SE 2F03 Fall 2005

02 Propositional Logic

Instructor: W. M. Farmer

Revised: 26 September 2005

What is Propositional Logic?

- **Propositional logic** is the study of the truth or falsehood of **propositions** or **sentences** constructed using truth-functional **connectives**.
 - Also called **sentential logic**.
 - Began with the work of the Stoic philosophers, particularly Chrysippus, in the late 3rd century BCE.
- Most other logics are extensions of propositional logic.
- Applications:
 - Logical arguments.
 - Logical circuits (e.g., electronic circuits).
 - Boolean constraint modeling.

Propositional Symbols and Connectives

- A **propositional symbol** is a symbol that denotes an atomic proposition.
- A propositional connective is a symbol used to construct a propositional formula that denotes a compound proposition.
 - Each connective denotes an *n*-ary **truth function** $f: B \times \cdots \times B \rightarrow B$ where $0 \ge n$ and $B = \{t, f\}.$
- Common propositional connectives:
 - 0-ary: T (truth), F (falsehood).
 - Unary: \neg (negation).
 - Binary: \land (conjunction), \lor (disjunction), \Rightarrow (implication), \Leftrightarrow (bi-implication), | (Sheffer's stroke).

Truth Tables (1)

- The truth-valued function that a propositional connective denotes can be represented by a **truth table**.
- Examples:

Truth Tables (2)

- Truth tables can be used to analyze the meaning of propositional formulas.
- Example (Rule of Contraposition):

p	q	$ (p \Rightarrow q) $) ⇔ ($(\neg q)$	\Rightarrow	$(\neg p))$)
t	t	t	t	f	t	f	t
t	f	f	t	t	f	f	t
f	t	t	t	f	t	t	t
f	f	t	t	t	t	t	t

- A propositional formula A is a **tautology** and is **valid** if all of the final entries in the truth table for A are t.
- A propositional formula A is **satisfiable** if some of the final entries in the truth table for A are t.
- A and B are **logically equivalent** if $(A \Leftrightarrow B)$ is valid.

What is a Logic?

- Informally, a logic is a system of reasoning.
- Formally, a **logic** is a family of **formal languages** with:
 - 1. A common syntax.
 - 2. A common semantics.
 - 3. A notion of logical consequence.
- A logic may include a **proof system** for **proving** that a given formula is a logical consequence of a given set of formulas.
- Examples:
 - Propositional logic.
 - First-order logic.
 - Simple type theory (higher-order logic).

PROP: Syntax

- PROP is a simple version of propositional logic.
- The single language L of PROP is the pair $\{A, B\}$ where: - $A = \{p_0, p_1, p_2, ...\}$ is a set of propositional symbols.
 - $-\mathcal{B} = \{\neg, \Rightarrow\}$ is a set of propositional connectives.
- A **formula** of *L* is a string of symbols inductively defined by the following formation rules:
 - 1. Each $p \in \mathcal{A}$ is a formula of L.
 - 2. If A and B are formulas of L, then so are $(\neg A)$ and $(A \Rightarrow B)$.
- \mathcal{B} is a **complete** set of propositional connectives, i.e., every truth function can be represented by a formula using only the members of \mathcal{B} .
 - $\{|\}$ is also complete.

PROP: Abbreviations

We will employ the following abbreviations:

Tdenotes
$$(p_0 \Rightarrow p_0).$$
Fdenotes $(\neg T).$ $(A \lor B)$ denotes $((\neg A) \Rightarrow B).$ $(A \land B)$ denotes $(\neg((\neg A) \lor (\neg B))).$ $(A \Leftrightarrow B)$ denotes $((A \Rightarrow B) \land (B \Rightarrow A)).$ $(A \mid B)$ denotes $(\neg(A \land B)).$

PROP: Semantics

- Let $L = \{A, B\}$ be the language of PROP and $f_{\neg}, f_{\Rightarrow}$ be the truth values denoted by \neg, \Rightarrow , respectively.
- A model for L is an (interpretation) function I that assigns a truth value in $\{t, f\}$ to each $p \in A$.
- The valuation function for *I* is the function *V* that maps formulas of *L* to {t, f} and satisfies the following conditions:
 - 1. If $p \in A$, then V(p) = I(p).
 - 2. If A is a formula of L, then $V((\neg A)) = f_{\neg}(V(A))$.
 - 3. If A and B are formulas of L, then $V((A \Rightarrow B)) = f_{\Rightarrow}(V(A), V(B)).$

Proof Systems

- A **proof system** is a system of axioms and rules for constructing **formal proofs**.
- Proof systems come in several different styles.
- Two of the most popular styles are:
 - 1. Hilbert style.
 - 2. Natural deduction.

Hilbert-Style Proof Systems

- A Hilbert-style proof system H for a language L consists of:
 - 1. A set of formulas of L called logical axioms.
 - 2. A set of rules of inference.
- A proof of A from Σ in H is a finite sequence B₁,..., B_n of formulas of L with B_n = A such that each B_i is either a logical axiom, a member of Σ, or follows from earlier B_i by one of the rules of inference.
- Hilbert-style proof systems are easy to understand but hard to use!

PROP: A Hilbert-Style Proof System

Let **H** be the following Hilbert-style proof system for PROP:

• The **logical axioms** of **H** are all formulas of *L* that are instances of the following three schemas:

A1:
$$(A \Rightarrow (B \Rightarrow A))$$
.
A2: $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$.
A3: $((\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A))$.

• The single rule of inference of H is modus ponens:

MP: From A and $(A \Rightarrow B)$, infer B.

Metatheorems of Propositional Logic

- Deduction Theorem. $\Sigma \cup \{A\} \vdash_{\mathbf{H}} B$ implies $\Sigma \vdash_{\mathbf{H}} A \Rightarrow B$.
- Soundness Theorem. $\Sigma \vdash_{\mathbf{H}} A$ implies $\Sigma \models A$.
- Completeness Theorem. $\Sigma \models A$ implies $\Sigma \vdash_{\mathbf{H}} A$.
- Soundness and Completeness Theorem (second form).
 Σ is consistent in H iff Σ is satisfiable.
- Compactness Theorem. If Σ is finitely satisfiable, then Σ is satisfiable.

Natural Deduction Systems

- A natural deduction system is a proof system consisting of a set of introduction and elimination rules.
 - An introduction rule introduces a logical symbol into the conclusion.
 - An elimination rule eliminates a logical symbol from a premise.
- Reasoning from assumptions (i.e., the deduction theorem) is formalized as the elimination rule for \Rightarrow .
- Huth and Ryan present in *Logic in Computer Science* a natural deduction system for propositional logic that is sound and complete.
- Natural deductions systems are harder to understand than Hilbert-style systems but much easier to use!

Normal Forms (1)

- A **literal** is a propositional symbol or the negation of a propositional symbol.
- A propositional formula is in **conjunctive normal form** (CNF) if it is a conjunction of disjunctions of literals.
- A propositional formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.
- **Theorem.** Every propositional formula is logically equivalent to:
 - 1. A formula in CNF.
 - 2. A formula in DNF.
- A CNF and a DNF of a formula can be "read" off of the formula's truth table.

Normal Forms (2)

• Lemma.

- 1. A disjunction D of literals is valid iff, for some propositional symbol p, D contains both p and $\neg p$.
- 2. A conjunction C of literals is satisfiable iff, for all propositional symbols p, C does not contain both p and $\neg p$.

• Theorem.

- 1. Validity of a formula in CNF can be checked in linear time.
- 2. Satisfiability of a formula in DNF can be checked in linear time.
- Proposition. A formula A is valid [satisfiable] iff ¬A is not satisfiable [valid].

Automated Reasoning Software

- Decision procedures:
 - Validity checkers.
 - Satisfiability checkers.
- Theorem proving systems.
 - Automatic theorem provers (automatically search for a proof of a given conjecture).
 - Proof checkers (automatically check the correctness of a given proof).
 - Interactive theorem provers (help the user to develop a proof of a given conjecture).