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Abstract

This paper presents a description of an evolutionary artificial neural network algorithm, EP-
Net and its extension taking advantage of a High Performance Computing Environment. PEP-
Net, Parallel EPNet, implements four forms of parallelism and this paper describes two of those
parallelisms. Experimental studies have shown promising results with better time and prediction
performance.

1 Introduction

Artificial Neural Networks (ANNs) provide an important classification tool for Knowledge Discov-
ery in Databases (KDD). Feed-forward fully-connected neural networks using a back propagation
algorithm for weight adjustment are common. Unfortunately such ANNs require considerable time
to train, particularly when large datasets are involved. Training time is also adversely affected when
the characteristics of the dataset are not consistent with the chosen structure of the ANN. Finally,
determining the best ANN network structure for a particular task remains a difficult art, with no hard
and fast rules.

Evolutionary Artificial Neural Networks (EANNs) [1] take advantage of evolutionary techniques
to address some of the problems associated with developing optimal ANNs. EANNs dynamically
modify ANNs on the basis of their classification performance. EPNet [2] is a serial algorithm which
adopts these ideas to produce efficient ANNs. Such techniques produce greater accuracy in the
networks, but at the expense of further computational and storage requirements.

Parallel Evolutionary Artificial Neural Networks (PEANNs) have the potential to produce ac-
curate networks in significantly less time using larger datasets than serial EANNs. PEPNet is a
development of the EPNet algorithm oriented towards parallel architectures. PEPNet is being devel-
oped for use as a Data Mining tool, where very large datasets need to be analysed within restricted
time frames. We describe two parallel architectures for the implementation of the PEPNet algorithm.
These architectures represent initial attempts at parallelising the EPNet algorithm.

1Published in “Evolutionary Programming VI”, Peter J. Angeline, Robert G. Reynolds, John R. McDonnell, and
Russ Eberhart (Eds.), Lecture Notes in Computer Science, Volume 1213, Springer Verlag, 1997.
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Data Mining, defined as the “non trivial extraction of implicit, previously unknown, and poten-
tially useful knowledge from large datasets” [3], is part of the larger KDD process. Knowledge
Discovery in Databases (KDD) describes the process of retrieving data from large databases, per-
forming exploratory data analysis on that data, and developing models of the data. KDD consists of
several major steps: data selection, data preprocessing, data mining, and evaluation [4]. PEPNet has
the potential to facilitate the use of ANNs in a data mining context, where previously their use has
been limited because of the large amounts of data.

This paper describes the design and implementation of the PEPNet algorithm. This paper is
structured as follows. Section 2 describes the basic EPNet algorithm, discussing its main compo-
nents. Section 3 describes the parallel structure utilised by the PEPNet algorithm. Section 4 presents
some preliminary results of PEPNet, identifying features of the alternative parallel architectures
which have proven successful. Section 5 presents conclusions and further work.

2 The EPNet Algorithm

The EPNet algorithm has two primary constituents: a Multilayered Perceptron [5] and an Evolution-
ary Programming [6] subsystem. A Multilayered Perceptron encoding of an ANN facilitates both
the use of Evolutionary Programming operators and the representation of multiple layered ANNs.
We first present an overview of the EPNet algorithm and then discuss the encoding and evolutionary
operators in detail.

2.1 Overview

Figure 1 summarises the phases of the EPNet algorithm. We say that arun of the algorithmevolves
a specific number ofgenerations. Each generation modifies a single ANN from the population of
ANNs. There are five basic stages in the algorithm:

1. Population Creation initialises user parameters and creates an initial population of ANNs.
A supplied dataset is split into three subsets: a training set; a validation set; and a test set.
Training and validation sets interchange members and both sets are seen by the ANNs during
training. The test set remains unseen and is used for evaluation purposes only.

2. Selectionranks each ANN based on test set performance, providing a measure of fitness. Each
ANN is assigned a probability based on its rank. ANNs performing badly are favoured over
those already performing well, thereby improving the entire population rather than a single
ANN.

3. Mutation is the training phase of the EPNet algorithm and employs Evolutionary Program-
ming techniques. Training of ANNs in EPNet involves both modifying the weights on con-
nections between nodes and removing or adding connections between nodes (modifying the
structure of the network). The training is effected by the use of six evolutionary operators
which are ordered to favour compact, efficient ANNs (so that deletions are considered before
additions).

4. Replacementreplaces an individual in the population with a (improved) newly trained ANN.
In performing a replacement either the parent or the least fit individual is replaced. If connec-
tion weight training produces an improved ANN, parental replacement is performed, main-
taining a behavioural link between generations. If structural training is successful then the
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Figure 2: Generalised multilayer perceptron.

least fit individual of the population is replaced as the behavioural link between parent and
offspring has been lost.

5. Completion Testingtests whether the required number of generations and runs has been com-
pleted.

2.2 Multilayer Perceptron

Figure 2 illustrates the features of a multilayer perceptron. It consists of a single row of nodes, each
having an activation function. A node takes input via connections from nodes to its left and computes
an output value which it transmits to its right. Connections between nodes have weights which are
adjusted during weight training.

The concept of active and inactive nodes is used to facilitate structural modifications. Input and
hidden nodes can be active or inactive (there is little point in output nodes being inactive). Inactive
nodes do not receive input nor produce output, effectively removing the node from the ANN.

2.3 Evolutionary Operators

EPNet performs architectural modifications through evolutionary operators. A total of six operators
are defined: two connection weight trainers and four architectural modifiers. An operator is consid-
ered to have been successful if performance improvement has been made to the ANN being trained,
otherwise the operator has failed.

Modified Back Propagation is a connection weight operator. Back propagation (BP) being a
gradient descent search technique is prone to finding local optima. BP trains ANNs byback propa-
gatingthe difference between the actual output and the desired output through the ANN. Connection
weights are either enhanced if providing a positive influence on the output or decreased if a negative
influence is being supplied. Modified BP uses adaptive learning rates.

Modified Random Search (MRS) is a connection weight modifier used as an alternative to the
MBP operator. The MRS operator is based on simulated annealing as described by Solis and
Wets [7]. Training involves a number of iterations, where each iteration modifies a connection
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weight and tests for an improvement in the overall performance of the ANN. The technique allows
for making a bad modification, i.e., one that decreases performance, in the hope of finding further
modifications which improve the ANN.

Hidden Node Deletion is an architectural operator compressing the ANN to maintain or improve
performance. Hidden node deletion sets an active node as being inactive thereby removing it from
the ANN. The node is chosen at random and all connections in and out are removed. This implies
that data flowing through the ANN will be redirected around the deleted node.

Connection Removal is an architectural operator randomly removing chosen connections between
active nodes. The choice of connections is based on a probability distribution of the importance of
individual connections. EPNet removes connections which have an unimportant influence on the
output of the ANN, aiming to remove redundant connections.

Connection Addition is an architectural operator adding a number of connections between pre-
viously unconnected nodes. A random number of connections are made between randomly chosen
unconnected node pairs.

Hidden Node Addition is an architectural operator allowing EPNet to add a single hidden node to
the ANN. The operator uses a method of node splitting to add new nodes. Node splitting is similar
to biological cell division, and is implemented as follows. Suppose nodei is split to create an extra
nodek. The new nodek is the first inactive node toi's right (that is,k > i). To activatek, input and
output connections are established. Nodek is assigned the same input and output connections asi.
The output connections are assigned the same weights. The input connection weights are calculated:
for k; w0

jk = ��wji; j < i; for i; w0

ji = (1 + �)wji; j < i. Here� is a mutation parameter ranging
from 0 to 1. Thereby EPNet is able to reinforce an existing node with a new node. The influence of
a node is not considered so it is possible for this operator to reinforce a node which has an overall
detrimental effect. However, the extra genetic material added by the new node might well lead to an
improvement in performance later in the training.

3 Parallelising EPNet

Riessen [8] describes a number of ways of parallelising the EPNet algorithm. We will only discuss
two of these parallel structures. These parallelisms are based on two features of the EPNet algorithm:
population parallelism and individual parallelism.

Population parallelism takes advantage of the independence of each member of the ANN pop-
ulation to train a number of individuals concurrently. Individual parallelism takes advantage of the
independence of the nodes within an ANN. The connection weights between several node-pairs can
be altered simultaneously.

The intention is for a general-purpose, parallel implementation, not tied to any particular parallel
architecture. The general model is of a collection of processors each able to communicate with all
other processors. A MIMD (Multiple Instruction Multiple Data) architecture was chosen over alter-
native architectures as it has the advantage of not requiring processors to be in lock step. The dis-
advantage though is that careful consideration needs to be given to the computation/communication
ratio—if communications outweighs computation there is no benefit.
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Figure 3: PEPNet Parallel Architectures.

PEPNet allows one of four alternative levels of parallelism to be chosen, ranging from none (ef-
fectively a serial implementation), to extreme parallelism (communication swaps computation). We
will only discuss the two main parallelisms, and compare these to each other and a serial implemen-
tation.

Figure 3 shows the two primary parallel architectures of PEPNet: the so called farmer/worker
and farmer/worker/helper architectures. Each node in Figure 3 represents a separate process which
is either a farmerF , a workerW , or a helperH.

A farmer is responsible both for the generation of a new population of ANNs for each run and
for the division of that population amongst the workers. The farmer must also ensure that the global
population remain consistent. Eachworker is assigned a sub-population of ANNs, and performs the
EPNet algorithm on that population.Helpersadd an extra level of individual parallelism by aiding
workers in performing specific tasks.

Both parallel architectures of PEPNet use population parallelism. The farmer/worker/helper
architecture also takes advantage of individual parallelism with the use of helper processors.

3.1 Farmer/Worker Architecture

Having generated a global population, the farmer transmits to the workers a sub-population. Each
worker controls the generations of a population for a run, ensuring that the Selection, Mutation,
Replacement, and Completion Testing2 are performed on its sub-population.

On completion of all the required generations for a run, workers send back their sub-populations.
The run completes when all evolved sub-populations have been received by the farmer.

Communication costs are not a concern, as communication is concentrated at the beginning and
completion of a run. The cost of communicating populations relative to performing several gener-
ations is minimal. Workers execute independently of one another and there is no communication
between workers.

Farmer/worker parallelism takes advantage of population parallelism, with workers performing
the EPNet algorithm locally, not utilising individual parallelism. On the other hand, the
farmer/worker/farmer parallelism takes advantage of both population and individual parallelism.

3.2 Farmer/Worker/Helper Architecture

The farmer/worker/helper architecture, utilising both population and individual parallelism, has a
farmer and worker performing similar tasks to those under the farmer/worker architecture. The
workers are assigned a group of helpers.

2Only the Generation Completion Test.
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Helpers aid in two tasks: the initial MBP training of the entire population, and any modified
random search training performed on any individual. The latter of these represents the individ-
ual parallelism employed by the farmer/worker/helper architecture. In this form of parallelism the
helpers work cooperatively in reaching a common goal. MBP training requires the helpers to work
independently, without communicating amongst themselves.

In aiding the worker with MBP training, each helper is assigned a single ANN from the workers
sub-population. On this individual the helper performs the MBP training algorithm. Upon comple-
tion, the helper communicates the ANN to the worker. The worker continues the EPNet algorithm
upon receiving all ANNs.

The helpers are also called upon by the MRS operator, working cooperatively and communi-
cating partial results. Each helper is assigned a region of the ANN on which it is the only helper
permitted to make modifications. The worker performs load balancing by identifying the number of
active nodes within the ANN, allocating a similar number of active nodes to each helper.

Before helpers make permanent modification to the ANN, they check for alterations made by
other helpers. If none have been made, a helper is able to make its modification permanent, otherwise
the modification is discarded.

Communication among the helpers is via the worker, reducing the amount of communication
necessary and also allowing the worker to maintain a consistent copy of the ANN.

The overall communications are greater than in the farmer/worker architecture and therefore
it is necessary to offset this with the computational costs. To judge this architecture as being an
improvement on the farmer/worker architecture, it is important to show that the extra communication
has improved performance of the PEPNet algorithm.

3.3 Implementation

PEPNet is implemented on a Fujitsu MIMD AP1000 with 128 processors. The MPI [9] message
passing interface standard for implementing parallel systems, has been used, allowing PEPNet to
run on a variety of platforms ranging from networked workstations to super computers.

4 Results

Experimental results have been obtained for running PEPNet over many different populations. The
illustrative results presented here were derived from the Australian Credit Dataset. The dataset
consists of a total of 690 records of which 307 (44.5%) were positive (class attribute equal to 1) and
383 (55.5%) were negative (class attribute equal to 0). For each experiment, 346 records were used
as training records, 172 as test records and 172 as validation records. Three relevant measures are
recorded for the results:

� Ratemeasures the accuracy of prediction and is the ratio of incorrectly predicted records to
total predicted records. A correctly predicted record is within a specific distance of the desired
output for the record.

� Error measures the distance of the PEPNet prediction from the actual output value.

� Accumulated Execution Timerecords the time taken by PEPNet to perform a set number of
generations.
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Figure 4: Average Error and Rate Plots.
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Figure 5: Average Accumulated Time Plot.

Figures 4 and 5 show the results of performing one run of 15 generations. For this experiment
four workers are assigned to farmer. For the farmer/worker/helper architecture each worker has
five helpers. The global population comprised 20 individuals, with each worker assigned a sub-
populations of five ANNs.

For each generation the serial architecture trains a single ANN whilst both parallel architectures
train a total of four ANNs per generation. As a result, both parallel architectures train 60 ANNs
compared to the serial architectures 15 ANNs.

The figures reflect this difference in the rate and error plots, with both parallel architectures
producing fitter populations after the 15 generations. Figure 5 shows that the overall time taken
actually decreases compared to the serial implementation.

The experimental results show a trend where the farmer/worker/helper architecture outperforms
the farmer/worker architecture. The use of extra helpers provides a definite improvement, outweigh-
ing the extra communications cost.

We can justification this improvement by considering the MRS operator. The
farmer/worker/helper architecture is able to make modifications on later nodes sooner than the
farmer/worker architecture. This results in a more diverse series of modifications, hence more diver-
sity in the genetic material, and therefore improving performance.

The experimental results also show that helpers provide a time performance benefit (as seen
in the accumulated time plots and more clearly in the time performance experiments). This sug-
gests that the extra communications involved when using helpers is out-weighed by the time saved
through their use. The farmer/worker/helper completes all 15 generations in under 2 hours whilst
the alternative architectures failed to do so.
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5 Summary and Conclusions

We have presented a description of a Parallel Evolutionary Artificial Neural Network data mining
tool. The PEPNet algorithm exploits inherent parallelisms within the EPNet algorithm to achieve a
improved prediction and time performance.

The architectures implemented in PEPNet use a single controlling farmer to distribute a globally
generated population of ANNs over a group of worker nodes. A refinement of this architecture
assigns to each worker node a group of helper nodes, one for each individual in the population.

The experimental studies (Figures 4 and 5, representing just one set of results) indicate that the
use of parallel architectures for EANNs is feasible and efficient. The farmer/worker/helper archi-
tecture (making more use of available processing power) appears to be a better option in terms of
accuracy and time performance. The extra overhead introduced by helpers is offset by their com-
putational benefits. The helpers were particularly useful in supporting modified random search, the
most time consuming component of EPNet.

Further development of PEPNet is required to turn it into a practical data mining tool. In partic-
ular, PEPNet will need to take advantage of all available processing power regardless of population
size. The current implementation can only take advantage of a large number of processors if a large
population of ANNs is chosen. The original EPNet algorithm can also be modified so that instead of
using the best individual of the final population for classification the entire population is used (Yao
and Liu [2] showed that the knowledge of the final population as a whole is often greater than the
knowledge of a single ANN).
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