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Abstract. In this paper, we present new techniques for collision search
in the hash function SHA-0. Using the new techniques, we can find col-
lisions of the full 80-step SHA-0 with complexity less than 239 hash op-
erations.
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1 Introduction

The hash function SHA-0 was issued in 1993 as a federal standard by NIST. A
revised version called SHA-1 was later issued in 1995 as a replacement for SHA-
0. The only difference between the two hash functions is the additional rotation
operation in the message expansion of SHA-1, which is supposed to provide more
security. Both hash functions are based on the design principles of MD4.

In 1997, Wang found an attack on SHA-0 [14] which produces a collision with
probability 2−58 by utilizing algebraic methods to derive a collision differential
path. In 1998, Chabaud and Joux [6] independently found the same differential
path through computer search. In August 2004, Joux [7] announced the first
real collision of SHA-0, which consists of four message blocks (a pair of 2048-
bit input messages). The collision search took about 80,000 hours of CPU time
(three weeks of real time) and is estimated to have a complexity of about 251

hash operations. To our knowledge, this is the best existing attack on the full
80-step SHA-0 prior to the work reported here.

The attacks in [14, 6] found a differential path which is composed of certain
6-step local collisions. There is an obstacle to further improve these attacks,
as finding a differential characteristic for two consecutive local collisions cor-
responding to two consecutive disturbances in the first round turns out to be
impossible. This phenomenon makes it difficult to find a differential path which
has a smaller number of local collisions in rounds 2-4 and no consecutive local
collisions in the first round.

In this paper, we introduce a new cryptanalytic method to cope with this
difficulty. Our analysis includes the following techniques: Firstly, we identify an
“impossible” differential path with few local collisions in rounds 2-4 and some
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consecutive local collisions in round 1. Secondly, we transform the impossible
differential path into a possible one. Thirdly, we derive a set of conditions which
guarantee that the modified differential path holds. Finally, we design message
modifications to correct all the unfulfilled conditions in the first round as well as
some such conditions in the second round. With these techniques, we can find
collisions of the full SHA-0 with at most 239 hash operations, which is a major
improvement over existing attacks. The same techniques can be used to find near
collisions of SHA-0 with complexity about 233 hash operations.

We note that the new techniques have also been proven to be effective in the
analysis of SHA-1[16].

The rest of the paper is organized as follows. In Section 2, we give a descrip-
tion of SHA-0. In Section 3, we provide an overview of the original attack on
SHA-0 [14] and subsequent improvements [15, 1, 2, 7, 3]. In Section 4, we review
the “message modification techniques” presented in [11–13] to break HAVA-128,
MD5, MD4 and RIPEMD, and consider their effectiveness in improving existing
attacks on SHA-0. In Section 5, we present our new collision search attacks on
SHA-0. In Section 6, we give an example of real collision of SHA-0 found by
computer search using the new techniques. We conclude the paper in Section 7.

2 Description of SHA-0

The hash function SHA-0 takes a message of length less than 264 bits and pro-
duces a 160-bit hash value. The input message is padded and then processed
in 512-bit blocks in the Damg̊ard/Merkle iterative structure. Each iteration in-
vokes a so-called compression function which takes a 160-bit chaining value and
a 512-bit message block and outputs another 160-bit chaining value. The initial
chaining value (called IV) is a set of fixed constants, and the final chaining value
is the hash of the message.

In what follows, we describe the compression function of SHA-0. For each 512-
bit block of the padded message, divide it into 16 32-bit words, (m0,m1, ....,m15).
The message words are first expanded as follows: for i = 16, ..., 79,

mi = mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16.

The expanded message words are then processed in four rounds, each consisting
of 20 steps. The step function is defined as follows.

For i = 1, 2, ..., 80,

ai = (ai−1 << 5) + fi(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki

bi = ai−1

ci = bi−1 << 30
di = ci−1

ei = di−1

The initial chaining value IV = (a0, b0, c0, d0, e0) is defined as:

(0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0)



Each round employs a different Boolean function fi and constant ki, which
is summarized in Table 1.

rounds steps Boolean function fi constant ki

1 1− 20 IF: (x ∧ y) ∨ (¬x ∧ z) 0x5a827999

2 21− 40 XOR: x⊕ y ⊕ z 0x6ed6eba1

3 41− 60 MAJ: (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61− 80 XOR: x⊕ y ⊕ z 0xca62c1d6

Table 1. Boolean functions and constants in SHA-0

3 Previous Attacks on SHA-0

In this section, we first describe the original collision attack on SHA-0 given by
Wang in 1997 [14]. This sets up the basic framework for introducing our new
techniques later on. For other independent attacks on SHA-0 the reader may
wish to refer to [15, 6, 1, 7, 3].

3.1 Local Collisions of SHA-0

Informally, a local collision is a collision within a few steps of the hash function.
A simple yet very important observation is that SHA-0 has a 6-step local collision
that can start at any step i, and this type of local collision is the basic component
in constructing full collisions.

Suppose a message difference in bit j first occurs in Step i (e.g., ∆mi−1,j = 1.)
The difference will affect the chaining variables a, b, c, d, e consecutively in the
next five steps. In order to offset these differences and reach a local collision, more
message differences are introduced in subsequent message words. In Table 2, we
illustrate the differential path of such a local collision. The chaining variable
conditions under which the local collisions hold were given in [14, 15].

The probability associated with the above local collision depends on the
Boolean function, the bit position j, and some conditions on the message bits.
The differential attack in [14] and [6] chooses j = 2 so that j + 30 becomes
the MSB4 to eliminate the carry effect in the last three steps. In addition, the
following condition

mi,2 = ¬mi+1,7

4 Throughout this paper, we label the bit positions in a 32-bit word as
32, 31, 30, ..., 3, 2, 1, where bit 32 is the most significant bit and bit 1 is the least
significant bit. Please note that this is different from the convention of labelling bit
positions from 31 to 0.



step ∆m ∆a ∆b ∆c ∆d ∆e Conditions

i 2j 2j nc

i + 1 2j+5 2j

i + 2 2j 2j+30 nc, ∆f = 2j

i + 3 2j+30 2j+30 nc, ∆f = 2j+30

i + 4 2j+30 2j+30 nc, ∆f = 2j+30

i + 5 2j+30 nc

Table 2. A 6-step local collision of SHA-0 starting at step i. The measure of difference
is ⊕. Addition in the exponents is modulo 32. “nc” stands for no carry. ∆f is the
output difference of the Boolean function.

helps to offset completely the chaining variable difference in the second step of
the local collision, where xi,j (x = m) denotes the j-th bit of message word xi.

The message condition in round 3

mi,2 = ¬mi+2,2

helps to offset the difference caused by the non-linear function in the third step
of the local collision.

3.2 Differential Paths of SHA-0

At a high level, the differential path used in [14] is a sequence of local collisions
joined together with possible overlaps. To construct such a path, we need to find
a set of appropriate starting step for each local collision. We can use an 80-bit
0-1 vector x = (x0, ..., x79) to specify these starting steps, and the vector is called
a disturbance vector. It is easy to show that the disturbance vector satisfies the
same recursion defined by the message expansion. That is, for i = 16, ...79,

xi = xi−3 ⊕ xi−8 ⊕ xi−14 ⊕ xi−16.

For the 80 variables xi, any 16 consecutive ones determine the rest. So there are
16 free variables to be set for a total of 216 possibilities.

In order for the disturbance vector to lead to a possible collision, several
conditions on the disturbance vectors need to be imposed, and they are discussed
in details in [14]. These conditions are summarized in Table 3.

From [15], we know condition 1 in Table 3 holds if and only if the following
equations hold:

x11 = x3 + x8

x12 = x4 + x9

x13 = x5 + x10

x14 = x0 + x3 + x6 + x8

x15 = x1 + x4 + x7 + x9



Condition Purpose

1 xi = 0 for i = 75, 76, 77, 78, 79 to produce a collision
in the last step 5

2 xi = 0 for i = −5, ...,−1 to avoid truncated local
collisions in first few steps

3 no consecutive ones to avoid an impossible
in the first 17 variables collision path due to

a property of IF

Table 3. Conditions on disturbance vectors for SHA-0 with t steps

Condition 2 in Table 3 holds if and only if

x6 = x0 + x1 + x2 + x4

x7 = x0 + x4

x8 = x0 + x1 + x5

x9 = x4

x10 = x0 + x5

We can also search for a disturbance vector using (x0, ..., x15) as the 16 vari-
ables. After imposing Conditions 1 and 2, there are 6 free variables remaining:
(x0, ..., x5). With Condition 3, only 3 choices are left for the 6 free variables,
namely (001000) and (000100) and (000101), the first of which corresponds to
the differential path given in [14].

We remark that the Hamming weight of the disturbance vector is closely
related to the complexity of the attack. Given a disturbance vector x, we define
hwr+(x) as the Hamming weight of x from step r to 80. To minimize the com-
plexity, the Hamming weight hw17+(x) should as small as possible (although
there are other more subtle conditions). The corresponding vector used in [14]
have hw17+ = 27, and the complexity of collision search attack is about 258.

3.3 Existing Techniques for Improving the Attack

In the past year, there have been some major advances in the analysis of SHA-0.
These latest attacks are built upon the differential attack by Chaband and Joux,
while introducing new ideas for significant improvements. We summarize these
techniques below.

– Neutral bit techniques [1]. This allows the collision search to start at a step
i > 17. 5 Biham and Chen showed how to start the collision search of SHA-0
at step i = 22 [1] and reduce complexity of finding full collisions to 256.

5 Since the first 16 message words are independent, in general one can bypass the first
16 steps and start the search at i = 17.



More interestingly, they were able to find near collisions of SHA-0 with com-
plexity 240, and this provides a basis for finding multi-block collisions. Since
a near collision does not require the first set of conditions on the disturbance
vector, vectors with much lower Hamming weight can be found.

– Multi-block collision techniques [2, 7, 12]. The idea is to use near collisions in
several message blocks to produce a collision. Using this technique together
with the neutral bit technique, Joux reported the first real collision of the full
80-step SHA-0. The search complexity is estimated to be 251 hash operations.

4 Message Modification Techniques and SHA-0

At the Rump Session of Crypto’04, Wang [10] announced collisions of several
hash functions, including MD4, MD5, RIPEMD, and HAVEL-128. The collision
search attacks on these hash functions [11–13] adopt a three-step approach:
find a differential path leading to possible collisions, derive a set of sufficient
conditions for the differential path to hold, and modify the message words to
satisfy all conditions in the first round (as well as most conditions in the second
round) so that the success probabilities can be greatly enhanced.

The“message modification”employed in the last step is a major innovation
that makes these collision search attacks feasible. Message modification tech-
niques have been introduced in attacking HAVAL-128, MD5, MD4, RIPEMD
[11–13] and SHA-0 [15] (not gave the precise description in [15]). However, the
more sophisticated hash functions such as SHA-0 and SHA-1 pose considerable
new challenges, and require more powerful message modification techniques in
their attack. We shall discuss various components of the message modification
approach which, when suitably combined, can yield an effective attack. Full de-
tails will be omitted in this presentation.

4.1 Message Modification Techniques

In what follows, we provide a description of the more complicated message mod-
ification techniques for SHA-0. Following the terminology in [12], we also cate-
gorize the techniques into basic techniques and advanced techniques.

For the MD4-family of hash functions, including SHA, the step function F
has the form of

ai = F (input chaining variables,mi−1),

where ai is the output chaining variable and mi−1 is the message word applied in
step i. Given a differential path that may lead to possible collisions, it is not hard
to derive a set of sufficient conditions on ai. The conditions are of the following
forms:

– ai,j = 0 or ai,j = 1.
– ai,j = ai′,j′ or ai,j = ¬ai′,j′ , for i′ < i.



In fact, all these conditions can be combined into one general form:

ai,j = v,

where v is a bit value that is fixed to be 0/1 or has been computed before step i
(since i′ < i). Therefore, we can treat them uniformly.

The main idea of the “‘basic modification technique”is simply to set ai,j to
the correct bit by modifying the corresponding bit of mi−1. More specifically,
the following operation is performed for each derived condition ai,j = v.

– If ai,j 6= v, then set mi−1 = mi−1 ± 2j−1 to correct the condition.

If there is a condition on mi−1,j in the collision differential path, the above
modification isn’t available. So, it needs to modify some message bits in the
previous steps (maybe only one message bit of the previous step is modified)
to correct the condition of ai,j . These message modification techniques can be
applied to a hash function up to the first 16 steps.

If the message word mi is dependent on one or more of the earlier message
words, then “advanced modification technique”are needed to deal with the com-
plication. Roughly, a change in mi will cause a change in mt for some t < 16
and hence a change in at+1. The advanced technique can “correct” this change
within the next few steps during which each of the chaining variables are up-
dated once. Effectively, the correction process is the same as constructing a local
collision. The process works if and only if modification of the message words in
those steps does not affect any existing conditions on the chaining variables.

4.2 Application to SHA-0

Given a differential path of SHA-0 in any existing attacks, we can easily derive
a set of sufficient conditions on the chaining variables by analyzing each local
collision separately. Using the basic modification techniques, we can make all
the conditions in the first 16 steps to hold in a systematic way.

The advanced modification techniques, however, do not seem to be directly
applied to SHA-0 as in the cases of MD4, HAVAL-128 and MD5 etc. The ef-
fectiveness largely depends on how the conditions are “distributed” after step
16. For MD5, the conditions are very concentrated in steps 17 and 18, while for
SHA-0 the conditions are spread out due to the local collisions. Another reason
is the use of message expansion in SHA-0. As a result, the advanced modification
techniques in [11–13] can only help to make a few conditions satisfied in steps
i > 16. This would improve over the original attack on SHA-0 [14]. Given the
neutral bit techniques [1] which already allow the bypass of the first 22 steps,
the modification techniques, as they were used in MD5, are difficult to offer
additional improvements over the best existing attacks on SHA-0. Therefore,
new ideas are required in order to launch a more practical attack on SHA-0 and
especially for extending the attack to SHA-1.



5 New Techniques for Searching Collisions in SHA-0

In this section, we present our new techniques for collision search in SHA-0.
The techniques are quite effective for SHA-0 and can also be extended to attack
SHA-1 [16].

5.1 Overview

The first key idea in our new techniques is to remove both Condition 2 and
Condition 3 (see Table 3) on the disturbance vectors. Such relaxation provides
a larger search space and allows us to find disturbance vectors whose hamming
weights are much lower than those used in existing attacks, thereby greatly
decreasing the complexity of the attack.

The cost, though, is much more complicated differential paths in the first
round. In particular, the disturbance vector consists of consecutive ones in the
first 16 steps as well as truncated local collision. We introduce several new tech-
niques to construct a valid differential path given such a disturbance vector. This
is the most difficult yet crucial part of the new analysis, without which it would
be impossible to produce a real collision.

We also present a variation of the basic modification technique to deal with
conditions in steps 17 through 20, effectively starting the collision search at
step 21. Combining all these new techniques and some simple implementation
tricks, we are able to reduce the collision search complexity of SHA-0 to below
240.

5.2 Finding Disturbance Vectors with Low Hamming Weight

In existing attacks, the difficulty of finding disturbance vectors of low Hamming
weights is largely due to the following difference between the IF and XOR func-
tion: when c and d both change, the output of IF always changes, while the
output of XOR never changes. For MAJ, the output changes with probability
1/2. This motivates us to treat the first round differently so that Condition 3
can be relaxed.

We only impose Condition 1 in the search for good disturbance vectors. By
doing so, we obtain many vectors with very small Hamming weights. Since we
can use modification techniques to make all conditions in the first round to hold,
we focus on vectors with small Hamming weight in rounds 2-4. Among the 216

choices that satisfy Condition 1, about 30 of them have 17 ≤ hw21+ ≤ 19, and
four of which have Hamming weight 3 in the third round. We then picked the
following one from the four candidates as the disturbance vector.

5.3 New Analysis Techniques

As we can see from the chosen vector, there are four consecutive 1s in the first 16
steps. In addition, there are three truncated local collisions since x−3 = x−2 =



step vector

-5...-1 0 0 1 1 1

1...20 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0

21...40 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

41...60 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

61...80 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0

Table 4. A disturbance vector for producing a collision of SHA-0

x−1 = 1. The corresponding message differences for the first 16 steps are given
in Table 8 in the appendix. The most difficult part is to derive a differential path
for the first 16 steps given the irregular message difference.

There are several techniques that we used to construct a valid differential
path. Before diving into the details, we first present a few general ideas.

– Use “subtraction” instead of “exclusive-or” as the measure of difference to
facilitate the precision of the analysis.

– Take advantage of special differential properties of IF. In particular, if there
is a bit difference in one of the three inputs, the output will have a difference
with probability 1/2. In addition, when the bit does flip, it can maintain
or change the sign of the difference. Therefore, the function can either pre-
serve or absorb an input difference, giving good flexibility for constructing
differential paths.

– Take advantage of the carry effect. Since 2j = −2j − 2j+1...− 2j+k−1 + 2j+k

for any k, a single bit difference j can be expanded into several bits. This
property makes it possible to introduce extra bit differences. To use the
idea in a more sophisticated way, we can combine two sets of differences to
produce one difference.

– Regroup the message differences. Some differences in local collisions shall
remain unchanged to guarantee that the local collisions hold. Some other
differences in a local collision will be reset to cancel out certain changed
chaining variable bits – especially those bits produced by the message dif-
ferences in the truncated collisions, and those arising from two consecutive
local collisions.

5.4 Constructing the Specific Path

We first introduce some notation. Let ai,j denote the jth bit of variable ai and
∆ai = a′i−ai denote the difference. Note that we use subtraction difference rather
than exclusive-or difference since keeping track of the signs is important in the
analysis. Following the notation introduced in [11–13], we use ai[j] to denote
ai[j] = ai +2j−1 with no bit carry, and ai[−j] to denote those ai[−j] = ai−2j−1

with no bit carry.
To construct a valid differential path, it is important to control the propaga-

tion of the differences in each chaining variables. At a high level, differences in



b, c, d are mostly absorbed by the Boolean function IF. The differences in a and e
need to be carefully controlled, and most of them are offset by using appropriate
differences in b, c, d.

The complete differential path for the first 16 steps is given in Table 8 in the
appendix. It may look quite complicated at a first glance, and so we provide a
more concise description below which better illustrates the idea. Based on the
step function of SHA-0, it is not hard to see that the differences in the chaining
values are fully determined by the differences in a, which is given in Table 5
below. Bit differences that are expanded using the carry effect is shown in bold,
and the expanded bits are not shown. The bit differences in a can be categorized
into four groups as follows, and their rationale can then be better understood.

∆a I II III IV

a1 −2,7,−32

a2 −7,12,−5

a3 −12,17,−10 2

a4 20 9

a5 25 4

a6 2 −10,15

a7 2 −17

a8 −12

a10 2

a11 10

a13 2

a15 −2

Table 5. Differences in a. The entries list the bit positions of the differences and their
signs. For example, the difference 2j is listed as j +1 and −2j as −(j +1). Bit positions
in bold are expanded using the carry effect in the complete differential path given in
Table 8.

– Group I: differences due to ∆m0:
These are message differences due to the “truncated” local collisions. Hence
they are inherent from the chosen path and cannot be changed. They cause
differences in e5, e6, e7 that need to be cancelled. Most of them can be can-
celled with existing differences in that step, except e5[−30], e6[−5],and e7[15].

– Group II: differences due to disturbance.
These result in the usual 6-step local collisions.

– Group III: differences introduced to cancel e5[−30] and e7[15].
Note that only a6[15] is for cancelling e7[15], and the rest are all for cancelling
e5[30]. This part is where the expansion using the carry effect is needed.

– Group IV: differences used for additional adjustments.
These are a4[9] for producing e8[7] in order to cancel m9[−7] and a5[4] for
both producing e9[2] to introduce the disturbance equivalent to m10[2] and
producing b6[5] to cancel out e6[−5].



This is the most difficult yet crucial part of the new analysis, without which it
would be impossible to produce a real collision. Furthermore, the analysis demon-
strates some unexpected weaknesses in the design of the step update function.
In particular, certain properties of Boolean function (x ∧ y) ∨ (¬x ∧ z) and the
carry effect actually facilitate, rather than prevent, differential attacks.

5.5 Deriving Conditions on mi and ai

As we discussed in Section 3, for each local collision starting at step i, the follow
conditions on m should hold.

mi+1,7 = ¬mi,2 (1)
mi+2,2 = ¬mi,2 (For round 3) (2)

The condition on the disturbance vector given in Table 4, there are a total of
19 disturbances in Rounds 2, 3 and 4. So equation (1) yields 19 conditions on
message words. From 3 disturbances in round 3, there are another 3 conditions
on message word corresponding to equation (2). From Table 8, there are another
9 necessary conditions on message word position bit 2 and 7. There are total 31
conditions on message positions 2 and 7, and by a straightforward search of the
232 choices for two positions of m0,2, ..., m15,2 it turns out that several choices
satisfy all the conditions.

After the conditions on the message words are determined, we can derive
a set of sufficient conditions on ai given the differential path. The derivation
uses differential properties of the three Boolean functions as well as the carry
propagation pattern of addition. The complete description of the conditions is
given in Table A in the appendix.

5.6 A Variation of the Modification Techniques

There are a total of 45 conditions from step 17 to step 80. Here we introduce a
variation of the message modification techniques to deal with the three conditions
in step 17 through 20, and hence reducing the number of conditions to 42. The
idea is better explained using an example, say the condition on a17,32. Instead
of modifying m16, which is dependent on four earlier message words, we modify
m15 in a way that will flip the bit a16,27, which in turn flips the bit a17,32 in
step 17. The other two conditions are handled similarly.

5.7 Complexity Analysis

In this section, we analyze the complexity of our collision search attack. Since
there are a total of 42 conditions after applying message modification, a straight-
forward implementation would yield a complexity of 242 hash operations.

There are several simple techniques that we can use to further improve the
efficiency of the attack. The idea is that we only need to compute a small num-
ber of steps of the 80-step hash operation. First, we can precompute a set of



“good” message words that make all conditions satisfied in the first 14 steps
and only leave the last two message words as free variables. Second, we can use
an “early stopping technique”. More specifically, we only need to carry out the
computation until step 23 and then test whether the four conditions in steps 21
through 24 are satisfied. On average only a fraction of 2−4 of the messages will
pass the test. Overall, we only need to compute from step 15 to 24, for a total of
10 steps. This immediately gives a factor of 80/10 = 8 improvements in search
complexity. Hence, the complexity of finding a full collision is at most 239 hash
operations.

Our analysis can also be used to find near collisions with much lower com-
plexity. For near collisions, we have found quite a few disturbance vectors with
hw21+ = 14, and an example is given in Table 6. For this vector, the total
number of conditions in Rounds 2-4 is (14 − 4) × 2 + 4 × 4 = 36. Using early
stopping techniques, we estimate that near collisions of SHA-0 can be found with
complexity about 233.

step vector

1...20 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1

21...40 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

41...60 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

61...80 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0

Table 6. A disturbance vector for near collision of SHA-0.

Finally, we remark that using the multi-block technique for attacking MD5 [12],
we can use near collisions to construct multi-block collisions with about the same
complexity. Therefore, we expect multi-block collisions of SHA-0 can potentially
be found with about 233 hash operations.

6 A Collision Example of SHA-0

The two messages that collide are (M0,M1) and (M0,M
′
1), where

h1 = compress(h0,M0)
h2 = compress(h1,M1) = compress(h1,M

′
1)

Note that the first message block M0 is the same, and it is for producing
an intermediate chaining value h1 that satisfies the 14 conditions on a0, b0. (See
Table A). M0 can be found with complexity 214. After that, the pair (M1,M

′
1)

can be found with complexity 239.
We remark that we can adjust the differential path under the conditions of

the original initial value h0 to find a one-block message collision differential path.



h0: 67452301 efcdab89 98badcfe 10325476 c3d2e1f0

M0: 65c24f5c 0c0f89f6 d478de77 ef255245 83ae3a1f 2a96e508 2c52666a 0d6fad5a

9d9f90d9 eb82281e 218239eb 34e1fbc7 5c84d024 f7ad1c2f d41d1a14 3b75dc18

h1: 39f3bd80 c38bf492 fed57468 ed70c750 c521033b

M1: 474204bb 3b30a3ff f17e9b08 3ffa0874 6b26377a 18abdc01 d320eb93 b341ebe9

13480f5c ca5d3aa6 b9f3bd88 21921a2d 4085fca1 eb65e659 51ac570c 54e8aae5

M ′
1: c74204f9 3b30a3ff 717e9b4a 3ffa0834 6b26373a 18abdc43 5320eb91 3341ebeb

13480f1c 4a5d3aa6 39f3bdc8 a1921a2f 4085fca3 6b65e619 d1ac570c d4e8aaa5

h2: 2af8aee6 ed1e8411 62c2f3f7 3761d197 0437669d

Table 7. A collision of 80-step SHA-0. Padding rules are not applied to the input
messages

7 Conclusions

In this paper, we present a new collision search attack on SHA-0 with complexity
239 hash operations. Compared with existing attacks on SHA-0, our method is
much more efficient and real collisions can be found quickly on a typical PC.

The techniques developed in our analysis of SHA-0 are also applicable to
SHA-1. As SHA-0 may be viewed as simpler variant of SHA-1, the analysis
presented here serves to verify effectiveness of these new techniques for other
SHA variants.

Our analysis demonstrates some weaknesses in the step updating function of
SHA-0 and SHA-1. In particular, because of the simple step operation structure,
certain properties of the Boolean function (x ∧ y) ∨ (¬x ∧ z) combined with the
carry effect actually facilitate, rather than inhibit, differential attacks. We hope
that these insights can be useful in the design of more secure hash functions in
the future.
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A The differential path and derived conditions

In Table 8 we describe the details of the differential path that leads to a full
collision of SHA-0. In Table A, we list a set of sufficient conditions on the chaining
variables ai for the given differential path.

For the first 20 steps, since there are many conditions for each ai, we use a
compact representation for the conditions so that they can be easily visualized.
More specifically, for the condition ai,j = v we put one symbol w in the row for
ai under bit position j, where w is defined as follows:

– If v = 0, then w = 0.
– If v = 1, then w = 1.
– If v = ai−1,j , then w = a.
– If v = ¬ai−1,j , then w = a.
– If no condition on ai,j , then w = -.



step i xi−1 ∆mi−1 ∆ai ∆bi ∆ci ∆di ∆ei

1 0 −2, 7, 32 −2
−7,−8, 9
−32

2 1 7, 8,−9
−12, ...,−21, 22
5,−6 ∆a1

3 1 2, 7, 32 −12
−17,−18, 19
−10
2 ∆a2 ∆a¿30

1

4 1 −7 −20, ...,−24, 25
9 ... ∆a¿30

2 ∆a¿30
1

5 1 −7 25
−4, 5 ... ∆a¿30

2 ∆a¿30
1

6 0 2, 7 2
10, 11,−12
−15, 16 ... ∆a¿30

2

7 0 −2, 32 2
−17 ...

8 1 2, 32 12, ..., 22,−23
...

9 0 −7
...

10 1 32 2
...

11 0 7, 32 10
... ...

12 0 2, 32
∆a11 ...

13 1 2 2
∆a¿30

11 ...

14 0 −7, 32
∆a13 ∆a¿30

11 ...

15 1 32 −2
∆a¿30

13 ∆a¿30
11

16 0 −7, 32
∆a15 ∆a¿30

13

Table 8. A differential path for the first round of SHA-0. For ease of notation, the
entries list the bit positions of the differences and their signs. For example, the difference
2j is listed as (j + 1) and −2j as −(j + 1).

The rest of the path consists of 19 6-step local collisions. The starting step of these
collisions is specified by the disturbance vector given in Table 4.



chaining conditions on bits
variable 32− 25 24− 17 16− 9 8− 1

a0 -------- 1-1100-1 --1--1-1 10------

b0 -------- -------- ------a- ----a-a-

a1 1------- 0a0011a0 aa1-10a0 11----1-

a2 0-0----- --011111 111111-1 0010a---

a3 1-1--aaa aa0-0011 0010101- -010100-

a4 1----a-0 11111000 --1111-0 110011--

a5 0------0 -0001001 00100-0- 01-01---

a6 -------0 -1011110 010-100- -0--100-

a7 0------1 a1011111 0100--00 0----10-

a8 -------- -1000000 00000-11 1---1---

a9 1------- ---00000 0011001- ----0---

a10 -------- ---11111 1111111- ------0-

a11 0------- -------- ------0- ----1---

a12 0------- -------- -------- 0---0---

a13 -------- -------- -------- 1---0-0-

a14 1------- -------- -------- ----1---

a15 0------- -------- -------- ----1-1-

a16 1------- -------- -------- ----0---

a17 0------- -------- -------- ------1-

a18 1------- -------- -------- --------

a19 -------- -------- -------- --------

a20 -------- -------- -------- --------

Table 9. A set of sufficient conditions on ai for the differential path given in Table 8.

The conditions for the 19 local collisions in Rounds 2-4 are derived as follows. Note
that the conditions depend on the bit mi,2 which has been pre-determined.

– XOR rounds:

ai−1,4 = ¬ai−2,4 (or ai−1,4 = ai−2,4)

ai,2 = mi,2.

– MAJ round:

ai−1,4 = ¬ai−2,4

ai,2 = mi,2

ai+1,32 = ¬ai−1,2

ai+2,32 = ¬ai+1,2


