn, Cviceni z matematiky pro I. rocnik chemie a biologie. Skriptum, RUK, Praha 1977

Matematika pro lingvisty. Skriptum, RUK, Praha 1974


[CNW:Counter]