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Abstract. We present modifications of model elimination which do not necessi-
tate the use of contrapositives. These restart model elimination calculi are proven
sound and complete. The corresponding proof procedures areevaluated by a num-
ber of runtime experiments and they are compared to other well known provers.
Finally we relate our results to other calculi, namely the connection method,
modified problem reduction format and Near-Horn Prolog.

1 Introduction

This paper demonstrates that model elimination can be defined such that it is complete
without the use of contrapositives. We believe that this result is interesting in at least
two respects: it makes model elimination available as a calculus for non-Hornlogic
programming and it enables model elimination to perform proofs of mathematical
theorems by case analysis.

Let us first explain what we mean by the term “without the use of contrapositives”.
In implementations of theorem proving systems usually� procedural counterparts� � �
�1 � � � � � �� �1 � ��	1 � � � � � �
 for a clause�1 � � � � � �
 have to be considered.
Each of these is referred to as acontrapositiveof the given clause and represents a
different entry point during the proof search into the clause. It is well-known that for
Prolog's SLD-resolution one single contrapositive suffices, namely the “natural” one,
selecting the head� of the clause� � 
�1 � � � �� 
�
 as entry point. For full first-order
systems the usually required� contrapositives are either given moreexplicitly (as in
the SETHEO prover [LSBB92]) or moreimplicitly (as in the connection method by
allowing to set up a connection witheveryliteral in a clause [Ede92]). The distinction
is merely a matter of presentation and will be given up for this paper. Now,by a system
“without contrapositives” we mean more precisely a system which does not need all�
contrapositives for a given�-literal clause.

Model elimination [Lov68] is a calculus, which is the base of numerous proof pro-
cedures for first order deduction. There are high speed theorem provers, like METEOR
[AS92] or SETHEO [LSBB92]. The implementation of model elimination provers can
take advantage of techniques developed for Prolog. For instance, Stickel's Prolog tech-
nology theorem proving system (PTTP, [Sti88]) uses Horn clauses as an intermediate
language. Hence, it should be straightforward to use model elimination and PTTP in
the context ofnon-Horn logic programming. Indeed this possibility is discussed in



various papers; however it is discarded by some authors because of the necessity to use
contrapositives (e.g. [Lov91, Pla88]). The argument is given by Plaisted [Pla88] explic-
itly: “In general, however, we feel that the need for contrapositives makes it difficult to
view model elimination as a true programming language in the style of Prolog, since
the user has less control over the search.” Suppose, for example we are givenan input
clause1

� ���� ���� �� 	 
 �� � � ���� �� � � � ���� � 
 �

which can be used within a formalization of propositional calculus. A possible contra-
positive is


� ���� �� � � 
� ���� ���� �� 	 
 �� � � ���� � 
 �

The procedural reading of this contrapositive is somewhat strange and leads to an
unnecessary blowing-up of the search space; in order to prove
� ���� �� � one has to
prove� ���� � 
 � – a goal which is totally unrelated to
� ���� �� � by introducing a
new variable. Such observations had been the motivation for the developmentof calculi
which need no contrapositives, e.g. Loveland's NearHorn-Prolog. Gabbay's N-Prolog
[Gab85] when restricted to clause logic is general enough to be instantiatedto both
NearHorn-Prolog and problem reduction formats ([Pla88], see also Section 5 below;
[RL92] contains a comparison of these).

Another motivation for the new calculi is as follows: in proving theorems such as
“if � 
� 0 then� 2 � 0” a human typically uses case analysis according to the axiom� � 0 � � � 0 � �� � 0. This seems a very natural way of proving the theorem
and leads to a well-understandable proof. Our modified model eliminationprocedure
carries out precisely such a proof by case analysis. Experimental results with similar
examples from calculus and a comparison with other proof procedures are presented in
this paper.

The calculi we derive in this paper are a very small modification of model elimination
and hence allow for Prolog implementation techniques. They are complete without the
use of contrapositives and hence well-suited for logic programming andfor theorem
proving by “case analysis” or “splitting”.

As a more theoretical contribution we will show that one of the NearHorn-Prologs,
namely InH-Prolog ([LR89]), can be seen as one of our modified model elimination
procedures.

As a final point, we discovered that the connection method ([Bib87, Ede92], [BF93]
contains a comparative study) is complete without contrapositives andwithout any
change to the calculus. This surprising result is due to a relaxed complementary-literal
condition which subsumes the above-mentioned small change in model elimination.

This paper is organised as follows: in the following section we review the model
elimination calculus we use as a starting point of our investigation. In section 3 we
define various variants of this calculus and give soundness and completenessproofs
of the weakest one. In section 4 we give some experimental results with a PTTP-
implementation and in section 5 we discuss related work.

1 Taken from [Pla88].



2 Review of Tableau Model Elimination

As a starting point we use a model elimination calculus that differs from the original one
presented by [Lov68]; it is described in [LSBB92] as the base for the prover SETHEO.
In [BF93] this calculus is discussed in detail by presenting it in a consolution style
[Ede91] and comparing it to various other calculi. This model eliminationmanipulates
trees by extension- and reduction-steps. In order to recall the calculus and tostate a
running example consider the clause set

��� 	 � � 	 �
� 	 � � 	 �
 � 	 � � 	 �
� 	 
 � �� 	
A model-elimination refutation is depicted in Figure 1 (left side). It is obtained by
successive fanning with clauses from the input set (extension steps). Additionally, it is
required that every inner node (except the root) is complementary to one of its sons.
An arc indicates areduction step, i.e. the closing of a branch due to a path literal
complementary to the leaf literal.
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A Model Elimination Refutation. A Restart Model Elimination Refutation (posi-
tive goal-nodes are not displayed).

Fig. 1. Model Elimination (left side) vs. Restart Model Elimination (right side) as defined in
Section 3.

In the following we use a formal presentation of the calculus along thelines of
[BF93]. Instead of trees we manipulate multisets of paths, where paths are sequences of
literals.

A clause is a multiset of literals, usually written as the disjunction�1 � � � � � �
 .
A connectionin a set of clauses is a pair of literals, written as�� 	 � �, which can be
made complementary by application of a substitution. Apath is a sequence of literals,
written as� � 
�1

	 � � � 	 �
 �. �
 is called theleaf of � , which is also denoted by���� �� �;
similarly, the first element�1 is also denoted by� ��� �� �. `�' denotes the append function
for literal sequences. Multisets of paths are written with caligraphic capital letters.



Definition 1. (Tableau Model Elimination) Given a set of clauses� .

– The inference ruleextensionis defined as follows:
� � �� � � � �

� , where

1.
� � �� � is a path multiset, and� � � is a variable disjoint variant of a clause
in � ; � is a literal and� denotes the rest literals of� � � .

2. ����� �� � 	 �� is a connection with MGU� .
3.

� � �� � �� � 
� � � � � � ��� .
– The inference rulereductionis defined as follows:

� � �� �
� � , where

1.
� � �� � is a path multiset, and

2. there is a literal� in � such that�� 	 ���� �� �� is a connection with MGU� .
– A sequence��1

	 � � � 	� 
 � is called amodel elimination derivationiff�
1 is a path multiset

�
�1� 	 � � � 	 
�
 �� consisting of paths of length 1, with
�1 � � � � � �
 in � (also called thegoal clause), and� �	1 is obtained from

� � by means of an extension step with an appropriate
clause� , or� �	1 is obtained from

� � by means of a reduction step.

The path� is calledselected pathin both inference rules. Finally, arefutation is a
derivation where

� 
 � ��.

Note that this calculus does not assume a special selection function which determines
which path is to be extended or reduced next. Correctness and completeness of this
calculus follows immediately from a result proved in [Bau92].

3 Restart Model Elimination Calculi

Let us now modify the calculus given above, such that no contrapositives areneeded.
In order to get a complete calculus, we have to assume that there exists onlyone

goal, i.e. a clause containing only negative literals, which furthermoredoes not contain
variables. Without loss of generality this can be achieved by introducing anew clause
� 	 �� � where	 ��� is a new predicate symbol and by modifying every purely negative
clause
�1 � � � � � 
�
 to 	 �� � � �1

	 � � � 	 �
 . In the following we will refer to clause
sets� satisfying that property as clause sets ingoal-normal form. Note that since the
	 ��� literal is attached only to purely negative clauses the Horn status of the given clause
set is not affected by the transformation. Furthermore, besides the	 �� �-normal form we
will only allow derivations which start with the goal clause� 	 ���.

Soundness of this transformation is evident. Completeness holds as follows:



Theorem 2. (Completeness of Model Elimination)Let S be an unsatisfiable clause
set in goal-normal form. Then there exists a tableau model elimination refutation of S
with goal clause� goal. Furthermore, if S is Horn then no reduction steps are required
in this refutation.

We are now ready to modify the calculus, such that no contrapositives are necessary.
This will be done in three steps: as a base we define arestart model eliminationby a
small modification in the definition of tableau model elimination, with the result that
no contrapositives are needed. Then we weaken this calculus by introducing aselection
function, which determines which positive head literal can be used for an extension
step. Finally, as a further weakening we introducestrict restart model eliminationby
disallowing reduction steps with a positive leaf literal.

A completeness proof is given for the weakest variant, i.e. strict restart model
elimination with selection function. Completeness of the stronger variants follows from
this result as a simple corollary.

Definition 3. (Restart Model Elimination) Assume the following line additionally
given between conditions 1 and 2 in the definition ofextension(Def. 1).

1a. if ���� �� � is positive then let� :� � � 
� ��� �� �� in conditions 2 and 3.

The calculus ofrestart model eliminationconsists of thus modified extension inference
rule and of the reduction inference rule. An extension step with lengthening according
to 1a above is also called arestart.

If clauses are written in a sequent style�1
	 � � � 	�
 � �1

	 � � � 	 �� then it is clear
that, for syntactical reasons extension steps are possible only with head literals� 's and
not with� 's from the body. Thus it is possible to represent clauses as abovewithoutthe
need of augmenting them with all contrapositives; only contrapositives with conclusions
(i.e. entry points) stemming from the positive literals are necessary.

The price of the absence of contrapositives is that whenever a path ends witha
positive literal, the root of the tree, i.e. the clause
	 ��� has to be copied and the
path has to be lengthened with that literal. Note that there is only a restriction on the
applicability of extension steps – reductions are still allowed when a pathends with a
positive literal.

In Figure 1 (left side) there is one extension step, which is no longer allowed in
restart model elimination, namely the extension of the path

 � 	 � �. Note that with
our assumptions on goals, this path becomes� � 

	 ��� 	 
 � 	 � � in restart model
elimination. There is no reduction step possible and since���� �� � is positive, we lengthen� to � � � 

	 ��� 	 
 � 	 � 	 
	 ��� � in a restart step, which can finally be extended to the
path multiset

�

	 ��� 	 
 � 	 � 	 
	 �� � 	 
� � 	 

	 ��� 	 
 � 	 � 	 
	 ��� 	 
 ���

The complete restart model elimination refutation is depicted in Figure 1(right side).
It is obvious that for reasons of efficiency a proof procedure based on thiscalculus

must provide some refinements. For example, the use of lemmas or factoring might
reduce the amount of redundancy introduced by restart steps. In the examplefrom



Figure 1 (right side) the restart led to the newly introduced paths ending with 

�

and 
 � , respectively. When processing the tree from left to right it is obvious that
solving 


�
would be unnecessary, since there is already a closed subtree containing



�

as a root; thus a proof procedure would benefit extremely from the possibility of
using lemmas or factoring [LMG93]. However, we are lucky, the same effect could be
achieved by a reduction step. These and other topics concerning proof procedures are
discussed in the following section.

Selection Function

Now we weaken the calculus by introducing a selection function on head literals.

Definition 4. (Selection Function)A selection function fis a function that maps a
clause�1

	 � � � 	�
 � �1
	 � � � 	 �� with � �

1 to an atom� � ��1
	 � � � 	 �
 �. � is

called theselected literalof that clause by
�
. The selection function

�
is required

to be stable under liftingwhich means that if
�

selects�� in the instance of the
clause��1

	 � � � 	�
 � �1
	 � � � 	 ��

�� (for some substitution� ) then
�

selects� in
�1

	 � � � 	 �
 � �1
	 � � � 	 �� .

Now let
�

be a selection function, and assume the following line additionally given
between conditions 2 and 3 in the definition ofrestart(Def. 3).

2a � is selected in� by
�
.

This modified calculus is called(restart) model elimination with selection function.

Assume there is a path� in our running example with���� �� � � 

�

and the
selection function gives

� �� 	 � � � � � , then it is not allowed to perform an extension
step with

� 	 � � . Positive literals not selected by
�

can only be used within reduction
steps. Note that the proof in Figure 1 (right side) is a proof withthe above assumed
selection function.

Strict Restart Model Elimination

As a further restriction we force the calculus to perform restarts wheneverthey are
possible, i.e. if a leaf of a path is a positive literal it may not be used for a reduction
step. Since for these leaves extension steps are possible only through arestart, we call
this calculus strict restart model elimination. This restriction is motivated in several
ways: first, a comparable restriction is formulated within Plaisted's modified problem
reduction format ([Pla88], see also Section 5 below) and we would like toevaluate it
within our framework; second, strict restart model elimination minimizes the search in
ancestor lists, which occasionally results in shorter runtimes to find a proof. See also
[Pla90] for restrictions on accessing ancestor lists within a non-restart calculus.

Definition 5. (Strict Restart Model Elimination) The inference rulereductionis mod-
ified by adding the following line after condition 2 to the definitionof reduction(Def. 1).

3. and���� �� � is a negative literal.



Such reduction steps are calledstrict reduction steps. Strict restart model elimination
is defined to be the same as restart model elimination, except that “reduction step” is
replaced by “strict reduction step”.

For the rest of this section we deal with soundness and completeness of restart
model elimination. Soundness of the calculus follows immediately by showing that
every restart model elimination proof can be mapped to a proof in the free variable
semantic tableau calculus ([Fit90]), while completeness will be proven directly.

Theorem 6. (Soundness)Restart model elimination is sound.

Theorem 7. (Completeness)Let f be a selection function and S be a clause set in
goal-normal form. Then there exists a strict restart model elimination refutation of S
with goal� goal and selection function f .

Since a strict reduction step is by definition also a reduction step we obtain as a
corollary the completeness of the non-strict restart model elimination.

Since a selection function restricts the set of permissible derivations, complete-
ness without selection function follows immediately from completeness with selection
function.

Here we restrict to the proof on the ground level (Lemma 8 below). Although not
quite trivial, lifting can be carried out by using standard techniques. In particular, by
stability under lifting (Def. 4) it is guaranteed that the selection function will select on
the first order level a literal whose ground instance was selected at the ground level.

Ground completeness reads as follows:

Lemma 8. (Ground Completeness)Let f be a selection function and S be an unsat-
isfiable ground clause set in goal-normal form. Then there exists a strict restart model
elimination refutation with selection function f of S with goal clause� goal.

Proof. Informally, the proof is by splitting the non-Horn clause set into Horn sets,
assuming by completeness of model elimination refutations without reduction steps, and
then assembling these refutations into the desired restart model elimination refutation.
There, reduction steps come in by replacing extension steps with split unit clauses by
reduction steps to the literals where the restart occurred.

For the formal proof some terminology is introduced: we say that a path multiset�
“contains (an occurrence of) a clause�1

	 � � � 	 �
 � �1
	 � � � 	 �� ” iff for some path� it holds

�� � 
�1� 	 � � � 	 � � 
�
 � 	 � � 

�1� 	 � � � 	 � � 

�� �� � �
If we speak of

“replacing a clause� in a derivation by a clause� � �
” we mean the derivation that

results when using the clause� � �
in place of� in extension steps. Also, the same

literal � � � must be used to constitute the connection.
By a “derivation of a clause� ” we mean a derivation that ends in a path multiset

which contains (several occurrences of) the clause� .
Let � �� � denote the numberof occurrencesof positive literals in� minus the number

of definite clauses2 in � (� �� � is related to theexcess literal parameterin [AB70]).
Now we prove the claim by induction on� �� �.
2 A definite clauseis a clause containing exactly one positive literal.



Induction start (k�S� � 0): � must be a set of Horn clauses. By Theorem 2 there
exists a model elimination refutation of� with goal� 	 �� � without reduction steps.
Furthermore, for syntactical reasons, in every extension step only the single positive
literal (and never a negative literal) of the extending clause can be selected. Thus, this
refutation is also a strict restart model elimination refutation.

Induction step (k�S� � 0): As the induction hypothesis suppose the result to hold
for unsatisfiable ground clause sets� � in goal-normal form with� �� � � � � �� �.

Since � �� � � 0, � must contain a non-Horn clause� � �1
	�2

	 � � � 	�
 �
�1

	 � � � 	 �� with � �
2. W.l.o.g. assume that�1 is the literal selected by

�
in � . Now

define� sets

�1 :� �� � � � � ��1 � �1
	 � � � 	 ��

�
�2 :� �� � � � � ��2

�
...

�
 :� �� � � � � ��
 �

Every set� � ( � � 1 � � � �) is unsatisfiable (because otherwise, a model for one of them
would be a model for� ). Furthermore, it holds� �� � � � � �� � � � � 1 � � �� �. Thus,
by the induction hypothesis there exist strict restart model elimination refutations� �
with goal clauses� 	 ��� of � � , respectively.

Now consider�1 and replace in�1every occurrence of the clause�1 � �1
	 � � � 	 ��

by � . Call this derivation� �
1. Since�1 is the sole positive literal in�1 � �1

	 � � � 	 �� ,
�1 must have been selected in the extension steps with that clause in�1. Thus the
corresponding extension steps in� �

1 with � are legal in the sense of the restriction to
the selection function.

� �
1 is a derivation of, say,�� occurrences of the positive unit clauses�� (

� � 2 � � � �)
from the input set� . Now every�� can be eliminated from the input set� according to
the following procedure: for

� � 2 � � � � append� �� �1 �� times with the refutation�� ,
however with the first extension step in�� being replaced by a restart step at one of the
paths ending�� . Note here that the restart step produces exactly the same goal clause
� 	 �� � as is in�� . Let � ��� be the refutation resulting from these�� restart steps at leaf
�� . � ��� is a restart model elimination refutation of� � ��� 	 � � � 	�
 �. In order to turn
� ��� into a refutation of� � ��� 	1

	 � � � 	�
 �, replace every extension step with�� in the
appended refutations�� by a reduction step to the positive path literal�� . The resulting
refutation� �� is a desired strict model elimination refutation of� � ��� 	1

	 � � � 	�
 �.
Finally, � �
 is the desired strict restart model elimination refutation of� alone.

Regularity in Restart Theory Model Elimination.

Regularitymeans for ordinary model elimination that it is never necessary to construct
a tableau where a literal occurs more than once along a path. Regularity tends to be one
of the more useful refinements of model elimination. Unfortunately, regularity is not
compatible to restart model elimination. This can be seen easily as the	 ���-literal is
copied in restart steps, thus violating the regularity restriction. Hence at least the goal
literal has to be excluded from the regularity restriction, because otherwise restart steps



are impossible! But even with this exception completeness is lost in general, since after
a restart step it might be necessary to repeat – in parts – a proof found so farup to the
restart step.

However the following observations allows to define a somewhat weaker notion of
regularity: First, the proof of Lemma 8 proceeds by splitting the input clause set into
Horn sets and then assembles the existing non-restart refutations�1

	 � � �� 
 into a restart
refutation� �
 . Since this assembling is done “blockwise” (the� �s are not interleaved
among each other and keep their structure) some properties of the� �s carry over to
their respective occurrence in� �
 . In particular, theregularity of the� �s carries over
in this way. Hence we define a path asblockwise regular (version 1)iff every pair of
occurrences of identical literals (unequal to
	 �� �) is separated by at least one occurrence
of the literal
	 �� �. A derivation is is calledblockwise regulariff every path in every
of its path multisets is blockwise regular. From these considerationsand definitions it
follows with Lemma 8 that this restriction is complete. Since all the� �s are refutations
of Horn clause sets this regularity restriction applies only tonegativeliterals along a
path. Thus we might derive a blockwise regular path� � 
	 �� � � � � � � � � 
	 �� � � � � �.
We wish to extend blockwise regularity to forbid such duplicate occurrences of positive
literals, and say that a branch ispositive regulariff all the positive literals occurring in
it are pairwise distinct (not identical). Extending the preceding definition, we define a
branch to beblockwise regular (final version)iff it is blockwise regular (version 1) and
positive regular. Fortunately it holds:

Theorem 9. Restart model elimination is complete when restricted to blockwise regular
refutations (final version).

4 PTTP without Contrapositives – Experimental results

The reader familiar with Stickel's PTTP-technique ([Sti88]) may have already noticed
that the restart variant can be implemented very easily using the PTTP-technique. Indeed,
we implemented the restart model elimination calculus in the theorem proving system
PROTEIN ([BF94]). Both the implementation language and the target language for the
compiled code is ECLiPSe, an enhanced Prolog-dialect.

We ran several examples known from the literature, and some new ones. We com-
pared several versions of the prover, varying in strict restart model elimination vs.
(non-strict) restart model elimination, and selection function vs. no selection function;
the first four columns in Figure 3 contain the runtime results. Column 5 (MPRF) con-
tains the results for theModified Problem Reduction Formatprover (see also the section
on related work below). The option “nosave flag cleared” means that caching is enabled.
The data, taken from [Pla88], were obtained on a SUN 3 workstation, whereasthe other
provers ran on a SUN Sparc 10/40. Hence, for normalisation the times forthe MPRF
prover were divided by 14.

The default flag settings in our provers includeground reduction steps(in reduction
steps where no substitution is involved no further proof alternatives need to be explored)
andblockwise regularityas defined at the end of Section 3. Other flags allow for the
generation of(Unit)-lemmas(currentlyall lemma candidates are stored) andfactoring.
Unless otherwise noted, in Figure 3 the default flags are used.



For iterative deepening, the threshold was increased in each iteration by 1, andeach
extension step was uniformly charged with a cost of 1.

Furthermore, we also found it interesting to run standard model elimination provers
which use contrapositives (“PTTP” and “Setheo”, the right two columns inFigure 3).
This demonstrate that in some cases, namely the examples from real-analysis,restart
model elimination results in better performance, whereas in the usual benchmarks the
results with restart based procedures are often in the same order of magnitude.

Now let us summarize the results. Compared among each other, each of the 4
versions of restart model elimination has its justification by dedicated examples. In the
parameter spacenon-strict restartvs. strict restartmodel elimination we prefer as the
default strategy thenon-strictversion, since whenever thestrict version found a proof
in reasonable time, thenon-strictversion did as well; but on most examples thestrict
version failed or behaved poorly, while the other version found a proof.

Restart Strict Restart
Model Elimination Model Elimination MPRF ME ME

Example w/o Selectionw. Selectionw/o Selectionw. Selection PTTPSetheo

Non-Obvious 2.7 � � � 128 0.3 0.5
MSC/MSC006-1 3.24

Eder45 3.4 1.8/10.13 0.5 3.1/8.53 0.7 1.0
1.71 2.51 0.71 0.91

Steamroller 9.9 � 6.3 � 2246 1.5 0.18
14.54

x
�� 0 � 0.7 0.8/463 0.5 0.6/423 2.4 0.8

x2 � 0
Bledsoe 1 � 7.42 � � � 87
ANA/ANA003-4
Bledsoe 2 � 322 � � � �
ANA/ANA004-4
Natnum3 2.1 0.15 0.6 0.05 0.07 0.03
Wos 4 20 � 43 � 22 13
GRP/GRP008-1
Pelletier 48 1.1 4.1 � � 5.9 0.2
Remarks:1 – With (back) factoring. 2 – With lemmas.

3 – Depends from selected literal. 4 – "nosave" flag cleared.

Fig. 3.Runtime results (in seconds) for various provers.
Entries such asMSC/MSC006-1 refer to the respective TPTP-names [SSY94]. All examples
were drawn from that problem library without modification.

In the parameter spaceselection functionvs.no selection functionwe will not strictly
prefer the one to the other. Note the extreme dependence on the “right” choice in the
� 
� 0 � � 2 � 0-example (this holds also for the Bledsoe examples), while in the
Eder-example the right choice is not that crucial. On the other side, the Non-Obvious,
Steamroller and Wos 4 examples obviously require the use of several contrapositives.

From this results we learn that the selection function should be carefully determined.
Here, heuristics are conceivable such as “always select a biggest (in some ordering) head



literal” in order to work in a decreasing direction. The selection functioncan even be
determined dynamically within the bounds of Definition 4.

Currently, the user has to supply the selection function for a given input clause. This
function is inherited to all instances of that clause. Here we see potential for further
improvements.

But even at the moment our restart provers can well compete with the MPRF prover,
which is according to our classification, closest to the strict restart prover with selection
function (see also the next section).

Ordinary model elimination as implemented by ME-PTTP and Setheo is sometimes
faster than restart model elimination. In the case of Setheo this may especiallybe due
to the numerous refinements not present in the other provers. However there are many
examples where restart model elimination finds a proof more quickly, which suggest to
us that it is an interesting alternative to traditional model elimination.

5 Related Work

Connection Method.The connection method[Bib87] is an analytic calculus closely
related to model elimination. Clause sets are calledmatricesthere, and apath through
a matrix is obtained by taking exactly one literal from every clause in the matrix. The
method proceeds by systematically checking all paths through the matrix to contain
complementary literals. If this is the case, a refutation has been found.

A somewhat higher-level formulation of the connection method can be foundin
[Ede92], and in [BF93] we showed that this connection method can, in steps, simulate
model elimination. The converse, however, is not true for the following essential dif-
ference between the connection method and model elimination: in model elimination in
extension steps a complementary pair of literals (calledconnection) must be established
between theleaf literal where the extension occurred and some literal of the extending
clause. In the connection method this restriction is dropped, and so every literal along
the path (or even none) may be part of the connection.

This property is also the key for the observation stated in the introduction, namely
that the connection method is complete without the use of contrapositives. In order to
see this, recall that a restart step consists of copying the first literal ofthe path, followed
by an extension step. Thus, copying is not necessary if the first literal inthe path is
accessible for the connection — as is the case in the connection method. Hence weget
as a corollary to theorem 7, the completeness of strict restart model elimination with
selection function:

Corollary 10. The connection method is complete for input sets in goal-normal form,
even if no contrapositives are used.

Problem Reduction Formats.In [Pla88] two calculi namedsimplified problem reduction
format andmodified problem reduction formatare described. They are goal-oriented,
and neither of these needs contrapositives. We will discuss both of them.

Thesimplified problem reduction format(SPRF) is a variant of the Gentzen sequent
calculus (see e.g. [Gal87]). A sequent is pair, written as� � � where� is a list of



literals, and� is a literal. From the model elimination point of view a sequent� � �
corresponds to the path� � 

� �, i.e. the goal� is to be proven in the context (ancestor
list) � .

Clauses are translated to inference rules operating on sequents; a clause� �
�1

	 � � � 	 �
 is translated into the inference rule (where� is a variable)

� � �1 � � � � � �

� � �

The interesting case is to see how model elimination restart steps can be mapped to
derivations in SPRF. Suppose we have in a restart model elimination derivation a leaf

� and wish to extend with the clause� 	 � � � . After copying, the situation looks as
depicted in Figure 2 (left side). This situation can be mirrored in SPRFby the partial
proof in Figure2 (right side).

�� ��
�p

p� �rq

�p

not�q� � not�q� not�q� � r

not�q� � p
R1

q � p

� p
Split�

Fig. 2. Restart Model Elimination vs. Simplified Problem ReductionFormat.

The�� ��� rule is in effect the cut-rule, and�1 stems from the clause� 	 � � � . While
the sequent��� �� � � ��� �� � is an instance of an axiom, the boldface sequents are
unproved. Note the close relationship to restart model elimination: the sequent� � �
immediately corresponds to the goal
� with ancestor list
� � � in restart model
elimination; it is even identical in strict restart model elimination, as negative ancestors
need not be stored. For the other sequent��� �� � � � note that the corresponding
goal 
 � in restart model elimination does not have the ancestor��� �� �. If additional
information – such as��� �� � – is considered as an advantage for proof finding, this is a
shortcoming of restart model elimination. The situation however can easily be repaired
either by an explicit change to the calculus, or by incorporating a more general factoring
rule3.

In this way, restart model elimination steps can be mapped to partial SPRF proofs.
The converse, however, is not true. This is due to the fact that the splitting rule can be
applied in every proof situation, i.e. to every sequent derived along a proof. In other
words, a case analysis� or 
� can be carried even to goals totally unrelated to� .

Thus, in sum, the restart model elimination is more restricted than SPRF.

3 Factoring means that a branch may be closed if its leaf is identical to some brother node of a
predecessor of this leaf.



Themodified problem reduction format(MPRF) avoids the problem of uncontrolled
application of the splitting rule. This is formally carried out by an additional syntactical
layer between “sequents” and “inference rules”. As an essential difference, MPRF allows
(in our terminology) for restart steps withanygoal along the current path, not just with
the goal literal as in restart model elimination. While this feature clearlyincreases the
local search space, shorter proofs may be enabled. Another notable difference isthat
restart model elimination includes the negative literals along paths. As our experiments
show this is often valuable information and should not be thrown away.

Near-Horn Prolog.As already mentioned in the introduction, there is a close relation
to Loveland's Near-Horn Prolog, especially to the InH-Prolog variant from [LR89].
Instead of one tableau in our model elimination calculi, InH-Prolog deductions consist
of a sequence of Prolog-like computations, called blocks. The activationof such blocks
corresponds to our restart extension steps. If we agree that Prolog stepwisely transforms
a goal setG into the empty goal set, then the Prolog-like computations in InH-Prolog
deal with triples of the formG # A { D } . Here, the listA is calledactive headsand
the listD is calleddeferred heads. These components can easily be explained from the
viewpoint of restart model elimination: the active headsA corresponds to thepositive
literals of the path in restart model elimination which was most recently selected for a
restart step; consequently, sinceA is a left-ended stack the leftmost literal inA is the
literal which caused the restart step. In the Prolog-like restart blocks every literal inA
may be used in the role of a unit input clause (“cancellation step) in order to get rid of
a goal literal. The deferred headsDcorrespond to the remaining positive leaf literals of
the path multiset; they will cause new restart blocks (or restart steps) at alater time.

Let us compare our refutation from Figure 1 (right side) with the following InH-
Prolog refutation. In this example no deferred head occurs.

?- GOAL
:- P,Q
:- Q,Q % factoring to simplify presentation!
:- Q
:- # P % P from disjunctive clause Q,P <-

% is deferred, and the Block is finished
% restart:
?-GOAL # P
:- P,Q # P % cancellation (reduction)
:- Q # P
:- P # P % cancellation
:- # P %

The cancellation steps in this derivation correspond to the two reductionsteps in
the right subtree of Figure 1 (right side). The derivation from the left subtree does not
have a counterpart in the above InH-Prolog refutation, because of the factoring step
we performed in the first block; this, of course, would have been possible in the restart
model elimination refutation.

The reduction steps starting from positive leaf-literals have no counterpart in InH-
Prolog - within a block there are only extension or cancellation steps. The latter corre-
spond to reductions with a negative leaf-literal.



On the other side, the concept of astrong cancellation pruning ruleof InH-Prolog
has (so far) no counterpart in restart model elimination. By this rule, a certain class
of refutations is discarded. Stated positively, and in the terminologyof restart model
elimination, only those refutations are acceptable in which a literal whichcaused a
restart step is used in a (any) subsequent reduction step. Thus restart steps not relevant
for the proof are filtered out. The completeness of this restriction can beseen again
by analyzing the completeness proof of Lemma 8. In brief, a restart step applied to
� 	 � � � causes by the splitting rule Horn refutations with� � � and� . Now, if
the given clause set is supposed (without loss of generality) to beminimalunsatisfiable,
then also the splitted sets contain minimal unsatisfiable subsets containing � � �
and � , respectively. Hence these clauses must be used in the Horn refutations, and
consequently, the restart step occurring at� must be followed by a reduction step to� .

Summarizing on all these considerations we conclude that InH-Prolog isvery closely
related to strict restart model elimination without selection function. As a consequence
we see that our PTTP implementation can be seen as an implementation of InH-Prolog.

SLWV-Resolution.In [PCA91] a theorem prover that retains the procedural aspects of
logic programming is defined. This so called SLWV resolution system isbased on
SL-resolution, a linear resolution format. SLWV saves contrapositives and uses case
analysis as an additional inference rule. To this end the usual resolution step from
SL-resolution is modified such that besides the current goal any ancestor isallowed to
be expanded. In our terminology this would mean that every negative literalalong a
path can be copied in a restart step. As the authors of [PCA91] explain, this freedom
clearly increases the search space when compared to Near-Horn Prolog in the case of
near-Horn problems. As a further difference to our restart model elimination, SLWV-
Resolution needs a completely new framework. Pereira et.al. had to redesign the PTTP-
implementation technique for their prover, whereas we were able to implement restart
model elimination by a small change of our existing prover.
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