
QVT and multi metamodel transformations in MDA
The MDA family of the OMG has a new member: QVT. Finally the OMG defines a standard for queries and
transformations between (meta-) models, that had been missing for a long time for enabling the exchange of
transformations between different MDA tools. Firstly this article gives a very subjective view on QVT from an
MDA practitioner. Later on it explains how to use QVT within an MDA tool for complete chains of
transformations to get from a highly abstracted model through permanent refinements over several models
with lower abstractions to the final source code.

QVT: the new family member of MDA

The shortcut QVT stands for queries, views and transformations. Its main purpose is to transform one model
into another one.

Queries are applied on a model to find model elements, which have e.g. to be transformed. Because views
are not explicitely defined in the QVT specification, we will not discuss them here. Transformations are
mappings of elements from a source model to elements of a target model. Transformations are using one or
more source elements and recalculate them to one or more target elements.

QVT is a specification. The OMG released a Request For Proposal (RFP) [OMG02] as early as April 10th

2002, which called for proposals for this specification. After several trials in the last years the QVT merge
group, build up on more than 20 organisations, finally agreed on one recommendation. After going through
several revisions this recommendation got its state Final Adopted Specification in November 2005. Currently
its going to become completed by the OMG. The document „MOF QVT Final Adopted Specification“
[OMG05] consists of more than 200 pages.

Transformations: the black art

Looking only at the size of the document, the transformation of model elements with QVT seems to be black
art. This is mainly due to the very mathematical and declarative functionality of QVT. A transformation script
written in the QVT Relations Language declares „equality denotations“, which appear somehow magic for
non-mathematicans.

One example: For transformation of a class model into a relational database model, a package will be
„equated“ declaratively with a schema, a class with a table, and an attribute with a column. The
transformation machine then tries to find the conditions for which these equalities become true.

„True“ means: At least one package of the source model can be used for generating a schema and after
finishing the transformation there really exists one schema corresponding to the source model. The same
applies to classes and tables. For instance, if we have a class Person in the source model and no matching
table in the target model there will be no new table created. The same is true to attributes and columns. By
marking the source model as writeable (through the keyword enforce) the transformation becomes
bidirectional and there will be even new classes created, if tables exists with no corresponding classes. On
the other hand, if the source model is only readable, the redundant table will be deleted. This also
establishes the balance between the two models.

A transformation is successful if all declared equality expressions become true. This remembers somehow at
the times of AI languages like PROLOG and their Inference Engines.

Another part of the QVT consists of the Operational Mappings Language. This works imperativly and not
declaritively compared to the Relations Language. It can be used to write imperative as well as hybrid
transformations, such that imperative transformations are refining declarative relations. Its the intention of the
QVT designers to use the Relations Language for the main development and the Operational Mapping
Language only exceptional.

Practical usage

Its doubtful whether this kind of QVT specification is a favour to the MDA community or not, because QVT is
complicated. Many users want to create working software through MDA and use paradigms which are well
understood and common to the world of completely imperative languages nowadays. The model-to-model

Page 1 / 7

transformations should also be as easy as possible, to prevent their corresponding architects from hiding in
that ivory tower, where the bigger part of developer community already expects them today.

Enough criticism, getting back to the current situation. There is currently no transformation language
implementation available being 100% QVT compatible. However, I expect a gradual development similar to
that of UML from 1.0 to 1.4.

So we are coming to the main question: What can we, as followers of model driven software engineering, do
in the meantime? We don't want to wait for a distant moment in the future until QVT gets implemented but
want to use model-to-model transformations by now. For instance being able to write MDA code generators
easily, making transformations reusable and avoid the generation of duplicated code. Otherwise we don't
want to move endlessly into the world of proprietary transformation languages which have nothing in
common with QVT and are only used by a fistful of users. The third possibility is to directly hack the code for
transformations based on Java Metadata Interface (JMI) or the Eclipse Modeling Framework (EMF) is still
feasible. But this ends up in relatively large programs since Java is too fine-grained for this task.

We are searching for the happy medium: a reasonable plain language together with low migration costs if a
QVT implementation is ready at one time. Are there already implemented transformation languages similar to
QVT although user friendly and (at least) working nowadays? And are they even available as open source?

ATL: the QVT of today

The answer is: Yes, they do exist. As many times, it is the open source community, creating practical
solutions with pragmatic approaches. The Eclipse Foundation currently holds a subproject called Generative
Model Transformer (GMT). This subproject is creating several products, one of them is the Atlas
Transformation Language (ATL) [ATL].

ATL contains a compiler for the transformation language itself. Its is written in Java and runs as plug-in inside
of Eclipse. The compiler creates intermediate code with elementary transformation operations which are
interpreted by a virtual machine also written in Java, which is similar to QVT with its relations translated to
operations. The virtual machine operates on source and target models with abstract syntax trees. ATL can
transform elements from multiple source models into multiple target models within one run.

The used concepts are very similar to QVT. For meta-meta-models the Meta Object Facility (MOF) and
EMF-Ecore are primarily used. The Object Constraint Language (OCL) is used with only a few extensions as
transformation language. The extensions are necessary for working concurrently with multiple meta-models
which is not supported by OCL by nature.

ATL internal

ATL has a layered architecture. Starting with ATL one should work on the highest layer. This layer expects to
get the models as metadata files (e.g. XMI) for loading them into metadata repositories. ATL therefore
already contains adapters for the known metadata repositories like „Netbeans MDR“ [Net] and „Eclipse EMF“
[EMF] for handling models of these repositories. The highest layer of ATL becomes quite interesting at the
time of developing the transformation scripts. A special ATL debugger plugin for Eclipse is very helpful for
the development.

Additionally the next ATL layers below are permitting to expect the models to be already loaded. This is quite
interesting when ATL is adopted within MDA code generator frameworks like AndroMDA [And]. The code
generator did already load the models and so takes care for that concern, allowing ATL to immediately start
working.

Finally, on the bottom layer ATL defines abstract classes for defining models and model elements. If one
extents these abstract classes, the ATL can not only access MOF and EMF based models but also any form
of models. This is very useful for integrating the ATL library in code generators to make generator internals of
the ATL engine accessible as a special kind of model.

Meta-models by the dozen

How to use the model-to-model transformations of ATL in a code generator, e.g. in a project of information
processing in huge companies? Firstly we have to think of which meta-models are involved, since
transformation rules are always defined on meta-models.

Meta-models can be used on different abstraction layers. Starting the specification on a layer with high

Page 2 / 7

abstraction and low details level, the model-to-model transformation goes over to increasingly lower
abstracted but more detailed meta-models (Table 1).

Abstractionlayer Mindset, Goal Examples

4 Technical Architecture Collector, transformator, optimization
procedure (example of a project, the
author of this article worked on)

3 Modeling language for business logic and data
persistance

UML

3 Modeling language for user interfaces XML User Interface Language (XUL)
or similar

2 Enterprise application, independent of technology Service/Entity, Flow/Activity

1 Application structure, transactions, data access Spring

1 Persistance Hibernate

1 Workflow JBPM, BPEL

1 Presentation JSF, Eclipse RCP

1 Programming language (abstract) 3GL

0 Programming language (concrete) Java, C#

0 Screen forms JSP, HTML

Table 1: Typical meta-models of everyday projects

Create meta-models and configure transformations

One good way to define meta-models are the following steps:

• modeling metaclasses into UML with the UML profile for MOF,

• automatically transform into real MOF or EMF meta-models and

• save meta-models as XMI files

These steps have not always to be processed on each
abstraction layer. Sometimes pragramatic shortcuts (e.g. to
create meta-models in XSD (XML Schema) and models in XML)
are really appropriate.

After this the code generator processes at runtime the following
steps:

• load meta-models XMI files into a repository like MDR or
EMF,

• load source models (UML or XML),

• transformation, stepwise downstairs until abstraction layer
zero and

• transform into text, e.g. source code

At the stepwise transformation, intermediate results are created,
which usually are destroyed at the end of the code generation.
They are neither visualised nor made accessible otherwise to
the developer using the generator. The intermediate models are
only needed for modularisation and adaptability of
transformations.

The code generator needs to know for what concrete generation task (configuration) it has to deal with which
transformers in which order and with which models for input and output. Therefore this configuration has to

Page 3 / 7

Illustration 1: Models and transformations

be previously defined formally. A directional non-cyclical graph consisting of nodes and edges is very useful
for this task. Nodes are transformations and models in this graph (Illustration 1).

Transformations inside the graph can have multiple incoming and multiple outcoming edges. Multiple
incoming edges means: one target model is created through transformation of multiple source models.
Multiple outcoming edges means: one transformation creates multiple target models.

Transformation graphs: one example

Having now a possibility for visualisation of transformation configurations, an example for a transformation
hierarchy follows: Let us suppose, we have an UML model with profile for input describing the application.
With this model we want to create code for a J2EE application based on two well known frameworks for
J2EE applications, Spring [Spr] and Hibernate [Hib]. Starting with the technical viewpoint we now want to go
short, reasonable steps in terms of straightforward model-to-model transformations until we get to the
generated code.

The UML input model

 There should be an UML profile defined for the UML model with project specific vocabulary. Examples from
one of my last projects (load optimization for the logistic area) are the vocabularies «entity», «collector»,
«transformator», «wrapper object» and «optimizing method». The basic idea was the following: «Collectors»
collect «entities» from the domain model, «transformators» convert these data to a programming interface
consisting of small, lightweight optimizing relevant «wrapper objects», which can be understood by the
«optimizing method» easily. «Collectors» and «transformators» have dependency associations to their used
«entities».

Transformation into the project specific meta-model

Modeller are creating UML models based
on this UML profile. The first
transformation T1 extracts only the
relevant contents from each UML model
through queries and transforms them into
a model For an optimizing system. This
domain specific meta-model consists of
the metaclasses Entity, Collector,
Transformator, Wrapperobject und
Optimizingmethod. This is simple to
describe: from an UML class with
stereotype «X» create a model element
of metaclass X, copy all attributes and
assign associations within the model
elements. If you are using a good DSL
tool instead of a good UML tool, you can
skip these transformations and directly
start in the DSL.

Technology mapping

In the scope of the technical architecture
we assume for instance: collectors and
transformators are services from the
technical viewpoint. A service being just
an active class having transactional
methods. The entities from the domain
model, which are to be translated by the
transformators, shall be persistent entities. The wrapper objects shall be Java interfaces. The optimizing
method shall also be a Java interface, to be implemented manually.

Page 4 / 7

Illustration 2: Meta-models ordered by abstration layers

These design decisions of the technical architecture take us to the next three transformations T2, T3, and
T4. Therefore we define a sufficient amount of meta-models. One for each wanted abstraction layer with its
metaclasses (Illustration 2).

The three transformations can be outlined as follows (through creative violation of UML activity diagramms);
every activity corresponds to one incoming or outgoing object of that transformation step.

Transformation T2 (Illustration 3) gets from
the project architecture (Meta-model
Optimierungssystem) to the enterprise
application (Meta-model EnterpriseApp).
Collectors and transformators are becoming
services, entities remain entities and
dependency associations are becoming
references.

Transformation T3 (Illustration 4) gets from
the enterprise application (Meta-model
EnterpriseApp) to the technical
frameworks (Meta-models Spring,
Hibernate and HibernateCFG).

Page 5 / 7

Illustration 4: From the application to the technical frameworks

helper context UML!ModelElement
def: hasStereotype(name : String) : Boolean =
self.stereotype->exists(e | e.name = name);
– Transform UML classes that have the stereotype
"Collector"
– or "Transformer" to EnterpriseApp services.
rule UMLServicesToEnterpriseAppService {
from class : UML!Class (class.hasStereotype('Collector')
or class.hasStereotype('Transformer')
)
to out : EnterpriseApp!Service (
name <- class.name,
methods
<- class.feature->select
(f|f.oclIsTypeOf(UML!Operation)),
sourceReferences <- class.clientDependency
)
}
– Transform UML classes that have the stereotype
"Entity"
– to EnterpriseApp entities.
rule UMLEntityToEnterpriseAppEntity {
from class : UML!Class (class.hasStereotype('Entity'))
to out : EnterpriseApp!Entity (
name <- class.name,
methods
<- class.feature->select
(f|f.oclIsTypeOf(UML!Operation)),
properties
<- class.feature->select
(f|f.oclIsTypeOf(UML!Attribute))
)
}
– Transform UML dependency to an EnterpriseApp
reference
rule UMLDependencyToEnterpriseAppReference {
from dep : UML!Dependency (
dep.supplier
->asSequence()
->first().hasStereotype('Entity'))
to out : EnterpriseApp!Reference (
target <- dep.supplier->asSequence()->first()
)
}

Listing 1: Source code for transformation T2

Illustration 3: From the project architecture to the enterprise
application

Services are realised as pure SpringBeans. Entities result in multiple artifacts: one SpringBean for a data
access object (DAO), one PersistentBean to represent the entity itself and one Mapping, defining the
hibernate configuration file.

Transformation T4 (Illustration 5) finally takes us from the framework layer to the target language layer.
Whereas Java and C# are generalized to the metamodel 3GL here, since the languages are very similar and
the frameworks Spring and Hibernate are available with the same concepts in C# also. The conversion to the
concrete programming language syntax has to be done with the templates of the transformation T6. Within
the T4 we are transforming only conceptional: a SpringBean becomes an Interface, a base class and a
implementation class, both instances of Class. From the BeanReference a Property (later in Java: field
plus getter/setter pair) is created, enabling us to follow the Spring typical dependency injection. Finally T4
produces base and implementation classes for PersistentBeans. Nota bene: Everything are metaobjects
in the memory, no line of code has been generated.

ATL transformations

The above described example would not be complete, without providing the ATL source code for at least one
of the transformations. But therefore I'm using a lazy shortcut: T1 and the meta-model
OptimierungsSystem („optimizing system“) are skipped we are just starting transforming from UML (with
usage of stereotypes Collector, Transformer and Entity) to the meta-model EnterpriseApp. What
you can see is the source code for the above transformation T2, with not having the input meta-model
OptimierungsSystem but having UML with a profile for optimizing systems (Listing 1).

The rules for the transformations of UML attributes and methods are not reflected here. For being able to use
the attributes name, sourceReferences and target of the metaclasses used within the ATL-Script, have
a look at Illustration 6, an extract of the meta-model EnterpriseApp.

The interesting thing of the above ATL script is the generation of the collection sourceReferences through
UML dependencies and ATL therefore automatically uses the rule
UMLDependencyToEnterpriseAppReference. Another convienience is the automatically mapping of the
collection targetReferences without any definition in the script.

The transformations T3 and T4 are working similar.

The later way to the source code

Page 6 / 7

Illustration 5: From frameworks to (nearly) the target language

Illustration 6: Extract from the meta-model
EnterpriseApp

After the model-to-model transformations a model based on the 3GL meta-model has been created. With its
classes, interfaces, and getters/setters its ready for e.g. generating JavaBeans. There are now further
model-to-text transformations T5, T6 and T7. Namely from 3GL meta-model into Java or C# source code,
from Spring meta-model into the Spring applicationContext.xml file and from HibernateCFG meta-
model into hibernate *.hbm.xml files. This is accomplished with a Template Engine. In AndroMDA there is
„Velocity“ and „Freemarker“ available, but any other can be included.

Summary and outlook

The example has demonstrated with a complete chain of model-to-model transformations, how multiple and
easy to understand steps can be combined into a single cumulative result. Without to affect the clearness of
the example, the metaclasses Property and Method have not been discussed.

The shown graph of models and their transformations will become integral part of AndroMDA 4.0 to give
architects using AndroMDA a first impression. Indeed, every architect typically will start to model his own
meta-models und create such transformation graphs. To ensure reuse of MDA components between his
projects, to avoid doublicated code and to minimize maintenance efforts.

Links

[And] AndroMDA, Open Source Codegenerator-Framework, see: www.andromda.org
[ATL] The Eclipse Foundation, ATL Subproject, see: www.eclipse.org/gmt/atl/
[EMF] The Eclipse Foundation, Eclipse Modeling Framework (EMF), see: www.eclipse.org/emf/
[Hib] Hibernate, Relational Persistence for Java and .NET, see: www.hibernate.org/
[Net] Netbeans, Metadata Repository (MDR), Homepage, mdr.netbeans.org
[OMG02] Object Management Group (OMG), MOF 2.0 Query / Views /
Transformations RFP, 2002, see:www.omg.org/cgi-bin/apps/doc?ad/2002-04-10
[OMG05] Object Management Group (OMG), MOF QVT Final Adopted
Specification, 2005, see: www.omg.org/cgi-bin/apps/doc?ptc/05-11-01
[Spr] Springframework.org, Spring Framework, see: www.springframework.org/

Page 7 / 7

