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Abstract. We present modifications of model elimination which do natessi-
tate the use of contrapositives. These restart model edtimimcalculi are proven
sound and complete. The corresponding proof procedurevaheated by a num-
ber of runtime experiments and they are compared to othéikwelvn provers.
Finally we relate our results to other calculi, namely tharaxtion method,
modified problem reduction format and Near-Horn Prolog.

1 Introduction

This paper demonstrates that model elimination can be defined such that itgket®m
without the use of contrapositives. We believe that this resulttezaésting in at least
two respects: it makes model elimination available as a calculus for non4{bigin
programming and it enables model elimination to perform proofs of maitieah
theorems by case analysis.

Let us first explain what we mean by the term “without the use of contrapesi.
Inimplementations of theorem proving systems usuallyocedural counterparfs «
LiA---ANLi_1ANLiz1 A--- ALy, foraclausel; Vv --- vV L,, have to be considered.
Each of these is referred to ascantrapositiveof the given clause and represents a
different entry point during the proof search into the clause. It is-ketiwn that for
Prolog's SLD-resolution one single contrapositive suffices, nathel “natural” one,
selecting the head of the claused v—-B, V- - -V~ B, as entry point. For full first-order
systems the usually requiredcontrapositives are either given maeplicitly (as in
the SETHEO prover [LSBB92]) or morienplicitly (as in the connection method by
allowing to set up a connection witgveryliteral in a clause [Ede92]). The distinction
is merely a matter of presentation and will be given up for this paper. Np&,system
“without contrapositives” we mean more precisely a system which doeseeot alln
contrapositives for a given-literal clause.

Model elimination [Lov68] is a calculus, which is the base of numeragasfpro-
cedures for first order deduction. There are high speed theorem provetgEiKEOR
[AS92] or SETHEO [LSBB92]. The implementation of model eliminatjgrovers can
take advantage of techniques developed for Prolog. For instance, Stiakdtig fech-
nology theorem proving system (PTTP, [Sti88]) uses Horn clauses agexmediate
language. Hence, it should be straightforward to use model eliminatid®&mP in
the context ofnon-Horn logic programming. Indeed this possibility is discussed in



various papers; however it is discarded by some authors because of thety¢oess
contrapositives (e.g. [Lov91, Pla88]). The argument is given by teth{®1a88] explic-
itly: “In general, however, we feel that the need for contrapositives maké$dudt to
view model elimination as a true programming language in the styleab®, since
the user has less control over the search.” Suppose, for example we areugiveut
clausé

prove(and(X, Y)) « prove(X) A prove(Y)

which can be used within a formalization of propositional calculus. Asjides contra-
positive is

—prove(X) <+ —prove(and(X,Y)) A prove(Y)

The procedural reading of this contrapositive is somewhat strange ansl tieash
unnecessary blowing-up of the search space; in order to pfpue(X) one has to
prove prove(Y) — a goal which is totally unrelated teprove(X) by introducing a
new variable. Such observations had been the motivation for the develophaeaituli
which need no contrapositives, e.g. Loveland's NearHorn-Prolog. Gablaytolog
[Gab85] when restricted to clause logic is general enough to be instantiatesth
NearHorn-Prolog and problem reduction formats ([Pla88], see also Séctielow;
[RL92] contains a comparison of these).

Another motivation for the new calculi is as follows: in proving theros such as
“if = # 0thenz? > 0” a human typically uses case analysis according to the axiom
X <0V X =0V —X <0. This seems a very natural way of proving the theorem
and leads to a well-understandable proof. Our modified model eliminptmcedure
carries out precisely such a proof by case analysis. Experimental resuitsimitar
examples from calculus and a comparison with other proof procedures aretpceisen
this paper.

The calculiwe derive in this paper are a very small modification of modalmdition
and hence allow for Prolog implementation techniques. They are compléieutvihe
use of contrapositives and hence well-suited for logic programming@mitieorem
proving by “case analysis” or “splitting”.

As a more theoretical contribution we will show that one of the NeanHenologs,
namely InH-Prolog ([LR89]), can be seen as one of our modified modelredtion
procedures.

As a final point, we discovered that the connection method ([Bib87, BdE#93]
contains a comparative study) is complete without contrapositivesaéthdut any
change to the calculud his surprising result is due to a relaxed complementary-literal
condition which subsumes the above-mentioned small change in modeiatiioni.

This paper is organised as follows: in the following section we revievrhodel
elimination calculus we use as a starting point of our investigatiorsection 3 we
define various variants of this calculus and give soundness and complepeoefs
of the weakest one. In section 4 we give some experimental results withTR-PT
implementation and in section 5 we discuss related work.

! Taken from [Pla88].



2 Review of Tableau Model Elimination

As a starting point we use a model elimination calculus that differa ftee original one
presented by [Lov68]; it is described in [LSBB92] as the base for thegstrSETHEO.
In [BF93] this calculus is discussed in detail by presenting it in a dotiso style

[Ede91] and comparing it to various other calculi. This model eliminatiamipulates
trees by extension- and reduction-steps. In order to recall the calculus atateca
running example consider the clause set

{P, @}, {-P,Q},{~Q,P},{~P,~Q}},

A model-elimination refutation is depicted in Figure 1 (left side).sltabtained by
successive fanning with clauses from the input sgtension stepsAdditionally, it is
required that every inner node (except the root) is complementary to o sinis.
An arc indicates aeduction stepi.e. the closing of a branch due to a path literal
complementary to the leaf literal.
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A Model Elimination Refutation. A Restart Model Elimination Refutation (posi-
tive goaknodes are not displayed).

Fig. 1. Model Elimination (left side) vs. Restart Model Eliminatigright side) as defined in
Section 3.

In the following we use a formal presentation of the calculus alonditfes of
[BF93]. Instead of trees we manipulate multisets of paths, where patlseguences of
literals.

A clause is a multiset of literals, usually written as the disjuncfigry ...V L.

A connectionin a set of clauses is a pair of literals, written(ds, L), which can be
made complementary by application of a substitutiomathis a sequence of literals,
writtenasp = (L, ..., L, ). L, is called théeaf of p, which is also denoted byaf (p);
similarly, the first elemenk; is also denoted bfirst(p). ‘o' denotesthe append function
for literal sequences. Multisets of paths are written with caligraphicaidpiters.



Definition 1. (Tableau Model Elimination) Given a set of clauseS.

— The inference rulextensions defined as follows:
PU{p} LVvR
R

, where

1. P U {p} is a path multiset, and Vv R is a variable disjoint variant of a clause
in S; Lis a literal andR denotes the rest literals éfv R.
2. (leaf (p), L) is a connection with MGy
3. R=(PU{po(K) | K € R})o.
— The inference ruleeductionis defined as follows:

Pu{p}
Po

, where

1. PU{p} is a path multiset, and
2. thereis a literaL in p such tha{ L, leaf (p)) is a connection with MG
— AsequencéPy,...,P,) is called anodel elimination derivatioiff

Py is a path multise{(L1), ..., (L,)} consisting of paths of length 1, with
Lyv...Vv L, in S (also called thgoal clausg, and
P11 is obtained fromP; by means of an extension step with an appropriate
clauseC, or
P41 is obtained fronP; by means of a reduction step.

The pathp is calledselected pathn both inference rules. Finally, eefutationis a
derivation wheréP,, = {}.

Note that this calculus does not assume a special selection function wrechiets
which path is to be extended or reduced next. Correctness and completeness of thi
calculus follows immediately from a result proved in [Bau92].

3 Restart Model Elimination Calculi

Let us now modify the calculus given above, such that no contrapositiveeaded.

In order to get a complete calculus, we have to assume that there existsnenly
goal, i.e. a clause containing only negative literals, which furthermoes not contain
variables. Without loss of generality this can be achieved by introducieyaclause
+ goal wheregoal is a new predicate symbol and by modifying every purely negative
clause-B1 V.-V B, togoal < Bj,...,B,. Inthe following we will refer to clause
setsS satisfying that property as clause setgogal-normal form Note that since the
goal literal is attached only to purely negative clauses the Horn status ofitbe glause
set is not affected by the transformation. Furthermore, besidggdheormal form we
will only allow derivations which start with the goal clause goal.

Soundness of this transformation is evident. Completeness holdiaassfo



Theorem 2. (Completeness of Model Eliminationlet S be an unsatisfiable clause
set in goal-normal form. Then there exists a tableau model eliminaéfutation of S
with goal clause— goal. Furthermore, if S is Horn then no reduction steps are required
in this refutation.

We are now ready to modify the calculus, such that no contrapositives arsasces
This will be done in three steps: as a base we defirestrt model eliminatioty a
small modification in the definition of tableau model elimination, whie tesult that
no contrapositives are needed. Then we weaken this calculus by introdsgtegton
function which determines which positive head literal can be used for an extension
step. Finally, as a further weakening we introdstréct restart model eliminatiorby
disallowing reduction steps with a positive leaf literal.

A completeness proof is given for the weakest variant, i.e. strict restaieimo
elimination with selection function. Completeness of the strongeantgifollows from
this result as a simple corollary.

Definition 3. (Restart Model Elimination) Assume the following line additionally
given between conditions 1 and 2 in the definitiorerfensior(Def. 1).

la. ifleaf (p) is positive then lep = p o (first(p)) in conditions 2 and 3.

The calculus ofestart model eliminatiogonsists of thus modified extension inference
rule and of the reduction inference rule. An extension step with lengigexticording
to 1a above is also calledrestart

If clauses are written in a sequent stye, ..., A, « Bi,..., By, thenitis clear
that, for syntactical reasons extension steps are possible only withitezatl4's and
not with B's from the body. Thus it is possible to represent clauses as abihaitthe
need of augmenting them with all contrapositives; only contrapositiitessenclusions
(i.e. entry points) stemming from the positive literals are necessary.

The price of the absence of contrapositives is that whenever a path enda with
positive literal, the root of the tree, i.e. the clausgoal has to be copied and the
path has to be lengthened with that literal. Note that there is only actestron the
applicability of extension steps — reductions are still allowed when agradk with a
positive literal.

In Figure 1 (left side) there is one extension step, which is no londewed! in
restart model elimination, namely the extension of the gatf, P). Note that with
our assumptions on goals, this path becomes (—goal,—Q, P) in restart model
elimination. There is no reduction step possible and dieufé€p) is positive, we lengthen
ptop' = (—goal,—~Q, P,—goal) in arestart step, which can finally be extended to the
path multiset

{(ﬂgoal,—'Q,P,—'goal,—'P),(ﬁgoal,—'Q,P,—-goal,—-Q)}

The complete restart model elimination refutation is depicted in Fig\rigit side).

It is obvious that for reasons of efficiency a proof procedure based oodluiglus
must provide some refinements. For example, the use of lemmas or fgchoigint
reduce the amount of redundancy introduced by restart steps. In the extomle



Figure 1 (right side) the restart led to the newly introduced pathsngndith =P
and - @, respectively. When processing the tree from left to right it is obwithat
solving =P would be unnecessary, since there is already a closed subtree containing
—P as a root; thus a proof procedure would benefit extremely from thelplitysof

using lemmas or factoring [LMG93]. However, we are lucky, the same effedtide
achieved by a reduction step. These and other topics concerning proof pexadar
discussed in the following section.

Selection Function

Now we weaken the calculus by introducing a selection function on headditeral

Definition 4. (Selection Function)A selection function fis a function that maps a
claused,..., A, < Bi,...,B, withn > 1to an atomL € {4;,...,4,}. Lis
called theselected literalof that clause byf. The selection functiorf is required
to be stable under liftingwhich means that iff selectsLy in the instance of the
clause(As,..., A, « Bi,...,By)y (for some substitutiony) then f selectsL in
Al,...,An < Bi,...,By,.

Now let f be a selection function, and assume the following line additionallgrg
between conditions 2 and 3 in the definitiorrestart(Def. 3).

2a Lis selected inC' by f.

This modified calculus is calle@estart) model elimination with selection function

Assume there is a path in our running example witleaf (p) = —P and the
selection function givep(P, @ <) = @, thenitis not allowed to perform an extension
step withP, @) <. Positive literals not selected lycan only be used within reduction
steps. Note that the proof in Figure 1 (right side) is a proof wlith above assumed
selection function.

Strict Restart Model Elimination

As a further restriction we force the calculus to perform restarts whertbegrare

possible, i.e. if a leaf of a path is a positive literal it may not be usedfreduction

step. Since for these leaves extension steps are possible only throesghrg we call

this calculus strict restart model elimination. This restriction isivadéd in several
ways: first, a comparable restriction is formulated within Plaisteddified problem

reduction format ([Pla88], see also Section 5 below) and we would lilkvatuate it

within our framework; second, strict restart model elimination miasithe search in
ancestor lists, which occasionally results in shorter runtimes to finbef.pSee also
[P1a90] for restrictions on accessing ancestor lists within a non-testi@ulus.

Definition 5. (Strict Restart Model Elimination) The inference ruleeductionis mod-
ified by adding the following line after condition 2 to the definitmireduction(Def. 1).

3. andleaf (p) is a negative literal.



Such reduction steps are callstict reduction stepsStrict restart model elimination
is defined to be the same as restart model elimination, except that “reduejirisst
replaced by “strict reduction step”.

For the rest of this section we deal with soundness and completenessanf rest
model elimination. Soundness of the calculus follows immediately towvsig that
every restart model elimination proof can be mapped to a proof in the frésblear
semantic tableau calculus ([Fit90]), while completeness will be provewctti.

Theorem 6. (SoundnessiRestart model elimination is sound.

Theorem7. (Completeness)et f be a selection function and S be a clause set in
goal-normal form. Then there exists a strict restart model elimoratefutation of S
with goal«+ goal and selection function f.

Since a strict reduction step is by definition also a reduction step wanoas a
corollary the completeness of the non-strict restart model elimination.

Since a selection function restricts the set of permissible derivat@mraplete-
ness without selection function follows immediately from completenétsselection
function.

Here we restrict to the proof on the ground level (Lemma 8 below).cAltin not
quite trivial, lifting can be carried out by using standard techniquegalrticular, by
stability under lifting (Def. 4) it is guaranteed that the selection fiomctvill select on
the first order level a literal whose ground instance was selected at thedjeuel.

Ground completeness reads as follows:

Lemma8. (Ground Completeness) et f be a selection function and S be an unsat-
isfiable ground clause set in goal-normal form. Then there existsd gestart model
elimination refutation with selection function f of S with goal dag- goal.

Proof. Informally, the proof is by splitting the non-Horn clause sebiftorn sets,
assuming by completeness of model elimination refutations withouttiedisteps, and
then assembling these refutations into the desired restart model eloninafutation.
There, reduction steps come in by replacing extension steps with sylitlanses by
reduction steps to the literals where the restart occurred.

For the formal proof some terminology is introduced: we say that l paiitiset
P “contains (an occurrence of) a claude, ..., A, < Bi,..., By" iff for some path
pitholds{po (A1),...,po(A4n),po(-B1),...,po(=Bp)} C P If we speak of
“replacing a claus& in a derivation by a claus€ U D” we mean the derivation that
results when using the clauggU D in place ofC in extension steps. Also, the same
literal L € C must be used to constitute the connection.

By a “derivation of a claus€” we mean a derivation that ends in a path multiset
which contains (several occurrences of) the cla@ise

Letk(.S) denote the number of occurrences of positive literalsininus the number
of definite clausesin S (k(S) is related to theexcess literal parameten [AB70]).
Now we prove the claim by induction (5.

2 A definite clausés a clause containing exactly one positive literal.



Induction start (KS) = 0): M must be a set of Horn clauses. By Theorem 2 there
exists a model elimination refutation 8fwith goal <+ goal without reduction steps.
Furthermore, for syntactical reasons, in every extension step only thke ginsitive
literal (and never a negative literal) of the extending clause can be selectey].tiisu
refutation is also a strict restart model elimination refutation.

Induction step (kS) > 0): As the induction hypothesis suppose the result to hold
for unsatisfiable ground clause sétsin goal-normal form withk (S') < k(.S).

Sincek(S) > 0, S must contain a non-Horn clauseé = A1, Ay,..., A, +
By, ..., B, with n > 2. W.l.o.g. assume that; is the literal selected by in C. Now
definen sets

S1:=(S\ C)U{A1«+ By,...,B,}
Sy = (S\ C)U{Az}

5= (S\ C)U {4}

Every setS; (+ = 1...n) is unsatisfiable (because otherwise, a model for one of them
would be a model fo). Furthermore, it hold&(S;) = k(S) — n + 1 < k(S). Thus,
by the induction hypothesis there exist strict restart model elininatfutationsk;
with goal clauses— goal of S;, respectively.
Now considei?; and replace ik, every occurrence of the claude < B, ..., B,
by C. Call this derivationR]. SinceA is the sole positive literal iy « B, ..., By,,
A1 must have been selected in the extension steps with that clauge ibhus the
corresponding extension stepsi) with C are legal in the sense of the restriction to
the selection function.
R/ is a derivation of, say;; occurrences of the positive unit clauses(j = 2.. . n)
from the input se5. Now everyA; can be eliminated from the input sgtaccording to
the following procedure: fof = 2...n appendR;_1 k; times with the refutatior®;,
however with the first extension stepR) being replaced by a restart step at one of the
paths endingd;. Note here that the restart step produces exactly the same goal clause
+ goal asisinR;. Let R be the refutation resulting from thekgrestart steps at leaf
A;. R} is a restart model elimination refutation 8fU {4;,..., A, }. In order to turn
R} into arefutation oS U {A;1, ..., An}, replace every extension step wid in the
appended refutation®; by a reduction step to the positive path litedgl The resulting
refutationR; is a desired strict model elimination refutation®t) {41, ..., 4n}.
Finally, R, is the desired strict restart model elimination refutatiot§ @flone.

Regularity in Restart Theory Model Elimination.

Regularitymeans for ordinary model elimination that it is never necessary to construct
a tableau where a literal occurs more than once along a path. Regularityddredsrie

of the more useful refinements of model elimination. Unfortunatelyylee@y is not
compatible to restart model elimination. This can be seen easily agifiditeral is
copied in restart steps, thus violating the regularity restriction cdext least the goal
literal has to be excluded from the regularity restriction, because otberestart steps



are impossible! But even with this exception completeness is lost in gesiaice after
a restart step it might be necessary to repeat — in parts — a proof foundugottathe
restart step.

However the following observations allows to define a somewhat weakienrat
regularity: First, the proof of Lemma 8 proceeds by splitting thauirclause set into
Horn sets and then assembles the existing non-restart refut&ions R,, into a restart
refutationR!,. Since this assembling is done “blockwise” (tRgs are not interleaved
among each other and keep their structure) some properties &;thearry over to
their respective occurrence ®,. In particular, theregularity of the R;s carries over
in this way. Hence we define a path lasckwise regular (version 1ijf every pair of
occurrences of identical literals (unequatgoal) is separated by at least one occurrence
of the literal—goal. A derivation is is calledlockwise regulaiff every path in every
of its path multisets is blockwise regular. From these consideratindgiefinitions it
follows with Lemma 8 that this restriction is complete. Since all&)s are refutations
of Horn clause sets this regularity restriction applies onlyné&gativeliterals along a
path. Thus we might derive a blockwise regular pats —goal --- A - - - =goal - - - A.
We wish to extend blockwise regularity to forbid such duplicate occegenf positive
literals, and say that a branchgssitive regulaiiff all the positive literals occurring in
it are pairwise distinct (not identical). Extending the preceding dejimiwe define a
branch to bélockwise regular (final versiorilf it is blockwise regular (version 1) and
positive regular. Fortunately it holds:

Theorem 9. Restart model elimination is complete when restricted to blockwiseaegul
refutations (final version).

4 PTTP without Contrapositives — Experimental results

The reader familiar with Stickel's PTTP-technique ([Sti88]) may haweaaly noticed
thatthe restart variant can be implemented very easily using the PTTP¢gaehimdeed,
we implemented the restart model elimination calculus in the theoremngreyistem
PROTEIN ([BF94]). Both the implementation language and the targgukage for the
compiled code is ECIPS’, an enhanced Prolog-dialect.

We ran several examples known from the literature, and some new ones. We com-
pared several versions of the prover, varying in strict restart modelreltion vs.
(non-strict) restart model elimination, and selection function vs.abkection function;
the first four columns in Figure 3 contain the runtime resultsu@wi 5 MPRF) con-
tains the results for thiglodified Problem Reduction Formatover (see also the section
on related work below). The option “nosave flag cleared” means that caching ieénabl
The data, taken from [Pla88], were obtained on a SUN 3 workstation, whbeather
provers ran on a SUN Sparc 10/40. Hence, for normalisation the timesddviPRF
prover were divided by 14.

The default flag settings in our provers inclugteund reduction step@n reduction
steps where no substitution is involved no further proof altereatineed to be explored)
andblockwise regularityas defined at the end of Section 3. Other flags allow for the
generation ofUnit)-lemmagcurrentlyall lemma candidates are stored) dadtoring
Unless otherwise noted, in Figure 3 the default flags are used.



For iterative deepening, the threshold was increased in each iteration byda@nd
extension step was uniformly charged with a cost of 1.

Furthermore, we also found it interesting to run standard model aimimprovers
which use contrapositives (“PTTP” and “Setheo”, the right two columriSgure 3).
This demonstrate that in some cases, namely the examples from real-amabtsig,
model elimination results in better performance, whereas in the usual berkchtimar
results with restart based procedures are often in the same order of ndagnitu

Now let us summarize the results. Compared among each other, each of the 4
versions of restart model elimination has its justification by dedicated ghesiin the
parameter spaagon-strict restartvs. strict restartmodel elimination we prefer as the
default strategy thaon-strictversion, since whenever tistrict version found a proof
in reasonable time, theon-strictversion did as well; but on most examples #teact
version failed or behaved poorly, while the other version found afproo

Restart Strict Restart
Model Elimination Model Elimination = MPRF || ME ME

Example w/o Selectiofw. Selectiofw/o Selectiofw. Selectiof PTTPSetheo
Non-Obvious 2.7 00 00 00 12 0.3 05
MSC/MSCO006-1 3.24
Eder45 3.4 1.8/10.° 0.5 3.1/85 07 1.0

1.7% 2.5% 0.7* 0.9*
Steamroller 9.9 00 6.3 oo| 224 1.5 0.18

14.5*

X#0— 0.7 0.8/46° 05 0.6/42° 24 0.8
x>0
Bledsoe 1 00 7.4% 00 00 00 87
ANA/ANA003-4
Bledsoe 2 00 32° 00 00 00 00
ANA/ANA004-4
Natnum3 2.1 0.15 0.6 0.05 0.07 0.03
Wos 4 20 oo 43 oo 22| 13
GRP/GRP008-1
Pelletier 48 | 1.1 4.1 00 %) 59 0.2

Remarksl — With (back) factoring. 2 — With lemmas.
3 — Depends from selected literal. 4 — "nosave" flag cleared.

Fig. 3. Runtime results (in seconds) for various provers.
Entries such adMMSC/MSCO006-1 refer to the respective TPTP-names [SSY94]. All examples
were drawn from that problem library without modification.

Inthe parameter spaselection functions.no selection functiowe will not strictly
prefer the one to the other. Note the extreme dependence on the “riglttdhahe
z # 0 = 22 > 0-example (this holds also for the Bledsoe examples), while in the
Eder-example the right choice is not that crucial. On the other side, ¢ine@bvious,
Steamroller and Wos 4 examples obviously require the use of several ausitizs.

From this results we learn that the selection function should be cardgtiérmined.
Here, heuristics are conceivable such as “always select a biggest (in someg)rideait



literal” in order to work in a decreasing direction. The selection functiam even be
determined dynamically within the bounds of Definition 4.

Currently, the user has to supply the selection function for a giauticlause. This
function is inherited to all instances of that clause. Here we see potentifrther
improvements.

But even at the moment our restart provers can well compete with the MPR&rpro
which is according to our classification, closest to the strict restariepreih selection
function (see also the next section).

Ordinary model elimination as implemented by ME-PTTP and Setheo is sopweti
faster than restart model elimination. In the case of Setheo this may espbeialiye
to the numerous refinements not present in the other provers. Howeveatieamany
examples where restart model elimination finds a proof more quicklgmdiggest to
us that it is an interesting alternative to traditional model elimination

5 Related Work

Connection MethodThe connection methofBib87] is an analytic calculus closely
related to model elimination. Clause sets are cattedricesthere, and gath through

a matrixis obtained by taking exactly one literal from every clause in the matrig. Th
method proceeds by systematically checking all paths through the matrixntairto
complementary literals. If this is the case, a refutation has been found.

A somewhat higher-level formulation of the connection method can be found
[Ede92], and in [BF93] we showed that this connection method can, in, siepslate
model elimination. The converse, however, is not true for the follgvassential dif-
ference between the connection method and model elimination: in model elimniivat
extension steps a complementary pair of literals (caltethectiopmust be established
between théeaf literal where the extension occurred and some literal of the extending
clause. In the connection method this restriction is dropped, and so éeeay hlong
the path (or even none) may be part of the connection.

This property is also the key for the observation stated in the intiti@h, namely
that the connection method is complete without the use of contragssitin order to
see this, recall that a restart step consists of copying the first litetta¢ giath, followed
by an extension step. Thus, copying is not necessary if the first litetakipath is
accessible for the connection — as is the case in the connection method. Hegee we
as a corollary to theorem 7, the completeness of strict restart model eionirveith
selection function:

Corollary 10. The connection method is complete for input sets in goal-normal form
even if no contrapositives are used.

Problem Reduction Formatdn [Pla88] two calculinamesdimplified problem reduction
format andmodified problem reduction formatre described. They are goal-oriented,
and neither of these needs contrapositives. We will discuss both of them.
Thesimplified problem reduction form@PRF) is a variant of the Gentzen sequent
calculus (see e.g. [Gal87]). A sequent is pair, writtedas» L whereI  is a list of



literals, andL is a literal. From the model elimination point of view a sequEnt> L
corresponds to the paffio (—L), i.e. the goal is to be proven in the context (ancestor
list) I'.

Clauses are translated to inference rules operating on sequents; a Eladse
L,,..., L, istranslated into the inference rule (whédrés a variable)

I'— Iy I' - L,
I'-» L

The interesting case is to see how model elimination restart steps can bedapp
derivations in SPRF. Suppose we have in a restart model eliminatioratien a leaf
—p and wish to extend with the claugeq < r. After copying, the situation looks as
depicted in Figure 2 (left side). This situation can be mirrored in SBREhe partial
proof in Figure2 (right side).

—-p
RN
p q -r not(gq) — not(q) not(q) — r
* ‘ Ru
not(q) — p AP
-p s piit

Fig. 2. Restart Model Elimination vs. Simplified Problem Reductimrmat.

TheSplit rule is in effect the cut-rule, anBl; stems from the clauge ¢ < . While
the sequentot(q) — not(q) is an instance of an axiom, the boldface sequents are
unproved. Note the close relationship to restart model eliminatinséqueny — p
immediately corresponds to the goap with ancestor list-p o ¢ in restart model
elimination; it is even identical in strict restart model elimination, asatieg ancestors
need not be stored. For the other sequest(q) — r note that the corresponding
goal —r in restart model elimination does not have the ancesto(q). If additional
information — such asot(q) —is considered as an advantage for proof finding, this is a
shortcoming of restart model elimination. The situation however carydasilepaired
either by an explicit change to the calculus, or by incorporating a more @éaetoring
ruled.

In this way, restart model elimination steps can be mapped to partial SRRfS pr
The converse, however, is not true. This is due to the fact that thérgplitle can be
applied in every proof situation, i.e. to every sequent derived along &.proother
words, a case analysisor —p can be carried even to goals totally unrelategd to

Thus, in sum, the restart model elimination is more restricted tharSPR

3 Factoring means that a branch may be closed if its leaf igiiciio some brother node of a
predecessor of this leaf.



Themaodified problem reduction form@WPRF) avoids the problem of uncontrolled
application of the splitting rule. This is formally carried out by anitiddal syntactical
layer between “sequents” and “inference rules”. As an essential difference, MPRE allow
(in our terminology) for restart steps witimygoal along the current path, not just with
the goal literal as in restart model elimination. While this feature cleadseases the
local search space, shorter proofs may be enabled. Another notable differ¢inae is
restart model elimination includes the negative literals along pathsuPexperiments
show this is often valuable information and should not be thrown away

Near-Horn Prolog.As already mentioned in the introduction, there is a close relation
to Loveland's Near-Horn Prolog, especially to the InH-Prolog variesthf[LR89].
Instead of one tableau in our model elimination calculi, InH-Prolog déolustonsist
of a sequence of Prolog-like computations, called blocks. The activatisunch blocks
corresponds to our restart extension steps. If we agree that Prologssbptwansforms
a goal seGinto the empty goal set, then the Prolog-like computations in Inblefg
deal with triples of the fornc # A { D }. Here, the lisAis calledactive headsnd
the listDis calleddeferred headsThese components can easily be explained from the
viewpoint of restart model elimination: the active he@dsorresponds to thpositive
literals of the path in restart model elimination which was most recentbcted for a
restart step; consequently, sinkds a left-ended stack the leftmost literal Anis the
literal which caused the restart step. In the Prolog-like restart bloaky diteral in A
may be used in the role of a unit input clause (“cancellation step) in codgettrid of
a goal literal. The deferred heaDgorrespond to the remaining positive leaf literals of
the path multiset; they will cause new restart blocks (or restart stepsigtraime.

Let us compare our refutation from Figure 1 (right side) with théofeing InH-
Prolog refutation. In this example no deferred head occurs.

?- GOAL

- P,Q

- Q,Q % factoring to simplify presentation!
= Q

- # P % P from disjunctive clause Q,P <-

% is deferred, and the Block is finished

?-GOAL # P

-~-PQ#P % cancellation (reduction)
-Q #P

- P # P % cancellation

- # P %

The cancellation steps in this derivation correspond to the two redustié@s in
the right subtree of Figure 1 (right side). The derivation from l#ft subtree does not
have a counterpart in the above InH-Prolog refutation, because of thazifacstep
we performed in the first block; this, of course, would have been pessilthe restart
model elimination refutation.

The reduction steps starting from positive leaf-literals have no eopatt in InH-
Prolog - within a block there are only extension or cancellation stepsslaftter corre-
spond to reductions with a negative leaf-literal.



On the other side, the concept o$iong cancellation pruning rulef InH-Prolog
has (so far) no counterpart in restart model elimination. By this rule, @inetlass
of refutations is discarded. Stated positively, and in the terminotdggstart model
elimination, only those refutations are acceptable in which a literal wbizised a
restart step is used in a (any) subsequent reduction step. Thus restrtatteglevant
for the proof are filtered out. The completeness of this restriction casebre again
by analyzing the completeness proof of Lemma 8. In brief, a restart stedypl
A, B « C causes by the splitting rule Horn refutations wiAh«— C and B. Now, if
the given clause set is supposed (without loss of generality) maitienalunsatisfiable,
then also the splitted sets contain minimal unsatisfiable subsets dogtdin— C
and B, respectively. Hence these clauses must be used in the Horn refutations, and
consequently, the restart step occurringgahust be followed by a reduction stepBo

Summarizing on all these considerations we conclude that InH-Prolegjslosely
related to strict restart model elimination without selection functiomaAonsequence
we see that our PTTP implementation can be seen as an implementation ofdiog-Pr

SLWV-Resolutionln [PCA91] a theorem prover that retains the procedural aspects of
logic programming is defined. This so called SLWV resolution systefpaised on
SL-resolution, a linear resolution format. SLWV saves contrap@&stand uses case
analysis as an additional inference rule. To this end the usual resoltgiprfrem
SL-resolution is modified such that besides the current goal any anceatiovigd to

be expanded. In our terminology this would mean that every negative lakmat) a
path can be copied in a restart step. As the authors of [PCA91] explasryéieidom
clearly increases the search space when compared to Near-Horn Prolog in the case of
near-Horn problems. As a further difference to our restart model elimmasLWV-
Resolution needs a completely new framework. Pereira et.al. had to redeskjRTR-
implementation technique for their prover, whereas we were able to impteswart
model elimination by a small change of our existing prover.
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