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Abstract. Although many strong cryptanalytic tools exploit weaknesses in the

data-randomizinig part of a block cipher, relatively few general tools for

cryptanalyzing on the other part, the key scheduling part, are known. A slide attack

is an instance of attacks exploiting the key-schedule weakness. In this paper,

currently proposed slide attacks can be still enhanced so that all currently

published known-plaintext analytic technique can be applied to smaller part of a

cipher with a weak key-scheduling part. As an example, we demonstrate

applications of a slide attack to linear cryptanalysis, a DES variant case. In addition,

we also show that our enhancement enables to declassify the unknown primitive

used in a block cipher. We test a block cipher, GOST, and show how to de-classify

the hidden 4-bit substitution tables.

1 Introduction

Many cryptanalyses of a block cipher are based on careful and elaborate

observations on the data-randomizing part in a block cipher, and ignore the

structure of corresponding key schedule. Since the differential cryptanalysis was

presented by Biham and Shamir [1,2], the statistical aspects of a cryptosystem,

typically the data-randomizing part, have been studied to cheek whether or not the

cipher is secure against these attacks. Linear cryptanalysis [14] and other related

works [9,10,12, 19] adopt this approach, however with other statistical

characteristics.

In those attacks, round keys, i.e. the outputs of a key-scheduling part, are

concerned and very little analyses on a key schedule are used to improve attacks.

A related-key analyses[11] is one of major intersections between analyses on

data-randomizing part and ones on key-scheduling part. However, the basic idea of

the related-key analysis is particularly specialized not in general cryptanalytic

techniques, but only in differential cryptanalysis.

A slide attack [3] is an attack based on a particular key-schedule weakness; if a

key schedule has inherent cyclicity of round keys, there exist two distinct known

plaintext pairs such that all intermediate values are conceptually identical but

appears in different rounds. More precisely the coinciding intermediate values are

sliding by one round. Biryukov and Wagner presented some novel improvements in
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[4], e.g., sliding attacks in the adoptive chosen plaintext-ciphertext environments.

In those attacks, the attacker basically exploits the weaknesses substantially in the

key schedule.

Fig. 1. Finding slit pair and deriving round key.

In this paper. we show that the slide attack can be used to enhance some types of

current attacks of a cipher with a weak key scheduling part. In fact Ins—

enhancement is applicable to any known plaintext cryptanalytic tools, e.g. linear—

and partitioning cryptanalysis. In other words, our attack exploits time combination

of the weakness in the key schedule and the Data randomizing part.—

More precisely, our extension allows the attack to be applicable not only to the

target cipher with a weak round function but also a cipher with a sequence of

rounds vulnerable to known-plaintext attacks. Note that the weak round function

can be only one or two rounds of Feistel structure, whereas a sequence of round

function allows four or more it iterations.

We apply this Technique to some block cipher variants in order to demonstrate—

the effectiveness of the proposed enhancement. We treat the DES variant with four

round iterated round keys and describe its cryptanalysis that, is the combination—

of the linear cryptanalysis and the slide attack.

We also study the GOST block-cipher, which has both the simple key-scheduling

algorithm the round function with confidential S boxes. Combining investigations on

both parts, we point out interesting technique to de-classify the hidden S boxes.

This paper consists of the following sections. Section two prepares the

preliminaries for representations and notations. Section three describes the original

ideas of slide attacks. Section four proposes an extension to the slide attack. In

section five, the extension is applied to a couple of example ciphers. In section six,

we concludes our works.

2 Slide attacks

Let us assume that K i, ( 1 ≤ i≤ r) are identical and the round function R has a

structure such that the round key can be efficiently calculated out of the pair of
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the input and the output.

The attacker tries to find a special pair of plaintexts, hereafter we call it a slit

pair. (P, P') such that one (for example P') is the output of the first round function

of the other's (P) encryption. Once he succeeds in finding the right pair, then he

can efficiently calculate the round key out of two pairs of the input and the output

for a round function.

To find the concerning plaintext pair, the naive way is to collect arbitrary 2 b/2

known-plaintexts, where b is the block length in bits. Thanks to the birthday

paradox, there exists such a slit pair with high probability.

Given the sufficient number of known-plaintexts, he identifies whether or not each

pair in collected plaintexts ( P a,P b
) is the slit pair. The validation is to check the

identity of two derived round keys, namely K P
(calculated out of P a and P b) and

K C
(calculated out of C a and C b), where C a and C b are corresponding

ciphertexts of P a and P b. If K P
= K C

, the pair ( P a,P b
) can be a slit pair.

Otherwise they cannot be so and he tries the next plaintext pair.

This naive way to find a slit pair can be improved more effectively, depending on

the structure or the characteristics of the round function. For instance, if the round

function R is a Feistel structure, then a slid pair must share the same half of data,

namely upper half of C a
and lower half of C b

. In this case the number of

collected plaintexts are reduced to 2 b/4.

The total complexity consists of two computations: collecting the sufficient number

of known-plaintexts and searching the slit pair. Let n be the number of

known-plaintexts. The former takes n computations and the latter takes

T×n(n-1)/2, where T is the computation for the slit-pair verification.

To calculate n the number of sufficient known-plaintexts, we take the birthday

paradox into account. According to the rough estimation, about 50 % of the

successful attack can be achieved by using about 2 b/2 known-plaintexts. To obtain

higher probability, say 80%, the increase of required known plaintext is no more

than a factor of 2 to 4. An example calculation of probability that a birthday

collides is depicted in Fig.2.

This basic idea is easily extended to plural rounds iteration. The original paper

demonstrated the extended idea applied to their DES variants, 2K-DES, where K 1

is used in odd rounds, and K 2
in even rounds. In the slide attack of 2K-DES,

two-round sliding property is used. More-round sliding has not been in open

publications.

Remarks on Weak Round Function: In the original slide attack, Biryukov and Wagner

introduced the concept of the weak round function with respect to the slide attacks.

In order to apply the original slide attack, a sliding gap must be so weak that
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sufficient key information is derived out of one (or two) input-output pairs of a

round function. If the gap consists of more than two rounds, generally it becomes

much more difficult to derive the key information.

3 Enhanced attacks with a known-plaintext attack

3.1 Our enhancement

In this section, we enhance slide attacks so that they are applicable not only

ciphers with a weak round function but also ones with a sequence of a round

function that is vulnerable to a known-plaintext cryptanalysis.

Fig. 2. Collision probability in choosing n out of 365.

At first we introduce the enhanced slide attack. In this context, the term “round”

does not necessarily specify the exact definition of the round function of the block

cipher. Instead, we intend to use the term “Round” to mean the unit of sliding, i.e.,

the gap. Typically the “Round” also includes the sequence of the round function.

A target cipher which we concern in this part consists of a sequence of Rounds. In

addition, each Round is identically keyed, or equivalently the round-key generated

in a cyclic manner. There also exist D R( t d ,q d ) and A R( t a ,q a ) that are the

distinguisher and the key-deriving attack against the Round with q d (or q a)

known-plaintexts and t d (or t a) computational time.

Because of the structure of the cipher, a slit pair exists as well as the original

slide attack. At first, the attacker tries to find the slit pair by a Round. Instead of

collecting a number of known-plaintexts, the attacker generates a number of

(arbitrary) plaintexts and asks for q a - 1 ciphertexts of multiple encryptions for

each plaintext, i.e., the ciphertext, the ciphertext of the double encryption,

triple-encryption and so on. If the pair of plaintexts ( P a, P b
) is a slit pair, then so

is the corresponding pair of ciphertexts ( C ( 1 )
a , C

( 1 )
b
). Similarly the pair of the

ciphertexts after n times encryption ( C
( q a - 1 )
a , C

( q a - 1 )
b ) also keeps the sliding
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property (Fig.3). Note that each pair of ciphertexts ( C ( k )
a , C

( k )
b
) is also thought of

as the pair of the input and the output of the Round. Therefore the attacker can

obtain the q a pairs (including plaintext pair) of the input-output pairs of the Round

function, with which the attacker can mount the known-plaintext attack A R
.

To calculate the number of plaintexts, we apply the birthday paradox again.

Consequently the naive method requires 2 b/2 plaintexts to find a slit pair. An

attacker use the distinguisher D R
to find a slit pair. For each possible pair of the

collected plaintexts, the attacker invokes D R
. If D R

returns yes, then the attacker

treats the pair as the slit pair. Otherwise he discards the pair and try the next

pair. To invoke D R
the attacker has to prepare q d pairs of the input output pairs

of the Round. Hence the attacker prepares q d - 1 ciphertexts for each plaintext.

We estimate the computational complexity for this attack. The attacker prepares

2 b/2 plaintexts each of which is encrypted for max (q d,q a) times. In total, it takes

max (q d,q a)×2
b/2 computational time for generating data. The attacker makes

2 b/2(2 b/2-1)/2 times D invocations, and a A invocation. In total, the

computational complexity is estimated to be max (q d,q a)×2
b/2

+2 b/2 (2 b/2-1)t d /2+ t a.

In finding a slit pair, we roust exploit a certain weakness of a cipher element

iterated in the target cipher. Using this weakness, an attacker can distinguish a slit

pair (with the weak property) and others (expectedly which holds a random

property). As an example, an attacker targeting four-round iterated Feistel cipher

can be interested in a probabilistic linear property, with which he test pair-wise

multiple ciphertexts to check if the probabilistic property of four rounds is

detected. Practically, the technical way to find a slit pair is likely to relate to the

way to attack the iterated cipher element. In the following, we demonstrate the

typical analysis of our proposed enhancement.

3.2 Four-round iteration of DES

We consider a cipher holding four-round sliding property. An element of four-round

iteration is not weak in the sense of original slide attacks by Biryukov and Wagner.

Because of this reason the original slide attack cannot be applied to this cipher.

Alternatively, they also proposed some advanced slide attacks where an attacker

makes both encryption and decryption queries~4]. Their approach was to find a slit

pair consisting of one plaintext-ciphertext pair and one ciphertext plaintext pair.

In this section, we apply our enhancement to the DES-cipher treated in[4] which is

intensionally weakened to hold four-round subkey iteration, i.e. a DES cipher with

four-round sliding property. We define the model to attack. However our

enhancement achieves to attack the DES variant without decryption query, namely
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adoptive chosen-plaintext attack in ECB, CBC. CFB or known-plaintext attack in

GEB mode.

Let us demonstrate a simple example of a variant DES, ikDES41), with a simple key

schedule. In ikDES4, the key schedule works as follows. The secret key K whose

length is 4×48=192, is divided into four 48-bit strings, K t
, ( t = 1,2,3,4). Subkeys

are set as follows:

The data-randomizing part is identical to DES cipher[6] except for the number of

rounds and lack of initial and final bitwise permutations.

Fig. 3. A slide attack on multiple encryption.

First of all, a cryptanalytic tool exploited in the attack is introduced. This is the

probabilistic linear relations of four rounds variant of DES data-randomizing part.

This is approximated with p DES4 =1/22-1.9 5×2
- 5, which is detectable with

C×(p (-2)DES4). C depends on out of how many candidates the slit pair is

detected[13]. Since in any case of slide attacks (and its variants), a statistical

characteristics of the correct slit pair must be identified out of a large number of

incorrect pairs, C must be large enough. We, in this paper, assume that C = 16

gives enough to recognize out of less than 264 corresponding random events.

It's easy to see that four rounds' slit pair, ( P ,C ) and ( P ',C '), guarantees that each

of those two pairs, ( P ,P ') and ( C ,C ') is a pair of input-output pair of DES-four

rounds. Remember that in the original slide attack, an attacker can know no more

than two input-output pairs even after he detects a slit pair. Consequently he

cannot decide any information more than having about 2 192 - 64 candidates,

according to information theory. Although the result of this attack must be helpful

to degrade the work effort of exhaustive search, this way of attacking does not use

the full effect caused by iteration of round keys.

1) ikDESn stands for Iteratively-Keyed DES of v rounds. We do not care the
number of rounds in a whole cipher as long as it is multiple of n.
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Now, an attacker tries to attack the cipher, gathering ciphertexts in the multiple

encryption of the target cipher. It's easy to see that ciphers in multiple encryption

keeps to be slit if the pair of plaintexts does. In this case, an attacker continues to

gather double encryption ciphertext, triple encryption, and so on until he gathers

sufficient mount of pairwise data. If a pair of plaintext, ( P A ,P B
), is a slit pair, the

ciphers in single encryption, ( C 1
A ,C

1
B
), the ciphers in double encryption, ( C 2

A ,C
2
B
)

and the ciphers in N times encryption, ( C n
A ,C

n
B
), each of which is a pair of

input-output pair of four rounds. N must be the number for necessary plaintext

pairs for linear cryptanalysis on four rounds DES, so that he exploits linear

cryptanalysis on four round DES, stripping one or two rounds out of four applying

maximum-likelihood-method on subkeys. Then the number of required input output—

pair after finding a slit pair is

for stripping two rounds. Note that in this analysis, we use C = 8.0 instead of 16,

for a correct key in 2 12 candidates in S5 box in round one, S1 box in round four.

In successful attack, another parity of key bits in round three will be known to the

attacker. Thirteen bits in total can be found in an attack (Fig. 4).

Fig. 4. Attack strategy in ikDES4.

We omitted explanation of how to distinguish a slit pair from pools of pairs. In this

case, he can use four round linear characteristic for each slit pair, ( P A ,P B
),

( C 1
A ,C

1
B
), ( C 2

A ,C
2
B
) and so on, and check correctness of a testing pair. If all the

pairs above are correctly input-output pair of DES four rounds, they must show

explicit bias in statistics, whereas if they not, they will not. In this case, meeting

the most bias with the correct pair requires
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This is the number of multiple encryptions enough to recognize the slit pair.

In terms of computational complexity in this attack, an attacker expects one slit

pair in 232 known-plaintexts pool. For each plaintext, he gathers 4294 ciphertext

blocks, each of which is a resultant ciphertext of i-times multiple encryption for

1≤i≤4294, storing a bit information of parity masked according to linear

approximation of four rounds DES. In this first stage of an attack, it takes

4294×2 32≈2 44 encryptions to gather data and 2 44 times masked parity calculation.

In order to save whole encryption results, about 2 44×64-bit memory space is

required. Nevertheless, 2 44-bit space is enough if an attacker can apply chosen

plaintexts queries after finding a slit pair.

In the next stage, he tries to find a slit pair, checking bias in distribution of parity

bit. For each pair out of about 263 possible pairs, 4295-bit exclusive-or and bit

increment for a counter. In 32-hit processor, 4295-bit exclusive-or operation will

take 4295/32 clocks, since storing 4295 bits in |4295/32| is possible during the

first stage. 2 63×|4295/32|≈2 70 exclusive-or operations approximately correspond to

262 encryption, since a DES encryption takes 45×8=360 cycles on a Pentium

processor[18]. As for the memory space, this stage requires negligible memory

space since all he needs are the maximum bias and its pair information.

In the third stage, deriving 13-bit key information takes small amount of time, like

2 13×82 counter increments, in comparison with those on above two stages. In this

stage, 212 counters are required.

In total, work efforts equivalent to 262 encryptions with 244 chosen-plaintexts,

enable to crack ikDES4, which is independent of the number of rounds as well as

original slide attacks. The minimum memory requirement is about 244 bit, i.e. 2000

GByte.

We summarize the results on It's dependent on the applying known-plaintext attack.

It must be very light calculation so that the mount of checking is less than the

work effort of key exhaustive search.

4 Key-schedule analyses on block ciphers

We describe our observations on key schedules in a couple of block ciphers,

discussing applicability of our attack and effectiveness. The necessary conditions to

apply our attack are very simple: a vulnerable cipher should have a sliding property
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(but not only ones with weak round functions); a cipher with a sliding property

must be structured by a number of Round iterations and its non- negligible key

space generate cyclic round keys synchronizing to iteration of round function. Most

of the currently proposed block ciphers iterate identical round functions. Then our

major observation begins with the structure of key schedule.

4.1 GOST

COST is a 64-bit block cipher proposed from the former Soviet Union [7,17],

keyed with 256-bit secret key and equips eight secret S-boxes. However, an

example of S-boxes for COST is disclosed and actually used in some applications.

We initially show a brief description of COST cipher. A plaintext block, P is

divided into two 32-bit words, L 0
and R 0

, and iterates a round function

R ( L i,R i ,K i ) for 32 times ( 1≤i≤32), where K i is expanded keys generated by

very simple key schedule. The ciphertext, C, is L 32PVERR 32. The round function,

R , is very simple. The input data, R , is added with the key, K i. The result,

R i - 1 + K i
, is divided into eight four-bit data, each of which becomes a input of

one of eight S-boxes. The results of S-boxes are concatenated to make a 32-bit

word. Then eleven-bit left rotation is executed on the result and exclusive-ored

with L i
, which generates the output for R i. The other output, L i

, is R i - 1
. In

terms of key schedule of GOST, it adopts very simple one. A 256-bit key is

divided into eight 32-bit words, S 1 , . . . , S 8
. The round key, K i

is decided as

follows:

v

Due to its key schedule, a slide attack chooses secret keys to hold the sliding

property.

In this attack, the key to be attacked must he very particular. All the words in a

key, K i
, 1≤i≤32, are identical. In total, 2

32 keys are vulnerable against our attack.

Now all the 32 round functions arc keyed with an identical key, so that the original

slide attack is applicable to check the slit pair, that just sees identity of two halves

of data of ciphertext pairs.

In this case, the original slide attack is applicable if the S boxes are known. More

interestingly, our attack allows user of GOST with unknown S boxes to de-classify

his cipher. The same approach has already been described in [16]. We briefly

revisit the result.

Saarinen's Algorithm

1. Set K to be zero vector (namely all subkeys are zero, too),
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2. Encrypt a zero-vector plaintext (0,0) and find (z,0) formatted sliding plaintext as

the original slide attack, where ( x,y) is denoted the left and right halves of

plaintext or ciphertext data. Let a to be the common half data of both ciphertexts,

namely a right half of zero plaintext's and a left half of sliding plaintext's.

3. The S box disclosure consists of 2 4×2 4 queries for each possible input v and

output u, whether or not v is the output of the input u. Each query determines

( a,b) values and the answer of queries should be given by sliding ciphertexts of

( a,0) and ( b,a) as plaintext. Repeating these queries for all eight S boxes, 2
11

queries are required to disclose whole contents of hidden S boxes.

As Saarinen mentions, a and b are defined by interested query of v and u.

However it is very unlikely to hold sliding property for those two plaintexts ( a,0)

and ( b,a) even if the attacker knows z such that z = f( 0 ), where f is the

zero-keyed F function of GOST. Consequently we claim that the Saarinen's

algorithm, which still finds some elements of S box, lacks of flexibility to complete

whole S box entries.

We introduce our enhancement to add the flexibility to the Saarinen's attack in

order to fulfill the objective. Set one of 232 vulnerable keys against one round

sliding attack, and find a slit pair in the original way. For the next step, the

attacker calculates n times multiple encryption each of plaintext of a slit pair. In

each time of encryption, two ciphertexts are saved. With sufficient number of

input-output pairs, all the elements in each S box are easily calculated since he

knows the round key.

We consider the sufficient number of t in order to know all sixteen elements. We

get the equation of the probability of choosing all sixteen elements after t times

picking:

Fig. 5. Probabilities to choose all 16 elements.

In order to know all the elements in all eight S boxes, the probability to know all
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the elements is p 8t . We show the graphical image of both two curves, p t and p
8
t

in Fig. 5. According to the probability, about 128 samples are enough to provide

high probability to know all the elements in all eight S boxes.

The work effort of this attack includes computations for finding the slit pair (232

encryptions and 264 32-bit data matching) and multiple encryptions of the slit pair

to disclose S boxes (2×128). Since total amount is the sum of those two

computations, that is approximated to 232.

4.2 MISTY

MISTY is a block cipher whose key schedule is designed relatively simple. After

our detailed observation of MISTY's key schedule, we could find the very small key

space of MISTY without FL functions which holds the sliding properties. However

even with our enhancement of the slide attack, the key schedule of MISTY without

FL functions is still resistant against slide attacks.

MISTY is based on provable security against differential and linear crypt-analyses

[15]. If round keys are independent and uniformly distributed, three rounds of

MISTY requires more than 256 chosen(or known)-plaintext pairs for those two

attacks.

In our study, we focused on the simplicity of the key-scheduling algorithm and

investigated the possibility of our enhancement of slide attacks.

The key scheduling of MISTY is relatively simple. A 128-bit secret key, or eight

16-bit keys, K i
for 1≤i≤8, is used to generate eight other 16-bit keys, K '

i
for

1≤i≤8, as follows:

where the index, 9, is reduced to 1. In the data-randomizing part, these 16 keys

are used according to the following key schedule.

The first observation would agree with a specific characteristics of extended keys

of a secret key that consists of identical 16-bit strings, i.e. eight K is, for which

resultant eight subkeys K'is are identical. Therefore, for all rounds, KO i1
, KO i2

,

KO i3
, and KO i4

are generated as the same 16-bit key, while KI i1, K I i2, and

KI i3 are generated as other identical keys. There are 2
16 keys, each of which

serves the same keys for all rounds, apart from KL i1 and KL i2 functions. If we

consider a modified model of MISTY, i.e. removing KL i1 and KL i2, these 2
16 keys

allow for sliding properties.

In the sense of the original slide attacks, FO functions are not weak. However our

extension of the slide attack could allow one to apply a known-plaintext attack on
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a round function, e.g. linear cryptanalysis to FO function. Note that the linear

probability of FO function is proven to be less than 2
-28, whereas the input-output

size is 32 bits.

The question is still open as to whether there exists a sufficiently effective

known-plaintext cryptanalysis on FO round function. However, in comparison with

the work effort required to find a slit pair, no less than 232/2 to apply the birthday

paradox, the effective key size for the sliding property, 216, is much smaller. From

this reason, the key-scheduling algorithm of MISTY is still secure against our

enhancement of slide attacks.

We also note cryptographic importance of FL functions. As a consequence of our

study, the existence of FL functions and the keying rules to these functions make

it very hard to find sliding property. It looks that full specification of MISTY with

FL functions are most unlikely to be vulnerable against any kinds of slide attacks.

In MISTY, FL functions are cheap way to make hedges against cryptanalyses

exploiting particular characteristics of a cipher, such as the sliding properties.

5 Concluding remarks

We described a novel way of combining slide attack and a known-plaintext

cryptanalysis, and demonstrated some applications of the proposed enhancement.

We also noted observations of key schedules properties relevant to slide attacks

discussing the applicability of our attacks.

The proposed idea enhances slide attacks from two points of view: (1) the target

round function can be more generalized; and (2) the required condition for key

schedule is untightened. The first point is that in our enhanced attack, the cipher

does not necessarily iterate a weak round function. The second point is that the

iterating number of identical subkeys is not limited to one or two. Theoretically,

there is a possibility that a cipher with more round subkey iteration is vulnerable

against our enhancement.
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Table 1. Key scheduling of MISTY.

Round keys for FO function

Round key KO i1 KO i2 KO i3 KO i4

Key data K i K i+ 2 K i+ 7 K i+ 4

Round keys for F I function

Round key KI i1 K I i2 K I i3

Key data K ' i + 5 K ' i + 1 K ' i + 3

Round keys for FL function

Round key KL i1 KL i2

Key data

K i+ 1
2

(odd i) K i+ 1
2

+ 6
(odd i)

(even i) K i
2
+ 4
(even i)

Au index, i(≤8) is reduced to i - 8 .

Round KO i1 KO i2 KO i3 KO i4 KI i1 K I i2 K I i3 KL i1 KL i2

Actual K i K i+ 2 K i + 7 K i+ 4 K ' i + 5K ' i + 1K ' i + 3

K i + 1
2

(odd i)

K i
2
+ 2
(even i)

K i+ 1
2

+ 6
(odd i)

K i
2
+ 4
(even i)

Au index, j(≤8) is reduced to j - 8 .


