

The Common Object Request Broker:
Architecture and Specification
Revision 2.0, July 1995
Updated July 1996

Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Visual Edge Software, Ltd.

BNR Europe Ltd., Expersoft Corporation, FUJITSU LIMITED, Genesis Development Corporation, IBM Cor-
poration, ICL plc, IONA Technologies Ltd., Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Corporation, Novell USG, Object Design, Inc., Siemens Nixdorf Informations-
systeme AG, Sun Microsystems, Inc., SunSoft, Inc., Sybase, Inc., and Visual Edge Software, Ltd., hereby
grant to the Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy
and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this spec-
ification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, DIGITAL EQUIPMENT CORPORATION, FUJITSU LTD, GENESIS
DEVELOPMENT CORPORATION, HEWLETT-PACKARD COMPANY, HYPERDESK CORPORATION, NCR
CORPORATION, OBJECT DESIGN, INC., SIEMENS NIXDORF INFORMATIONSSYTEME AG, SYBASE
INC., SUN MICROSYSTEMS, INC., VISUAL EDGE SOFTWARE LTD, AND X/OPEN CO. LTD. MAKE NO
WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The
aforementioned copyright holders shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its des-
ignees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these mate-
rials.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical, includ-
ing photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright
owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object
Management Group.

Hewlett-Packard Company is a trademark of Hewlett-Packard Company.
HyperDesk is a trademark of HyperDesk Corporation.
Microsoft and Visual Basic are registered trademarks of Microsoft Corporation.
Smalltalk/V is a registered trademark of Digitalk, Inc.
SunSoft is a trademark of Sun Microsystems, Inc., licensed to SunSoft, Inc.
X/Open and the "X" symbol are trademarks of X/Open Company Limited.
VisualAge is a trademark of International Business Machines Corporation.
VisualWorks is registered trademark of ParcPlace Systems, Inc.

Other names, products, and services may be the trademarks or registered trademarks of their respective holders.

Table of Contents
0.1 About This Document . 1
0.1.1 Object Management Group. 1
0.1.2 X/Open . 2

0.2 Intended Audience . 2

0.3 Context of CORBA . 2

0.4 Associated Documents . 3

0.5 Structure of This Manual . 4

0.6 Definition of CORBA Compliance 6

0.7 Typographical Conventions . 7

0.8 Acknowledgements . 7

1. The Object Model . 1-1

1.1 Overview . 1-1

1.2 Object Semantics . 1-2
1.2.1 Objects . 1-2
1.2.2 Requests . 1-2
1.2.3 Object Creation and Destruction. 1-3
1.2.4 Types. 1-4
1.2.5 Interfaces . 1-5
1.2.6 Operations. 1-5
1.2.7 Attributes . 1-7

1.3 Object Implementation . 1-7
1.3.1 The Execution Model: Performing Services . 1-7
1.3.2 The Construction Model 1-8
 CORBA V2.0 July 1996 v

2. CORBA Overview . 2-1

2.1 Structure of an Object Request Broker 2-1
2.1.1 Object Request Broker 2-5
2.1.2 Clients. 2-6
2.1.3 Object References. 2-6
2.1.4 OMG Interface Definition Language 2-7
2.1.5 Mapping of OMG IDL to Programming Languages

2-7
2.1.6 Client Stubs . 2-8
2.1.7 Dynamic Invocation Interface. 2-8
2.1.8 Implementation Skeleton 2-8
2.1.9 Dynamic Skeleton Interface 2-8
2.1.10 Object Adapters . 2-9
2.1.11 ORB Interface. 2-9
2.1.12 Interface Repository 2-9
2.1.13 Implementation Repository. 2-10

2.2 Example ORBs. 2-10
2.2.1 Client- and Implementation-resident ORB . . 2-10
2.2.2 Server-based ORB . 2-10
2.2.3 System-based ORB. 2-10
2.2.4 Library-based ORB. 2-10

2.3 Structure of a Client . 2-11

2.4 Structure of an Object Implementation. 2-12

2.5 Structure of an Object Adapter . 2-14

2.6 Example Object Adapters . 2-16
2.6.1 Basic Object Adapter 2-16
2.6.2 Library Object Adapter 2-16
2.6.3 Object-Oriented Database Adapter 2-16

2.7 The Integration of Foreign Object Systems 2-16

3. OMG IDL Syntax and Semantics. 3-1

3.1 About This Chapter . 3-1

3.2 Lexical Conventions . 3-2
3.2.1 Tokens. 3-5
3.2.2 Comments. 3-5
3.2.3 Identifiers . 3-5
3.2.4 Keywords . 3-6
3.2.5 Literals . 3-6

3.3 Preprocessing . 3-8

3.4 OMG IDL Grammar. 3-9
vi CORBA V2.0 July 1996

3.5 OMG IDL Specification . 3-13
3.5.1 Module Declaration 3-13
3.5.2 Interface Declaration 3-13

3.6 Inheritance . 3-15

3.7 Constant Declaration . 3-17
3.7.1 Syntax. 3-17
3.7.2 Semantics . 3-18

3.8 Type Declaration . 3-19
3.8.1 Basic Types. 3-20
3.8.2 Constructed Types. 3-22
3.8.3 Template Types . 3-25
3.8.4 Complex Declarator 3-26

3.9 Exception Declaration . 3-26

3.10 Operation Declaration . 3-27
3.10.1 Operation Attribute . 3-28
3.10.2 Parameter Declarations 3-28
3.10.3 Raises Expressions . 3-29
3.10.4 Context Expressions 3-29

3.11 Attribute Declaration . 3-30

3.12 CORBA Module. 3-31

3.13 Names and Scoping . 3-31

3.14 Differences from C++ . 3-33

3.15 Standard Exceptions . 3-33
3.15.1 Standard Exceptions Definitions 3-34
3.15.2 Object Non-Existence 3-35

4. Dynamic Invocation Interface . 4-1

4.1 Overview . 4-1
4.1.1 Common Data Structures 4-1
4.1.2 Memory Usage . 4-3
4.1.3 Return Status and Exceptions 4-3

4.2 Request Operations . 4-4
4.2.1 create_request . 4-4
4.2.2 add_arg . 4-6
4.2.3 invoke . 4-7
4.2.4 delete . 4-7

4.3 Deferred Synchronous Operations 4-7
4.3.1 send. 4-7
4.3.2 send_multiple_requests. 4-8
CORBA V2.0 July 1996 vii

4.3.3 get_response . 4-9
4.3.4 get_next_response. 4-9

4.4 List Operations . 4-10
4.4.1 create_list . 4-10
4.4.2 add_item . 4-11
4.4.3 free . 4-11
4.4.4 free_memory. 4-11
4.4.5 get_count . 4-12
4.4.6 create_operation_list. 4-12

4.5 Context Objects . 4-12

4.6 Context Object Operations . 4-13
4.6.1 get_default_context. 4-14
4.6.2 set_one_value . 4-15
4.6.3 set_values . 4-15
4.6.4 get_values . 4-15
4.6.5 delete_values . 4-16
4.6.6 create_child . 4-16
4.6.7 delete . 4-16

4.7 Native Data Manipulation . 4-17

5. Dynamic Skeleton Interface . 5-1

5.1 Overview . 5-2

5.2 Explicit Request State: ServerRequest Pseudo-Object . . 5-2

5.3 Dynamic Skeleton Interface: Language Mapping. 5-3
5.3.1 ServerRequest’s Handling of Operation

Parameters . 5-3
5.3.2 Registering Dynamic Implementation

Routines . 5-4

6. The Interface Repository . 6-1

6.1 Overview . 6-1

6.2 Scope of an Interface Repository 6-2

6.3 Implementation Dependencies . 6-3
6.3.1 Managing Interface Repositories 6-4

6.4 Basics of the Interface Repository Interface. 6-5
6.4.1 Names and Identifiers 6-5
6.4.2 Types and TypeCodes 6-5
6.4.3 Interface Objects. 6-5
6.4.4 Structure and Navigation of Interface

Objects . 6-6
viii CORBA V2.0 July 1996

6.5 Interface Repository Interfaces. 6-7
6.5.1 Supporting Type Definitions 6-8
6.5.2 IRObject . 6-9
6.5.3 Contained . 6-9
6.5.4 Container . 6-11
6.5.5 IDLType . 6-15
6.5.6 Repository . 6-16
6.5.7 ModuleDef . 6-17
6.5.8 ConstantDef Interface 6-17
6.5.9 TypedefDef Interface 6-18
6.5.10 StructDef . 6-19
6.5.11 UnionDef . 6-19
6.5.12 EnumDef. 6-20
6.5.13 AliasDef . 6-21
6.5.14 Read Interface. 6-21
6.5.15 PrimitiveDef . 6-21
6.5.16 StringDef . 6-22
6.5.17 SequenceDef. 6-22
6.5.18 ArrayDef. 6-23
6.5.19 ExceptionDef . 6-23
6.5.20 AttributeDef . 6-24
6.5.21 OperationDef . 6-25
6.5.22 InterfaceDef . 6-27

6.6 RepositoryIds . 6-30
6.6.1 OMG IDL Format. 6-30
6.6.2 DCE UUID Format . 6-30
6.6.3 LOCAL Format . 6-30
6.6.4 Pragma Directives for RepositoryId 6-31

6.7 TypeCodes . 6-33
6.7.1 The TypeCode Interface 6-34
6.7.2 TypeCode Constants 6-38
6.7.3 Creating TypeCodes 6-39

6.8 OMG IDL for Interface Repository 6-41

7. ORB Interface . 7-1

7.1 Converting Object References to Strings 7-1

7.2 Object Reference Operations . 7-2
7.2.1 Determining the Object Implementation

and Interface . 7-3
7.2.2 Duplicating and Releasing Copies of

Object References. 7-3
CORBA V2.0 July 1996 ix

7.2.3 Nil Object References. 7-4
7.2.4 Equivalence Checking Operation 7-4
7.2.5 Probing for Object Non-Existence 7-4
7.2.6 Object Reference Identity 7-5

7.3 Overview: ORB and OA Initialization and Initial
References . 7-6

7.4 ORB Initialization . 7-6

7.5 OA and BOA Initialization . 7-8

7.6 Obtaining Initial Object References 7-10

8. The Basic Object Adapter. 8-1

8.1 Role of the Basic Object Adapter 8-1

8.2 Basic Object Adapter Interface. 8-3
8.2.1 Registration of Implementations. 8-5
8.2.2 Activation and Deactivation of

Implementations . 8-5
8.2.3 Generation and Interpretation of Object

References . 8-8
8.2.4 Authentication and Access Control. 8-9
8.2.5 Persistent Storage . 8-10

Appendix A Standard OMG IDL Types A-1

9. Interoperability Overview. 9-1

9.1 Elements of Interoperability . 9-1
9.1.1 ORB Interoperability Architecture 9-1
9.1.2 Inter-ORB Bridge Support 9-2
9.1.3 General Inter-ORB Protocol (GIOP) 9-2
9.1.4 Internet Inter-ORB Protocol (IIOP) 9-3
9.1.5 Environment-Specific Inter-ORB

Protocols (ESIOPs). 9-4

9.2 Relationship to Previous Versions of CORBA 9-4

9.3 Examples of Interoperability Solutions 9-4
9.3.1 Example 1. 9-5
9.3.2 Example 2. 9-5
9.3.3 Example 3. 9-5
9.3.4 Interoperability Compliance 9-5

9.4 Motivating Factors . 9-8
9.4.1 ORB Implementation Diversity 9-8
9.4.2 ORB Boundaries. 9-8
9.4.3 ORBs Vary in Scope, Distance, and

Lifetime . 9-9
x CORBA V2.0 July 1996

9.5 Interoperability Design Goals. 9-9
9.5.1 Non-Goals. 9-10

10. ORB Interoperability Architecture 10-1

10.1 Overview . 10-1
10.1.1 Domains . 10-1
10.1.2 Bridging Domains. 10-2

10.2 ORBs and ORB Services . 10-2
10.2.1 The Nature of ORB Services 10-3
10.2.2 ORB Services and Object Requests 10-3
10.2.3 Selection of ORB Services 10-4

10.3 Domains . 10-4
10.3.1 Definition of a Domain 10-5
10.3.2 Mapping Between Domains: Bridging 10-6

10.4 Interoperability Between ORBs 10-6
10.4.1 ORB Services and Domains 10-7
10.4.2 ORBs and Domains 10-7
10.4.3 Interoperability Approaches 10-8
10.4.4 Policy-Mediated Bridging. 10-10
10.4.5 Configurations of Bridges in Networks. 10-10

10.5 Object Addressing . 10-11
10.5.1 Domain-relative Object Referencing 10-12
10.5.2 Handling of Referencing Between Domains. 10-12

10.6 An Information Model for Object References 10-14
10.6.1 What Information Do Bridges Need? 10-14
10.6.2 Interoperable Object References: IORs 10-14
10.6.3 Profile and Component Composition

in IORs . 10-16
10.6.4 IOR Creation and Scope 10-17
10.6.5 Stringified Object References 10-17
10.6.6 Object Service Context 10-18

11. Building Inter-ORB Bridges . 11-1

11.1 In-Line and Request-Level Bridging 11-1
11.1.1 In-line Bridging . 11-2
11.1.2 Request-level Bridging 11-3
11.1.3 Collocated ORBs . 11-4

11.2 Proxy Creation and Management 11-4

11.3 Interface-specific Bridges and Generic Bridges 11-5

11.4 Building Generic Request-Level Bridges 11-5
CORBA V2.0 July 1996 xi

11.5 Bridging Non-Referencing Domains 11-6

11.6 Bootstrapping Bridges . 11-7

12. General Inter-ORB Protocol. 12-1

12.1 Goals of the General Inter-ORB Protocol. 12-1

12.2 General Inter-ORB Protocol Overview. 12-2
12.2.1 Common Data Representation (CDR) 12-2
12.2.2 GIOP Message Overview 12-3
12.2.3 GIOP Message Transfer 12-3

12.3 CDR Transfer Syntax . 12-4
12.3.1 Primitive Types . 12-4
12.3.2 OMG IDL Constructed Types 12-8
12.3.3 Encapsulation . 12-9
12.3.4 Pseudo-Object Types 12-9
12.3.5 Object References. 12-15

12.4 GIOP Message Formats . 12-15
12.4.1 GIOP Message Header 12-15
12.4.2 Reply Message . 12-18
12.4.3 CancelRequest Message 12-20
12.4.4 LocateRequest Message 12-21
12.4.5 LocateReply Message 12-21
12.4.6 CloseConnection Message 12-23
12.4.7 MessageError Message 12-23

12.5 GIOP Message Transport . 12-23
12.5.1 Connection Management 12-24
12.5.2 Message Ordering. 12-25

12.6 Object Location . 12-25

12.7 Internet Inter-ORB Protocol (IIOP) 12-27
12.7.1 TCP/IP Connection Usage 12-27
12.7.2 IIOP IOR Profiles . 12-27

12.8 OMG IDL for the GIOP and IIOP Specifications. 12-29
12.8.1 GIOP Module . 12-29
12.8.2 IIOP Module . 12-31

13. The DCE ESIOP . 13-1

13.1 Goals of the DCE Common Inter-ORB Protocol 13-1

13.2 DCE Common Inter-ORB Protocol Overview 13-1
13.2.1 DCE-CIOP RPC . 13-2
13.2.2 DCE-CIOP Data Representation. 13-3
13.2.3 DCE-CIOP Messages 13-4
xii CORBA V2.0 July 1996

13.2.4 Interoperable Object Reference (IOR) 13-4

13.3 DCE-CIOP Message Transport 13-5
13.3.1 Pipe-based Interface 13-5
13.3.2 Array-based Interface 13-7

13.4 DCE-CIOP Message Formats. 13-10
13.4.1 DCE_CIOP Invoke Request Message 13-10
13.4.2 DCE-CIOP Invoke Response Message 13-11
13.4.3 DCE-CIOP Locate Request Message 13-13
13.4.4 DCE-CIOP Locate Response Message 13-14

13.5 DCE-CIOP Object References . 13-16
13.5.1 DCE-CIOP String Binding Component 13-16
13.5.2 DCE-CIOP Binding Name Component 13-17
13.5.3 DCE-CIOP No Pipes Component 13-18
13.5.4 Object Key Component. 13-19
13.5.5 Endpoint ID Component 13-19
13.5.6 Location Policy Component 13-20

13.6 DCE-CIOP Object Location. 13-21
13.6.1 Location Mechanism Overview 13-21
13.6.2 Activation . 13-22
13.6.3 Basic Location Algorithm. 13-22
13.6.4 Use of the Location Policy and the

Endpoint ID . 13-23

13.7 OMG IDL for the DCE CIOP Module 13-24

13.8 References for this Chapter . 13-26

Appendix B OMG IDL Tags. B-1

13A. Interworking Architecture . 13A-1

13.1 Purpose of the Interworking Architecture. 13A-1
13.1.1 Comparing COM Objects to CORBA

Objects . 13A-2

13.2 Interworking Object Model . 13A-3
13.2.1 Relationship to CORBA Object Model. 13A-3
13.2.2 Relationship to the OLE/COM Model 13A-3
13.2.3 Basic Description of the Interworking

Model . 13A-4

13.3 Interworking Mapping Issues . 13A-8

13.4 Interface Mapping . 13A-8
13.4.1 CORBA/COM . 13A-9
13.4.2 CORBA/Automation. 13A-9
13.4.3 COM/CORBA . 13A-10
CORBA V2.0 July 1996 xiii

13.4.4 Automation/CORBA. 13A-10

13.5 Interface Composition Mappings 13A-11
13.5.1 CORBA/COM . 13A-11
13.5.2 Detailed Mapping Rules 13A-13
13.5.3 Example of Applying Ordering Rules. 13A-14
13.5.4 Mapping Interface Identity 13A-16

13.6 Object Identity, Binding, and Life Cycle 13A-18
13.6.1 Object Identity Issues 13A-18
13.6.2 Binding and Life Cycle. 13A-20

13.7 Interworking Interfaces . 13A-23
13.7.1 SimpleFactory Interface 13A-23
13.7.2 IMonikerProvider Interface and

Moniker Use . 13A-23
13.7.3 ICORBAFactory Interface 13A-24
13.7.4 IForeignObject Interface. 13A-26
13.7.5 ICORBAObject Interface 13A-27
13.7.6 IORBObject Interface 13A-28
13.7.7 Naming Conventions for View

Components . 13A-29

13.8 Distribution . 13A-32
13.8.1 Bridge Locality . 13A-32
13.8.2 Distribution Architecture 13A-33

13.9 Interworking Targets . 13A-33

13.10 Compliance to COM/CORBA Interworking. 13A-33
13.10.1 Products Subject to Compliance 13A-34
13.10.2 Compliance Points . 13A-35

13B. Mapping: COM and CORBA . 13B-1

13.1 Data Type Mapping . 13B-1

13.2 CORBA to COM Data Type Mapping 13B-2
13.2.1 Mapping for Basic Data Types 13B-2
13.2.2 Mapping for Constants 13B-2
13.2.3 Mapping for Enumerators 13B-3
13.2.4 Mapping for String Types 13B-3
13.2.5 Mapping for Struct Types 13B-5
13.2.6 Mapping for Union Types 13B-6
13.2.7 Mapping for Sequence Types 13B-8
13.2.8 Mapping for Array Types 13B-9
13.2.9 Mapping for the any Type. 13B-9
13.2.10 Interface Mapping. 13B-11
xiv CORBA V2.0 July 1996

13.2.11 Inheritance Mapping. 13B-26
13.2.12 Mapping for Pseudo-Objects 13B-30
13.2.13 Interface Repository Mapping 13B-33

13.3 COM to CORBA Data Type Mapping 13B-34
13.3.1 Mapping for Basic Data Types 13B-34
13.3.2 Mapping for Constants 13B-35
13.3.3 Mapping for Enumerators 13B-36
13.3.4 Mapping for String Types 13B-36
13.3.5 Mapping for Structure Types 13B-38
13.3.6 Mapping for Union Types 13B-39
13.3.7 Mapping for Array Types 13B-41
13.3.8 Mapping for VARIANT 13B-42
13.3.9 Mapping for Pointers 13B-45
13.3.10 Interface Mapping. 13B-45
13.3.11 Mapping for Read-Only Attributes 13B-51
13.3.12 Mapping for Read-Write Attributes 13B-51

13C. Mapping: OLE Automation and CORBA 13C-1

13.1 Mapping CORBA Objects to OLE Automation 13C-1
13.1.1 Architectural Overview. 13C-1
13.1.2 Main Features of the Mapping 13C-3
13.1.3 Mapping for Interfaces 13C-4
13.1.4 Mapping for Basic Data Types 13C-10
13.1.5 Special Cases of Basic Data Type Mapping . 13C-11
13.1.6 Mapping for Strings 13C-12
13.1.7 A Complete IDL to ODL Mapping for the

Basic Data Types . 13C-12
13.1.8 Mapping for Object References 13C-17
13.1.9 Mapping for Enumerated Types 13C-19
13.1.10 Mapping for Arrays and Sequences 13C-20
13.1.11 Mapping for CORBA Complex Types 13C-21
13.1.12 Mapping for TypeCodes 13C-24
13.1.13 Mapping for anys . 13C-26
13.1.14 Mapping for Typedefs. 13C-27
13.1.15 Mapping for Constants 13C-27
13.1.16 Getting Initial CORBA Object References . . 13C-28
13.1.17 Creating Initial in Parameters for

Complex Types . 13C-29
13.1.18 Mapping CORBA Exceptions to

Automation Exceptions 13C-31
CORBA V2.0 July 1996 xv

13.1.19 Conventions for Naming Components of
the Automation View 13C-37

13.1.20 Naming Conventions for Pseudo-Structs,
Pseudo-Unions, and Pseudo-Exceptions 13C-38

13.1.21 Automation View Interface as a Dispatch
Interface (Nondual). 13C-38

13.1.22 Aggregation of Automation Views 13C-39
13.1.23 DII, DSI, and BOA . 13C-39

13.2 Mapping OLE Automation Objects as CORBA
Objects . 13C-40

13.2.1 Architectural Overview. 13C-40
13.2.2 Main Features of the Mapping 13C-41
13.2.3 Getting Initial Object References 13C-41
13.2.4 Mapping for Interfaces 13C-42
13.2.5 Mapping for Inheritance 13C-42
13.2.6 Mapping for ODL Properties and

Methods . 13C-43
13.2.7 Mapping for Automation Basic Data

Types . 13C-44
13.2.8 Conversion Errors . 13C-45
13.2.9 Special Cases of Data Type Conversion 13C-45
13.2.10 A Complete OMG IDL to ODL Mapping

for the Basic Data Types 13C-45
13.2.11 Mapping for Object References 13C-49
13.2.12 Mapping for Enumerated Types 13C-50
13.2.13 Mapping for SafeArrays 13C-50
13.2.14 Mapping for Typedefs. 13C-51
13.2.15 Mapping for VARIANTs. 13C-51
13.2.16 Mapping Automation Exceptions to

CORBA . 13C-51

Appendix C Sample Solutions for Older OLE
Automation Controllers C-1

Appendix D Example Mappings . D-1

14. C Language Mapping . 14-1

14.1 Requirements for a Language Mapping 14-1
14.1.1 Basic Data Types . 14-2
14.1.2 Constructed Data Types 14-2
14.1.3 Constants . 14-2
14.1.4 Objects . 14-2
14.1.5 Invocation of Operations. 14-3
14.1.6 Exceptions . 14-3
xvi CORBA V2.0 July 1996

14.1.7 Attributes . 14-4
14.1.8 ORB Interfaces . 14-4

14.2 Scoped Names . 14-4

14.3 Mapping for Interfaces . 14-5

14.4 Inheritance and Operation Names 14-6

14.5 Mapping for Attributes . 14-7

14.6 Mapping for Constants . 14-8

14.7 Mapping for Basic Data Types . 14-8

14.8 Mapping Considerations for Constructed Types. 14-10

14.9 Mapping for Structure Types . 14-10

14.10 Mapping for Union Types. 14-11

14.11 Mapping for Sequence Types . 14-11

14.12 Mapping for Strings . 14-14

14.13 Mapping for Arrays . 14-16

14.14 Mapping for Exception Types . 14-16

14.15 Implicit Arguments to Operations 14-17

14.16 Interpretation of Functions with Empty Argument
Lists . 14-17

14.17 Argument Passing Considerations 14-18

14.18 Return Result Passing Considerations 14-19

14.19 Summary of Argument/Result Passing 14-20

14.20 Handling Exceptions . 14-22

14.21 Method Routine Signatures . 14-24

14.22 Include Files . 14-25

14.23 Pseudo-Objects. 14-25

14.24 Mapping of the Dynamic Skeleton Interface to C 14-26
14.24.1 Mapping of ServerRequest to C 14-26
14.24.2 Mapping of BOA’s Dynamic

Implementation Routine to C 14-28

14.25 BOA: Mapping for Object Implementations 14-28
14.25.1 Operation-specific Details. 14-28
14.25.2 Method Signatures . 14-28
14.25.3 Binding Methods to Skeletons 14-30
14.25.4 BOA and ORB Operations 14-30

14.26 ORB and OA/BOA Initialization Operations 14-31
14.26.1 ORB Initialization. 14-31
14.26.2 OA/BOA Initialization 14-32
CORBA V2.0 July 1996 xvii

14.27 Operations for Obtaining Initial Object References 14-33

15. C++ Mapping Overview . 15-1

15.1 Key Design Decisions . 15-1
15.1.1 Compliance. 15-1
15.1.2 C++ Implementation Requirements 15-1
15.1.3 C Data Layout Compatibility 15-2
15.1.4 No Implementation Descriptions 15-2

15.2 Organization of the C++ Mapping 15-2

16. Mapping of OMG IDL to C++. 16-1

16.1 Preliminary Information . 16-1
16.1.1 Scoped Names . 16-1
16.1.2 C++ Type Size Requirements 16-2
16.1.3 CORBA Module . 16-3

16.2 Mapping for Modules . 16-3

16.3 Mapping for Interfaces . 16-3
16.3.1 Object Reference Types 16-4
16.3.2 Widening Object References 16-5
16.3.3 Object Reference Operations 16-6
16.3.4 Narrowing Object References 16-7
16.3.5 Nil Object Reference 16-7
16.3.6 Interface Mapping Example 16-8

16.4 Mapping for Constants . 16-9

16.5 Mapping for Basic Data Types . 16-10

16.6 Mapping for Enums . 16-11

16.7 Mapping for String Types. 16-11

16.8 Mapping for Structured Types . 16-12
16.8.1 T_var Types . 16-14

16.9 Mapping for Struct Types . 16-15

16.10 Mapping for Union Types. 16-18

16.11 Mapping for Sequence Types . 16-21
16.11.1 Sequence Example . 16-24
16.11.2 Using the “release” Constructor

Parameter . 16-25
16.11.3 Additional Memory Management

Functions . 16-26
16.11.4 Sequence T_var Type 16-27

16.12 Mapping for Array Types . 16-27

16.13 Mapping for Typedefs . 16-29
xviii CORBA V2.0 July 1996

16.14 Mapping for the any Type . 16-30
16.14.1 Handling Typed Values 16-31
16.14.2 Insertion into any . 16-31
16.14.3 Extraction from any 16-34
16.14.4 Distinguishing boolean, octet, char, and

Bounded String . 16-36
16.14.5 Widening to Object . 16-39
16.14.6 Handling Untyped Values 16-39
16.14.7 any Constructors, Destructor, Assignment

Operator . 16-41
16.14.8 any Class. 16-41
16.14.9 Any_var Class. 16-41

16.15 Mapping for Exception Types . 16-41

16.16 Mapping for Operations and Attributes 16-44

16.17 Implicit Arguments to Operations 16-45

16.18 Argument Passing Considerations 16-45

17. Mapping of Pseudo-Objects to C++ 17-1

17.1 Usage . 17-1

17.2 Mapping Rules . 17-2

17.3 Relation to the C PIDL Mapping 17-3

17.4 Environment . 17-3
17.4.1 Environment Interface 17-4
17.4.2 Environment C++ Class 17-4
17.4.3 Differences from C-PIDL 17-4
17.4.4 Memory Management. 17-4

17.5 NamedValue . 17-5
17.5.1 NamedValue Interface. 17-5
17.5.2 NamedValue C++ Class 17-5
17.5.3 Differences from C-PIDL 17-5
17.5.4 Memory Management. 17-5

17.6 NVList . 17-6
17.6.1 NVList Interface . 17-6
17.6.2 NVList C++ Class . 17-7
17.6.3 Differences from C-PIDL 17-7
17.6.4 Memory Management. 17-7

17.7 Request. 17-8
17.7.1 Request Interface . 17-10
17.7.2 Request C++ Class . 17-11
17.7.3 Differences from C-PIDL 17-12
CORBA V2.0 July 1996 xix

17.7.4 Memory Management. 17-12

17.8 Context . 17-13
17.8.1 Context Interface . 17-13
17.8.2 Context C++ Class . 17-13
17.8.3 Differences from C-PIDL 17-14
17.8.4 Memory Management. 17-14

17.9 Principal . 17-14
17.9.1 Principal Interface. 17-14
17.9.2 Principal C++ Class 17-14

17.10 TypeCode . 17-15
17.10.1 TypeCode Interface. 17-15
17.10.2 TypeCode C++ Class 17-16
17.10.3 Differences from C-PIDL 17-17
17.10.4 Memory Management. 17-17

17.11 BOA . 17-17
17.11.1 BOA Interface. 17-17
17.11.2 BOA C++ Class . 17-18
17.11.3 Differences from C-PIDL 17-18

17.12 ORB . 17-18
17.12.1 ORB Interface. 17-18
17.12.2 ORB C++ Class . 17-19
17.12.3 Differences from C-PIDL 17-20
17.12.4 Mapping of ORB and OA/BOA Initialization

Operations . 17-20
17.12.5 Mapping of Operations to Obtain Initial Object

References . 17-22

17.13 Object . 17-23
17.13.1 Object Interface . 17-23
17.13.2 Object C++ Class . 17-24

18. Server-Side Mapping. 18-1

18.1 Implementing Interfaces. 18-1

18.2 Implementing Operations . 18-2

18.3 Examples . 18-3
18.3.1 Using C++ Inheritance for Interface

Implementation. 18-3
18.3.2 Using Delegation for Interface

Implementation. 18-4

18.4 Mapping of Dynamic Skeleton Interface to C++ 18-6
18.4.1 Mapping of ServerRequest to C++ 18-6
xx CORBA V2.0 July 1996

18.4.2 Handling Operation Parameters and
Results . 18-7

18.4.3 Sample Usage . 18-7
18.4.4 Reporting Exceptions 18-8
18.4.5 Mapping of BOA’s Dynamic

Implementation Routine 18-8

Appendix E C++ Definitions for CORBA E-1

Appendix F Alternative Mappings for C++ Dialects F-1

Appendix G C++ Keywords . G-1

19. Smalltalk Mapping Overview . 19-1

19.1 Key Design Decisions . 19-1
19.1.1 Consistency of Style, Flexibility and

Portability of Implementation 19-2

19.2 Organization of the Smalltalk Mapping 19-2

19.3 Glossary of Terms . 19-3

19.4 Implementation Constraints . 19-3
19.4.1 Avoiding Name Space Collisions 19-3
19.4.2 Limitations on OMG IDL Types. 19-4

19.5 Smalltalk Implementation Requirements 19-4

20. Mapping of OMG IDL to Smalltalk 20-1

20.1 Mapping Summary . 20-1

20.2 Conversion of Names to Smalltalk Identifiers 20-2

20.3 Mapping for Interfaces . 20-3

20.4 Memory Usage . 20-3

20.5 Mapping for Objects. 20-3

20.6 Invocation of Operations . 20-3

20.7 Mapping for Attributes . 20-4
20.7.1 Mapping for Constants 20-5

20.8 Mapping for Basic Data Types . 20-5

20.9 Mapping for the Any Type . 20-7

20.10 Mapping for Enums . 20-7

20.11 Mapping for Struct Types . 20-8

20.12 Mapping for Union Types. 20-8
20.12.1 Implicit Binding . 20-9
20.12.2 Explicit Binding . 20-9

20.13 Mapping for Sequence Types . 20-10

20.14 Mapping for String Types. 20-10
CORBA V2.0 July 1996 xxi

20.15 Mapping for Array Types . 20-10

20.16 Mapping for Exception Types . 20-10

20.17 Mapping for Operations . 20-10

20.18 Implicit Arguments to Operations 20-11

20.19 Argument Passing Considerations 20-11

20.20 Handling Exceptions . 20-11
20.20.1 Exception Values . 20-12
20.20.2 The CORBAExceptionValue Protocol 20-13

21. Mapping of Pseudo-Objects to Smalltalk 21-1

21.1 CORBA::Request . 21-1

21.2 CORBA::Context . 21-2

21.3 CORBA::Object . 21-3

21.4 CORBA::ORB . 21-3

21.5 CORBA::NamedValue . 21-4

21.6 CORBA::NVList . 21-5

Glossary. Glossary-1
xxii CORBA V2.0 July 1996

Preface
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 500 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
 CORBA V2.0 July 1996 1

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is
carried only on products that comply with the CAE specifications.

0.2 Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

0.3 Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.
2 CORBA V2.0 July 1996

• Common Facilities , a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture .

• Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

(For more information about the OMG Reference Model and the OMG Object Model,
refer to the Object Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of
OMG, such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

• CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org/
CORBA V2.0 Associated Documents July 1996 3

0.5 Structure of This Manual

This manual is divided into the categories of Core, Interoperability, Interworking, and
individual Language Mappings. These divisions reflect the compliance points of
CORBA, as explained in Section 0.6, “Definition of CORBA Compliance,” on page 6.
In addition to this preface, CORBA: Common Object Request Broker Architecture and
Specification contains the following chapters:

Core

The Object Model describes the computation model that underlies the CORBA
architecture.

Architecture describes the overall structure of the ORB architecture and includes
information about CORBA interfaces and implementations.

OMG IDL Syntax and Semantics describes OMG interface definition language
(OMG IDL), which is the language used to describe the interfaces that client objects
call and object implementations provide.

The Dynamic Invocation Interface describes the DII, the client’s side of the interface
that allows dynamic creation and invocation of request to objects.

The Dynamic Skeleton Interface describes the DSI, the server’s-side interface that can
deliver requests from an ORB to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing. DSI is the server’s
analogue of the client’s Dynamic Invocation Interface (DII).

Interface Repository describes the component of the ORB that manages and provides
access to a collection of object definitions.

ORB Interface describes the interface to the ORB functions that do not depend on
object adapters: these operations are the same for all ORBs and object
implementations.

Basic Object Adapter describes the primary interface than an implementation uses to
access ORB functions.

An appendix that contains standard OMG IDL types.

Interoperability

Interoperability Overview explains the interoperability architecture and introduces
the subjects pertaining to interoperability: inter-ORB bridges; general and Internet
inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-ORB protocols
(ESIOPs).

Interoperability Architecture introduces the framework of ORB interoperability,
including information about domains; approaches to inter-ORB bridges; what it means
to be compliant with ORB interoperability; and ORB Services and Requests.

Inter-ORB Bridges explains how to build bridges for an implementation of
interoperating ORBs.
4 CORBA V2.0 July 1996

Inter-ORB Protocols describes the general inter-ORB protocol (GIOP) and includes
information about the GIOP’s goals, syntax, format, transport, and object location. This
chapter also includes information about the Internet inter-ORB protocol (IIOP).

Environment-Specific Inter-ORB Protocol (ESIOP) describes a protocol for the
OSF DCE environment. The protocol is called the DCE Environment Inter-ORB
Protocol (DCE ESIOP).

An appendix containing OMG IDL tags that can identify an Object Service, a
component, or a profile.

Interworking

Interworking Architecture describes the architecture for communication between two
object management systems: Microsoft’s COM (including OLE) and the OMG’s
CORBA.

Mapping: OLE Automation and CORBA describes the two-way mapping between
OLE Automation (in ODL) and CORBA (in OMG IDL).

Mapping: COM and CORBA describes the data type and interface mapping between
COM and CORBA. The mappings are described in the context of both Win16 and
Win32 COM.

An appendix describing solutions that vendors might implement to support existing
and older OLE Automation controllers.

An appendix that provides an example of how the Naming Service could be mapped
to an OLE Automation interface according to the Interworking specification.

C Language Mapping

Mapping of OMG IDL to C maps OMG IDL to the C programming language.

C++ Language Mapping

C++ Mapping Overview introduces the mapping of OMG IDL to the C++
programming language.

Mapping of OMG IDL to C++ maps the constructs of OMG IDL to the C++
programming language.

Mapping of Pseudo Objects to C++ maps OMG IDL pseudo objects to the C++
programming language.

Server-Side Mapping explains the portability constraints for an object implementation
written in C++.

The C++ language mapping also includes several appendices. One contains C++
definitions for CORBA, another contains alternate C++ mappings, and another
contains C++ keywords.
CORBA V2.0 Structure of This Manual July 1996 5

Smalltalk Language Mapping

Smalltalk Mapping Overview introduces the mapping of OMG IDL to the Smalltalk
programming language.

Mapping of OMG IDL to Smalltalk maps the constructs of OMG IDL to the
Smalltalk programming language.

Mapping of Pseudo Objects to Smalltalk maps OMG IDL pseudo-objects to
Smalltalk.

0.6 Definition of CORBA Compliance

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-8

CORBA Interoperability, as specified in Chapters 9-13

CORBA Interworking, as specified in Chapters 13A, 13B, and 13C

Mapping of OMG IDL to the C programming language, as specified in Chapter 14

Mapping of OMG IDL to the C++ programming language, as specified in Chapters
15-18

Mapping of OMG IDL to the Smalltalk programming language, as specified in
Chapters 19-21

(Additional OMG IDL mappings will be available with future updates of CORBA.)

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For
instance, if a vendor supports C++, their ORB must comply with the OMG IDL to C++
binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to Section 13.10.1, “Products
Subject to Compliance,” on page 13A-34.
6 CORBA V2.0 July 1996

0.7 Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings, where no distinction is necessary, nor are the type styles used in text
where their density would be distracting.

Helvetica bold OMG Interface Definition Language (OMG IDL) language and
syntax elements.

Times bold Pseudo-OMG IDL (PIDL) language elements.

Courier bold Programming language elements or any interface definition
language other than OMG IDL.

Code examples written in PIDL and programming languages are further identified by a
comment; unidentified examples are written in OMG IDL.

0.8 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to become CORBA:

• BNR Europe Ltd.

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• IBM Corporation

• ICL plc

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.
CORBA V2.0 Typographical Conventions July 1996 7

8 CORBA V2.0 July 1996

The Object Model 1
This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation set
is provided in this document’s preface.)

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for
example, by defining the form of request parameters or the language used to
specify types

• It may populate the model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types

• It may restrict the model by eliminating entities or placing additional restrictions
on their use

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.
 CORBA V2.0 July 1995 1-1

1

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model is the model of control and
execution.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

1.2.2 Requests

Clients request services by issuing requests. A request is an event, i.e. something that
occurs at a particular time. The information associated with a request consists of an
operation, a target object, zero or more (actual) parameters, and an optional request
context.

A request form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
1-2 CORBA V2.0 July 1995

1

an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the C Language Mapping chapter and the Dynamic Invocation
Interface chapter for descriptions of these request forms).

A value is anything that may be a legitimate (actual) parameter in a request. A value
may identify an object, for the purpose of performing the request. A value that
identifies an object is called an object name. More particularly, a value is an instance
of an OMG IDL data type.

An object reference is an object name that reliably denotes a particular object.
Specifically, an object reference will identify the same object each time the reference is
used in a request (subject to certain pragmatic limits of space and time). An object may
be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additional information about the request.

A request causes a service to be performed on behalf of the client. One outcome of
performing a service is returning to the client the results, if any, defined for the
request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a single result value, as well as any output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved

• The order in which aliased output parameters are written is not guaranteed

• Any output parameters are undefined if an exception is returned

• The values that can be returned in an input-output parameter may be constrained by
the value that was input

Descriptions of the values and exceptions that are permitted, see Types on page 1-4 and
Exceptions on page 1-6.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.
CORBA V2.0 Object Semantics July 1995 1-3

1

1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A value satisfies a
type if the predicate is true for that value. A value that satisfies a type is called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify
objects). In other words, an object type is satisfied only by (values that identify)
objects.

Constraints on the data types in this model are shown in this section.

Basic types:

• 16-bit and 32-bit signed and unsigned 2’s complement integers

• 32-bit and 64-bit IEEE floating point numbers

• Characters, as defined in ISO Latin-1 (8859.1)

• A boolean type taking the values TRUE and FALSE

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems

• Enumerated types consisting of ordered sequences of identifiers

• A string type which consists of a variable-length array of characters; the length of
the string is available at run-time

• A type “any” which can represent any possible basic or constructed type

Constructed types:
• A record type (called struct), consisting of an ordered set of (name,value) pairs

• A discriminated union type, consisting of a discriminator followed by an instance
of a type appropriate to the discriminator value

• A sequence type which consists of a variable-length array of a single type; the
length of the sequence is available at run-time

• An array type which consists of a fixed-length array of a single type

• An interface type, which specifies the set of operations which an instance of that
type must support

Values in a request are restricted to values that satisfy these type constraints. The legal
values are shown in FIG. 1 on page 1-5. No particular representation for values is
defined.
1-4 CORBA V2.0 July 1995

1

FIG. 1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of
an object. An object satisfies an interface if it can be specified as the target object in
each potential request described by the interface.

An interface type is a type that is satisfied by any object (literally, any value that
identifies an object) that satisfies a particular interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters
and returned results. In particular, a signature consists of:

• A specification of the parameters required in requests for that operation

• A specification of the result of the operation

• A specification of the exceptions that may be raised by a request for the operation
and the types of the parameters accompanying them

• A specification of additional contextual information that may affect the request

• An indication of the execution semantics the client should expect from a request
for the operation

Value

Object Reference Constructed Value

Basic Value Struct Sequence Union Array

Short Long UShort ULong Float Double Char String Boolean Octet Enum Any
CORBA V2.0 Object Semantics July 1995 1-5

1

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned

• The <op_type_spec> is the type of the return result

• The <identifier> provides a name for the operation in the interface

• The operation parameters needed for the operation; they are flagged with the
modifiers in, out, or inout to indicate the direction in which the information
flows (with respect to the object performing the request)

• The optional raises expression indicates which user-defined exceptions can be
signaled to terminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled

• The optional context expression indicates which request context information
will be available to the object implementation; no other contextual information is
required to be transported with the request

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value which may be passed in
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4.

All signatures implicitly include the standard exceptions described in Section 3.15,
“Standard Exceptions,” on page 3-33.
1-6 CORBA V2.0 July 1995

1

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed
exactly once; if it returns an exception indication, it was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return
any results and the requester never synchronizes with the completion, if any, of
the request.

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the result of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.
CORBA V2.0 Object Implementation July 1995 1-7

1

Code that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output parameters
and return value (or exception and its parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is called activation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended type of the object.
1-8 CORBA V2.0 July 1995

CORBA Overview 2
The Common Object Request Broker Architecture (CORBA) is structured to allow inte-
gration of a wide variety of object systems. The motivation for some of the features may
not be apparent at first, but as we discuss the range of implementations, policies, optimiza-
tions, and usages we expect to encompass, the value of the flexibility becomes more clear.

FIG. 2 A Request Being Sent Through the Object Request Broker

2.1 Structure of an Object Request Broker
FIG. 2 on page 2-1 shows a request being sent by a client to an object implementation.The
Client is the entity that wishes to perform an operation on the object and the Object Imple-

Client Object Implementation

ORB

Request
 CORBA V2.0 July 1995 2-1

2

mentation is the code and data that actually implements the object. The ORB is responsi-
ble for all of the mechanisms required to find the object implementation for the request, to
prepare the object implementation to receive the request, and to communicate the data
making up the ‘request. The interface the client sees is completely independent of where
the object is located, what programming language it is implemented in, or any other aspect
which is not reflected in the object’s interface.

FIG. 3 The Structure of Object Request Broker Interfaces

FIG. 3 on page 2-2 shows the structure of an individual Object Request Broker (ORB).
The interfaces to the ORB are shown by striped boxes, and the arrows indicate whether the
ORB is called or performs an up-call across the interface.

To make a request, the Client can use the Dynamic Invocation interface (the same inter-
face independent of the target object’s interface) or an OMG IDL stub (the specific stub
depending on the interface of the target object). The Client can also directly interact with
the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG IDL
generated skeleton or through a dynamic skeleton. The Object Implementation may call
the Object Adapter and the ORB while processing a request or at other times.

Client Object Implementation

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
2-2 CORBA V2.0 July 1995

2

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface Definition
Language (OMG IDL). This language defines the types of objects according to the opera-
tions that may be performed on them and the parameters to those operations. Alternatively,
or in addition, interfaces can be added to an Interface Repository service; this service rep-
resents the components of an interface as objects, permitting run-time access to these com-
ponents. In any ORB implementation, the Interface Definition Language (which may be
extended beyond its definition in this document) and the Interface Repository have equiv-
alent expressive power.

FIG. 4 A Client using the Stub or Dynamic Invocation Interface

The client performs a request by having access to an Object Reference for an object and
knowing the type of the object and the desired operation to be performed. The client ini-
tiates the request by calling stub routines that are specific to the object or by constructing
the request dynamically (see FIG. 4 on page 2-3).

The dynamic and stub interface for invoking a request satisfy the same request semantics,
and the receiver of the message cannot tell how the request was invoked.

Client

Dynamic

Invocation

IDL
Stubs

ORB Core

Interface identical for all ORB implementations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
eq

u
est

R
eq

u
est
CORBA V2.0 Structure of an Object Request Broker July 1995 2-3

2

FIG. 5 An Object Implementation Receiving a Request

The ORB locates the appropriate implementation code, transmits parameters and transfers
control to the Object Implementation through an IDL skeleton or a dynamic skeleton (see
FIG. 5 on page 2-4). Skeletons are specific to the interface and the object adapter. In per-
forming the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are
returned to the client.

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Object Implementation

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
2-4 CORBA V2.0 July 1995

2

FIG. 6 Interface and Implementation Repositories

FIG. 6 on page 2-5 shows how interface and implementation information is made avail-
able to clients and object implementations. The interface is defined in OMG IDL and/or in
the Interface Repository; the definition is used to generate the client Stubs and the object
implementation Skeletons.

The object implementation information is provided at installation time and is stored in the
Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but
rather it is defined by its interfaces. Any ORB implementation that provides the appropri-
ate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations

2. Operations that are specific to particular types of objects

3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with the
IDL compilers, repositories, and various Object Adapters, provide a set of services to cli-
ents and implementations of objects that have different properties and qualities.

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
CORBA V2.0 Structure of an Object Request Broker July 1995 2-5

2

There may be multiple ORB implementations (also described as multiple ORBs) which
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two object
references managed by different ORB implementations. When two ORBs are intended to
work together, those ORBs must be able to distinguish their object references. It is not the
responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of objects and
communication of requests. CORBA is designed to support different object mechanisms,
and it does so by structuring the ORB with components above the ORB Core, which pro-
vide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes opera-
tions on the object. A client knows only the logical structure of the object according to its
interface and experiences the behavior of the object through invocations. Although we
will generally consider a client to be a program or process initiating requests on an object,
it is important to recognize that something is a client relative to a particular object. For
example, the implementation of one object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports the
desired language mapping with any object instance that implements the desired interface.
Clients have no knowledge of the implementation of the object, which object adapter is
used by the implementation, or which ORB is used to access it. Object Implementations

An object implementation provides the semantics of the object, usually by defining data
for the object instance and code for the object’s methods. Often the implementation will
use other objects or additional software to implement the behavior of the object. In some
cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, librar-
ies, a program per method, an encapsulated application, an object-oriented database, etc.
Through the use of additional object adapters, it is possible to support virtually any style
of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services by
the choice of Object Adapter.

2.1.3 Object References

An Object Reference is the information needed to specify an object within an ORB. Both
clients and object implementations have an opaque notion of object references according
to the language mapping, and thus are insulated from the actual representation of them.
Two ORB implementations may differ in their choice of Object Reference representations.
2-6 CORBA V2.0 July 1995

2

The representation of an object reference handed to a client is only valid for the lifetime of
that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a program
written in a particular language to access object references independent of the particular
ORB. The language mapping may also provide additional ways to access object references
in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object refer-
ences, that denotes no object.

2.1.4 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual frame-
work for describing the objects manipulated by the ORB, it is not necessary for there to be
IDL source code available for the ORB to work. As long as the equivalent information is
available in the form of stub routines or a run-time interface repository, a particular ORB
may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL definitions,
it is possible to map CORBA objects into particular programming languages or object sys-
tems.

2.1.5 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be desir-
able to see CORBA objects as programming language objects. Even for non-object-ori-
ented languages, it is a good idea to hide the exact ORB representation of the object
reference, method names, etc. A particular mapping of OMG IDL to a programming lan-
guage should be the same for all ORB implementations. Language mapping includes defi-
nition of the language-specific data types and procedure interfaces to access objects
through the ORB. It includes the structure of the client stub interface (not required for
object-oriented languages), the dynamic invocation interface, the implementation skele-
ton, the object adapters, and the direct ORB interface.

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings provide
synchronous calls, in that the routine returns when the object operation completes. Addi-
tional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to syn-
chronize the program’s threads of control with the object invocation.
CORBA V2.0 Structure of an Object Request Broker July 1995 2-7

2

2.1.6 Client Stubs

For the mapping of a non–object–oriented language, there will be a programming inter-
face to the stubs for each interface type. Generally, the stubs will present access to the
OMG IDL-defined operations on an object in a way that is easy for programmers to pre-
dict once they are familiar with OMG IDL and the language mapping for the particular
programming language. The stubs make calls on the rest of the ORB using interfaces that
are private to, and presumably optimized for, the particular ORB Core. If more than one
ORB is available, there may be different stubs corresponding to the different ORBs. In this
case, it is necessary for the ORB and language mapping to cooperate to associate the cor-
rect stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Small-time, do not require stub
interfaces.

2.1.7 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations,
that is, rather than calling a stub routine that is specific to a particular operation on a par-
ticular object, a client may specify the object to be invoked, the operation to be performed,
and the set of parameters for the operation through a call or sequence of calls. The client
code must supply information about the operation to be performed and the types of the
parameters being passed (perhaps obtaining it from an Interface Repository or other run-
time source). The nature of the dynamic invocation interface may vary substantially from
one programming language mapping to another.

2.1.8 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface will
generally be an up-call interface, in that the object implementation writes routines that
conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementa-
tion methods. For example, it may be possible to create implementations dynamically for
languages such as Smalltalk.

2.1.9 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation, an
object’s implementation is reached through an interface that provides access to the opera-
tion name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowl-
edge (perhaps determined through an Interface Repository) may be also used, to determine
the parameters.
2-8 CORBA V2.0 July 1995

2

The implementation code must provide descriptions of all the operation parameters to the
ORB, and the ORB provides the values of any input parameters for use in performing the
operation. The implementation code provides the values of any output parameters, or an
exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object
adapter to another, but will typically be an up-call interface.

 Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides identical
results.

2.1.10 Object Adapters

An object adapter is the primary way that an object implementation accesses services pro-
vided by the ORB. There are expected to be a few object adapters that will be widely
available, with interfaces that are appropriate for specific kinds of objects. Services pro-
vided by the ORB through an Object Adapter often include: generation and interpretation
of object references, method invocation, security of interactions, object and implementa-
tion activation and deactivation, mapping object references to implementations, and regis-
tration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible for
the ORB to target particular groups of object implementations that have similar require-
ments with interfaces tailored to them.

2.1.11 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for all
ORBs and does not depend on the object’s interface or object adapter. Because most of the
functionality of the ORB is provided through the object adapter, stubs, skeleton, or
dynamic invocation, there are only a few operations that are common across all objects.
These operations are useful to both clients and implementations of objects.

2.1.12 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose interface
was not known when the program was compiled, yet, be able to determine what operations
are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common
place to store additional information associated with interfaces to ORB objects. For exam-
ple, debugging information, libraries of stubs or skeletons, routines that can format or
browse particular kinds of objects, etc., might be associated with the Interface Repository.
CORBA V2.0 Structure of an Object Request Broker July 1995 2-9

2

2.1.13 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and
activate implementations of objects. Although most of the information in the Implementa-
tion Repository is specific to an ORB or operating environment, the Implementation
Repository is the conventional place for recording such information. Ordinarily, installa-
tion of implementations and control of policies related to the activation and execution of
object implementations is done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a
common place to store additional information associated with implementations of ORB
objects. For example, debugging information, administrative control, resource allocation,
security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs
There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a particu-
lar ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in
routines resident in the clients and implementations. The stubs in the client either use a
location-transparent IPC mechanism or directly access a location service to establish com-
munication with the implementations. Code linked with the implementation is responsible
for setting up appropriate databases for use by clients.

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communi-
cate with one or more servers whose job it is to route requests from clients to implementa-
tions. The ORB could be a normal program as far as the underlying operating system is
concerned, and normal IPC could be used to communicate with the ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic
service of the underlying operating system. Object references could be made unforgeable,
reducing the expense of authentication on each request. Because the operating system
could know the location and structure of clients and implementations, it would be possible
for a variety of optimizations to be implemented, for example, avoiding marshalling when
both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implemen-
tation might actually be in a library. In this case, the stubs could be the actual methods.
2-10 CORBA V2.0 July 1995

2

This assumes that it is possible for a client program to get access to the data for the objects
and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client
A client of an object has an object reference that refers to that object. An object reference
is a token that may be invoked or passed as a parameter to an invocation on a different
object. Invocation of an object involves specifying the object to be invoked, the operation
to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and
back to the client. In the event that the ORB cannot complete the invocation, an exception
response is provided. Ordinarily, a client calls a routine in its program that performs the
invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see FIG. 7 on
page 2-12). The client program thus sees routines callable in the normal way in its pro-
gramming language. All implementations will provide a language-specific data type to use
to refer to objects, often an opaque pointer. The client then passes that object reference to
the stub routines to initiate an invocation. The stubs have access to the object reference
representation and interact with the ORB to perform the invocation. (See Chapter 14 for
additional, general information on language mapping of object references.)
CORBA V2.0 Structure of a Client July 1995 2-11

2

FIG. 7 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for exam-
ple when the object was not defined at compile time. In that case, the client program pro-
vides additional information to name the type of the object and the method being invoked,
and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters
from invocations on other objects for which they have references. When a client is also an
implementation, it receives object references as input parameters on invocations to objects
it implements. An object reference can also be converted to a string that can be stored in
files or preserved or communicated by different means and subsequently turned back into
an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation
An object implementation provides the actual state and behavior of an object. The object
implementation can be structured in a variety of ways. Besides defining the methods for
the operations themselves, an implementation will usually define procedures for activating
and deactivating objects and will use other objects or non-object facilities to make the
object state persistent, to control access to the object, as well as to implement the methods.

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
2-12 CORBA V2.0 July 1995

2

The object implementation (see FIG. 8 on page 2-13) interacts with the ORB in a variety
of ways to establish its identity, to create new objects, and to obtain ORB-dependent ser-
vices. It primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

FIG. 8 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how in general an object implementation is structured. See the Basic Object Adapter
chapter for the structure of object implementations that use the Basic Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call
is made to the appropriate method of the implementation. A parameter to that method
specifies the object being invoked, which the method can use to locate the data for the
object. Additional parameters are supplied according to the skeleton definition. When the
method is complete, it returns, causing output parameters or exception results to be trans-
mitted back to the client.

When a new object is created, the ORB may be notified so that the it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the implemen-
tation if it is not already running.

Object Implementation

ORB object references

Methods for
Interface A

Library Routines

Object data

Skeleton for
Interface A

Object adapter
routines

U
p

-c
al

l t
o

M
et

ho
d

Dynamic
Skeleton

br
CORBA V2.0 Structure of an Object Implementation July 1995 2-13

2

Most object implementations provide their behavior using facilities in addition to the ORB
and object adapter. For example, although the Basic Object Adapter provides some persis-
tent data associated with an object, that relatively small amount of data is typically used as
an identifier for the actual object data stored in a storage service of the object implementa-
tion’s choosing. With this structure, it is not only possible for different object implementa-
tions to use the same storage service, it is also possible for objects to choose the service
that is most appropriate for them.

2.5 Structure of an Object Adapter
An object adapter (see FIG. 9 on page 2-15) is the primary means for an object implemen-
tation to access ORB services such as object reference generation. An object adapter
exports a public interface to the object implementation, and a private interface to the skel-
eton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• registration of implementations

These functions are performed using the ORB Core and any additional components neces-
sary. Often, an object adapter will maintain its own state to accomplish its tasks. It may be
possible for a particular object adapter to delegate one or more of its responsibilities to the
Core upon which it is constructed.

As shown in FIG. 9 on page 2-15, the Object Adapter is implicitly involved in invocation
of the methods, although the direct interface is through the skeletons. For example, the
Object Adapter may be involved in activating the implementation or authenticating the
request.
2-14 CORBA V2.0 July 1995

2

FIG. 9 The Structure of a Typical Object Adapter

The Object Adapter defines most of the services from the ORB that the Object Implemen-
tation can depend on. Different ORBs will provide different levels of service and different
operating environments may provide some properties implicitly and require others to be
added by the Object Adapter. For example, it is common for Object Implementations to
want to store certain values in the object reference for easy identification of the object on
an invocation. If the Object Adapter allows the implementation to specify such values
when a new object is created, it may be able to store them in the object reference for those
ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invo-
cation. With Object Adapters, it is possible for an Object Implementation to have access to
a service whether or not it is implemented in the ORB Core—if the ORB Core provides it,
the adapter simply provides an interface to it; if not, the adapter must implement it on top
of the ORB Core. Every instance of a particular adapter must provide the same interface
and service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functional-
ity. Some Object Implementations have special requirements, for example, an object-ori-
ented database system may wish to implicitly register its many thousands of objects
without doing individual calls to the Object Adapter. In such a case, it would be impracti-
cal and unnecessary for the object adapter to maintain any per-object state. By using an
object adapter interface that is tuned towards such object implementations, it is possible to
take advantage of particular ORB Core details to provide the most effective access to the
ORB.

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
CORBA V2.0 Structure of an Object Adapter July 1995 2-15

2

2.6 Example Object Adapters
There are a variety of possible object adapters. However, since the object adapter interface
is something that object implementations depend on, it is desirable that there be as few as
practical. Most object adapters are designed to cover a range of object implementations, so
only when an implementation requires radically different services or interfaces should a
new object adapter be considered. In this section, we describe three object adapters that
might be useful.

2.6.1 Basic Object Adapter

This specification defines an object adapter that can be used for most ORB objects with
conventional implementations. (See the Basic Object Adapter chapter for more informa-
tion.) For this object adapter, implementations are generally separate programs. It allows
there to be a program started per method, a separate program for each object, or a shared
program for all instances of the object type. It provides a small amount of persistent stor-
age for each object, which can be used as a name or identifier for other storage, for access
control lists, or other object properties. If the implementation is not active when an invo-
cation is performed, the BOA will start one.

2.6.2 Library Object Adapter

This object adapter is primarily used for objects that have library implementations. It
accesses persistent storage in files, and does not support activation or authentication, since
the objects are assumed to be in the clients program.

2.6.3 Object-Oriented Database Adapter

This adapter uses a connection to an object-oriented database to provide access to the
objects stored in it. Since the OODB provides the methods and persistent storage, objects
may be registered implicitly and no state is required in the object adapter.

2.7 The Integration of Foreign Object Systems
The Common ORB Architecture is designed to allow interoperation with a wide range of
object systems (see FIG. 10 on page 2-17). Because there are many existing object sys-
tems, a common desire will be to allow the objects in those systems to be accessible via
the ORB. For those object systems that are ORBs themselves, they may be connected to
other ORBs through the mechanisms described in chapters 9, 10, 11, 12, and 13 in this
manual.
2-16 CORBA V2.0 July 1995

2

FIG. 10 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to be
implementations of the corresponding ORB objects. The object system would register its
objects with the ORB and handle incoming requests, and could act like a client and per-
form outgoing requests.

In some cases, it will be impractical for another object system to act like a BOA object
implementation. An object adapter could be designed for objects that are created in con-
junction with the ORB and that are primarily invoked through the ORB. Another object
system may wish to create objects without consulting the ORB, and might expect most
invocations to occur within itself rather than through the ORB. In such a case, a more
appropriate object adapter might allow objects to be implicitly registered when they are
passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Basic Object
Adapter

Special-purpose
Adapter

Object system as
a BOA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
CORBA V2.0 The Integration of Foreign Object Systems July 1995 2-17

2

2-18 CORBA V2.0 July 1995

OMG IDL Syntax and Semantics 3
The OMG Interface Definition Language is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations. Clients are not written in OMG
IDL, which is purely a descriptive language, but in languages for which mappings
from OMG IDL concepts have been defined. The mapping of an OMG IDL concept to
a client language construct will depend on the facilities available in the client
language. For example, an OMG IDL exception might be mapped to a structure in a
language that has no notion of exception, or to an exception in a language that does.
The binding of OMG IDL concepts to the C, C++, and Smalltalk languages are
described in this manual. Bindings from OMG IDL to additional programming
languages will be added to future versions of COBRA.

OMG IDL obeys the same lexical rules as C++1, although new keywords are
introduced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The OMG IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

3.1 About This Chapter

The description of OMG IDL’s lexical conventions is presented in “Lexical
Conventions” on page 3-2. A description of OMG IDL preprocessing is presented in
“Preprocessing” on page 3-8. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-31.

1.Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1
 CORBA V2.0 July 1995 3-1

3

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is a
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The grammar
is presented in “OMG IDL Grammar” on page 3-9.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl, which contains OMG IDL type definitions and is
available on every ORB implementation, is described in Appendix A.

This chapter describes OMG IDL semantics and gives the syntax for OMG IDL
grammatical constructs. The description of OMG IDL grammar uses a syntax notation
that is similar to Extended Backus-Naur format (EBNF); Figure 1 on page 3-2 lists the
symbols used in this format and their meaning.

3.2 Lexical Conventions

This section2 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after preprocessing, is called a translation
unit.

2.This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in
the list of legal keywords and punctuation.

TABLE 1. IDL EBNF Format

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time
3-2 CORBA V2.0 July 1995

3

OMG IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided
into alphabetic characters (letters), digits, graphic characters, the space (blank)
character and formatting characters. Figure 2 on page 3-3 shows the OMG IDL
alphabetic characters; upper- and lower-case equivalencies are paired.

TABLE 2. The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Upper/Lower-case Icelandic eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with tilde

Ss Upper/Lower-case S Òò Upper/Lower-case O with grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with acute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with oblique stroke

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with acute accent

Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

Upper/Lower-case Y with acute accent

Upper/Lower-case Icelandic thorn

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis
CORBA V2.0 Lexical Conventions July 1995 3-3

3

Figure 3 on page 3-4 lists the decimal digit characters.

Figure 4 on page 3-4 shows the graphic characters.

TABLE 3. Decimal Digits
0 1 2 3 4 5 6 7 8 9

TABLE 4. The 65 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ˚ ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign
3-4 CORBA V2.0 July 1995

3

The formatting characters are shown in Figure 5 on page 3-5.

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed and
newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore (“_”)
characters. The first character must be an alphabetic character. All characters are
significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier
for a definition must be spelled consistently (with respect to case) throughout a
specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Figure 2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.

TABLE 5. The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
CORBA V2.0 Lexical Conventions July 1995 3-5

3

• The comparison does not take into account equivalences between digraphs and
pairs of letters (e.g., “æ” and “ae” are not considered equivalent) or equivalences
between accented and non-accented letters (e.g., “Á” and “A” are not considered
equivalent).

• All characters are significant.

There is only one namespace for OMG IDL identifiers. Using the same identifier for a
constant and an interface, for example, produces a compilation error.

3.2.4 Keywords

The identifiers listed in Figure 6 on page 3-6 are reserved for use as keywords, and
may not be used otherwise.

Keywords obey the rules for identifiers (see Section 3.2.3) and must be written exactly
as shown in the above list. For example, “boolean” is correct; “Boolean” produces
a compilation error.

OMG IDL specifications use the characters shown in Figure 7 on page 3-6 as
punctuation.

In addition, the tokens listed in Figure 8 on page 3-6 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

TABLE 6. Keywords
any default inout out switch

attribute double interface raises TRUE

boolean enum long readonly typedef

case exception module sequence unsigned

char FALSE Object short union

const float octet string void

context in oneway struct

TABLE 7. Punctuation Characters
; { } : , = + - () < > []

' " \ | ^ & * / % ~

TABLE 8. Preprocessor Tokens
! || &&
3-6 CORBA V2.0 July 1995

3

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in’x’.
Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Figure 2 on page 3-3, Figure 3 on page 3-4, and Figure 4 on page 3-4). The value
of a null is 0. The value of a formatting character literal is the numerical value of the
character as defined in the ISO 646 standard (See Figure 5 on page 3-5). The meaning
of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Figure 9 on page 3-7. Note that escape sequences must be used to represent single
quote and backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

TABLE 9. Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal
number

\xhh
CORBA V2.0 Lexical Conventions July 1995 3-7

3

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits
is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in “Character Literals” on page
3-7) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution, conditional compilation, and source file inclusion. In addition, directives
are provided to control line numbering in diagnostics and for symbolic debugging, to
generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (the #pragma directive). Certain predefined
names are available. These facilities are conceptually handled by a preprocessor, which
may or may not actually be implemented as a separate process.
3-8 CORBA V2.0 July 1995

3

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\”), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (Section 3.2.1), a file name as in a
#include directive, or any single character, other than white space, that does not
match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found in The Annotated C++ Reference Manual, Chapter 16. The
#pragma directive that is used to include RepositoryIds is described in Section 6.6,
“RepositoryIds,” on page 6-30.

3.4 OMG IDL Grammar
(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

(3) <module> ::= “module” <identifier> “{“ <definition>+ “}”

(4) <interface> ::= <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”

(6) <forward_dcl> ::= “interface” <identifier>

(7) <interface_header>::= “interface” <identifier> [<inheritance_spec>]

(8) <interface_body> ::= <export>*

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10) <inheritance_spec>::= “:” <scoped_name> { “,” <scoped_name> }∗
CORBA V2.0 OMG IDL Grammar July 1995 3-9

3

(11) <scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

(12) <const_dcl> ::= “const” <const_type> <identifier> “=” <const_exp>

(13) <const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

(14) <const_exp> ::= <or_expr>

(15) <or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

(16) <xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

(17) <and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

(18) <shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(19) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(20) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(21) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(22) <unary_operator> ::= “-”
| “+”
| “~”

(23) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(24) <literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

(25) <boolean_literal> ::= “TRUE”
| “FALSE”

(26) <positive_int_const>::=<const_exp>
3-10 CORBA V2.0 July 1995

3

(27) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

(28) <type_declarator> ::= <type_spec> <declarators>

(29) <type_spec> ::= <simple_type_spec>
| <constr_type_spec>

(30) <simple_type_spec>::=<base_type_spec>
| <template_type_spec>
| <scoped_name>

(31) <base_type_spec>::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <any_type>

(32) <template_type_spec>::=<sequence_type>
| <string_type>

(33) <constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

(34) <declarators> ::= <declarator> { “,” <declarator> }∗

(35) <declarator> ::= <simple_declarator>
| <complex_declarator>

(36) <simple_declarator>::=<identifier>

(37) <complex_declarator>::=<array_declarator>

(38) <floating_pt_type>::= “float”
| “double”

(39) <integer_type> ::= <signed_int>
| <unsigned_int>

(40) <signed_int> ::= <signed_long_int>
| <signed_short_int>

(41) <signed_long_int> ::= “long”

(42) <signed_short_int>::= “short”

(43) <unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>

(44) <unsigned_long_int>::=“unsigned” “long”

(45) <unsigned_short_int>::=“unsigned” “short”

(46) <char_type> ::= “char”

(47) <boolean_type> ::= “boolean”
CORBA V2.0 OMG IDL Grammar July 1995 3-11

3

(48) <octet_type> ::= “octet”

(49) <any_type> ::= “any”

(50) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”

(51) <member_list> ::= <member>+

(52) <member> ::= <type_spec> <declarators> “;”

(53) <union_type> ::= “union” <identifier> “switch” “(” <switch_type_spec> “)”
“{” <switch_body> “}”

(54) <switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(55) <switch_body> ::= <case>+

(56) <case> ::= <case_label>+ <element_spec> “;”

(57) <case_label> ::= “case” <const_exp> “:”
| “default” “:”

(58) <element_spec> ::= <type_spec> <declarator>

(59) <enum_type> ::= “enum” <identifier> “{” <enumerator> { “,” <enumerator> }∗ “}”

(60) <enumerator> ::= <identifier>

(61) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”<positive_int_const>“>”
| “sequence” “<” <simple_type_spec> “>”

(62) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(63) <array_declarator>::= <identifier> <fixed_array_size>+

(64) <fixed_array_size>::= “[” <positive_int_const> “]”

(65) <attr_dcl> ::= [“readonly”] “attribute” <param_type_spec>
 <simple_declarator> { “,” <simple_declarator> }*

(66) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”

(67) <op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]

(68) <op_attribute> ::= “oneway”

(69) <op_type_spec> ::= <param_type_spec>
| “void”

(70) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> }∗ “)”
| “(” “)”

(71) <param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
3-12 CORBA V2.0 July 1995

3

(72) <param_attribute> ::= “in”
| “out”
| “inout”

(73) <raises_expr> ::= “raises” “(” <scoped_name> { “,” <scoped_name> }∗ “)”

(74) <context_expr> ::= “context” “(” <string_literal> { “,” <string_literal> }∗ “)”

(75) <param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_name>

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification>::= <definition>+

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

See “Constant Declaration” on page 3-17, “Type Declaration” on page 3-19, and
“Exception Declaration” on page 3-26, respectively, for specifications of
<const_dcl>, <type_dcl>, and <except_dcl>.

3.5.1 Module Declaration

A module definition satisfies the following syntax:

<module> ::= “module” <identifier> “{“ <definition>+ “}”

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on
page 3-31 for details.

3.5.2 Interface Declaration

An interface definition satisfies the following syntax:

<interface> ::= <interface_dcl>
| <forward_dcl>

<interface_dcl>::= <interface_header> “{” <interface_body> “}”

<forward_dcl> ::= “interface” <identifier>

<interface_header>::=“interface” <identifier> [<inheritance_spec>]
CORBA V2.0 OMG IDL Specification July 1995 3-13

3

<interface_body>::=<export>*

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

Interface Header

The interface header consists of two elements:

• The interface name. The name must be preceded by the keyword interface, and
consists of an identifier that names the interface.

• An optional inheritance specification. The inheritance specification is described
in the next section.

The <identifier> that names an interface defines a legal type name. Such a type
name may be used anywhere an <identifier> is legal in the grammar, subject to
semantic constraints as described in the following sections. Since one can only hold
references to an object, the meaning of a parameter or structure member which is an
interface type is as a reference to an object supporting that interface. Each language
binding describes how the programmer must represent such interface references.

Inheritance Specification

The syntax for inheritance is as follows:

<inheritance_spec>::= “:” <scoped_name> {“,” <scoped_name>}*

<scoped_name>::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <inheritance_spec> must denote a previously
defined interface. See “Inheritance” on page 3-15 for the description of inheritance.

Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in “Constant Declaration” on page 3-17.

• Type declarations, which specify the type definitions that the interface exports;
type declaration syntax is described in “Type Declaration” on page 3-19.

• Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in “Exception Declaration” on
page 3-26.
3-14 CORBA V2.0 July 1995

3

• Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in “Attribute Declaration” on
page 3-30.

• Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types
of all parameters of an operation, legal exceptions which may be returned as a
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in “Operation Declaration” on
page 3-27.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists simply
of the keyword interface followed by an <identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

3.6 Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names which
have been inherited; the scope rules for such names are described in “CORBA
Module” on page 3-31.

An interface is called a direct base if it is mentioned in the <inheritance_spec>
and an indirect base if it is not a direct base but is a base interface of one of the
interfaces mentioned in the <inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:
CORBA V2.0 Inheritance July 1995 3-15

3

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }

The relationships between these interfaces is shown in Figure 11 on page 3-16. This
“diamond” shape is legal.

FIGURE 11. Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interface. (It is currently illegal to inherit from two
interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.) Ambiguities can be resolved by qualifying a
name with its interface name (that is, using a <scoped_name>).

References to constants, types, and exceptions are bound to an interface when it is
defined i.e., replaced with the equivalent global <scoped_name>s. This guarantees
that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {
void f (in float s[L]); // s has 3 floats

};

interface B {
const long L = 4;

};

interface C: B, A {}// what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

A

B C

D

3-16 CORBA V2.0 July 1995

3

void f(in float s[3]);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the current
scope. An attempt to use an ambiguous name without qualification is a compilation
error.

Operation names are used at run-time by both the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object must have unique names.
This requirement prohibits redefining an operation name in a derived interface, as well
as inheriting two operations with the same name.

Note – It is anticipated that future revisions of the language may relax this rule in
some way, perhaps allowing overloading or providing some means to distinguish
operations with the same name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifier> “=” <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>
CORBA V2.0 Constant Declaration July 1995 3-17

3

<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator>::=“-”
| “+”
| “~”

<primary_expr>::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal>::=“TRUE”
| “FALSE”

<positive_int_const>::=<const_exp>

3.7.2 Semantics

The <scoped_name> in the <const_type> production must be a previously
defined name of an <integer_type>, <char_type>, <boolean_type>,

<floating_pt_type>, or <string_type> constant.

No infix operator can combine an integer and a float. Infix operators are not applicable
to types other than integer and float.

An integer constant expression is evaluated as unsigned long unless it contains a
negated integer literal or the name of an integer constant with a negative value. In the
latter case, the constant expression is evaluated as signed long. The computed value is
coerced back to the target type in constant initializers. It is an error if the computed
value exceeds the precision of the target type. It is an error if any intermediate value
exceeds the range of the evaluated-as type (long or unsigned long).
3-18 CORBA V2.0 July 1995

3

All floating-point literals are double, all floating-point constants are coerced to double,
and all floating-point expressions are computed as doubles. The computed double
value is coerced back to the target type in constant initializers. It is an error if this
coercion fails or if any intermediate values (when evaluating the expression) exceed
the range of double.

Unary (+ –) and binary (* / + –) operators are applicable in floating-point expressions.
Unary (+ – ~) and binary (* / % + – << >> & | ^) operators are applicable in
integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

long –(value+1)

unsigned long (2**32 – 1) – value

The “%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise
 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 32.

The “>>” binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 32.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a data
type via the struct, union, and enum declarations; the syntax is:
CORBA V2.0 Type Declaration July 1995 3-19

3

<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

<type_declarator>::=<type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec>::=<base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec>::=<floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>

<constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { “,” <declarator> }∗

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator>::=<identifier>

<complex_declarator>::=<array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined
type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed
type specifiers.

3.8.1 Basic Types

The syntax for the supported basic types is as follows:

<floating_pt_type>::=“float”
| “double”
3-20 CORBA V2.0 July 1995

3

<integer_type>::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int>
| <signed_short_int>

<signed_long_int>::=“long”

<signed_short_int>::=“short”

<unsigned_int>::= <unsigned_long_int>
| <unsigned_short_int>

<unsigned_long_int>::=“unsigned” “long”

<unsigned_short_int>::=“unsigned” “short”

<char_type> ::= “char”

<boolean_type>::=“boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons)
may signal an exception condition to the client if an attempt is made to convert an
illegal value. The standard exceptions which are to be signalled in such situations are
defined in “Standard Exceptions” on page 3-33.

Integer Types

OMG IDL supports long and short signed and unsigned integer data types. long

represents the range -231 .. 231 - 1 while unsigned long represents the range 0 .. 232
- 1. short represents the range -215 .. 215 - 1, while unsigned short represents the
range 0 .. 216 - 1.

Floating-Point Types

OMG IDL floating-point types are float and double. The float type represents
IEEE single-precision floating point numbers; the double type represents IEEE
double-precision floating point numbers.The IEEE floating point standard specification
(IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985)
should be consulted for more information on the precision afforded by these types.

Implementations that do not fully support the value set of the IEEE 754 floating-point
standard must completely specify their deviance from the standard.
CORBA V2.0 Type Declaration July 1995 3-21

3

Char Type

OMG IDL defines a char data type consisting of 8-bit quantities.

The ISO Latin-1 (8859.1) character set standard defines the meaning and
representation of all possible graphic characters (i.e., the space, alphabetic, digit and
graphic characters defined in Figure 2 on page 3-3, Figure 3 on page 3-4, and Figure 4
on page 3-4). The meaning and representation of the null and formatting characters
(see Figure 5 on page 3-5) is the numerical value of the character as defined in the
ASCII (ISO 646) standard. The meaning of all other characters is implementation-
dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

Boolean Type

The boolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type

The any type permits the specification of values that can express any OMG IDL type.

3.8.2 Constructed Types

The constructed types are:

<constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

Although it is syntactically possible to generate recursive type specifications in OMG
IDL, such recursion is semantically constrained. The only permissible form of
recursive type specification is through the use of the sequence template type. For
example, the following is legal:
3-22 CORBA V2.0 July 1995

3

struct foo {
long value;
sequence<foo> chain;

}

See “Sequences” on page 3-25 for details of the sequence template type.

Structures

The structure syntax is:

<struct_type> ::= “struct” <identifier> “{” <member_list> “}”

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named using a typedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct is the value of all of its members.

Discriminated Unions

The discriminated union syntax is:

<union_type> ::= “union” <identifier> “switch” “(” <switch_type_spec> “)”
“{” <switch_body> “}”

<switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body>::= <case>+

<case> ::= <case_label>+ <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec>::=<type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following the union keyword defines a new legal type. Union types
may also be named using a typedef declaration. The <const_exp> in a
<case_label> must be consistent with the <switch_type_spec>. A default
CORBA V2.0 Type Declaration July 1995 3-23

3

case can appear at most once. The <scoped_name> in the
<switch_type_spec> production must be a previously defined integer, char,

boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Figure 10 on page
3-24.

Name scoping rules require that the element declarators in a particular union be
unique. If the <switch_type_spec> is an <enum_type>, the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body>. The value of a union is the value of the discriminator together
with one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of
the element associated with that case statement;

• If a default case label was specified, the value of the element associated with the
default case label;

• No additional value.

Access to the discriminator and the related element is language-mapping dependent.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier> “{” <enumerator> { “,” <enumerator> }∗ “}”

<enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the

TABLE 10. Case Label Matching

Discriminator
 Type Matched By

long any integer value in the value range of long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long

unsigned short any integer value in the value range of unsigned short

char char

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type
3-24 CORBA V2.0 July 1995

3

specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following the enum keyword defines a new legal type.
Enumerated types may also be named using a typedef declaration.

3.8.3 Template Types

The template types are:

<template_type_spec>: :=<sequence_type>
| <string_type>

Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:

<sequence_type> ::=“sequence” “<” <simple_type_spec> “,”
<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. Prior to passing a bounded sequence as a function
argument (or as a field in a structure or union), the length of the sequence must be set
in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior
to passing such a sequence as a function argument (or as a field in a structure or
union), the length of the sequence, the maximum size of the sequence, and the address
of a buffer to hold the sequence must be set in a language-mapping dependent manner.
After receiving such a sequence result from an operation invocation, the length of the
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be used to separate the
two “>” tokens ending the declaration so they are not parsed as a single “>>” token.
CORBA V2.0 Type Declaration July 1995 3-25

3

Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type>: :=“string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> ::=<identifier> <fixed_array_size>+

<fixed_array_size> ::=“[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.9 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl> : :=“exception” <identifier> “{“ <member>* “}”
3-26 CORBA V2.0 July 1995

3

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the
<member>s in its declaration. If an exception is returned as the outcome to a
request, then the value of the exception identifier is accessible to the programmer for
determining which particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions are
documented in “Standard Exceptions” on page 3-33.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]

<op_type_spec>::=<param_type_spec>
| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in “Operation Attribute” on page 3-28.

• The type of the operation’s return result; the type may be any type which can be
defined in OMG IDL. Operations that do not return a result must specify the
void type.

• An identifier that names the operation in the scope of the interface in which it is
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Parameter Declarations” on page
3-28.

• An optional raises expression which indicates which exceptions may be raised as
a result of an invocation of this operation. Raises expressions are described in
Section “Raises Expressions” on page 3-29.

• An optional context expression which indicates which elements of the request
context may be consulted by the method that implements the operation. Context
expressions are described in “Context Expressions” on page 3-29.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.
CORBA V2.0 Operation Declaration July 1995 3-27

3

3.10.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void
return type. An operation defined with the oneway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls>::=“(” <param_dcl> { “,” <param_dcl> }∗ “)”
| “(” “)”

<param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>

<param_attribute>::=“in”
| “out”
| “inout”

<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.
3-28 CORBA V2.0 July 1995

3

If an exception is raised as a result of an invocation, the values of the return result and
any out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr> ::= “raises” “(” <scoped_name> { “,” <scoped_name> }∗ “)”

The <scoped_name>’s in the raises expression must be previously defined
exceptions.

In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in “Standard Exceptions” on page 3-33. However,
standard exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::= “context” “(” <string_literal> { “,” <string_literal> }∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string must be
an alphabetic character. An asterisk may only be used as the last character of the string.
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.
CORBA V2.0 Operation Declaration July 1995 3-29

3

3.11 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment:

• • •
float _get_radius ();
void _set_radius (in float r);
material_t _get_material ();
void _set_material (in material_t m);
position_t _get_position ();
• • •

The actual accessor function names are language-mapping specific. The C, C++, and
Smalltalk mappings are described in separate chapters. The attribute name is subject to
OMG IDL’s name scoping rules; the accessor function names are guaranteed not to
collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See “CORBA Module” on page 3-31 for more information on redefinition constraints
and the handling of ambiguity.
3-30 CORBA V2.0 July 1995

3

3.12 CORBA Module

In order to prevent names defined in the CORBA specification from clashing with
names in programming languages and other software systems, all names defined in
CORBA are treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not
be preceded by a “CORBA::” prefix. Other interface names such as TypeCode are
not OMG IDL keywords, so they must be referred to by their fully scoped names
(e.g., CORBA::TypeCode) within an OMG IDL specification.

3.13 Names and Scoping

An entire OMG IDL file forms a naming scope. In addition, the following kinds of
definitions form nested scopes:

• module

• interface

• structure

• union

• operation

• exception

Identifiers for the following kinds of definitions are scoped:

• types

• constants

• enumeration values

• exceptions

• interfaces

• attributes

• operations

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration within the same scope reopen the module allowing additional
definitions to be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL
identifiers are case insensitive; that is, two identifiers that differ only in the case of
their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. (This
allows natural mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope.
In particular, see “Constructed Types” on page 3-22 on cycles in type definitions.
CORBA V2.0 CORBA Module July 1995 3-31

3

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes. Once an
unqualified name is used in a scope, it cannot be redefined—i.e. if one has used a
name defined in an enclosing scope in the current scope, one cannot then redefine a
version of the name in the current scope. Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“”) and the name of the current scope is initially empty
(“”). Whenever a module keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of the module, the trailing “::” and identifier are deleted from the name
of the current root. Whenever an interface, struct, union, or exception keyword
is encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface, struct, union,
or exception, the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See “Supporting Type Definitions” on
page 6-8.)

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces
names into the derived interface, but these names are considered to be semantically the
same as the original definition. Two shadow copies of the same original (as results
from the diamond shape in Figure 11 on page 3-16) introduce a single name into the
derived interface and don’t conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:
3-32 CORBA V2.0 July 1995

3

interface A {
exception E {
long L;
};
void f() raises(E);
};

interface B: A {
void g() raises(E);
};

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:
interface A {
typedef string<128> string_t;
};

interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Title;/* AMBIGUOUS!!! */
};

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat
more restrictive. The current restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declaration.

• A parameter list consisting of the single token void is not permitted as a
synonym for an empty parameter list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly as short or long.

• char cannot be qualified by signed or unsigned keywords.

3.15 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions may not be listed in raises expressions.
CORBA V2.0 Differences from C++ July 1995 3-33

3

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding to
dynamic memory allocation failure is defined. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of values to
the minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code which takes one
of the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

COMPLETED_YES The object implementation has completed processing prior to the
exception being raised.

COMPLETED_NO The object implementation was never initiated prior to the excep-

tion being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below.
3-34 CORBA V2.0 July 1995

3

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

// failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation
 // unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; // transient failure - reissue

// request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface

// repository
exception BAD_CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object

// adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object, delete

// reference

3.15.2 Object Non-Existence

This standard system exception is raised whenever an invocation on a deleted object
was performed. It is an authoritative “hard” fault report. Anyone receiving it is allowed
(even expected) to delete all copies of this object reference and to perform other
appropriate “final recovery” style procedures.
CORBA V2.0 Standard Exceptions July 1995 3-35

3

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any of their own data structures.
3-36 CORBA V2.0 July 1995

Dynamic Invocation Interface 4
4.1 Overview

The ORB Dynamic Invocation interface allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation interface, parameters in a request are supplied as elements
of a list. Each element is an instance of a NamedValue (see “Common Data
Structures” on page 4-1). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::”.

4.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used either
as a parameter type directly or as a mechanism for describing arguments to a request.
The type NVList is a pseudo-object useful for constructing parameter lists. The types
are described in OMG IDL and C, respectively, as:
 CORBA V2.0 July 1995 4-1

4

typedef unsigned long Flags;

struct NamedValue {
Identifier name; // argument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};

CORBA_NamedValue * CORBA_NVList; /* C */

NamedValue and Flags are defined in the CORBA module.

The NamedValue and NVList structures are used in the request operations to
describe arguments and return values. They are also used in the context object routines
to pass lists of property names and values. Despite the above declaration for NVList,
the NVList structure is partially opaque and may only be created by using the ORB
create_list operation.

A named value includes an argument name, argument value (as an any), length of the
argument, and a set of argument mode flags. When named value structures are used to
describe arguments to a request, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

As described in Section 14.7, “Mapping for Basic Data Types,” on page 14-8, an any

consists of a TypeCode and a pointer to the data value. The TypeCode is a well-
known opaque type that can encode a description of any type specifiable in OMG IDL.
A full description of TypeCodes is Section 14.7, “Mapping for Basic Data Types,” on
page 14-8.

For most datatypes, len is the actual number of bytes that the value occupies. For
object references, len is 1. TABLE 11. on page 4-2 shows the length of data values for
the C language binding. The behavior of a NamedValue is undefined if the len value
is inconsistent with the TypeCode.

TABLE 11. C Type Lengths

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

char sizeof (CORBA_char)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */
4-2 CORBA V2.0 July 1995

4

The arg_modes field is defined as a bitmask (long) and may contain the following
flag values:

CORBA::ARG_IN the associated value is an input only argument

CORBA::ARG_OUT the associated value is an output only argument

CORBA::ARG_INOUT the associated value is an in/out argument

These flag values identify the parameter passing mode for arguments. Additional flag
values have specific meanings for request and list routines, and are documented with
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-
specific flags.

4.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory are shown in
Table 21. In order to facilitate the freeing of all “out-arg memory”, the request routines
provide a mechanism for grouping, or keeping track of, this memory. If so specified,
out-arg memory is associated with the argument list passed to the create request
routine. When the list is deleted the associated out-arg memory will automatically be
freed.

If the programmer chooses not to associate out-arg memory with an argument list, the
programmer is responsible for freeing each out parameter using CORBA_free(),
which is discussed in Section 14.17, “Argument Passing Considerations,” on
page 14-16.

4.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, many routines return a Status result, which is
intended as a status code. Status is defined in the CORBA modules as:

typedef unsigned long Status;

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of elements */

TABLE 11. C Type Lengths (Continued)

Data type: X Length (X)
CORBA V2.0 Overview July 1995 4-3

4

Conforming CORBA implementations are not required to return this status code;
instead, the definition

typedef void Status;

is a conforming implementation (in which case no status code result is returned, except
in the usual inout Environment argument). Implementations are required to
specify which Status behavior is supported.

4.2 Request Operations

The request operations are defined in terms of the Request pseudo-object. The Request
routines use the NVList definition defined in the preceding section.

module CORBA {

interface Request { // PIDL

Status add_arg (
 in Identifier name, // argument name

 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument value
 in Flags arg_flags // argument flags
);
Status invoke (

 in Flags invoke_flags // invocation flags
);
Status delete ();
Status send (

in Flags invoke_flags// invocation flags
);
Status get_response (

in Flags response_flags // response flags
);

};
};

4.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see
“Object Reference Operations” on page 7-2 for the complete interface definition). The
create_request operation is performed on the Object which is to be invoked.
4-4 CORBA V2.0 July 1995

4

Status create_request (// PIDL
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);

This operation creates an ORB request. The actual invocation occurs by calling
invoke or by using the send / get_response calls.

The operation name specified on create_request is the same operation identifier that
is specified in the OMG IDL definition for this operation. In the case of attributes, it is
the name as constructed following the rules specified in the ServerRequest interface as
described in the DSI in Section 5.2

The arg_list, if specified, contains a list of arguments (input, output, and/or
input/output) which become associated with the request. If arg_list is omitted
(specified as NULL), the arguments (if any) must be specified using the add_arg call
below.

Arguments may be associated with a request by passing in an argument list or by using
repetitive calls to add_arg. One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call
has completed (or the request has been deleted), the ORB assumes that arg_list (and
any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may also
be specified; if so indicated, arguments are validated for datatype, order, name, and
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following
flag values:

CORBA::OUT_LIST_MEMORYIndicates that any out-arg memory is associated with the
argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must also have been specified on
CORBA V2.0 Request Operations July 1995 4-5

4

the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (See Section 14.17, “Argument Passing Considerations,” on page
14-16; Section 17.6, “NVList,” on page 17-5; and Section 20.19, “Argument Passing
Considerations,” on page 20-11.)

4.2.2 add_arg

Status add_arg (// PIDL
 in Identifier name, // argument name
 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument value
 in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. An argument’s
datatype, name, and usage flags (i.e in, out, inout) may also be specified. If so
indicated, arguments are validated for datatype, order, name, and usage correctness
against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
create_request call or by adding them via calls to add_arg. Using both methods for
specifying arguments, for the same request, is not currently supported.

In addition to the argument modes defined in Section 4.1.1, arg_flags may also take
the flag value:IN_COPY_VALUE. The argument passing flags defined in Section
4.1.1 may be used here to indicate the intended parameter passing mode of an
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.
4-6 CORBA V2.0 July 1995

4

4.2.3 invoke

Status invoke (// PIDL
 in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placed in the result
argument specified on create_request.

4.2.4 delete

Status delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e. by
using the IN_COPY_VALUE flag) is also freed.

4.3 Deferred Synchronous Operations

4.3.1 send

Status send (// PIDL
in Flags invoke_flags // invocation flags

);

send initiates an operation according to the information in the Request. Unlike
invoke, send returns control to the caller without waiting for the operation to finish.
To determine when the operation is done, the caller must use the get_response or
get_next_response operations described below. The out parameters and return
value must not be used until the operation is done.

Although it is possible for some standard exceptions to be raised by the send
operation, there is no guarantee that all possible errors will be detected. For example,
if the object reference is not valid, send might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception will
be raised when get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified,
then get_response does not need to be called. In such cases, some errors might go
unreported, since if they are not detected before send returns there is no way to inform
the caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE Indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (in/out and out) to be updated.
This option may be specified even if the operation has not been defined to be oneway.
CORBA V2.0 Deferred Synchronous Operations July 1995 4-7

4

4.3.2 send_multiple_requests

/* C */

CORBA_Status CORBA_send_multiple_requests (
CORBA_Request reqs[], /* array of Requests */
CORBA_Environment *env,
CORBA_long count, /* number of Requests */
CORBA_Flags invoke_flags

);

// C++

class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;

...

Status send_multiple_requests_oneway(const RequestSeq &);
Status send_multiple_requests_deferred(const RequestSeq &);

};

The Smalltalk mapping of send multiple requests is as follows:

sendMultipleRequests: aCollection

sendMultipleRequestOneway: aCollection

send_multiple_requests initiates more than one request in parallel. Like
send, send_multiple_requests returns to the caller without waiting for the
operations to finish. To determine when each operation is done, the caller must use the
get_response or get_next_response operations described below.

The degree of parallelism in the initiation and execution of the requests is system
dependent. There are no guarantees about the order in which the requests are initiated.
If INV_TERM_ON_ERR is specified, and the ORB detects an error initiating one of
the requests, it will not initiate any further requests from this list. If
INV_NO_RESPONSE is specified, it applies to all of the requests in the list.

The following invocation flags are currently defined for
send_multiple_requests:

CORBA::INV_NO_RESPONSE indicates that at the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (inout and out) to be updated.
This option may be specified even if the operation has not been defined to be oneway.

CORBA::INV_TERM_ON_ERR means that if one of the requests causes an error, the
remaining requests are not sent.
4-8 CORBA V2.0 July 1995

4

4.3.3 get_response

Status get_response (// PIDL
 in Flags response_flags // response flags

get_response determines whether a request has completed. If get_response indicates
that the operation is done, the out parameters and return values defined in the Request
are valid, and they may be treated as if the Request invoke operation had been used to
perform the request.

If the RESP_NO_WAIT flag is set, get_response returns immediately even if the
request is still in progress. Otherwise, get_response waits until the request is done
before returning.

The following response flags are defined for get_response:

CORBA::RESP_NO_WAIT indicates that the caller does not want to wait for a response.

4.3.4 get_next_response

/* C */

CORBA_Status CORBA_get_next_response (
CORBA_Environment*env,
CORBA_Flags response_flags,
CORBA_Request *req

);

// C++

class ORB

{
public:

Boolean poll_next_response();
Status get_next_response(RequestSeq*&);

};

The Smalltalk mapping of get_next_response is as follows:

pollNextResponse
getNextResponse
CORBA V2.0 Deferred Synchronous Operations July 1995 4-9

4

get_next_response returns the next request that completes. Despite the name,
there is no guaranteed ordering among the completed requests, so the order in which
they are returned from successive get_next_response calls is not necessarily
related to the order in which they finished.

If the RESP_NO_WAIT flag is set, and there are no completed requests pending, then
get_next_response returns immediately. Otherwise,
get_next_response waits until some request finishes.

The following response flags are defined for get_next_response:

CORBA::RESP_NO_WAIT Indicates that the caller does not want to wait for a response.

4.4 List Operations

The list operations use the named-value structure defined above.

The list operations that create NVList objects are defined in the ORB interface
described in Chapter 7, but are described in this section. The NVList interface is
shown below.

interface NVList { // PIDL
Status add_item (

 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);
Status free ();
Status free_memory ();
Status get_count (

out long count // number of entries in the list
);

};

Interface NVList is defined in the CORBA module.

4.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

Status create_list (//PIDL
in long count, // number of items to allocate for list
out NVList new_list // newly created list

);
4-10 CORBA V2.0 July 1995

4

This operation allocates a list of the specified size, and clears it for initial use. List
items may be added to the list using the add_item routine. Alternatively, they may be
added by indexing directly into the list structure. A mixture of the two approaches for
initializing a list, however, is not supported.

An NVList is a partially opaque structure. It may only be allocated via a call to
create_list.

4.4.2 add_item

Status add_item (// PIDL
 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 4.1.1, item_flags may also take
the following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument
passing flags defined in Section 4.1.1 may be used here to indicate the intended
parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If a list structure is added as an item (e.g. a “sublist”) the DEPENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.

4.4.3 free

Status free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to
the list free_memory operation is done).

4.4.4 free_memory

Status free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.
CORBA V2.0 List Operations July 1995 4-11

4

4.4.5 get_count

Status get_count (// PIDL
out long count // number of entries in the list

);

This operation returns the total number of items allocated for this list.

4.4.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list (// PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

);

This operation returns an NVList initialized with the argument descriptions for a
given operation. The information is returned in a form that may be used in Dynamic
Invocation requests. The arguments are returned in the same order as they were defined
for the operation.

The list free operation is used to free the returned information.

4.5 Context Objects

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environment
that is meant be propagated to (and made implicitly part of) a server’s environment
(for example, a window identifier, or user preference information). Once a server has
been invoked (i.e., after the properties are propagated), the server may query its
context object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, allowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties that
may be of interest to a particular operation. These context properties comprise the
minimum set of properties that will be propagated to the server’s environment
(although a specified property may have no value associated with it). The ORB may
choose to pass more properties than those specified in the operation declaration.
4-12 CORBA V2.0 July 1995

4

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causes the properties which
were named in the operation definition in IDL and which are present in the client’s
context object, to be provided in the context object parameter to the invoked method.

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or a series of OMG IDL identifiers separated by periods. A context property
name pattern is either a property name, or a property name followed by a single “*”.
Property name patterns are used in the context clause of an operation definition, and
in the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A property
name pattern of the form “<name>*” matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may be
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while other implementations may be transient. The creation and modification
of persistent context objects, however, is not addressed in this specification.

Context objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Context get_values call.

Context objects may be named for purposes of specifying a starting search scope.

4.6 Context Object Operations

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see “Identifiers” on page 3-5
for the valid set of characters that are allowed). Property names are stored preserving
their case, however names cannot differ simply by their case.

The Context interface is shown below.
CORBA V2.0 Context Object Operations July 1995 4-13

4

module CORBA {

interface Context { // PIDL
Status set_one_value (

 in Identifier prop_name, // property name to add
 in string value // property value to add

);
Status set_values (

 in NVList values // property values to be changed
);
Status get_values (

 in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to retrieve
 out NVList values // requested property(s)

);
Status delete_values (

 in Identifier prop_name // name of property(s) to delete
);
Status create_child (

 in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object

);
Status delete (

 in Flags del_flags // flags controlling deletion
);

};
};

4.6.1 get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB interface
(see Section 7.1 for the complete ORB definition).

Status get_default_context (// PIDL
out Context ctx // context object

);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and System
context objects.
4-14 CORBA V2.0 July 1995

4

4.6.2 set_one_value

Status set_one_value (// PIDL
 in Identifier prop_name, // property name to add
 in string value // property value to add

);

This operation sets a single context object property.

Currently, only string values are supported by the context object.

4.6.3 set_values

Status set_values (// PIDL
 in NVList values // property values to be changed

);

This operation sets one or more property values in the context object. In the NVList,
the flags field must be set to zero, and the TypeCode field associated with an attribute
value must be TC_string.

Currently, only string values are supported by the context object.

4.6.4 get_values

Status get_values (// PIDL
 in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to retrieve
 out NVList values // requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a
trailing wildcard character (“*”), then all matching properties and their values are
returned. The values returned may be freed by a call to the list free operation.

If no properties are found an error is returned, and no property list is returned.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g. “_USER”, “_SYSTEM”). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operation flags may be specified:
CORBA V2.0 Context Object Operations July 1995 4-15

4

CORBA::CTX_RESTRICT_SCOPE Searching is limited to the specified search
scope or context object.

4.6.5 delete_values

Status delete_values (// PIDL
 in Identifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) values from the context object. If
prop_name has a trailing wildcard character (“*”), then all property names that match
will be deleted.

Search scope is always limited to the specified context object.

If no matching property is found, an exception is returned.

4.6.6 create_child

Status create_child (// PIDL
 in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object

);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see “Identifiers” on
page 3-5).

4.6.7 delete

Status delete (// PIDL
 in Flags del_flags // flags controlling deletion

);

This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTSDeletes the indicated context object and all of
its descendent context objects, as well.

An exception is returned if there are one or more child context objects and the
CTX_DELETE_DESCENDENTS flag was not set.
4-16 CORBA V2.0 July 1995

4

4.7 Native Data Manipulation

A future version of this specification will define routines to facilitate the conversion of
data between the list layout found in NVList structures and the compiler native layout.
CORBA V2.0 Native Data Manipulation July 1995 4-17

4

4-18 CORBA V2.0 July 1995

Dynamic Skeleton Interface 5
The Dynamic Skeleton interface (DSI) is a way to deliver requests from an ORB to an
object implementation that does not have compile-time knowledge of the type of the
object it is implementing. This contrasts with the type-specific, OMG IDL-based
skeletons, but serves the same architectural role.

DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DII). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DII, the client who invokes an object cannot determine
whether the implementation is using a type-specific skeleton or the DSI to connect the
implementation to the ORB.

Figure 5-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
 CORBA V2.0 July 1995 5-1

5

5.1 Overview

The basic idea of the DSI is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, and the
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

The Dynamic Skeleton interface could be supported by any object adapter. Like type-
specific skeletons, the DSI might have object adapter-specific details. This chapter
describes a DSI interface for the Basic Object Adapter (BOA) and shows how it is
mapped to C and C++.

5.2 Explicit Request State: ServerRequest Pseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the
DSI, analogous to the Request pseudo-object in the DII. The following shows how it
provides access to the information:

module CORBA {
pseudo interface ServerRequest
{

Identifier op_name ();
Context ctx ();

 void params (inout NVList params);
 Any result ();
};
}

The target object of the invocation is provided by the language binding for the DIR. In
the context of a bridge, it will typically be a proxy for an object in some other ORB.

The op_name operation returns the name of the operation being invoked; according
to OMG IDL’s rules, these names must be unique among all operations supported by
this object’s “most-derived” interface. Note that the operation names for getting and
setting attributes are _get_<attribute_name> and _set_<attribute_name>,
respectively.

When the operation is not an attribute access, ctx will return the context information
defined in OMG IDL for operation (if any). Otherwise, this context is empty.
5-2 CORBA V2.0 July 1995

5

Operation parameters will be retrieved with params. They appear in the NVList in
the order in which they appear in the OMG IDL specification (left to right). This holds
the “in”, “out” and “inout” values.

The result operation is used to find where to store any return value for the call.
Reporting of exceptions (which preclude use of result and out/inout values in
params) is a function of the language mapping.

See each language binding for a description of the memory management aspects of
these parameters.

5.3 Dynamic Skeleton Interface: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping the
Dynamic Skeleton Interface to programming languages.

Section 14.24, “Mapping of the Dynamic Skeleton Interface to C,” on page 14-25 and
Section 16.17, “Mapping of Dynamic Skeleton Interface to C++,” on page 16-43
provide mappings of the Dynamic Skeleton Interface (supporting the BOA) to the C
language and C++ languages.

5.3.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl”.

The client side memory management rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passed from skeletons into statically typed implementation routines, and vice
versa.

In some language mappings, exceptions need special treatment. This is because the
normal mapping for exceptions may require static knowledge of exception types. An
example is the use of C++ exceptions, which require special run time typing
information that can only be generated by a C++ compiler. Accordingly, the DSI and
DII need an exception-reporting method that requires minimal compile-time support:
the DIR needs to be able to provide the TypeCode for an exception as it reports the
exception.

Finally, note that these APIs have been specified to support a performance model
whereby the ORB doesn’t implicitly consult an interface repository (i.e. perform any
remote object invocations, potentially slowing down a bridge) in order to handle an
invocation. All the typing information is provided to the ServerRequest pseudo-
object by an application. The ORB is allowed to verify that such information is correct,
but such checking is not required.
CORBAV2.0 Dynamic Skeleton Interface: Language Mapping July1995 5-3

5

5.3.2 Registering Dynamic Implementation Routines

Although it is not portably specified by previous CORBA specifications, any ORB and
its BOA implementation must have some way of connecting type-specific skeletons to
the methods that implement the operations. The Dynamic Skeleton interface uses the
same mechanism.

A typical ORB/BOA implementation defines an operation, perhaps used when the
object is activated, which specifies the methods to be used for a particular
implementation class, for example, in C:

BOA_setimpl (BOA, ImplementationDef, MethodList,
skeleton);

The MethodList would be the DIR; the skeleton could be a Dynamic Skeleton, which
would construct a ServerRequest object and invoke the DIR with it.

Whatever mechanism, whether at link time, run time, and so forth, is used to bind
ordinary implementations to type-specific skeletons would also be used to bind
dynamic implementations to dynamic skeletons. Such bindings could be maintained on
a per-object, per-interface, per-class, or other basis.
5-4 CORBA V2.0 July 1995

The Interface Repository 6
The Interface Repository is the component of the ORB that provides persistent storage
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

6.1 Overview

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provides
for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of
two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e., as
“interface objects” accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository
to interpret and handle the values provided in a request:

• To provide type-checking of request signatures (whether the request was issued
through the DII or through a stub).

• To assist in checking the correctness of interface inheritance graphs.

• To assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used:

• To manage the installation and distribution of interface definitions.
 CORBA V2.0 July 1995 6-1

6

• To provide components of a CASE environment (for example, an interface
browser).

• To provide interface information to language bindings (such as a compiler).

• To provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 6.8,
“OMG IDL for Interface Repository,” on page 6-41. Fragments of the specification are
used throughout this chapter as necessary.

6.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interface definitions. An interface
definition contains a description of the operations it supports, including the types of
the parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface definitions or might simply be defined for programmer convenience.
And it stores typecodes, which are values that describe a type in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface definitions, and other modules. Modules may, for example, correspond to the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Interface Repository is a set of objects that represent the information in it. There
are operations that operate on this apparent object structure. It is an implementation’s
choice whether these objects exist persistently or are created when referenced in an
operation on the repository. There are also operations that extract information in an
efficient form, obtaining a block of information that describes a whole interface or a
whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because
two ORBs have different requirements for the implementation of the Interface
Repository, because an object implementation (such as an OODB) prefers to provide
its own type information, or because it is desired to have different additional
information stored in different repositories. The use of typecodes and repository
identifiers is intended to allow different repositories to keep their information
consistent.

As shown in FIGURE 12. on page 6-3, the same interface Doc is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.
6-2 CORBA V2.0 July 1995

6

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

FIGURE 12. Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface. However, widely used interfaces will
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additional
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another, etc.).

A critical use of the interface repository information is for connecting ORBs together.
When an object is passed in a request from one ORB to another, it may be necessary to
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in the sending ORB, it is possible
to look up the interface in a repository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

6.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple
copies of interface definitions may be maintained each of which is distributed across
several machines to provide both high-availability and load-balancing.

SoftCo, Inc., Repository

module softco {
interface Doc id 123 {

void print();
};

};

module newrelease {
interface Doc id 456 {

void print();
};

};

Customer, Inc., Repository

module testfirst {

module softco {
interface Doc id 123 {

void print();
};

};

};
CORBA V2.0 Implementation Dependencies July 1995 6-3

6

The kind of object store used may determine the scope of interface definitions
provided by an implementation of the Interface Repository. For example, it may
determine whether each user has a local copy of a set of interfaces or if there is one
copy per community of users. The object store may also determine whether or not all
clients of an interface set see exactly the same set at any given point in time or whether
latency in distributing copies of the set gives different users different views of the set
at any point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with the
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

6.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to determine
and manipulate the type information at run-time. Programs may attempt to access the
interface repository at any time by using the get_interface operation on the object refer-
ence. Once information has been installed in the repository, programs, stubs, and objects
may depend on it. Updates to the repository must be done with care to avoid disrupting the
environment. A variety of techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have known types, and so forth.
As information is added to the repository, it is possible that it may pass through incoherent
states. Media failures or communication errors might also cause it to appear incoherent. In
general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared data-
base. It is likely that the same interface information will be stored in multiple repositories
in a computing environment. Using repository IDs, the repositories can establish the iden-
tity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from devel-
opment activity. Developers might be permitted to make arbitrary updates to their reposi-
tories, but administrators may control updates to widely used repositories. Some
repository implementations might permit sharing of information, for example, several
developers’ repositories may refer to parts of a shared repository. Other repository imple-
mentations might instead copy the common information. In any case, the result should be
a repository facility that creates the impression of a single, coherent repository.

The interface repository itself cannot make all repositories have coherent information, and
it may be possible to enter information that does not make sense. The repository will
report errors that it detects, e.g., defining two attributes with the same name, but might not
report all errors, for example, adding an attribute to a base interface may or may not detect
a name conflict with a derived interface. Despite these limitations, the expectation is that a
combination of conventions, administrative controls, and tools that add information to the
repository will work to create a coherent view of the repository information.
6-4 CORBA V2.0 July 1995

6

Transactions and concurrency control mechanisms defined by the Object Services may be
used by some repositories when updating the repository. Those services are designed so
that they can be used without changing the operations that update the repository. For
example, a repository that supports the Transaction Service would inherit the Repository
interface, which contains the update operations, as well as the Transaction interface, which
contains the transaction management operations. (For more information about Object Ser-
vices, including the Transaction and Concurrency Control Services, refer to CORBAser-
vices: Common Object Service Specifications.)

Often, rather than change the information, new versions will be created, allowing the old
version to continue to be valid. The new versions will have distinct repository IDs and be
completely different types as far as the repository and the ORBs are concerned. The IR
provides storage for version identifiers for named types, but does not specify any addi-
tional versioning mechanism or semantics.

6.4 Basics of the Interface Repository Interface

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

• Names and IDs

• Types and TypeCodes

• Interface Objects

6.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are always
relative to an explicit or implicit module. In this context, interface definitions are consid-
ered explicit modules.

Scoped names uniquely identify modules, interfaces, constant, typedefs, exceptions,
attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs, excep-
tions, attributes, and operations. They can be used to synchronize definitions across multi-
ple ORBs and Repositories.

6.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data
value called a TypeCode. From the TypeCode alone it is possible to determine the com-
plete structure of a type. See “TypeCodes” on page 6-33 for more information on the inter-
nal structure of TypeCodes.

6.4.3 Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of inter-
face objects:
CORBA V2.0 Basics of the Interface Repository Interface July 1995 6-5

6

1. Repository: the top-level module for the repository name space; it contains constants,
typedefs, exceptions, interface definitions, and modules.

2. ModuleDef: a logical grouping of interfaces; it contains constants, typedefs, excep-
tions, interface definitions, and other modules.

3. InterfaceDef: an interface definition; it contains lists of constants, types, exceptions,
operations, and attributes.

4. AttributeDef: the definition of an attribute of the interface.

5. OperationDef: the definition of an operation on the interface; it contains lists of
parameters and exceptions raised by this operation.

6. TypedefDef: base interface for definitions of named types that are not interfaces.

7. ConstantDef: the definition of a named constant.

8. ExceptionDef: the definition of an exception that can be raised by an operation.

The interface specifications for each interface object lists the attributes maintained by that
object (see “Interface Repository Interfaces” on page 6-7). Many of these attributes corre-
spond directly to OMG IDL statements. An implementation can choose to maintain addi-
tional attributes to facilitate managing the Repository or to record additional (proprietary)
information about an interface. Implementations that extend the IR interfaces should do so
by deriving new interfaces, not by modify the standard interfaces.

The CORBA specification defines a minimal set of operations for interface objects. Addi-
tional operations that an implementation of the Interface Repository may provide could
include operations that provide for the versioning of interfaces and for the reverse compi-
lation of specifications (i.e., the generation of a file containing an object’s OMG IDL spec-
ification).

6.4.4 Structure and Navigation of Interface Objects

The definitions in the Interface Repository are structured as a set of objects. The objects
are structured the same way definitions are structured—some objects (definitions) “con-
tain” other objects.

The containment relationships for the objects in the Interface Repository are shown in
FIGURE 13. on page 6-7.
6-6 CORBA V2.0 July 1995

6

FIGURE 13. Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository:

1. By obtaining an InterfaceDef object directly from the ORB.

2. By navigating through the module name space using a sequence of names.

3. By locating the InterfaceDef object that corresponds to a particular repository
identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using the get_interface() operation on
the object reference, it is possible to retrieve the Interface Repository information about
the object. That information could then be used to perform operations on the object.

Navigating the module name space is useful when information about a particular named
interface is desired. Starting at the root module of the repository, it is possible to obtain
entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique. By
using the same identifier in two repositories, it is possible to obtain the interface identifier
for an interface in one repository, and then obtain information about that interface from
another repository that may be closer or contain additional information about the interface.

6.5 Interface Repository Interfaces

Several abstract interfaces are used as base interfaces for other objects in the IR.

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the abstract interfaces IRObject, Container, and
Contained described below. All IR objects inherit from the IRObject interface, which

Repository

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

ModuleDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The repository object represents the constants,
typedefs, exceptions, interfaces and modules
that are defined outside the scope of a module.

The module object represents the constants,
typedefs, exceptions, interfaces, and other modules
defined within the scope of the module.

An interface object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation objects reference
exception objects.
CORBA V2.0 Interface Repository Interfaces July 1995 6-7

6

provides an operation for identifying the actual type of the object. Objects that are contain-
ers inherit navigation operations from the Container interface. Objects that are con-
tained by other objects inherit navigation operations from the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types, including
interfaces, typedefs, and anonymous types. The TypedefDef interface is inherited by all
named non-interface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are
not instantiable.

6.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

};
};

Identifiers are the simple names that identify modules, interfaces, constants, typedefs,
exceptions, attributes, and operations. They correspond exactly to OMG IDL identifiers.
An Identifier is not necessarily unique within an entire Interface Repository; it is unique
only within a particular Repository, ModuleDef, InterfaceDef, or Operation-
Def.

A ScopedName is a name made up of one or more Identifiers separated by the char-
acters “::”. They correspond to OMG IDL scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifies a
definition in a Repository. An absolute ScopedName in a Repository corre-
sponds to a global name in an OMG IDL file (see Section 3.12). A relative Scoped-
Name does not begin with “::” and must be resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module, inter-
face, constant, typedef, exception, attribute or operation. As RepositoryIds are defined
as strings, they can be manipulated (e.g., copied and compared) using a language bind-
ing’s string manipulation routines.

A DefinitionKind identifies the type of an IR object.
6-8 CORBA V2.0 July 1995

6

6.5.2 IRObject

The IRObject interface represents the most generic interface from which all other Inter-
face Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};
};

Read Interface

The def_kind attribute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container,
destroy is applied to all its contents. If the object contains an IDLType attribute for an
anonymous type, that IDLType is destroyed. If the object is currently contained in some
other object, it is removed. Invoking destroy on a Repository or on a Primitive-
Def is an error. Implementations may very in their handling of references to an object the
is being destroyed, but the Repository should not be left in an incoherent state.

6.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are con-
tained by other IR objects. All objects within the Interface Repository, except the root
object (Repository) and definitions of anonymous (ArrayDef, StringDef, and
SequenceDef), and primitive types are contained by other objects.
CORBA V2.0 Interface Repository Interfaces July 1995 6-9

6

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

};

Read Interface

An object that is contained by another object has an id attribute that identifies it globally,
and a name attribute that identifies it uniquely within the enclosing Container object.
It also has a version attribute that distinguishes it from other versioned objects with the
same name. IRs are not required to support simultaneous containment of multiple ver-
sions of the same named object. Supporting multiple versions most likely requires mecha-
nism and policy not specified in this document.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are defined
within the containing object (for example, an interface is defined within a module) or
because they are inherited by the containing object (for example, an operation may be con-
tained by an interface because the interface inherits the operation from another interface).
If an object is contained through inheritance, the defined_in attribute identifies the
InterfaceDef from which the object is inherited.
6-10 CORBA V2.0 July 1995

6

The absolute_name attribute is an absolute ScopedName that identifies a Con-
tained object uniquely within its enclosing Repository. If this object’s defined_in
attribute references a Repository, the absolute_name is formed by concatenating
the string “::” and this object’s name attribute. Otherwise, the absolute_name is
formed by concatenating the absolute_name attribute of the object referenced by this
object’s defined_in attribute, the string “::”, and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the inter-
face’s definition. The kind of definition described by the structure returned is provided
with the returned structure. For example, if the describe operation is invoked on an
attribute object, the kind field contains dk_Attribute and the value field contains an
any, which contains the AttributeDescription structure.

Write Interface

Setting the id attribute changes the global identity of this definition. An error is returned if
an object with the specified id attribute already exists within this object’s Repository.

Setting the name attribute changes the identity of this definition within its Container.
An error is returned if an object with the specified name attribute already exists within
the this object’s Container. The absolute_name attribute is also updated, along
with any other attributes that reflect the name of the object. If this object is a Container,
the absolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its current Container, and
adds it to the Container specified by new_container, which must:

• Be in the same Repository,
• Be capable of containing this object’s type (see FIGURE 13. on page 6-7); and

• Not already contain an object with this object’s name (unless multiple versions
are supported by the IR).

The name attribute is changed to new_name, and the version attribute is changed to
new_version.

The defined_in and absolute_name attributes are updated to reflect the new con-
tainer and name. If this object is also a Container, the absolute_name attributes
of any objects it contains are also updated.

6.5.4 Container

The Container interface is used to form a containment hierarchy in the Interface Repos-
itory. A Container can contain any number of objects derived from the Contained
interface. All Containers, except for Repository, are also derived from Con-
tained.
CORBA V2.0 Interface Repository Interfaces July 1995 6-11

6

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
6-12 CORBA V2.0 July 1995

6

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
};

};

Read Interface

The lookup operation locates a definition relative to this container given a scoped name
using OMG IDL’s name scoping rules. An absolute scoped name (beginning with “::”)
locates the definition relative to the enclosing Repository. If no object is found, a nil
object reference is returned.

The contents operation returns the list of objects directly contained by or inherited into
the object. The operation is used to navigate through the hierarchy of objects. Starting
with the Repository object, a client uses this operation to list all of the objects contained
by the Repository, all of the objects contained by the modules within the Repository, and
then all of the interfaces within a specific module, and so on.
CORBA V2.0 Interface Repository Interfaces July 1995 6-13

6

limit_type If limit_type is set to dk_all, objects of all interface types are
returned. For example, if this is an InterfaceDef, the attribute, oper-
ation, and exception objects are all returned. If limit_type is set to
a specific interface, only objects of that interface type are returned.
For example, only attribute objects are returned if limit_type is set
to dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned.
If set to FALSE, all contained objects—whether contained due to
inheritance or because they were defined within the object—are
returned.

The lookup_name operation is used to locate an object by name within a particular
object or within the objects contained by that object.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the object the opera-
tion is invoked on or whether it should search through objects con-
tained by the object as well.

Setting levels_to_search to -1 searches the current object and all contained
objects. Setting levels_to_search to 1 searches only the current object.

limit_type If limit_type is set to dk_all, objects of all interface types are
returned (e.g., attributes, operations, and exceptions are all
returned). If limit_type is set to a specific interface, only objects of
that interface type are returned. For example, only attribute objects
are returned if limit_type is set to dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned.
If set to FALSE, all contained objects (whether contained due to
inheritance or because they were defined within the object) are
returned.

The describe_contents operation combines the contents operation and the
describe operation. For each object returned by the contents operation, the descrip-
tion of the object is returned (i.e., the object’s describe operation is invoked and the
results returned).

max_returned_objs Limits the number of objects that can be returned in an invocation
of the call to the number provided. Setting the parameter to -1
means return all contained objects.
6-14 CORBA V2.0 July 1995

6

Write Interface

The Container interface provides operations to create ModuleDefs, Constant-
Defs, StructDefs, UnionDefs, EnumDefs, AliasDefs, and InterfaceDefs as
contained objects. The defined_in attribute of a definition created with any of these
operations is initialized to identify the Container on which the operation is invoked,
and the containing_repository attribute is initialized to its Repository.

The create_<type> operations all take id and name parameters which are used to
initialize the identity of the created definition. An error is returned if an object with the
specified id already exists within this object’s Repository, or, assuming multiple ver-
sions are not supported, if an object with the specified name already exists within this
Container.

The create_module operation returns a new empty ModuleDef. Definitions can be
added using Container::create_<type> operations on the new module, or by using
the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified
type and value.

The create_struct operation returns a new StructDef with the specified mem-
bers. The type member of the StructMember structures is ignored, and should be
set to TC_void. See “StructDef” on page 6-19 for more information.

The create_union operation returns a new UnionDef with the specified
discriminator_type and members. The type member of the UnionMember
structures is ignored, and should be set to TC_void. See “UnionDef” on page 6-19 for
more information.

The create_enum operation returns a new EnumDef with the specified members.
See “EnumDef” on page 6-20 for more information.

The create_alias operation returns a new AliasDef with the specified
original_type.

The create_interface operation returns a new empty InterfaceDef with the speci-
fied base_interfaces. Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new InterfaceDef. Operation-
Defs can be added using InterfaceDef::create_operation and AttributeDefs
can be added using Interface::create_attribute. Definitions can also be added using
the Contained::move operation.

6.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that represent
OMG IDL types. It provides access to the TypeCode describing the type, and is used in
defining other interfaces wherever definitions of IDL types must be referenced.
CORBA V2.0 Interface Repository Interfaces July 1995 6-15

6

module CORBA {
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

};

The type attribute describes the type defined by an object derived from IDLType.

6.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The
Repository object can contain constants, typedefs, exceptions, interfaces, and modules.
As it inherits from Container, it can be used to look up any definition (whether globally
defined or defined within a module or interface) either by name or by id.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBs might require that definitions they use be registered with a particu-
lar repository). Each ORB environment will provide a means for obtaining object refer-
ences to the Repositories available within the environment.

module CORBA {
interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);
};

};

Read Interface

The lookup_id operation is used to lookup an object in a Repository given its
RepositoryId. If the Repository does not contain a definition for search_id, a nil
object reference is returned.
6-16 CORBA V2.0 July 1995

6

The get_primitive operation returns a reference to a PrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and owned by the Repository.

Write Interface

The three create_<type> operations create new objects defining anonymous types. As
these interfaces are not derived from Contained, it is the caller’s responsibility to
invoke destroy on the returned object if it is not successfully used in creating a defini-
tion that is derived from Contained. Each anonymous type definition must be used in
defining exactly one other object.

The create_string operation returns a new StringDef with the specified bound,
which must be non-zero. The get_primitive operation is used for unbounded strings.

The create_sequence operation returns a new SequenceDef with the specified
bound and element_type.

The create_array operation returns a new ArrayDef with the specified length and
element_type.

6.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces and other module
objects.

module CORBA {
interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};
};

The inherited describe operation for a ModuleDef object returns a ModuleDe-
scription.

6.5.8 ConstantDef Interface

A ConstantDef object defines a named constant.
CORBA V2.0 Interface Repository Interfaces July 1995 6-17

6

module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};
};

Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The
type of a constant must be one of the simple types (long, short, float, char, string, octet,
etc.). The type_def attribute identifies the definition of the type of the constant.

The value attribute contains the value of the constant, not the computation of the value
(e.g., the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescrip-
tion.

Write Interface

Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to
the type attribute of the ConstantDef.

6.5.9 TypedefDef Interface

TypedefDef is an abstract interface used as a base interface for all named non-object
types (structures, unions, enumerations, and aliases). The TypedefDef interface is not
inherited by the definition objects for primitive or anonymous types.
6-18 CORBA V2.0 July 1995

6

module CORBA {
interface TypedefDef : Contained, IDLType {
};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

6.5.10 StructDef

A StructDef represents an OMG IDL structure definition.

module CORBA {
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};
typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef {
attribute StructMemberSeq members;

};
};

Read Interface

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

Write Interface

Setting the members attribute also updates the type attribute. When setting the mem-
bers attribute, the type member of the StructMember structure is ignored and
should be set to TC_void.

6.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.
CORBA V2.0 Interface Repository Interfaces July 1995 6-19

6

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator_type;

attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

Read Interface

The discriminator_type and discriminator_type_def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member. The label of
each UnionMemberDescription is a distinct value of the discriminator_type.
Adjacent members can have the same name. Members with the same name must also
have the same type. A label with type octet and value 0 indicates the default union
member.

The inherited type attribute is a tk_union TypeCode describing the union.

Write Interface

Setting the discriminator_type_def attribute also updates the
discriminator_type attribute and setting the discriminator_type_def or mem-
bers attribute also updates the type attribute.

When setting the members attribute, the type member of the UnionMember struc-
ture is ignored and should be set to TC_void.

6.5.12 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};
};
6-20 CORBA V2.0 July 1995

6

Read Interface

The members attribute contains a distinct name for each possible value of the enumera-
tion.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

Write Interface

Setting the members attribute also updates the type attribute.

6.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};

6.5.14 Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

Write Interface

Setting the original_type_def attribute also updates the type attribute.

6.5.15 PrimitiveDef

A PrimitiveDef represents one of the IDL primitive types. As primitive types are
unnamed, this interface is not derived from TypedefDef or Contained.

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};
};
CORBA V2.0 Interface Repository Interfaces July 1995 6-21

6

The kind attribute indicates which primitive type the PrimitiveDef represents. There
are no PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

6.5.16 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is repre-
sented as a PrimitiveDef. As string types are anonymous, this interface is not derived
from TypedefDef or Contained.

module CORBA {
interface StringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of characters in the string, and must
not be zero.

The inherited type attribute is a tk_string TypeCode describing the string.

6.5.17 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not derived from TypedefDef or Contained.

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;

attribute IDLType element_type_def;
};

};

Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A
bound of zero indicates an unbounded sequence.

The type of the elements is described by element_type and identified by
element_type_def.

The inherited type attribute is a tk_sequence TypeCode describing the sequence.
6-22 CORBA V2.0 July 1995

6

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this interface
is not derived from TypedefDef or Contained.

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;

attribute IDLType element_type_def;
};

};

Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by
element_type_def. Since an ArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects, one
per array dimension. The element_type_def attribute of the ArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to the ArrayDef representing
the next index to the right, and so on. The innermost ArrayDef represents the rightmost
index and the element type of the multi-dimensional OMG IDL array.

The inherited type attribute is a tk_array TypeCode describing the array.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.19 ExceptionDef

An ExceptionDef represents an exception definition.
CORBA V2.0 Interface Repository Interfaces July 1995 6-23

6

module CORBA {
interface ExceptionDef : Contained {

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

Read Interface

The type attribute is a tk_except TypeCode describing the exception.

The members attribute describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDe-
scription.

Write Interface

Setting the members attribute also updates the type attribute. When setting the mem-
bers attribute, the type member of the StructMember structure is ignored and
should be set to TC_void.

6.5.20 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface.
6-24 CORBA V2.0 July 1995

6

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};
};

Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

Write Interface

Setting the type_def attribute also updates the type attribute.

6.5.21 OperationDef

An OperationDef represents the information needed to define an operation of an inter-
face.
CORBA V2.0 Interface Repository Interfaces July 1995 6-25

6

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};
};

Read Interface

The result attribute is a TypeCode describing the type of the value returned by the
operation. The result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptions in
the sequence is significant. The name member of each structure provides the parameter
name. The type member is a TypeCode describing the type of the parameter. The
6-26 CORBA V2.0 July 1995

6

type_def member identifies the definition of the type of the parameter. The mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the operation.

The exceptions attribute specifies the list of exception types that can be raised by the
operation.

The inherited describe operation for an OperationDef object returns an Opera-
tionDescription.

The inherited describe_contents operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if the result is TC_void and all
elements of params have a mode of PARAM_IN.

6.5.22 InterfaceDef

An InterfaceDef object represents an interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.
CORBA V2.0 Interface Repository Interfaces July 1995 6-27

6

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};
6-28 CORBA V2.0 July 1995

6

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};
};

Read Interface

The base_interfaces attribute lists all the interfaces from which this inter-
face inherits. The is_a operation returns TRUE if the interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns a FullInterfaceDescription describ-
ing the interface, including its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDe-
scription.

The inherited contents operation returns the list of constants, typedefs, and exceptions
defined in this InterfaceDef and the list of attributes and operations either defined or inher-
ited in this InterfaceDef. If the exclude_inherited parameter is set to TRUE, only
attributes and operations defined within this interface are returned. If the
exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

Write Interface

Setting the base_interfaces attribute returns an error if the name attribute of any
object contained by this InterfaceDef conflicts with the name attribute of any object
contained by any of the specified base InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the Inter-
faceDef on which it is invoked. The id, name, version, type_def, and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute is
initialized to identify the containing InterfaceDef. An error is returned if an object with
the specified id already exists within this object’s Repository, or if an object with the
specified name already exists within this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the
InterfaceDef on which it is invoked. The id, name, version, result_def, mode,
params, exceptions, and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
InterfaceDef. An error is returned if an object with the specified id already exists
within this object’s Repository, or if an object with the specified name already exists
within this InterfaceDef.
CORBA V2.0 Interface Repository Interfaces July 1995 6-29

6

6.6 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information in
the repository. A RepositoryId is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does not matter
what format is used for any particular RepositoryId. However, conventions are used to
manage the name space created by these IDs.

RepositoryIds may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OMG IDL
source, or they might be supplied with the package to be installed.

The format of the id is a short format name followed by a colon (“:”) followed by charac-
ters according to the format. This specification defines three formats: one derived from
OMG IDL names, one that uses DCE UUIDs, and another intended for short-term use,
such as in a development environment.

6.6.1 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and major and
minor version numbers.

The RepositoryId consist of three components, separated by colons, (“:”)

The first component is the format name, “IDL”.

The second component is a list of identifiers, separated by “/” characters. These identifiers
are arbitrarily long sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and
period (“.”) characters. Typically, the first identifier is a unique prefix, and the rest are the
OMG IDL Identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal format,
separated by a “.”. When two interfaces have RepositoryIds differing only in minor
version number it can be assumed that the definition with the higher version number is
upwardly compatible with (i.e. can be treated as derived from) the one with the lower
minor version number.

6.6.2 DCE UUID Format

DCE UUID format RepositoryIds start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1”.

6.6.3 LOCAL Format

Local format RepositoryIds start with the characters “LOCAL:” and are followed by
an arbitrary string. Local format IDs are not intended for use outside a particular reposi-
6-30 CORBA V2.0 July 1995

6

tory, and thus do not need to conform to any particular convention. Local IDs that are just
consecutive integers might be used within a development environment to have a very
cheap way to manufacture the IDs while avoiding conflicts with well-known interfaces.

6.6.4 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified accommodate arbitrary
RepositoryId formats and still support the OMG IDL RepositoryId format with
minimal annotation. The pragma directives can be used with the OMG IDL, DCE
UUID, and LOCAL formats. An IDL compiler must either interpret these annotations
as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which
the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format

#pragma prefix “<string>”

sets the current prefix used in generating OMG IDL format RepositoryIds. The
specified prefix applies to RepositoryIds generated after the pragma until the end of
the current scope is reached or another prefix pragma is encountered.

For example, the RepositoryId for the initial version of interface Printer defined on
module Office by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0”.

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

Because RepositoryIds may be used in many different computing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them. Prefixes
that are distinct, such as trademarked names, domain names, UUIDs, and so forth, are
preferable to generic names such as “document.”

The Version Pragma

An OMG IDL pragma of the format
CORBA V2.0 RepositoryIds July 1995 6-31

6

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
RepositoryId for a specific OMG IDL name. The <name> can be a fully or
partially scoped name or a simple identifier, interpreted according to the usual OMG
IDL name lookup rules relative to the scope within which the pragma is contained. The
<major> and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID
pragma is encountered for it.

The ID string can be generated by starting with the string “IDL:”. Then, if any prefix
pragma applies, it is appended, followed by a “/” character. Next, the components of
the scoped name of the definition, relative to the scope in which any prefix that applies
was encountered, are appended, separated by “/” characters. Finally, a “:” and the
version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;

#pragma version T4 2.4
};

specifies types with the following scoped names and RepositoryIds:

::M1::T1 IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4
6-32 CORBA V2.0 July 1995

6

For this scheme to provide reliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world, where different entities independently evolve
types, a convention must be followed to avoid the same RepositoryId being used for
two different types. Only the entity that created the prefix has authority to create new
IDs by simply incrementing the version number. Other entities must use a new prefix,
even if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};

typedef long T4;
#pragma version T4 2.4

};

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

For More Information

Section 6.8, “OMG IDL for Interface Repository,” on page 6-41 shows the OMG IDL
specification of the IR, including the #pragma directive; Section 3.3, “Preprocessing,”
on page 3-8 contain additional, general information on the pragma directive.

6.7 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to
indicate the types of the actual arguments. They are used by an Interface Repository to
represent the type specifications that are part of many OMG IDL declarations. Finally,
they are crucial to the semantics of the any type.

TypeCodes are themselves values that can be passed as invocation arguments. To allow
different ORB implementations to hide extra information in TypeCodes, the representa-
tion of TypeCodes will be opaque (like object references). However, we will assume
that the representation is such that TypeCode “literals” can be placed in C include files.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for
that kind. For example, the TypeCode describing OMG IDL type long has kind
tk_long and no parameters. The TypeCode describing OMG IDL type
CORBA V2.0 TypeCodes July 1995 6-33

6

sequence<boolean,10> has kind tk_sequence and two parameters: 10 and
boolean.

6.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is
6-34 CORBA V2.0 July 1995

6

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except

};

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);

};
};

With the above operations, any TypeCode can be decomposed into its constituent parts.
The BadKind exception is raised if an operation is not appropriate for the TypeCode
kind is invoked.
CORBA V2.0 TypeCodes July 1995 6-35

6

The equal operation can be invoked on any TypeCode. Equal TypeCodes are inter-
changeable, and give identical results when TypeCode operations are applied to them.

The kind operation can be invoked on any TypeCode. Its result determines what other
operations can be invoked on the TypeCode.

The id operation can be invoked on object reference, structure, union, enumeration, alias,
and exception TypeCodes. It returns the RepositoryId globally identifying the type.
Object reference and exception TypeCodes always have a RepositoryId. Structure,
union, enumeration, and alias TypeCodes obtained from the Interface Repository or the
ORB::create_operation_list operation also always have a RepositoryId. Other-
wise, the id operation can return an empty string.

The name operation can also be invoked on object reference, structure, union, enumera-
tion, alias, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned
from a TypeCode may not match the name of the type in any particular Repository,
and may even be an empty string.

The member_count and member_name operations can be invoked on structure,
union, and enumeration TypeCodes. Member_count returns the number of mem-
bers constituting the type. Member_name returns the simple name of the member
identified by index. Since names are local to a Repository, the name returned from a
TypeCode may not match the name of the member in any particular Repository, and
may even be an empty string.

The member_type operation can be invoked on structure and union TypeCodes. It
returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can
only be invoked on union TypeCodes. Member_label returns the label of the union
member identified by index. For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_name, member_type, and member_label operations raise
Bounds if the index parameter is greater than or equal to the number of members consti-
tuting the type.

The length operation can be invoked on string, sequence, and array TypeCodes. For
strings and sequences, it returns the bound, with zero indicating an unbounded string or
sequence. For arrays, it returns number of elements in the array.

The content_type operation can be invoked on sequence, array, and alias Type-
Codes. For sequences and arrays, it returns the element type. For aliases, it returns the
original type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesting TypeCodes, one per dimension. The out-
6-36 CORBA V2.0 July 1995

6

ermost tk_array Typecode describes the leftmost array index of the array as defined
in IDL. Its content_type describes the next index. The innermost nested tk_array
TypeCode describes the rightmost index and the array element type.

The deprecated param_count and parameter operations provide access to those
parameters that were present in previous versions of CORBA. Some information available
via other TypeCode operations is not visible via the parameter operation. The mean-
ing of the indexed parameters for each TypeCode kind are listed in TABLE 12. on page
6-37, along with the information that is not visible via the parameter operation.

The tk_objref TypeCode represents an interface type. Its parameter is the Reposi-
toryId of that interface.

A structure with N members results in a tk_struct TypeCode with 2N+1 parameters:
first, the simple name of the struct; the rest are member names alternating with the corre-
sponding member TypeCode. Member names are represented as strings.

TABLE 12. Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST NOT VISIBLE

tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_boolean *NONE*

tk_char *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref { interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId

tk_union { union-name, discriminator-TypeCode, label-value, member-
name, TypeCode, ... (repeat triples) }

RepositoryId

tk_enum { enum-name, enumerator-name, ... } RepositoryId

tk_string { maxlen-integer }

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId
CORBA V2.0 TypeCodes July 1995 6-37

6

A union with N members results in a tk_union TypeCode with 3N+2 parameters: the
simple name of the union, the discriminator TypeCode followed by a label value, mem-
ber name, and member TypeCode for each of the N members. The label values are all
values of the data type designated by the discriminator TypeCode, with one exception.
The default member (if present) is marked with a label value consisting of the 0 octet.
Recall that the operation “parameter(tc,i)” returns an any, and that anys themselves carry
a TypeCode that can distinguish an octet from any of the legal switch types.

The tk_enum TypeCode has the simple name of the enum followed by the enumera-
tor names as parameters. Enumerator names are represented as strings.

The tk_string TypeCode has 1 parameter: an integer giving the maximum string
length. A maximum of 0 denotes unbounded.

The tk_sequence TypeCode has 2 parameters: a TypeCode for the sequence ele-
ments, and an integer giving the maximum sequence. Again, 0 denotes unbounded.

The tk_array TypeCode has 2 parameters: a TypeCode for the array elements, and
an integer giving the array length. Arrays are never unbounded.

The tk_alias TypeCode has 2 parameters: the name of the alias followed by the
TypeCode of the type being aliased.

The tk_except TypeCode has the same format as the tk_struct TypeCode,
except that exceptions with no members are allowed.

6.7.2 TypeCode Constants

If “typedef ... FOO;” is an IDL type declaration, the IDL compiler will (if asked) pro-
duce a declaration of a TypeCode constant named TC_FOO for the C language map-
ping. In the case of an unnamed, bounded string type used directly in an operation or
attribute declaration, a TypeCode constant named TC_string_n, where n is the bound of
the string is produced. (For example, “string<4> op1();” produces the constant
“TC_string_4”.) These constants can be used with the dynamic invocation interface, and
any other routines that require TypeCodes. The predefined TypeCode constants,
named according to the C language mapping, are:

TC_null
TC_void
TC_short
TC_long
TC_ushort
TC_ulong
TC_float
TC_double
TC_boolean
TC_char
TC_octet
TC_any
TC_TypeCode
6-38 CORBA V2.0 July 1995

6

TC_Principal
TC_Object = tk_objref { Object }
TC_string= tk_string { 0 } // unbounded
TC_CORBA_NamedValue= tk_struct { ... }
TC_CORBA_InterfaceDescription= tk_struct { ... }
TC_CORBA_OperationDescription= tk_struct { ... }
TC_CORBA_AttributeDescription= tk_struct { ... }
TC_CORBA_ParameterDescription= tk_struct { ... }
TC_CORBA_ModuleDescription= tk_struct { ... }
TC_CORBA_ConstantDescription= tk_struct { ... }
TC_CORBA_ExceptionDescription= tk_struct { ... }
TC_CORBA_TypeDescription= tk_struct { ... }
TC_CORBA_InterfaceDef_FullInterfaceDescription= tk_struct { ... }

The exact form for TypeCode constants is language mapping, and possibly implemen-
tation, specific.

6.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in
terms of object references, and the TypeCodes describing them are generated automati-
cally.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed
outside of any Interface Repository. This can be done using operations on the ORB
pseudo-object.
CORBA V2.0 TypeCodes July 1995 6-39

6

module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
6-40 CORBA V2.0 July 1995

6

in unsigned long offset
);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
};

};

Most of these operations are similar to corresponding IR operations for creating type defi-
nitions. TypeCodes are used here instead of IDLType object references to refer to
other types. In the StructMember and UnionMember structures, only the type is
used, and the type_def should be set to nil.

The create_recursive_sequence_tc operation is used to create TypeCodes
describing recursive sequences (see See “Constructed Types” on page 22.) The result of
this operation is used in constructing other types, with the offset parameter determining
which enclosing TypeCode describes the elements of this sequence. For instance, to
construct a TypeCode for the following OMG IDL structure, the offset used when cre-
ating its sequence TypeCode would be one:

struct foo {
long value;
sequence <foo> chain;

};

Operations to create primitive TypeCodes are not needed, since TypeCode constants
for these are available.

6.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-41

6

#pragma prefix “omg.org”

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

 enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

 };

 interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

 };

 typedef string VersionSpec;

 interface Contained;
 interface Repository;
 interface Container;

 interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
 DefinitionKind kind;
 any value;
6-42 CORBA V2.0 July 1995

6

};

Description describe ();

// write interface

void move (
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);

 };

 interface ModuleDef;
 interface ConstantDef;
 interface IDLType;
 interface StructDef;
 interface UnionDef;
 interface EnumDef;
 interface AliasDef;
 interface InterfaceDef;
 typedef sequence <InterfaceDef> InterfaceDefSeq;

 typedef sequence <Contained> ContainedSeq;

 struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

 };
 typedef sequence <StructMember> StructMemberSeq;

 struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

 };
 typedef sequence <UnionMember> UnionMemberSeq;

 typedef sequence <Identifier> EnumMemberSeq;

 interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-43

6

);

ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;
};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

// write interface

ModuleDef create_module (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version
);

ConstantDef create_constant (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

StructDef create_struct (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

UnionDef create_union (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
6-44 CORBA V2.0 July 1995

6

 in UnionMemberSeq members
);

EnumDef create_enum (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

AliasDef create_alias (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

InterfaceDef create_interface (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in InterfaceDefSeq base_interfaces
);

 };

 interface IDLType : IRObject {
readonly attribute TypeCode type;

 };

 interface PrimitiveDef;
 interface StringDef;
 interface SequenceDef;
 interface ArrayDef;

 enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

 };

 interface Repository : Container {
// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-45

6

// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (
 in unsigned long bound,
 in IDLType element_type
);

ArrayDef create_array (
 in unsigned long length,
 in IDLType element_type
);

 };

 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

 };

 interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

 };

 struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

 };

 interface TypedefDef : Contained, IDLType {
 };

 struct TypeDescription {
Identifier name;
6-46 CORBA V2.0 July 1995

6

RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

 };

 interface StructDef : TypedefDef {
attribute StructMemberSeq members;

 };

 interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

 };

 interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

 };

 interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

 };

 interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

 };

 interface StringDef : IDLType {
attribute unsigned long bound;

 };

 interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

 };
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-47

6

 interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

 };

 interface ExceptionDef : Contained {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

 };
 struct ExceptionDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

 };

 enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

 interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

 };

 struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

 };

 enum OperationMode {OP_NORMAL, OP_ONEWAY};

 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;
6-48 CORBA V2.0 July 1995

6

ParameterMode mode;
 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentifier> ContextIdSeq;

 typedef sequence <ExceptionDef> ExceptionDefSeq;
 typedef sequence <ExceptionDescription> ExcDescriptionSeq;

 interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

 };

 struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

 };

 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence <OperationDescription> OpDescriptionSeq;
 typedef sequence <AttributeDescription> AttrDescriptionSeq;

 interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-49

6

 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

OperationDef create_operation (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);

 };

 struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

 };

 enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except

 };

 interface TypeCode { // PIDL
exception Bounds {};
6-50 CORBA V2.0 July 1995

6

exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);

 };

 interface ORB {
// other operations ...

TypeCode create_struct_tc (
 in RepositoryId id,
 in Identifier name,
 in StructMemberSeq members
);

TypeCode create_union_tc (
 in RepositoryId id,
 in Identifier name,
 in TypeCode discriminator_type,
 in UnionMemberSeq members
CORBA V2.0 OMG IDL for Interface Repository July 1995 6-51

6

);

TypeCode create_enum_tc (
 in RepositoryId id,
 in Identifier name,
 in EnumMemberSeq members
);

TypeCode create_alias_tc (
 in RepositoryId id,
 in Identifier name,
 in TypeCode original_type
);

TypeCode create_exception_tc (
 in RepositoryId id,
 in Identifier name,
 in StructMemberSeq members
);

TypeCode create_interface_tc (
 in RepositoryId id,
 in Identifier name
);

TypeCode create_string_tc (
 in unsigned long bound
);

TypeCode create_sequence_tc (
 in unsigned long bound,
 in TypeCode element_type
);

TypeCode create_recursive_sequence_tc (
 in unsigned long bound,
 in unsigned long offset
);

TypeCode create_array_tc (
 in unsigned long length,
 in TypeCode element_type
);

 };
};
6-52 CORBA V2.0 July 1995

ORB Interface 7
The ORB interface is the interface to those ORB functions that do not depend on
which object adapter is used. These operations are the same for all ORBs and all object
implementations, and can be performed either by clients of the objects or
implementations. Some of these operations appear to be on the ORB, others appear to
be on the object reference. Because the operations in this section are implemented by
the ORB itself, they are not in fact operations on objects, although they may be
described that way and the language binding will, for consistency, make them appear
that way.

The ORB interface also defines operations for creating lists and determining the
default context used in the Dynamic Invocation Interface. Those operations are
described in Chapter 4.

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::”.

7.1 Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.
 CORBA V2.0 July 1995 7-1

7

module CORBA {

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

);
Status create_operation_list (
in OperationDef oper,
out NVList new_list

);

Status get_default_context (out Context ctx);

};
};

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. Since in
general a client does not know or care which ORB is used for a particular object
reference, the client can choose whatever ORB is convenient.

For a description of the create_list and create_operation_list operations, see “List
Operations” on page 4-10. The get_default_context operation is described in the
section “get_default_context” on page 4-14.

7.2 Object Reference Operations

There are some operations that can be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we will define an
interface for Object:
7-2 CORBA V2.0 July 1995

7

module CORBA {

interface Object { // PIDL

ImplementationDef get_implementation ();
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifieroperation,
in NVList arg_list,
inout NamedValueresult,
out Requestrequest,
in Flags req_flags
);
};
};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section “Request Operations” on page 4-4.

7.2.1 Determining the Object Implementation and Interface

 An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See
Chapter 6 for a definition of operations on the Interface Repository. An operation on
the Object called get_implementation will return an object in an implementation
repository that describes the implementation of the object. See the Basic Object
Adapter chapter for information about the Implementation Repository.

InterfaceDef get_interface (); // PIDL
ImplementationDef get_implementation ();

7.2.2 Duplicating and Releasing Copies of Object References

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.
CORBA V2.0 Object Reference Operations July 1995 7-3

7

Object duplicate (); // PIDL
void release ();

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the
duplicate, and that the implementation cannot distinguish whether the original or a
duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
the release operation.

7.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

boolean is_nil (); // PIDL

7.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

boolean is_a(in string logical_type_id); // PIDL

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The
operation returns true if the object is really an instance of that type, including if that
type is an ancestor of the “most derived” type of that object.

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow”, and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

7.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existent operation may be used to test whether an object (e.g. a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist, and otherwise it returns false.
7-4 CORBA V2.0 July 1995

7

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as
a form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

7.2.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

unsigned long hash(in unsigned long maximum); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using the hash() operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

Equivalence Testing

The is_equivalent() operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.
CORBA V2.0 Object Reference Operations July 1995 7-5

7

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent() should be viewed as only indicating that the object references
are distinct, and not necessarily an indication that the references indicate distinct
objects.

A typical application use of this operation is be to match object references in a hash
table. Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

7.3 Overview: ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and object adapter (BOA and OA) environments.

• Get references to ORB and OA (including BOA) pseudo-objects—and sometimes
to other objects—for use in future ORB and OA operations.

CORBA V2.0 provides operations, specified in PIDL, to initialize applications and
obtain the appropriate object references. The following is provided:

• Operations providing access to the ORB. These operations reside in CORBA
module, but not in the ORB interface and are described in Section 7.4, “ORB
Initialization,” on page 7-6.

• Operations providing access to the Basic Object Adapter (BOA) and other object
adapters (OAs) These operations reside in the ORB interface and are described in
Section 7.5, “OA and BOA Initialization,” on page 7-8.

• Operations providing access to the Interface Repository, Naming Service, and
other Object Services. These operations reside in the ORB interface and are
described in Section 7.6, “Obtaining Initial Object References,” on page 7-10.

In addition, this manual provides a mapping of the PIDL initialization and object
reference operations to the C and C++ programming languages. For mapping
information, refer to Section 14.26, “ORB and OA/BOA Initialization Operations,” on
page 14-31 and to Section 17.12, “ORB,” on page 17-11.

7.4 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get
ORB and OA pseudo-object references. This serves two purposes. First, it initializes an
application into the ORB and OA environments. Second, it returns the ORB and OA
pseudo-object references to the application for use in future ORB and OA operations.
7-6 CORBA V2.0 July 1995

7

The ORB and BOA initialization operations must be ordered with ORB occurring
before OA: an application cannot call OA initialization routines until ORB
initialization routines have been called for the given ORB.

The operation to initialize an application in the ORB and get its pseudo-object
reference is not performed on an object. This is because applications do not initially
have an object on which to invoke operations. The ORB initialization operation is an
application’s bootstrap call into the CORBA world. The PIDL for the call (Figure 7-1)
shows that the ORB_init call is part of the CORBA module but not part of the ORB
interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain OA references for
that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

 typedef string ORBid;
 typedef sequence <string> arg_list;
 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
 };

Figure 7-1

The identifier for the ORB will be a name of type ORBid (string). The allocation of
ORBids is the responsibility of ORB administrators and is not intended to be managed
by the OMG. Names are locally scoped and the ORB administrator is responsible for
ensuring that the names are unambiguous. Examples of potential ORBids are “Internet
ORB,” “BNR_private,” “BNR_interop_1_2.” If a NULL ORBid is used then arg_list
arguments can be used to determine which ORB should be returned. This is achieved
by searching the arg_list parameters for one tagged ORBid, for example, –ORBid
“ORBid_example.” Other parameters of significance to the ORB can be identified, for
example, “Hostname,” “SpawnedServer,” and so forth. To allow for other parameters
to be specified without causing applications to be re-written, it is necessary to specify
the format that ORB parameters may take. The format of those parameters will be

–ORB<suffix> <value>.
CORBA V2.0 ORB Initialization July 1995 7-7

7

The ORB_init operation can be called any number of times and is expected to return
the same pseudo-object reference for the same parameters. Calling the ORB_init
function multiples times for the same ORB may be required where an ORB is
implemented as a shared library, or where several threads of a multi-threaded
application require to use the same ORB and all wish to call the ORB_init operation.

7.5 OA and BOA Initialization

An ORB may have zero or more object adaptors associated with it. Servers must have
a reference to an OA pseudo-object in order to access its functionality.

The only object adaptor defined in CORBA is the Basic Object Adaptor (BOA).
However other adaptors such as the Library Object Adaptor (LOA) are also mentioned.
Given an ORB reference, an application must be able to initialize itself in an OA
environment and get the pseudo reference of the OA from the ORB.

Because OAs are pseudo-objects and therefore do not necessarily share a common
interface, it is not possible to have a generic OA_init operation that returns an object
type which is then explicitly narrowed or widened to the correct pseudo-object type. It
is therefore necessary to provide an initialization function for each OA type separately.
To achieve this a template is suggested for OA initialization, and the BOA
initialization operation is generated from that template.

The operation to get the OA pseudo object reference is part of the ORB interface. The
<OA>_init operation is therefore an operation on the ORB pseudo object. Figure 7-2
shows the PIDL for the for the <OA>_init (specifically BOA_init) operation.
7-8 CORBA V2.0 July 1995

7

// PIDL
module CORBA {

 interface ORB
{

typedef sequence <string> arg_list;
typedef string OAid;

 // Template for OA initialization operations
 // <OA> <OA>_init (inout arg_list argv,
// in OAid oa_identifier);

BOA BOA_init (inout arg_list argv,
 in OAid boa_identifier);

 };

 }

Figure 7-2

The identifier for the OA will be a name of the type OAid (string). The allocation of
OAids is the responsibility of ORB administrators and is not intended to be managed
by the OMG. Names are locally scoped and the ORB administrator is responsible for
ensuring that the names are unambiguous. Examples of potential OAids are “BOA,”
“BNR_BOA,” “HP_LOA.”

If a NULL OAid is used then arg_list arguments can be used to determine which OA
should be returned. This is achieved by searching the arg_list parameters for one
tagged OAid, e.g. -OAid “OAid_example”.

In order to allow for other OA parameters to be specified in the future without causing
applications to be re-written it is necessary to specify the format parameters may take.
The format of OA specific parameters will be - OA<suffix> <value>.

The BOA_init function may be called any number of times and is expected to return
the same pseudo object reference for the same parameters. Calling the BOA_init
operation multiples times for the same BOA may be required where several threads of
a multi-threaded application require to use the same BOA and therefore need to the
BOA_init operation.

The BOA_init operation returns a BOA. Once the operation has returned the BOA is
assumed to be initialized for the application object.
CORBA V2.0 OA and BOA Initialization July 1995 7-9

7

7.6 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references.
References are required for the Interface Repository and Object Services. (The
Interface Repository is described in Chapter 6 of this manual; Object Services are
described in CORBAservices.) The functionality required by the application is similar
to that provided by the Naming Service. However, the OMG does not want to mandate
that the Naming Service be made available to all applications in order that they may be
portably initialized. Consequently, the operations shown in this section provide a
simplified, local version of the Naming Service that applications can use to obtain a
small, defined set of object references which are essential to its operation. Because
only a small well defined set of objects are expected with this mechanism, the naming
context can be flattened to be a single-level name space. This simplification results in
only two operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two new operations are
added to the ORB pseudo-object interface, providing facilities to list and resolve initial
object references. Figure 7-3 on page 7-10 shows the PIDL for these operations.

// PIDL interface for getting initial object references
module CORBA {

interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);
 }

}

Figure 7-3

The resolve_initial_references operation is an operation on the ORB rather than the
Naming Service’s NamingContext. The interface differs from the Naming Service’s
resolve in that ObjectId (a string) replaces the more complex Naming Service
construct (a sequence of structures containing string pairs for the components of the
name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB and
BOA identifiers, the ObjectId name space requires careful management. To achieve
this. the OMG may, in the future, define which services are required by applications
through this interface and specify names for those services.
7-10 CORBA V2.0 July 1995

7

Currently, reserved ObjectIds are InterfaceRepository and NameService.

To allow an application to determine which objects have references available via the
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList, which is a sequence of ObjectIds.
ObjectIds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined, i.e. "InterfaceRepository" returns
a object of type Repository, and “NameService" returns a CosNamingContext
object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. E.g. for
InterfaceRepository the object returned would be narrowed to Repository type.

In the future, specifications for Object Services (in CORBAservices) will state whether
it is expected that a service’s initial reference be made available via the
resolve_initial_references operation or not, i.e. whether the service is necessary or
desirable for bootstrap purposes.
CORBA V2.0 Obtaining Initial Object References July 1995 7-11

7

7-12 CORBA V2.0 July 1995

The Basic Object Adapter 8
An object adapter is the primary interface that an implementation uses to access ORB
functions. The Basic Object Adapter (BOA) is an interface intended to be widely
available and to support a wide variety of common object implementations. It includes
convenient interfaces for generating object references, registering implementations that
consist of one or more programs, activating implementations, and authenticating
requests. It also provides a limited amount of persistent storage for objects that can be
used for connecting to a larger or more general storage facility, for storing access
control information, or other purposes.

Most of the Basic Object Adapter interface can be expressed in OMG IDL, since the
interface is to the operations on the object adapter. Some of the operations to bind the
implementation to the object adapter depend on the language mapping. Such
dependencies are noted in this chapter, but OMG IDL will be used to describe the
interface.

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::”.

8.1 Role of the Basic Object Adapter

One object adapter, called the Basic Object Adapter, should be available in every ORB
implementation; although the BOA will generally have an ORB-dependent
implementation, object implementations that use it should be able to run on any ORB
that supports the required language mapping, assuming they have been installed
appropriately.

Other Object Adapters are likely to be created. Ordinarily, it is not necessary for a
client of an object to be concerned about which Object Adapter is used by the
implementation.
 CORBA V2.0 July 1995 8-1

8

The following functions are provided through the Basic Object Adapter:

• Generation and interpretation of object references

• Authentication of the principal making the call

• Activation and deactivation of the implementation

• Activation and deactivation of individual objects

• Method invocation through skeletons

The Basic Object Adapter supports object implementations that are constructed from
one or more programs1. The BOA activates and communicates with these programs
using operating system facilities that are not part of the ORB. Therefore the BOA
requires some information that is inherently non-portable. Although not defining this
information, the BOA does define the concept of an Implementation Repository which
can hold this information, allowing each system to install and start implementations in
the way that is appropriate for that system.

The mechanism for binding the program to the BOA and ORB is also not specified
because it is inherently system and language-dependent. We assume that the BOA can
connect the methods to the skeleton by some means, whether at the time the
implementation is compiled, installed, or activated, etc. Subsequent to activation, the
BOA can make calls on routines in the implementation and the implementation can
make calls on the BOA.

Figure 14 on page 8-3 shows the structure of the Basic Object Adapter, and some of
the interactions between the BOA and an Object Implementation. The Basic Object
Adapter will start a program to provide the Object Implementation, in this example, a
per-class server (1). The Object Implementation notifies the BOA that it has finished
initializing and is prepared to handle requests (2). When the first request for a
particular object arrives, the implementation is notified to activate the object (3). On
subsequent requests, the BOA calls the appropriate method using the per-interface
skeleton (4). At various times, the implementation may access BOA services such as
object creation, deactivation, and so forth. (5).

1.The term “program” is meant to include a wide range of possible constructs, including scripts,
loadable modules, etc., in addition to the traditional notions of an application or server.
8-2 CORBA V2.0 July 1995

8

FIGURE 14. The Structure and Operation of the Basic Object Adapter

The BOA exports operations that are accessed by the Object Implementation. The
BOA also calls the Object Implementation under certain circumstances. The interface
between a particular version of the BOA and the ORB Core it runs on is private, as is
the interface between the BOA and the skeletons. Thus, the BOA can exploit features
or overcome limitations of a specific ORB Core, and can cooperate with the ORB Core
and skeletons to provide a set of portable interfaces for the object implementation.

8.2 Basic Object Adapter Interface

The BOA interface is specified in OMG IDL, so that the way it is accessed in any
programming language is specified by the client side language mapping for that
language. Some data structures used by the BOA are specific to a given language
mapping, so most IDL compilers will not be able to accept this definition literally.

In practice, the BOA is most likely to be implemented partially as a separate
component and partially as a library in the Object Implementation. The separate
component is required to do activation when the implementation is not present. The
library portion is needed to establish the linkage between the methods and the skeleton.
The exact partitioning of functionality between these parts is implementation
dependent. Generally, there will appear to be a BOA object in the object
implementation. When it is invoked, some operations are satisfied in the library, some
in an external server, and some in the ORB Core.

The following is the approximate interface definition for the BOA object. More details
will be provided as the operations are discussed.

Object Implementation

1.

Activate

Implementation

2.
Register
Implementation

3.
Activate
Object

4.
Invoke
Method

5.
Access
BOA
service

Methods

Skeleton
Basic Object Adapter

ORB Core
CORBA V2.0 Basic Object Adapter Interface July 1995 8-3

8

module CORBA {

interface InterfaceDef; // from Interface Repository // PIDL
interface ImplementationDef; // from Implementation Repository
interface Object; // an object reference
interface Principal; // for the authentication service
typedef sequence <octet, 1024> ReferenceData;

interface BOA {
Object create (

in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl

);
void dispose (in Object obj);
ReferenceData get_id (in Object obj);

void change_implementation (
in Object obj,
in ImplementationDef impl

);

Principal get_principal (
in Object obj,
in Environment ev

);

void set_exception (
in exception_type major, // NO, USER,

//or SYSTEM_EXCEPTION
in string userid, // exception type id
in void *param // pointer to associated data

);

void impl_is_ready (in ImplementationDef impl);
void deactivate_impl (in ImplementationDef impl);
void obj_is_ready (in Object obj, in ImplementationDef impl);
void deactivate_obj (in Object obj);

};

 };
8-4 CORBA V2.0 July 1995

8

Requests by an implementation on the BOA are of the following kinds:

• Operations to create or destroy object references, or query or update the
information the BOA maintains for an object reference.

• Operations associated with a particular request.

• Operations to maintain a registry of active objects and implementations.

Requests by the BOA to an implementation are made with skeletons or using an
implementation’s run-time language mapping information, and are of these kinds:

• Activating an implementation.

• Activating an object.

• Performing an operation (through a skeleton method).

Each of the BOA operations is described in detail later in this section; the requests of
the BOA to an implementation are described in the language mapping section.

8.2.1 Registration of Implementations

The Basic Object Adapter expects information describing the implementations to be
stored in an Implementation Repository. The Implementation Repository ordinarily is
updated at program installation time, but may be set up incrementally or otherwise.
There are objects with an OMG IDL interface called ImplementationDef, which
capture this information. The Implementation Repository may contain additional
information for debugging, administration, etc. Note that the Implementation
Repository is logically distinct from the Interface Repository, although they may in
fact be implemented together.

The Interface Repository contains information about interfaces. There are objects with
an OMG IDL interface called InterfaceDef, which capture this information. The
Interface Repository may contain additional information for debugging, administration,
browsing, etc. The ORB Core may or may not make use of the Interface Repository or
the Implementation Repository, but the ORB and BOA use these objects to associate
object references with their interfaces and implementations.

8.2.2 Activation and Deactivation of Implementations

There are two kinds of activation that a BOA needs to perform as part of operation
invocation. The first, discussed in this section, is implementation activation, which
occurs when no implementation for an object is currently available to handle the
request. The second, discussed later, is object activation, which occurs when no
instance of the object is available to handle the request.

Implementation activation requires coordination between the BOA and the program(s)
containing the implementation. This manual uses the term server as the separately
executable entity that the BOA can start on a particular system. In a POSIX
environment, a server would be a process. In most systems, a server corresponds to the
notion of a program, but it can correspond to whatever the appropriate system facility
is in a particular environment.
CORBA V2.0 Basic Object Adapter Interface July 1995 8-5

8

The BOA initiates activity by the implementation by starting the appropriate server,
probably in an operating system-dependent way. The implementation initializes itself,
then notifies the BOA that it is prepared to handle requests by calling impl_is_ready
or obj_is_ready2.

Between the time that the program is started and it indicates it is ready, the BOA will
prevent any other requests from being delivered to the server. After that point, the
BOA, through the skeletons, will make calls on the methods of the implementation.

void impl_is_ready (in ImplementationDef impl); // PIDL
void obj_is_ready (

in Object obj,
in ImplementationDef impl

);

An activation policy describes the rules that a given implementation follows when
there are multiple objects or implementations active. There are four policies that all
BOA implementations support for implementation activation:

• A shared server policy, where multiple active objects of a given implementation
share the same server.

• An unshared server policy, where only one object of a given implementation at a
time can be active in one server.

• A server-per-method policy, where each invocation of a method is implemented
by a separate server being started, with the server terminating when the method
completes.

• Persistent server policy, where the server is activated by something outside the
BOA. The server nonetheless must register with the BOA to receive invocations.
A persistent server is assumed to be shared by multiple active objects.

These kinds of implementation activation are illustrated in Figure 15 on page 8-7. Case
A is a shared server, where the BOA starts a process which then registers itself with
the BOA. Case B is the case of a persistent server, which is very similar but just
registers itself with the BOA, without the BOA having had to start a process. An
unshared server is illustrated in case C, where the process started by the BOA can only
hold one object; the server-per-method policy in case D causes each method invocation
to be done by starting a process.

2.The latter is for per-object servers.
8-6 CORBA V2.0 July 1995

8

FIGURE 15. Implementation Activation Policies

Shared Server Activation Policy

In a shared server, multiple objects may be implemented by the same program. This is
likely to be the most common kind of server. The server is activated the first time a
request is performed on any object implemented by that server. When the server has
initialized itself, it notifies the BOA that it is ready by calling impl_is_ready.
Subsequently, the BOA will deliver requests or object activations for any objects
implemented by that server. The server remains active and will receive requests until it
calls deactivate_impl. The BOA will not activate another server for that
implementation if one is active.

Before the first request is delivered for a particular object, the object activate routine
of the server is called. An object remains active as long as its server is active, unless
the server calls deactivate_obj for that object.

Unshared Server Activation Policy

In an unshared server, each object is implemented in a different server. This kind of
server is convenient if a object is intended to encapsulate an application or if the server
requires exclusive access to a resource such as a printer. A new server is activated the
first time a request is performed on the object. When the server has initialized itself, it
notifies the BOA that it is ready by calling obj_is_ready. Subsequently, the BOA will
deliver requests for that object. The server remains active and will receive requests
until it calls deactivate_obj.

A
B

C

D

Start Process

Register Impl

Process

Object

Basic
Object

Adapter
CORBA V2.0 Basic Object Adapter Interface July 1995 8-7

8

A new server is started whenever a request is made for an object that is not yet active,
even if a server for another object with the same implementation is active.

Server-per-Method Activation Policy

Under the server-per-method policy, a new server is always started each time a request
is made. The server runs only for the duration of the particular method. Several servers
for the same object or even the same method of the same object may be active
simultaneously. Because a new server is started for each request, it is not necessary for
the implementation to notify the BOA when an object is ready or deactivated.

The BOA activates an implementation for each request, whether or not another request
for that operation, object, or implementation is active at the same time.

Persistent Server Activation Policy

Persistent servers are those servers which are activated by means outside the BOA.
Such implementations notify the BOA that they are available using the
impl_is_ready operation. Once the BOA knows about a persistent server, it treats the
server as a shared server, sending it activations for individual objects and method calls.
If no implementation is ready when a request arrives, an error is returned for that
request.

8.2.3 Generation and Interpretation of Object References

Object references are generated by the BOA using the ORB Core when requested by
an implementation. The BOA and the ORB Core work together to associate some
information with a particular object reference. This information is later provided to the
implementation upon the activation of an object. Note that this is the only information
an implementation may use portably to distinguish different object references. The
BOA operation used to create a new object reference is:

Object create (// PIDL
in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl

);

The id is immutable identification information, chosen by the implementation at object
creation time, and never changed during the lifetime of the object. The intf is the
Interface Repository object that specifies the complete set of interfaces implemented
by the object. The impl is the Implementation Repository object that specifies the
implementation to be used for the object.

A typical implementation will use the id value to distinguish different objects, but it is
free to use it in any way it chooses or to assign the same value to different object
references. Two object references created with the same parameters are not the same
object reference as far as the ORB is concerned, although the implementation may or
8-8 CORBA V2.0 July 1995

8

may not treat them as references to the same object. Note that the object reference
itself is opaque and may be different for different ORBs, but the id value is available
portably in all ORBs. Only the implementation can normally interpret the id value.
The operation to get the id is a BOA operation:

ReferenceData get_id (in Object obj); // PIDL

It is possible for the implementation associated with an object reference to be changed.
This will cause subsequent requests to be handled according to the information in the
new implementation. The operation to set the implementation is a BOA operation:

void change_implementation (// PIDL
in Object obj,
in ImplementationDef impl

);

Note – Care must be taken in order to change the implementation after the object has
been created. There are issues of synchronization with activation, security, and whether
or not the new implementation is prepared to handle requests for that object. The
change_implementation operation affects all copies of that particular object
reference.

If an object reference is copied, all copies have the same id, intf, and impl.

An implementation is allowed to dispose of an object it has created by asking the BOA
to invalidate the object reference. The implementation is responsible for deallocating
all other information about the object. After a dispose is done, the ORB Core and
BOA act as if the object had never been created, and attempts to issue requests on any
existing object references for that object will fail.

void dispose (in Object obj); // PIDL

Note that all of the operations on object references in this section may be done whether
or not the object is active.

8.2.4 Authentication and Access Control

The BOA does not enforce any specific style of security management. It guarantees
that for every method invocation (or object activation) it will identify the principal on
whose behalf the request is performed. The object implementation can obtain this
principal by the operation:

Principal get_principal (// PIDL
in Object obj,
in Environment ev

);
CORBA V2.0 Basic Object Adapter Interface July 1995 8-9

8

The obj parameter is the object reference passed to the method. If another object is
used the result is undefined. The ev parameter is the language-mapping-specific
request environment passed to the method.

The meaning of the principal depends on the security environment that the
implementation is running in. The decision of whether or not to permit a particular
operation is left up to the implementation. Typically, an implementation will associate
access rights with particular objects and principals, and will examine those access
rights to determine if the principal making the request has the privileges required by
the particular method. An implementation could store a reference to the access control
information for an object in the id for the object.

8.2.5 Persistent Storage

Objects (or, more precisely, object references) are made persistent by the BOA and the
ORB Core, in that a client that has an object reference can use it at any time without
warning, even if the implementation has been deactivated or the system has been
restarted. Although the ORB Core and BOA maintain the persistence of object
references, the implementation must participate in keeping any data outside the ORB
Core and BOA persistent.

Toward this end, the BOA provides a small amount of storage for an object in the id
value. In most cases, this storage is insufficient and inconvenient for the complete state
of the object. Instead, the implementation provides and manages that storage, using the
id value to locate the actual storage. For example, the id value might contain the name
of a file, or a key for a database system that holds the persistent state.
8-10 CORBA V2.0 July 1995

Standard OMG IDL Types A
The OMG IDL types listed in this appendix are available in all ORB implementations. IDL specifications that
incorporate these types are therefore portable across ORB implementations.

TBL. 14 on page A-2 lists the ORB pseudo-objects that should be available in any language mapping; in the C
mapping, these definitions are contained in the file orb.h. Pseudo-objects cannot be invoked with the dynamic
interface, and do not have object references. Those pseudo-objects that cannot be used as general arguments
(passed as arguments in requests on real objects) are identified in the table. The definitions of pseudo-objects that

TBL. 13 Types Defined by IDL
Type Described In

short “Integer Types” on page 3-21

long “Integer Types” on page 3-21

unsigned short “Integer Types” on page 3-21

unsigned long “Integer Types” on page 3-21

float “Floating-Point Types” on page 3-21

double “Floating-Point Types” on page 3-21

char “Char Type” on page 3-22

boolean “Boolean Type” on page 3-22

octet “Octet Type” on page 3-22

struct “Structures” on page 3-23

union “Discriminated Unions” on page 3-23

enum “Enumerations” on page 3-24

sequence “Sequences” on page 3-25

string “String Literals” on page 3-8

array “Arrays” on page 3-26

any “Any Type” on page 3-22

Object “Object Reference Operations” on page 7-2
 CORBA V2.0 July 1995 A-1

A

can be used as general arguments are contained in the file orb.idl, and can be #included into IDL specifica-
tions.

Types used with the Interface Repository are shown in TBL. 14 on page A-2. They are contained in orb.idl.

TBL. 14 Pseudo-objects

Name General Argument? In orb.idl? Described In

Environment No No [insert new c map ref]

Request No No Section 4.2 on page 4-4

Context No No Section 4.5 on page 4-12

ORB No No Section 7.1 on page 7-1

BOA No No Section 8.2 on page 8-3

TypeCode Yes Yes Section 6.4.2 on page 6-5

Principal Yes Yes Section 8.2.4 on page 8-9

NVList No No Section 4.1.1 on page 4-1

TBL. 15 Interface Repository Types

Name Type Described In

Identifier string Section 6.6 on page 6-30

RepositoryId string Section 6.6 on page 6-30

OperationMode enum Section 6.5.21 on page 6-25

ParameterMode enum Section 6.5.21 on page 6-25

AttributeMode enum Section 6.5.20 on page 6-24

InterfaceDescription struct Section 6.5.22 on page 6-27

OperationDescription struct Section 6.5.21 on page 6-25

AttributeDescription struct Section 6.5.20 on page 6-24

ParameterDescription struct Section 6.5.21 on page 6-25

RepositoryDescription struct Section 6.5.6 on page 6-16

ModuleDescription struct Section 6.5.7 on page 6-17

ConstDescription struct Section 6.5.8 on page 6-17

ExceptionDescription struct Section 6.5.19 on page 6-23

TypeDescription struct Section 6.5.6 on page 6-16

FullInterfaceDescription struct Section 6.5.22 on page 6-27

InterfaceDef interface Section 6.5.22 on page 6-27

OperationDef interface Section 6.5.21 on page 6-25

AttributeDef interface Section 6.5.20 on page 6-24

ParameterDef interface Section 6.7 on page 6-33

RepositoryDef interface Section 6.5.6 on page 6-16

ModuleDef interface Section 6.5.7 on page 6-17

TypeDef interface Section 6.5.6 on page 6-16

ConstDef interface Section 6.5.8 on page 6-17
A-2 CORBA V2.0 July 1995

A

The any type can be used to represent a variety of types of values. All ORB implementations must support all
data types expressible in OMG IDL as any values.

ExceptionDef interface Section 6.5.19 on page 6-23

ImplementationDef interface Section 8.2.1 on page 8-5

TBL. 15 Interface Repository Types (Continued)

Name Type Described In
CORBA V2.0 July 1995 A-3

A

A-4 CORBA V2.0 July 1995

Interoperability Overview 9
ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its
elements can be combined in many ways to satisfy a very broad range of needs.

9.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB
protocols (ESIOPs) that are optimized for particular environments such as DCE.

9.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet inter-ORB Protocol (IIOP) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.
 CORBA V2.0 July 1995 9-1

9

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular IPC or protocols (such as ESIOPs)
are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridges”
which communicate using the IIOP. This approach works both for stand-alone ORBs,
and for networked ones which use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired.
Since ORBs are not required to use the IIOP internally, the goal of not requiring prior
knowledge of each others’ implementation is fully satisfied.

9.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g. the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse
a bridge. The role of a bridge is to ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, and can be used for many other purposes
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages and dynamically generating implementations.

The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent that those systems conform to the CORBA Object
Model.

9.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
9-2 CORBA V2.0 July 1995

9

mechanisms. The protocol is simple (as simple as possible, but not simpler), scalable
and relatively easy to implement. It is designed to allow portable implementations with
small memory footprints and reasonable performance, with minimal dependencies on
supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

9.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB. In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol elements that are common to all such mappings. The GIOP by
itself, however, does not provide complete interoperability, just as IDL cannot be used
to built complete programs. The IIOP, and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 2-1.

Figure 9-1 Inter-ORB Protocol Relationships.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA 2.0
CORBA V2.0 Elements of Interoperability July 1995 9-3

9

9.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs) Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such as those relating to
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges to
be built between ORB domains that use the IIOP and ORB domains that use a
particular ESIOP.

9.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services, and their domains. (ORB Services
are described in Section 10.2, ORBS and ORB Services. The architecture defines the
problem of ORB interoperability in terms of bridging between those domains, and
defines several ways in which those bridges can be constructed: the bridges can be
internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions to
previous versions of CORBA to support request level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request level bridges; it is the server side analogue of the Dynamic Invocation
Interface, and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to Chapter 5.

• APIs for managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in “Object Reference
Operations” on page 7-2. The Relationship Service is described in CORBAservices:
Common Object Service Specifications; refer to Section 9.3.6, “The
CosObjectIdentity Module.

9.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.
9-4 CORBA V2.0 July 1995

9

9.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows for bridges to be built between it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses the
IIOP and provides inter-ORB bridge support.

9.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support for
objects located on a single machine; for example, to support thousands of Fresco GUI
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the Internet IOP for communication with other “distributed” ORBs.

9.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customer sites. In addition, ORB C is expected to
interoperate with arbitrary other ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a companion half-bridge product (supplied by
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the IIOP to enable interoperability with other compatible ORBs.

9.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:

• In the CORBA Core part of this specification, standard APIs are provided by an
ORB to enable the construction of request level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations, which are described in Chapter 7.

• An Internet Inter-ORB Protocol (IIOP) (explained in Chapter 12) defines a transfer
syntax and message formats (described independently as the General Inter-ORB
Protocol), and defines how to transfer messages via TCP/IP connections. The IIOP
can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in a
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBA interoperability specifications (Chapters 9 -
13) must adhere to those specifications to be compliant with CORBA interoperability.

The illustration on page 9-7 shows examples of interoperable ORB domains that are
CORBA-compliant.
CORBA V2.0 Examples of Interoperability Solutions July 1995 9-5

9

These compliance points support a range of interoperability solutions. For example, the
standard APIs may be used to construct “half bridges” to the IIOP, relying on another
“half bridge” to connect to another ORB. The standard APIs also support construction
of “full bridges”, without using the Internet IOP to mediate between separated bridge
components. ORBs may also use the Internet IOP internally. In addition, ORBs may
use GIOP messages to communicate over other network protocol families (such as
Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat
it as an independent compliance point. For additional information on CORBA
compliance, refer to Definition of CORBA Compliance on page vii.
9-6 CORBA V2.0 July 1995

9

Examples of CORBA Version 2.0 Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
CORBA V2.0 Examples of Interoperability Solutions July 1995 9-7

9

9.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

9.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
request ranges over at least 5 orders of magnitude, from a few microseconds to several
seconds. The scope ranges from a single application to enterprise networks. Some
ORBs have high levels of security, others are more open. Some ORBs are layered on a
particular widely used protocols, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds computing. From application integration
to process control, from loosely coupled operating systems to the information
superhighway, CORBA-based object systems can be the common infrastructure.

9.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to
partition an environment into different ORBs.

For security reasons, it may be important to know that it not generally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until it either
a complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, etc., management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data, etc.) might also be done
by creating sub-ORBs.
9-8 CORBA V2.0 July 1995

9

9.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are
reasons why some of the objects an application might use would be in one ORB, and
others in another ORB. Some objects and services are accessed over long distances,
with more global visibility, longer delays, and less reliable communication. Other
objects are nearby, are not accessed from elsewhere, and provide higher quality
service. By deciding which ORB to use, an implementer sets expectations for the
clients of the objects.

One ORB might be used to retain links to information that is expected to accumulate
over decades, such as a library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the game
is over. Although while it is running, it makes sense for “chess ORB” objects to access
the “archives ORB”, we would not expect the archives to try to keep a reference to the
current board position.

9.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

• Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another;

• Reference Embedding, where invocation using a native object reference delegates
to a special object whose job it is to forward that invocation to another ORB;

• Alternative ORBs, where ORB implementations agree to coexist in the same
address space so easily that a client or implementation can transparently use any
of them, and pass object references created by one ORB to another ORB without
losing functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high performance, small footprint,
lightweight interoperability solutions.

• The design should scale, should be not unduly difficult to implement and should not
unnecessarily restrict implementation choices.

• Interoperability solutions should be able to work with any vendors’ existing ORB
implementations, with respect to their CORBA compliant core feature set; those
implementations are diverse.
CORBA V2.0 Interoperability Design Goals July 1995 9-9

9

• All operations implied by the CORBA object model (i.e. the stringify and
destringify operations defined on the CORBA:ORB pseudo-object, and all the
operations on CORBA:Object) as well as type management (e.g. narrowing, as
needed by the C++ mapping) should be supported.

9.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
9-10 CORBA V2.0 July 1995

ORB Interoperability Architecture 10
This chapter provides the architectural framework used in the interoperability
specifications (Chapters 9–13).

10.1 Overview

The original Request for Proposal on Interoperability (OMG Document 93-9-15)
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It further identifies general requirements including in
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each
other’s implementation.

• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

10.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.
 CORBA V2.0 July 1995 10-1

10
In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed: over which a distribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains and other `run-time’
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar `build-time’ characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB
itself: common object references, network addresses, security mechanisms, and more.
However, it is possible for there to be multiple domains of the same type supported by
a given ORB: internal representation on different machine types, or security domains.
Conversely, a domain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

10.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability

• At ORB level, built into the ORB itself

10.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required by CORBA 2.0.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery and replication. These
features are provided by “ORB Services”, which will in some ORBs be layered as
internal services over the core, or in other cases incorporated directly into an ORB’s
core. It is an aim of this specification to allow for new ORB Services to be defined in
the future, without the need to modify or enhance this architecture.
10-2 CORBA V2.0 July 1995

10
Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability between
ORBs, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

10.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolution and
message encoding to advanced features such as support for security, transactions or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding – the marshaling and unmarshaling of the components of a request into and
out of message buffers – provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many ORB
Services include components which correspond to conventional Object Services in that
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

10.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and
other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is
communicated from client to server object.

• The client generates an operation request, using a reference to the server object,
explicit parameters, and an implicit invocation context.

• This is processed by certain ORB Services on the client path;

• On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for invoking the operation on the server
object.

• The server object performs the requested operation.

• Any result of the operation is returned to the client in a similar manner.
CORBA V2.0 ORBs and ORB Services July 1995 10-3

10
The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests on operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact
with Object Services such as authentication servers.

10.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server is
replicated;

• Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional;

• Administrative policies; for example, security.

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection might
in general require negotiation to select protocols or protocol options. The same is true
between different ORBs: it is necessary to agree which ORB Services are used, and
how each transforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs, or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBs, services could be layered in any order
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no ways to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to
invoke operations on a server object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client and
server sides of the invocation path. Where this is not possible - because, for example,
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

10.3 Domains

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
location and possibly many others such as processor architecture, networking
10-4 CORBA V2.0 July 1995

10
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 10-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domains, for example,
management domains, naming domains, language domains, technology domains.

10.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modelled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain.This information is disjoint between domains. However,
an object may be a member of several domains, of similar kinds as well as of different
kinds, and so the sets of members of domains may overlap.

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protocol

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

Representation Representation

Reference Reference

Security

Networking
CORBA V2.0 Domains July 1995 10-5

10
• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within
another domain, and federation, where two domains are joined in a manner agreed and
set up by their administrators.

10.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domains are strictly compliant
with the CORBA Object Model and the CORBA V2.0 Core specifications. This
includes the use of OMG IDL when defining interfaces, the use of the CORBA Core
Interface Repository, and other modifications that were made to CORBA V1.2.
Variances from this model could easily compromise some aspects of interoperability.

10.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and receive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not work correctly:
ones passed as “callback objects”, for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. This is purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.
10-6 CORBA V2.0 July 1995

10
10.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is all
CORBA V2.0 implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g. for new ORB Services).

10.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which
can arise with a single type of ORB (e.g. a product). For example:

• Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally
meaningful type identifiers (and perhaps more).

Conversely, not all of these problems need to appear when connecting two ORBs of a
different type (e.g. two different products). Examples include:

• They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows that within any particular ORB, the mechanisms for supporting transparencies
are not visible at the application level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.
CORBA V2.0 Interoperability Between ORBs July 1995 10-7

10
These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

10.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, or
bridge, is required to transform relevant elements of the interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging
and immediate bridging. These approaches are described in the following subsections.

Figure 10-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreement
between two particular ORB/domain implementations to a universal standard;

• There can be more than one common form, each oriented or optimized for a
different purpose;

• If there is more than one possible common form, then selection of which is used can
be static (e.g. administrative policy agreed between ORB vendors, or between
system administrators) or dynamic (e.g. established separately for each object, or on
each invocation);

• Engineering of this approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines) code, to intermediate
bridges to the common form.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop
10-8 CORBA V2.0 July 1995

10
Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not mediated
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this;

• This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e. there is no change of technology). For example, when
crossing security administration domains between similar ORBs, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable
when private mechanisms are used between ORB/domain implementations.

Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.
It also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are
confined, possibly to a single system or process. If it were practical to implement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB and as layers above it. These are called respectively “in-line” and “request-level”
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton
Interface, to receive and issue requests. However, there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
CORBA V2.0 Interoperability Between ORBs July 1995 10-9

10
Service information such as transaction and security context information, which is not
at this time exposed through general purpose public APIs. (Those APIs expose only
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent set
with the Transaction Service is that special purpose APIs are defined to allow bridging
of each kind of context. This means that request level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate API calls.

10.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain
boundaries should be transparent to requests: that the goal of interoperability is to hide
such boundaries. However, if this were always the goal, then there would be no real
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such cases
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall”.

Such policy-mediated bridging requires a bridge that knows something about the traffic
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-specific,
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of
policy mediation components, without loss of access to any other system infrastructure
that may be needed to identify or enforce the appropriate policies.

10.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs”. (This is a role that the IIOP is specifically expected to serve.) This
use of “backbone topology” is true both on a large scale and a small scale. While a
10-10 CORBA V2.0 July 1995

10
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Figure 10-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

10.5 Object Addressing

The Object Model, in “Requests” on page 1-2, defines an object reference as an object
name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted by
multiple, distinct references.

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish between references to objects in a local ORB or in a remote one. Providing
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple
domains, and transformations of such names as they cross the domain boundaries. That
is, it presents transformations of object reference information as it passes through

Backbone ORB

ORB A

ORB CORB D

ORB B
CORBA V2.0 Object Addressing July 1995 10-11

10
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with
referencing domain; this is purely to simplify the discussion. In other contexts, “ORB”
can usefully denote other kinds of domain.

10.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use the
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an
object reference. This is called “domain-relative” referencing (or addressing), and need
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

10.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBA object references are opaque to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding): The bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, and
vice versa.
10-12 CORBA V2.0 July 1995

10
2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

Figure 10-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (which still
holds the original reference, as in the reference encapsulation scheme).

It achieves this by providing encoded domain route information each time a domain
boundary is traversed; thus if a reference D0.R, originating in domain D0, traversed
domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R,
and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair
(dn-1, xn-1).

Figure 10-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well known” (e.g. global) domain identifier rather
than an encoded path. Thus a reference R, originating in domain D0 would be
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

• Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference, and eliminate the appearance of references to local objects
as alien references.

• A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same sequence of domains, such optimization has particularly high
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
CORBA V2.0 Object Addressing July 1995 10-13

10
• With the general purpose APIs defined in CORBA 2.0, object reference translation
can be supported even by ORBs not specifically intended to support efficient
bridging, but this approach involves the most state in intermediate bridges. As with
reference encapsulation, a topology service could optimize individual object
references. (APIs are defined by the Dynamic Skeleton Interface, Dynamic
Invocation Interface, and by the object identity operations described in Chapter 7.)

• The chain of addressing links established with both object and domain reference
translation schemes must be represented as state within the network of bridges.
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical name
spaces such as those now in use on the Internet, and X.500 naming.

10.6 An Information Model for Object References

This section provides a simple, powerful information model for the information found
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in “Object
References” on page 12-15.

10.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted, and never support operation
invocation.

• What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

• What ORB Services are available? As noted in Section 10.2.3, Selection of ORB
Services, several different ORB Services might be involved in an invocation, and
providing information about those services in a standardized way could in many
cases reduce or eliminate negotiation overhead in selecting them.

10.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference”, or IOR, data
structure has been provided. This data structure need not be used internally to any
given ORB, and is not intended to be visible to application-level ORB programmers. It
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
while not penalizing multiprotocol ones.
10-14 CORBA V2.0 July 1995

10
module IOP{ // IDL
//
// Standard Protocol Profile tag values
//
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {
ProfileId tag;
sequence <octet> profile_data;

};

//
// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.
//
struct IOR {

string type_id;
sequence <TaggedProfile> profiles;

};

//
// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.
//
typedef unsigned long ComponentId;
struct TaggedComponent {

ComponentId tag;
sequence <octet> component_data;

};
typedef sequence <TaggedComponent> MultipleComponentProfile;

};

Object references have at least one tagged profile per protocol supported. Those
profiles encapsulate all the basic information that protocol needs to identify an object.
Any single profile holds enough information to drive a complete invocation using that
protocol; the content and structure of those profile entries are wholly specified by that
protocol. A bridge between two domains may need to know the detailed content of the
profile for those domains’ profiles, depending on the technique it uses to bridge the
domains1.

Each profile has a unique numeric tag, assigned by OMG. The ones defined here are
for the IIOP (see Chapter 12, “General Inter-ORB Protocol”) and for use in “multi
component protocol profiles.”

1.Based on topology and policy information available to it, a bridge may find it prudent to add
or remove some profiles as it forwards an object reference. For example, a bridge acting as
a firewall might remove all profiles except ones that make such profiles, letting clients that
understand the profiles make routing choices.
CORBA V2.0 An Information Model for Object References July 1995 10-15

10
The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of
type MultipleComponentProfile. In this case, the profile consists of a list of
protocol components, indicating ORB services accessible using that protocol. ORB
services are assigned component identifiers in a name space that is distinct from the
profile identifiers. Note that protocols may use the MultipleComponentProfile
data structure to hold profile components even without using
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile,
and need not use a MultipleComponentProfile to hold sets of profile
components.

Null object references are indicated by an empty set of profiles, and by a Null type ID
(a string which contains only a single terminating character). Type IDs may only be
Null when the object reference is Null.The type ID is provided to allow ORBs to
preserve strong typing; it is further explained in the description in the Interface
Repository chapter. This identifier is agreed on within the bridge and, for reasons
outside the scope of this interoperability specification, needs to have a much broader
scope to address various problems in system evolution and maintenance. Type IDs
support detection of type equivalence, and in conjunction with an Interface Repository,
allow processes to reason about the relationship of the type of the object referred to
and any other type.

The type ID is provided by the server and indicates the most derived type at the time
the reference is generated.

10.6.3 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single
profile, possibly with some information (e.g. components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile within an
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS
profile must specify which components it uses, and how it uses them.
10-16 CORBA V2.0 July 1995

10
8. Profile and component definitions can be either public or private. Public definitions
are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag will
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org

10.6.4 IOR Creation and Scope

IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whatever
form they find appropriate, including possibly using the IOR structure. Bridges will
normally use IORs to mediate transfers where that standard is appropriate.

10.6.5 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_string operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than the
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse
stringified IORs, so that in some cases an object reference stringified by one ORB
could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format. This
helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

<oref> ::= <prefix> <hex_Octets>

<prefix> ::= “IOR:”

<hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
CORBA V2.0 An Information Model for Object References July 1995 10-17

10
<hex_Octet> ::= <hexDigit> <hexDigit>

<hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

 “6” | “7” | “8” | “9”

<a> ::= “a” | “A”

 ::= “b” | “B”

<c> ::= “c” | “C”

<d> ::= “d” | “D”

<e> ::= “e” | “E”

<f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an IOR,
and then encapsulating the IOR using the encoding rules of CDR. (See “CDR Transfer
Syntax” on page 12-4 for more information.) The content of the encapsulated IOR is
then turned into hexadecimal digit pairs, starting with the first octet in the
encapsulation and going until the end. The high four bits of each octet are encoded as
a hexadecimal digit, then the low four bits.

10.6.6 Object Service Context

Emerging specifications for Object Services occasionally require service-specific
context information to be passed implicitly with requests and replies. (Specifications
for OMG’s Object Services are contained in CORBAservices: Common Object Service
Specifications.) The Interoperability specifications define a mechanism for identifying
and passing this service-specific context information as “hidden” parameters. The
specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume context
information at appropriate points in the process of sending and receiving requests
and replies.

• It is an ORB’s responsibility to determine when to send service-specific context
information, and what to do with such information in incoming messages. It may be
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service–specific information. It does not describe any
service-specific information. It only describes a mechanism for transmitting it in the
most general way possible. The mechanism is currently used by the DCE ESIOP and
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB
Protocol (GIOP).
10-18 CORBA V2.0 July 1995

10
Each Object Service requiring implicit service-specific context to be passed through
GIOP will be allocated a unique service context ID value by OMG. Service context ID
values are of type unsigned long. Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceID;

struct ServiceContext {
 ServiceID context_id;
 sequence <octet>context_data;
 };

typedef sequence <ServiceContext>ServiceContextList;

const ServiceID TransactionService = 0;
};

The context data for a particular service will be encoded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulated in
the context_data member of IOP::ServiceContext. (See Section 12.3.3,
Encapsulation.) The context_id member contains the service ID value identifying
the service and data format. Context data is encapsulated in octet sequences to permit
ORBs to handle context data without unmarshaling, and to handle unknown context
data types.

During request and reply marshaling, ORBs will collect all service context data
associated with the Request or Reply in a ServiceContextList, and include it in the
generated messages. No ordering is specified for service context data within the list.
The list is placed at the beginning of those messages to support security policies that
may need to apply to the majority of the data in a request (including the message
headers).

Note – The only ServiceID currently defined is TransactionService, for a CDR
encapsulation of the CosTSInteroperation::PropogationContext defined in
CORBAservices, Section 10.5.2, “ORB/TS Implementation Considerations,” on
page 10-56.
CORBA V2.0 An Information Model for Object References July 1995 10-19

10
10-20 CORBA V2.0 July 1995

Building Inter-ORB Bridges 11
This chapter provides an implementation-oriented conceptual framework for the
construction of bridges to provide interoperability between ORBs. It focuses on the
layered request level bridges that the CORBA Core specifications facilitate, although
ORBs may always be internally modified to support bridges. Specifications for the
CORBA Core are contained in Chapters 1 - 8 in this manual.

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another

• Provides support for managing tables keyed by object references

The OMG IDL specification for interoperable object references, which are important to
inter-ORB bridging, is shown in Section 10.6.2, “Interoperable Object References:
IORs,” on page 10-14.

11.1 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in
another domain can be mediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whether the
bridging uses a standardized mechanism. There are two possible options for where the
bridge components are located:

• Code inside the ORB may perform the necessary translation or mappings; this is
termed in-line bridging.

• Application style code outside the ORB can perform the translation or mappings;
this is termed request level bridging.
 CORBA V2.0 July 1995 11-1

11
Request level bridges which mediate through a common protocol (using networking,
shared memory, or some other IPC provided by the host operating system) between
distinct execution environments will involve components, one in each ORB, known as
“half bridges”.

When that mediation is purely internal to one execution environment, using a shared
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined data
types, this is known as a “full bridge”1. From outside the execution environment this
will appear identical to some kinds of in-line bridging, since only that environment
knows the construction techniques used. However, full bridges more easily support
portable policy mediation components, because of their use of only standard CORBA
programming interfaces.

Network protocols may be used immediately “in-line”, or to mediate between request-
level half bridges. The Chapter 12, “General Inter-ORB Protocol” can be used in either
manner. In addition, this specification provides for Environment Specific Inter-ORB
Protocols (ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request level half-bridges can be built by anyone who as access to
an ORB, without needing information about the internal construction of that ORB.
Immediate-mode request level half-bridges (i.e., ones using nonstandard mediation
mechanisms) can similarly be built without needing information about ORB internals.
Only in-line bridges (using either standard or nonstandard mediation mechanisms)
need potentially proprietary information about ORB internals.

11.1.1 In-line Bridging

Figure 11-1 In-Line bridges are built using ORB internal APIs.

In this approach, the required bridging functionality can be provided by a combination
of software components at various levels:

1.Special initialization supporting object referencing domains (e.g. two protocols) to
be exposed to application programmers to support construction of this style bridge.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
11-2 CORBA V2.0 July 1995

11
• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

In-line bridging is in general the most direct method of bridging between ORBs. It is
structurally similar to the engineering commonly used to bridge between systems
within a single ORB (e.g. mediating using some common inter-process
communications scheme, such as a network protocol). This means that implementing
in-line bridges involves as fundamental a set of changes to an ORB as adding a new
inter-process communications scheme. (Some ORBs may be designed to facilitate such
modifications, though.)

11.1.2 Request-level Bridging

Figure 11-2 Request-Level bridges are built using public ORB APIs.

The general principle of request-level bridging is as follows:

1. the original request is passed to a proxy object in the client ORB;

2. the proxy object translates the request contents (including the target object
reference) to a form that will be understood by the server ORB;

3. the proxy invokes the required operation on the apparent server object;

4. any operation result is passed back to the client via a complementary route.

The request translation involves performing object reference mapping for all object
references involved in the request (the target, explicit parameters, and perhaps implicit
ones such as transaction context). As elaborated later, this translation may also involve
mappings for other domains: the security domain of CORBA::Principal parameters,
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all
dynamic typing APIs (e.g. Any, NamedValue) support such manipulation of
parameters even when the bridge was not created with compile-time knowledge of the
data types involved.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
CORBA V2.0 In-Line and Request-Level Bridging July 1995 11-3

11
11.1.3 Collocated ORBs

In the case of immediate bridging (i.e. not via a standardized, external protocol) the
means of communication between the client-side bridge component and that on the
server-side is an entirely private matter. One possible engineering technique optimizes
this communication by coalescing the two components into the same system or even
the same address space. In the latter case, accommodations must be made by both
ORBs to allow them to share the same execution environment.

Similar observations apply to request level bridges, which in the case of collocated
ORBs use a common binary interface to all OMG IDL-defined data as their mediating
data format.

Figure 11-3 When the two ORBs are collocated in a bridge execution environment, network
communications will be purely intra-ORB. If the ORBs are not collocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external messaging
can be arranged to be intra-ORB, using whatever message passing mechanisms each
ORB uses to achieve distribution within a single ORB, multiple machine system. That
is, for bridges between networked ORBs such a bridge would add only a single “hop,”
a cost analogous to normal routing.

11.2 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. The key schemes for creating and
managing proxies are reference translation and reference encapsulation, as discussed
in “Handling of Referencing Between Domains” on page 10-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the Basic Object Adapter
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for
knowledge of more than one ORB. Some ORBs could provide other object adapters
which support such encapsulation.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
11-4 CORBA V2.0 July 1995

11
Note that from the perspective of clients, they only ever deal with local objects; clients
do not need to distinguish between proxies and other objects. Accordingly, all CORBA
operations supported by the local ORB are also supported through a bridge. The ORB
used by the client might, however, be able to recognize that encapsulation is in use,
depending on how the ORB is implemented.

Also, note that the CORBA::InterfaceDef used when creating proxies (e.g. the one
passed to CORBA::BOA::create) could be either a proxy to one in the target ORB,
or could be an equivalent local one. When the domains being bridged include a type
domain, then the InterfaceDef objects cannot be proxies since type descriptions will
not have the same information. When bridging CORBA V2.0 compliant ORBs, type
domains by definition do not need to be bridged.

11.3 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built
using IDL-compiler generated stub and skeleton interfaces;

• Generic: capable of bridging requests to server objects of arbitrary IDL interfaces,
using the interface repository and other dynamic invocation support (DII and DSI).

Interface-specific bridges may be more efficient in some cases (a generic bridge could
conceivably create the same stubs and skeletons using the interface repository), but the
requirement for prior compilation means that this approach offers less flexibility than
use of generic bridges.

11.4 Building Generic Request-Level Bridges

The CORBA Core specifications (Chapters 1 - 8) define the following interfaces.
These interfaces are of particular significance when building a generic request-level
bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on
object references whose types may not have been known when the bridge was
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy
object references which it implements, even when their types may not have been
known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information used
to drive DII and DSI, such as the type codes for operation parameters, return values,
and exceptions.

• Object Adapters (such as the Basic Object Adapter) are used to create proxy object
references both when bootstrapping the bridge and when mapping object references
which are dynamically passed from one ORB to the other.

• CORBA Object References support operations to fully describe their interfaces and
to create tables mapping object references to their proxies (and vice versa).
CORBA V2.0 Interface-specific Bridges and Generic Bridges July 1995 11-5

11
Interface repositories accessed on either side of a half bridge need not have the same
information, though of course the information associated with any given repository ID
(e.g. an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism such as
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used by
some mediating protocol such as IIOP (see Chapter 12, “General Inter-ORB
Protocol”).

• Translate requests made using such a mediating protocol into DII requests on
objects in the ORB.

As noted in “In-Line and Request-Level Bridging” on page 11-1, translating requests
and responses (including exceptional responses) involves mapping object references
(and other explicit and implicit parameter data) from the form used by the ORB to the
form used by the mediating protocol, and vice versa. Explicit parameters, which are
defined by an operation’s OMG-IDL definition, are presented through DII or DSI and
are listed in the Interface Repository entry for any particular operation.

Operations on object references such as hash() and is_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exist, an
object adapter is used to create a ORB-specific proxy object references, and bridge-
internal interfaces are used to create the analogous data structure for the mediating
protocol.

11.5 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defined
data, and bridges only object reference domains. In this case, a proxy object in the
client ORB acts as a representative of the target object and is, in almost any practical
sense, indistinguishable from the target server object - indeed, even the client ORB
will not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultaneous
bridging. The transformation and encapsulation schemes described above may not
apply in the same way to Principal or type identifiers. Request level bridges may need
to translate such identifiers, in addition to object references, as they are passed as
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs may
need to convey with any particular request, such as transaction and security context
information. Such parameters are not defined as part of an operation’s OMG-IDL
signature, hence are “implicit” in the invocation context. Bridging the domains of such
implicit parameters could involve additional kinds of work, needing to mediate more
policies, than bridging the object reference, Principal, and type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and
dynamic invocations) to expose such implicit context information.
11-6 CORBA V2.0 July 1995

11
11.6 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for two
Naming Service naming contexts (one in each ORB) and then install those proxies as
naming contexts in the other ORB’s naming service. (The Naming Service is described
in CORBAservices.) This will allow clients in either ORB to transparently perform
naming context lookup operations on the other ORB, retrieving (proxy) object
references for other objects in that ORB. In this way, users can access facilities that
have been selectively exported from another ORB, through a naming context, with no
administrative action beyond exporting those initial contexts. (See “Obtaining Initial
Object References” on page 7-10 for additional information).

This same approach may be taken with other discovery services, such as a trading
service or any kind of object that could provide object references as operation results
(and in “out” parameters). While bridges can be established which only pass a
predefined set of object references, this kind of minimal connectivity policy is not
always desirable.
CORBA V2.0 Bootstrapping Bridges July 1995 11-7

11
11-8 CORBA V2.0 July 1995

General Inter-ORB Protocol 12
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability,
which can be mapped onto any connection-oriented transport protocol that meets a minimal
set of assumptions. This chapter also defines a specific mapping of the GIOP which runs
directly over TCP/IP connections, called the Internet Inter-ORB Protocol (IIOP). The IIOP
must be supported by conforming networked ORB products regardless of other aspects of
their implementation. Such support does not require using it internally; conforming ORBs
may also provide bridges to this protocol.

12.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability The GIOP and IIOP are based on the most widely-used
and flexible communications transport mechanism available (TCP/IP), and defines
the minimum additional protocol layers necessary to transfer CORBA requests
between ORBs.

• Simplicity The GIOP is intended to be as simple as possible, while meeting other
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability The GIOP/IIOP protocol should support ORBs, and networks of bridged
ORBs, to the size of today’s Internet, and beyond.

• Low cost Adding support for GIOP/IIOP to an existing or new ORB design should
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality While the IIOP is initially defined for TCP/IP, GIOP message formats
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.
 CORBA V2.0 July 1995 12-1

12
• Architectural neutrality The GIOP specification makes minimal assumptions about
the architecture of agents that will support it. The GIOP specification treats ORBs
as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal protocol,
it could choose to externalize IIOP as much as possible by implementing it in a half-
bridge, or it could choose a strategy between these two extremes. All that is required of
a conforming ORB is that some entity or entities in or associated with the ORB be able
to send and receive IIOP messages.

12.2 General Inter-ORB Protocol Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “on-
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used to
transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP
to a specific transport (TCP/IP). The GIOP specification (without the transport-specific
IIOP element) may be considered as a separate conformance point for future mappings
to other transport layers.

The complete OMG IDL specifications for the GIOP and IOP are shown in
Section 12.8, “OMG IDL for the GIOP and IIOP Specifications,” on page 12-29.
Fragments of the specification are used throughout this chapter as necessary.

12.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering. Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have different
byte order, the message originator determines the message byte order, and the
12-2 CORBA V2.0 July 1995

12
receiver is responsible for swapping bytes to match its native ordering. Each GIOP
message (and CDR encapsulation) contains a flag that indicates the appropriate byte
order.

• Aligned primitive types. Primitive OMG IDL data types are aligned on their natural
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping. CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations are
undefined or implementation-dependent in the CORBA Core specifications.

12.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter- operating
ORBs. GIOP message formats have the following features:

• Few, simple messages. With only seven message formats, the GIOP supports full
CORBA functionality between ORBs, with extended capabilities supporting object
location services, dynamic migration, and efficient management of communication
resources. GIOP semantics require no format or binding negotiations. In most cases,
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and may
allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.

• Full CORBA support. GIOP messages directly support all functions and behaviors
required by CORBA, including exception reporting, passing operation context, and
remote object reference operations (such as CORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction context
defined by the Transaction Service (the Transaction Service is described in
CORBAservices). This mechanism is designed to support any service that requires
service related context to be implicitly passed with requests.

12.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transport
protocol that meets a minimal set of assumptions (described in “GIOP Message
Transport” on page 12-23). GIOP uses underlying transport connections in the
following ways:

• Asymmetrical connection usage. The GIOP defines two distinct roles with respect
to connections, client and server. The client side of a connection originates the
connection, and sends object requests over the connection. The server side receives
requests and sends replies. The server side of a connection may not send object
requests. This restriction allows the GIOP specification to be much simpler and
avoids certain race conditions.
CORBA V2.0 General Inter-ORB Protocol Overview July 1995 12-3

12
• Request multiplexing. If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniquely
identifies its target object. Multiple independent requests for different objects, or a
single object, may be sent on the same connection.

• Overlapping requests. In general, GIOP message ordering constraints are minimal.
GIOP is designed to allow overlapping asynchronous requests; it does not dictate
the relative ordering of requests or replies. Unique request/reply identifiers provide
proper correlation of related messages. Implementations are free to impose any
internal message ordering constraints required by their ORB architectures.

• Connection management. GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse idle
connection resources.

12.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that
is to be sent to another process or machine over some IPC mechanism or network
transport. For the purposes of this discussion, an octet stream is an arbitrarily long (but
finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets
in the stream are numbered from 0 to n-1, where n is the size of the stream. The
numeric position of an octet in the stream is called its index. Octet indices are used to
calculate alignment boundaries, as described in “Alignment” on page 12-5.

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in detail in
“GIOP Message Formats” on page 12-15.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a data
structure has been encapsulated, the octet stream can be represented as the OMG IDL
opaque data type sequence<octet>, which can subsequently marshaled into a
message or another encapsulation. Encapsulations allow complex constants (such as
TypeCodes) to be pre-marshaled; they also allow certain message components to be
handled without requiring full unmarshaling. Whenever encapsulations are used in
CDR or the GIOP, they are clearly noted.

12.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The
message formats (see “GIOP Message Formats” on page 12-15) include tags in
message headers that indicate the byte ordering in the message. Encapsulations include
an initial flag that indicates the byte ordering within the encapsulation, described in
“Encapsulation” on page 12-9. The byte ordering of any encapsulation may be
different from the message or encapsulation within which it is nested. It is the
responsibility of the message recipient to translate byte ordering if necessary.
12-4 CORBA V2.0 July 1995

12
Primitive data types are encoded in multiples of octets. An octet is an 8-bit value.

Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitive
data types must be aligned on their natural boundaries; i.e., the alignment boundary of
a primitive datum is equal to the size of the datum in octets. Any primitive of size n
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1,
2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive datum.
The value of octets in alignment gaps is undefined. A gap must be the minimum size
necessary to align the following primitive. Table 12-1 gives alignment boundaries for
CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The
first octet of the stream is octet index zero (0); any data type may be stored starting at
this index. Such octet streams begin at the start of an GIOP message header (see
“GIOP Message Header” on page 12-15) and at the beginning of an encapsulation,
even if the encapsulation itself is nested in another encapsulation. (See
“Encapsulation” on page 12-9).

Integer Data Types

Figure 12-1 illustrates the representations for OMG IDL integer data types, including
the following data types:

• short

Table 12-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

float 4

double 8

boolean 1

enum 4
CORBA V2.0 CDR Transfer Syntax July 1995 12-5

12
• unsigned short

• long

• unsigned long

The figure illustrates bit ordering and size. Signed types (short and long) are
represented as two’s complement numbers; unsigned versions of these types are
represented as unsigned binary numbers.

Figure 12-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

Floating Point Data Types

Figure 12-2 on page 7 illustrates the representation of floating point numbers. These
exactly follow the IEEE standard formats for floating point numbers1, selected parts of
which are abstracted here for explanatory purposes. The diagram shows three different
components for floating points numbers, the sign bit (s), the exponent (e) and the
fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing
positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in
the figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.0, f1
being most significant and f3 being least significant. The value of a normalized
number is described by:

1.“IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Standard 754-1985, Institute
of Electrical and Electronics Engineers, August 1985.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

1
sign

2
exponent 127–()× 1 fraction+()×–
12-6 CORBA V2.0 July 1995

12
For double-precision values the exponent is 11 bits long, comprising e1 and e2 in the
figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m <
2.0, f1 being most significant and f7 being least significant. The value of a normalized
number is described by:

Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo any
conversion during transmission. For the purposes of describing possible octet values in
this specification, octets may be considered as unsigned 8-bit integer values.

Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE
as 0.

Character Types

OMG IDL characters are represented single octets, encoded as defined by ISO Latin-1 (8859.1).

Figure 12-2 Sizes and bit ordering in big-endian and little-endian representations of OMG IDL
single and double precision floating point numbers.

1
sign

2
exponent 1023–()× 1 fraction+()×–

s
e2

e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

s
e2

e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double
CORBA V2.0 CDR Transfer Syntax July 1995 12-7

12
12.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the
OMG IDL language.

Alignment

Constructed type have no alignment restrictions beyond those of their primitive
components; the alignment of those primitive types is not intended to support use of
marshaling buffers as equivalent to the implementation of constructed data types
within any particular language environment. GIOP assumes that agents will usually
construct structured data types by copying primitive data between the marshaled buffer
and the appropriate in-memory data structure layout for the language mapping
implementation involved.

Struct

The components of a structure are encoded in their order of their declaration in the
structure. Each component is encoded as defined for its data type.

Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as its type
indicates.

Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no
length values are encoded. Each element is encoded as defined for the type of the
array. In multidimensional arrays, the elements are ordered so the index of the first
dimension varies most slowly, and the index of the last dimension varies most quickly.

Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the
sequence. The initial unsigned long contains the number of elements in the sequence.
The elements of the sequence are encoded as specified for their type.

String

Strings are encoded as an unsigned long containing the length of the string, followed
by the individual characters in the string, encoded in ISO Latin-1 (8859.1). The length
(initial unsigned long) and string representation include a terminating null character, so
that conventional C-string handling library routines (e.g., strcpy) may be used in the
encoded message buffer.
12-8 CORBA V2.0 July 1995

12
Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive enum
identifiers are take ascending numeric values, in order of declaration from left to right.

12.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL type
sequence<octet>, which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see
“TypeCode” on page 12-10), the IIOP protocol profile inside an IOR (see “Object
References” on page 12-15), and in service-specific context (see “Object Service
Context” on page 10-18). In addition, some ORBs may use choose to use an
encapsulation to hold Principal identification information (see “Principal” on
page 12-14), the object_key (see “IIOP IOR Profiles” on page 12-27), or in other
places that a sequence<octet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If the
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE (1),
the data is encoded in little-endian order, exactly like the byte order flag in GIOP
message headers (see “GIOP Message Header” on page 12-15). This value is not part
of the data being encapsulated, but is part of the octet stream holding the
encapsulation. Following the byte order flag, the data to be encapsulated is marshaled
into the buffer as defined by CDR encoding rules. Marshaled data are aligned relative
to the beginning of the octet stream (the first octet of which is occupied by the byte
order flag).

When the encapsulation is encoded as type sequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to the
octet stream, as prescribed for sequences (see “Sequence” on page 12-8). The length
value is not part of the encapsulation’s octet stream, and does not affect alignment of
data within the encapsulation. Note that this guarantees a four octet alignment of the
start of all encapsulated data within GIOP messages and nested encapsulations.2

12.3.4 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

2.Accordingly, in cases where encapsulated data holds data with natural alignment of greater than
four octets, some processors may need to copy the octet data before removing it from the encap-
sulation. The GIOP protocol itself does not require encapsulation of such data.
CORBA V2.0 CDR Transfer Syntax July 1995 12-9

12
TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed
by values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 12-2. The enum value column this table
gives the TCKind enum value corresponding to the given TypeCode, and lists the
parameters associated with such a TypeCode. The rest of this section presents the
details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum
values, using four octets), followed by zero or more parameter values. The encodings
of the parameter lists fall into three general categories, and differ in order to conserve
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding
TCKind enum value.

• Ones with simple parameter lists are encoded as the TCKind enum value
followed by the parameter value(s), encoded as indicated in Table 12-2. A
“simple” parameter list has a fixed number of fixed length entries, or a single
parameter which is has its length encoded first. Currently, only the TCKind value
tk_string has such a parameter list.

• All other typecodes have complex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
“Encapsulation” on page 12-9) containing the encapsulated, marshaled
parameters. The order of these parameters is shown in the fourth column of
Table 12-2.

The third column of Table 12-2 shows whether each parameter list is empty, simple, or
complex. Also, note that an internal indirection facility is needed to represent some
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 12-13. This indirection does not need to be exposed to application
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 12-2. The ordering
and meaning of parameters is a superset of those given in the Interface Repository
specification (Chapter 6); more information is needed by CDR’s representation in order
to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union,
tk_enum, tk_except) contain a counted sequence of tuples.
12-10 CORBA V2.0 July 1995

12
Such counted tuple sequences are written in the form count {parameters}, where
count is the number of tuples in the encoded form, and the parameters enclosed in
braces are available in each tuple instance. First the count, which is an unsigned
long, and then each parameter in each tuple (using the noted type), is encoded in
the CDR representation of the typecode. Each tuple is encoded, first parameter
followed by second etc., before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, exception and enum members must be in the
order defined in the OMG IDL definition text. Also, that the types of discriminant
values in encoded tk_union TypeCodes are established by the second encoded
parameter (discriminant type), and cannot be specified except with reference to a
specific OMG IDL definition.3

3.This means that, for example, two OMG IDL unions that are textually equivalent, except that one
uses a “char” discriminant, and the other uses a “long” one, would have different size encoded
TypeCodes.

Table 12-2 TypeCode enum values, parameter list types, and parameters

TCKind
Integer
Value Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID), string(name)

tk_struct 15 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name), TypeCode (member type)}
CORBA V2.0 CDR Transfer Syntax July 1995 12-11

12
Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, and tk_except TypeCodes are Interface Repository RepositoryId
values, whose format is described in the specification of the Interface Repository.
RepositoryId values are required for tk_objref and tk_except TypeCodes; for other
TypeCodes they are optional and are encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, and tk_except TypeCodes and the member name parameters in
tk_struct, tk_union, tk_enum and tk_except TypeCodes are not specified by
(or significant in) GIOP. Agents should not make assumptions about type equivalence
based on these name values; only the structural information (including RepositoryId
values, if provided) is significant. If provided, the strings should be the simple,
unscoped names supplied in the OMG IDL definition text. If omitted, they are encoded
as empty strings.

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. See “Indirection: Recursive and Repeated TypeCodes” on page 12-13.

tk_union 16 complex string (repository ID), string(name), TypeCode (discriminant
type), long (default used), ulong (count) {discriminant type1 (label
value), string (member name), TypeCode (member type)}

tk_enum 17 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name)}

tk_string 18 simple ulong (max length2)

tk_sequence 19 complex TypeCode (element type), ulong (max length3)

tk_array 20 complex TypeCode (element type), ulong (length)

tk_alias 21 complex string (repository ID), string (name), TypeCode

tk_except 22 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name), TypeCode (member type)}

– none – 0xffffffff simple long (indirection4)

Table 12-2 TypeCode enum values, parameter list types, and parameters

TCKind
Integer
Value Type Parameters
12-12 CORBA V2.0 July 1995

12
Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which
tuple in the sequence describes the union’s default case. If this value is less than
zero, then the union contains no default case. Otherwise, the value contains the zero
based index of the default case in the sequence of tuples describing union members.

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes
for multi-dimensional arrays are constructed by nesting tk_array TypeCodes within
other tk_array TypeCodes, one per array dimension. The outermost (or top-level)
tk_array TypeCode describes the leftmost array index of the array as defined in IDL;
the innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g struct foo {sequence <foo> bar;}) must also
contain an indirection. Such an indirection is also useful to reduce the size of
encodings; for example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top level”
TypeCode. Indirected TypeCodes are not “freestanding”, but only exist inside some
other encoded TypeCode.

• Only the second (and subsequent) references to a given TypeCode in that scope may
use the indirection facility. The first reference to that TypeCode must be encoded
using the normal rules; in the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be completely
encoded.

The indirection is a numeric octet offset within the scope of the “top level” TypeCode
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may well
cross encapsulation boundaries, but this is not problematic because of first constraint
identified above. Because of the second constraint, the value of the offset will always
be negative.

The encoding of such an indirection is as a TypeCode with an “TCKind value” that has
the special value 232-1 (0xffffffff, all ones). Such typecodes have a single (simple)
parameter, which is the long offset (in units of octets) from the simple parameter. (As
an example, that this means offset of negative four (-4) is illegal, because it be self-
indirecting.)
CORBA V2.0 CDR Transfer Syntax July 1995 12-13

12
Any

Any values are encoded as a TypeCode (encoded as described above) followed by the
encoded value.

Principal

Principal pseudo objects are encoded as sequence<octet>. In the absence of a
Security service specification, Principal values have no standard format or
interpretation, beyond (as described in the CORBA CORE) serving to identify callers
(and potential callers). This specification does not define any inter-ORB security
mechanisms, or prescribe any usage of Principal values.

By representing Principal values as sequence<octet>, GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate or
interpret these identifiers as needed when forwarding requests between different
security domains.

Context

Context pseudo objects are encoded as sequence<string>. The strings occur in
pairs. The first string in each pair is the context property name, and the second string
in each pair is the associated value.

Exception

Exceptions are encoded as a string followed by exception members, if any. The string
contains the RepositoryId for the exception, as defined in the Interface Repository
chapter. Exception members (if any) are encoded in the same manner as a struct.4

Note – A catalog of minor codes for CORBA’s System Exceptions will be provided,
based on implementers’ agreements. Such an agreement is needed to support complete
interoperability, since otherwise applications could distinguish ORBs based on the
diagnostics they report, and could not reliably assign meanings to system exceptions
reported to them.

4.Compiled stubs are guaranteed to know how to unmarshal all exceptions. As of this writing, there
are recognized problems with the language mappings for the DII in that they can not provide the
ORB core with the same amount of information that can be provided to it by compiled stubs,
unless an implementation of the DII consults an Interface Repository. Those mappings are being
revised to address this issue.
12-14 CORBA V2.0 July 1995

12
12.3.5 Object References

Object references are encoded in OMG IDL as described in “Object Addressing” on
page 10-11. IOR profiles contain transport-specific addressing information, so there is
no general-purpose IOR profile format defined for GIOP. Instead, this specification
describes the general information model for GIOP profiles and provides a specific
format for the IIOP (see “IIOP IOR Profiles” on page 12-27).

In general, GIOP profiles shall include at least these three elements:

• The version number of the transport-specific protocol specification that the server
supports,

• The address of an endpoint for the transport protocol being used, and

• An opaque datum (an object_key, in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the object.

12.4 GIOP Message Formats

In describing GIOP messages, it is necessary to define client and server roles. For the
purpose of this discussion, a client is the agent that opens a connection (see more
details in “Connection Management” on page 12-24) and originates requests. A server
is an agent that accepts connections and receives requests.

GIOP message types are summarized in Table 12-3, which lists the message type
names, whether the message is originated by client, server, or both, and the value used
to identify the message type in GIOP message headers.

12.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

Table 12-3 GIOP Message Types and originators

Message Type Originator Value

Request Client 0

Reply Server 1

CancelRequest Client 2

LocateRequest Client 3

LocateReply Server 4

CloseConnection Server 5

MessageError Both 6
CORBA V2.0 GIOP Message Formats July 1995 12-15

12
module GIOP {
enum MsgType {
Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError
};

struct MessageHeader {
 char magic [4];

Version GIOP_version;
 boolean byte_order;
 octet message_type;
 unsigned long message_size;
 };
};

The message header clearly identifies GIOP messages, but is defined to be byte-
ordering independent, since the header itself defines the byte ordering of subsequent
message elements. The members of the header are:

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP”, encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in
the message. The version number applies to the transport-independent elements of
this specification (i.e., the CDR and message formats) which constitute the GIOP.
This is not equivalent to the IIOP version number as described in “Object
References” on page 12-15, though it has the same structure. The major GIOP
version number of this specification is one (1); the minor version is zero (0).

• byte_order indicates the byte ordering used in subsequent elements of the
message (including message_size). A value of FALSE (0) indicates big-endian byte
ordering, and TRUE (1) indicates little-endian byte ordering.

• message_type indicates the type of the message, according to Table 12-3; these
correspond to enum values of type MsgType.

• message_size contains the length of the message following the message header,
in octets. This count includes any alignment gaps. The use of a message size of 0
with a Request, LocateRequest, Reply, or LocateReply message is reserved for
future use.

Request Message

Request messages encode CORBA object invocations, including attribute accessor
operations, and CORBA::Object operations get_interface and
get_implementation. Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header
12-16 CORBA V2.0 July 1995

12
• A Request Header

• The Request Body

Request Header

The request header is specified as follows:

module GIOP { // IDL
struct RequestHeader {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 sequence <octet> object_key;
 string operation;
 Principal requesting_principal;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the client to the
server, encoded as described in “Object Service Context” on page 10-18.

• request_id is used to associate reply messages with request messages (including
LocateRequest messages). The client (requester) is responsible for generating
values so that ambiguity is eliminated; specifically, a client must not re-use
request_id values during a connection if: (a) the previous request containing that ID
is still pending, or (b) if the previous request containing that ID was canceled and
no reply was received. (See the semantics of the “CancelRequest Message” on
page 12-20).

• response_expected is set to TRUE if the request is expected to have an
associated reply. The value is FALSE if the operation is defined as oneway, or if the
operation is invoked with the DII and the invocation flags include the
INV_NO_RESPONSE flag.

• object_key identifies the object which is the target of the invocation. It is the
object_key field from the transport-specific GIOP profile, e.g. from the
encapsulated IIOP profile of the IOR for the target object. This value is only
meaningful to the server and is not interpreted or modified by the client.

• operation contains the name of the operation being invoked. In the case of
attribute accessors, the names are _get_<attribute> and
set<attribute>. The case of the operation or attribute name must match the
case of the operation name specified in the OMG IDL source for the interface being
used.

In the case of CORBA::Object operations that are defined in the CORBA Core
(“Object Reference Operations” on page 7-2) and that correspond to GIOP request
messages, the operation names are _interface, _implementation5, _is_a
and _not_existent.
CORBA V2.0 GIOP Message Formats July 1995 12-17

12
• requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::get_principal operation.

Request Body

The request body includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in “Context” on
page 12-14. This item is only included if the operation’s OMG IDL definition
includes a context expression, and only includes context members as defined in that
expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout Principal p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
Principal p; // ... to the rightmost
};

12.4.2 Reply Message

Reply messages are sent in response to Request messages. Replies include inout and
out parameters, operation results, and may include exception values. In addition, Reply
messages may provide object location information. Replies flow from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

Reply Header

The reply header is defined as follows:

5.Since CORBA::Object::get_implementation is a null interface, clients must narrow the object ref-
erence they get to some ORB-specific kind of ImplementationDef.
12-18 CORBA V2.0 July 1995

12
module GIOP { // IDL
enum ReplyStatusType {

 NO_EXCEPTION,
 USER_EXCEPTION,
 SYSTEM_EXCEPTION,
 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the server to the
client, encoded as described in “GIOP Message Transfer” on page 12-3.

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and also
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value is NO_EXCEPTION and the body
contains return values. Otherwise the body contains an exception, or else directs the
client to reissue the request to an object at some other location.

Reply Body

The reply body format is controlled by the value of reply_status. There are three types
of reply body:

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were
a structure holding first any operation return value, then any inout and out
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION,
then the body contains the exception that was raised by the operation, encoded as
described in “Exception” on page 12-14. (Only the user defined exceptions listed in
the operation’s OMG IDL definition may be raised.)

• If the reply_status value is LOCATION_FORWARD, then the body contains an
object reference (IOR) encoded as described in “Object References” on page 12-15.
The client ORB is responsible for re-sending the original request to that (different)
object. This resending is transparent to the client program making the request.

For example, the reply body for a successful response (the value of reply_status is
NO_EXCEPTION) to the Request example shown on page 12-18 would be equivalent
to the following structure:
CORBA V2.0 GIOP Message Formats July 1995 12-19

12
struct example_reply {
double return_value; // return value
string str; // leftmost inout or out parameter
Principal p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded in the new object reference’s GIOP profile may not have the same value as
the object_key in the GIOP profile of the original object reference. For details on
location forwarding, see “Object Location” on page 12-25.

12.4.3 CancelRequest Message

CancelRequest messages may be sent from clients to servers. CancelRequest
messages notify a server that the client is no longer expecting a reply for a specified
pending Request or LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

 unsigned long request_id;
 };
};

The request_id member identifies the Request or LocateRequest message to
which the cancel applies. This value is the same as the request_id value specified in
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only.
The server is not required to acknowledge the cancellation, and may subsequently send
the corresponding reply. The client should have no expectation about whether a reply
(including an exceptional one) arrives.
12-20 CORBA V2.0 July 1995

12
12.4.4 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference: (a) whether the object reference is
valid, (b) whether the current server is capable of directly receiving requests for the
object reference, and if not, (c) to what address requests for the object reference should
be sent.

Note that this information is also provided through the Request message, but that
some clients might prefer not to support retransmission of potentially large messages
that might be implied by a LOCATION_FORWARD status in a Reply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL
struct LocateRequestHeader {

 unsigned long request_id;
 sequence <octet> object_key;

};
};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones.
The client (requester) is responsible for generating values; see “Request Message”
on page 12-16 for the applicable rules.

• object_key identifies the object being located. In an IIOP context, this value is
obtained from the object_key field from the encapsulated IIOP::ProfileBody
in the IIOP profile of the IOR for the target object. When GIOP is mapped to other
transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by the
client.

See “Object Location” on page 12-25 for details on the use of LocateRequest.

12.4.5 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages.

A LocateReply message has three elements, encoded in this order:
CORBA V2.0 GIOP Message Formats July 1995 12-21

12
• A GIOP message header

• A LocateReplyHeader

• The locate reply body

Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL
 enum LocateStatusType {
 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

The members have the following definitions:

• request_id is used to associate replies with requests. This member contains the
same request_id value as the corresponding LocateRequest message.

• locate_status. The value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT The object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJECT_HERE This server (the originator of the LocateReply message)
can directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD A LocateReply body exists.

LocateReply Body

The body is empty unless the LocateStatus value is OBJECT_FORWARD, in
which case the body contains an object reference (IOR) that may be used as the target
for requests to the object specified in the LocateRequest message.
12-22 CORBA V2.0 July 1995

12
12.4.6 CloseConnection Message

CloseConnection messages are sent only by servers. They inform clients that the
server intends to close the connection and must not be expected to provide further
responses. Moreover, clients know that any requests for which they awaiting replies
will never be processed, and may safely be reissued (on another connection).

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage of CloseConnection messages, see “Connection
Management” on page 12-24.

12.4.7 MessageError Message

The MessageError message is sent in response to any GIOP message whose
version number or message type is unknown to the recipient, or any message is
received whose header is not properly formed (e.g., has the wrong magic value). Error
handling is context-specific.

The MessageError message consists only of the GIOP message header, identifying
the message type.

12.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the scope
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations,
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection loss.
If the peer process aborts, the peer host crashes, or network connectivity is lost, a
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the general
connection model of TCP/IP. Specifically, an agent (described herein as a server)
publishes a known network address in an IOR, which is used by the client when
initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows the
address (called a client) can attempt to initiate connections by sending connect requests
to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources).
CORBA V2.0 GIOP Message Transport July 1995 12-23

12
Once a connection is open, either side may close the connection. (However, see
“Connection Management” on page 12-24 for semantic issues related to connection
closure.) A candidate transport might not directly support this specific connection
model; it is only necessary that the transport’s model can be mapped onto this view.

12.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information found in
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any
implications for ORB or application architectures.

Connections are not symmetrical. Only clients can send Request, LocateRequest, and
CancelRequest messages over a connection. Only a server can send Reply, LocateReply
and CloseConnection messages over a connection. Either client or server can send
MessageError messages.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scope and
lifetime of a connection. Request IDs may be re-used if there is no possibility that the
previous request using the ID may still have a pending reply. Note that cancellation
does not guarantee no reply will be sent. It is the responsibility of the client to generate
and assign request IDs. Request IDs must be unique among both Request and
LocateRequest messages.

Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.
Orderly shutdown is initiated by servers reliably sending a CloseConnection
message, or by clients just closing down a connection. Orderly shutdown may be
initiated by the client at any time. If there are pending requests when a client shuts
down a connection, the server should consider all such requests canceled. A server
may not initiate shutdown if it has begun processing any requests for which it has not
either received a CancelRequest or sent a corresponding reply.

If a client receives an CloseConnection message from the server, it should assume
that any outstanding messages (i.e., without replies) were received after the server sent
the CloseConnection message, were not processed, and may be safely resent on a new
connection.

After reliably issuing a CloseConnection message, the server may close the
connection. Some transport protocols (not including TCP) do not provide an “orderly
disconnect” capability, guaranteeing reliable delivery of the last message sent. When
12-24 CORBA V2.0 July 1995

12
GIOP is used with such protocols an additional handshake needs to be provided to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

If a client detects connection closure without receiving a CloseConnection
message, it should assume an abortive disconnect has occurred, and treat the condition
as an error. Specifically, it should report COMM_FAILURE exceptions for all pending
requests on the connection, with completion_status values set to
COMPLETED_MAYBE.

Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource usage
by re-using connections, if it wishes. If not, the client may open a new connection for
each active object supported by the server, although this behavior should be avoided.

12.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply from a
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required
to be in the same order as the corresponding Requests.

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issue CloseConnection
messages when Reply messages have been sent in response to all received Request
messages that require replies.

12.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol features
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following
roles with respect to a particular object reference:
CORBA V2.0 Object Location July 1995 12-25

12
• The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may be
an Inter-ORB bridge that transforms the request and passes it on to another process
or ORB. From GIOP’s perspective, it is only important that requests can be sent
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead
as a location service. Any Request messages sent to the agent would result in either
exceptions or replies with LOCATION_FORWARD status, providing new addresses
to which requests may be sent. Such agents would also respond to LocateRequest
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time (perhaps during the same
connection).

Agents are not required to implement location forwarding mechanisms. An agent can
be implemented with the policy that a connection either supports direct access to an
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT status,
and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a location
service. Whether a client chooses to send LocationRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always send LocateRequest messages to objects for which it has no recorded
forwarding address. If a client sends LocateRequest messages, it should (obviously) be
prepared to accept LocateReply messages.

A client should not make any assumptions about the longevity of object addresses
returned by location forwarding mechanisms. Once a connection based on location
forwarding information is closed, subsequent attempts to send requests to the same
object should start with the original address specified in the initial object reference.

Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returns UNKNOWN_OBJECT, the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discretion
of ORBs, available to be used for optimization and to support flexible object location
and migration behaviors.
12-26 CORBA V2.0 July 1995

12
12.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP6. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message transfer to
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

12.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects
(i.e., servers) publish TCP/IP addresses in IORs, as described in “IIOP IOR Profiles”
on page 12-27. A TCP/IP address consists of an IP host address, typically represented
by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing a object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers should
accept connection requests if possible, but ORBs are free to establish any desired
policy for connection acceptance (e.g., to enforce fairness or optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest, or
CancelRequest messages by writing to the TCP/IP socket it owns for the
connection. The server may send Reply, LocateReply, and CloseConnection
messages by writing to its TCP/IP connection.

After sending (or receiving) a CloseConnection message, both client or server
must close the TCP/IP connection.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations
between clients and servers if both sides of a connection send large amounts of data on
a connection (or two different connections between the same processes) and do not
read incoming data. Both processes may block on write operations, and never resume.
It is the responsibility of both clients and servers to avoid creating deadlock by reading
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs are
free to adopt any desired implementation strategy, but should provide robust behavior.

12.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter_ORB
Protocol, have the following form:

6.Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specification”,
RFC-793, Information Sciences Institute, September 1981
CORBA V2.0 Internet Inter-ORB Protocol (IIOP) July 1995 12-27

12
module IIOP { // IDL
struct Version {

 char major;
 char minor;
 };

struct ProfileBody {
 Version iiop_version;

string host;
 unsigned short port;
 sequence <octet>object_key;
 };
};

An instance of the IIOP::ProfileBody type is marshaled into an encapsulation octet
stream. This encapsulation (a sequence<octet>) becomes the profile_data
member of the IOR::TaggedProfile structure representing the IIOP profile in an
IOR, and the tag has the value TAG_INTERNET_IOP (as defined earlier).

The members of IIOP::ProfileBody are defined as follows:

• iiop_version describes the version of IIOP that the agent at the specified address
is prepared to receive. When an agent generates IIOP profiles specifying a
particular version, it must be able to accept messages complying with the specified
version or any previous minor version (i.e., any smaller version number). The major
version number of this specification is one (1); the minor version is zero (0). Note
that this value is not equivalent to the GIOP version number specified in GIOP
message headers. Transport-specific elements of the IIOP specification may change
independently from the GIOP specification.

• host identifies the Internet host to which GIOP messages for the specified object
may be sent. In order to promote a very large (Internet-wide) scope for the object
reference, this will typically be the fully qualified domain name of the host, rather
than an unqualified (or partially qualified) name. However, per Internet standards,
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target agent
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the request is
directed. An agent that generates an object key value must be able to map the value
unambiguously onto the corresponding object when routing requests internally.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.
12-28 CORBA V2.0 July 1995

12
Also, note that at this time no “well known” port number has been allocated, so
individual agents will need to assign previously unused ports as part of their
installation procedures. IIOP supports multiple such agents per host.

12.8 OMG IDL for the GIOP and IIOP Specifications

This section contains the OMG IDL for the GIOP and IIOP modules.

12.8.1 GIOP Module

module GIOP { // IDL
enum MsgType {

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

};

struct MessageHeader {
char magic [4];
Version GIOP_version;

 boolean byte_order;
 octet message_type;
 unsigned long message_size;
 };

struct RequestHeader {
 IOP::ServiceContextList service_context;

unsigned long request_id;
 boolean response_expected;

 sequence <octet> object_key;
 string operation;

 Principal requesting_principal;
 };
CORBA V2.0 OMG IDL for the GIOP and IIOP Specifications July 1995 12-29

12
enum ReplyStatusType {
 NO_EXCEPTION,

USER_EXCEPTION,
 SYSTEM_EXCEPTION,

 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };

struct CancelRequestHeader {
 unsigned long request_id;
 };

struct LocateRequestHeader {
 unsigned long request_id;
 sequence <octet> object_key;

};

enum LocateStatusType {
 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};
12-30 CORBA V2.0 July 1995

12
12.8.2 IIOP Module

module IIOP { \\ IDL
struct Version {

 char major;
 char minor;
 };

struct ProfileBody {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 };

};
CORBA V2.0 OMG IDL for the GIOP and IIOP Specifications July 1995 12-31

12
12-32 CORBA V2.0 July 1995

The DCE ESIOP 13
This chapter specifies an Environment Specific Inter-ORB Protocol (ESIOP) for the
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

13.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

DCE CIOP achieves these goals by using DCE-RPC to provide message transport,
while leaving the ORB responsible for message formatting, data marshaling, and
operation dispatch.

13.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet formats
defined by DCE-RPC to enable independently implemented ORBs to communicate. It
defines the message formats that are exchanged using DCE-RPC, and specifies how
information in object references is used to establish communication between client and
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 13.7, “OMG
IDL for the DCE CIOP Module,” on page 13-24. Fragments are used throughout this
chapter as necessary.
 CORBA V2.0 July 1995 13-1

13
13.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC which is interoperable with the DCE connection-oriented
and/or connectionless protocols as specified in the X/Open CAE Specification C309
and the OSF AES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the same
connection.

• Supports fragmentation of messages. This provides for buffer management by
ORBs of CORBA requests which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of two
well-known DCE-RPC interfaces. Two DCE operations are provided in each interface:

• invoke - for invoking CORBA operation requests, and

• locate - for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of
uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message
transmission.

• Encoding of messages and marshaling of data is completely under the control of the
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

1. DCE maybe operation semantics cannot be used for CORBA oneway operations because they are idempotent as
opposed to at-most-once.

2. The deferred synchronous DII API can be implemented on top of synchronous RPCs by using threads.
13-2 CORBA V2.0 July 1995

13
Using the other DCE-RPC interface, the messages are transmitted as conformant arrays
of uninterpreted bytes. This interface does not offer all the advantages of the pipe-
based interface, but is provided to enable interoperability with ORBs using DCE-RPC
implementations that do not adequately support pipes.

13.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer syntax,
which is defined in “CDR Transfer Syntax” on page 12-4. DCE-CIOP message headers
and bodies are specified as OMG IDL types. These are encoded using CDR, and the
resulting messages are passed between client and server processes via DCE-RPC pipes
or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL.
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDL primitive types identically to the NDR representation of
corresponding DCE IDL primitive types. The corresponding OMG IDL and DCE IDL
primitive types are shown in table Table 13-1.

The CDR representation of OMG IDL constructed types and pseudo-object types does
not correspond to the NDR representation of types describable in DCE IDL.

As new data types are added to OMG IDL, NDR can be used as a model for their CDR
representations.

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Values restricted to 0 and 1.

Table 13-1 Relationship between CDR and NDR primitive data types

OMG IDL type

DCE IDL type with NDR representation
equivalent to CDR representation of OMG
IDL type

char byte

octet byte

short short

unsigned short unsigned short

long long

unsigned long unsigned long

float float1

double double2

boolean byte3

enum unsigned long
CORBA V2.0 DCE Common Inter-ORB Protocol Overview July 1995 13-3

13
13.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clients and
servers via the invoke and locate RPCs:

• Invoke Request identifies the target object and the operation and contains the
principal, the operation context, a ServiceContext, and the in and inout
parameter values.

• Invoke Response indicates whether the operation succeeded, failed, or needs to be
reinvoked at another location, and returns a ServiceContext. If the operation
succeeded, the result and the out and inout parameter values are returned. If it
failed, an exception is returned. If the object is at another location, new RPC
binding information is returned.

• Locate Request identifies the target object and the operation.

• Locate Response indicates whether the location is in the current process, is
elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the CDR
encoding of the remainder of the message. The CDR byte order of a message is
required to match the NDR byte order used by DCE-RPC to transmit the message.

13.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information necessary
to reference an object via DCE-CIOP must be included in an IOR. This information
can coexist with the information needed for other protocols such as IIOP. DCE-CIOP
information is stored in an IOR as a set of components in a profile identified by
TAG_MULTIPLE_COMPONENTS. Components are defined for the following
purposes:

• To identify a server process via a DCE string binding, which can be either fully or
partially bound. This process may be a server process implementing the object, or it
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an agent
capable of locating it.

• To identify the target object when request messages are sent to the server.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an invoke
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to
reference the CORBA object.
13-4 CORBA V2.0 July 1995

13
13.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages between
client ORBs and server ORBs. One interface uses pipes to convey the messages, while
the other uses conformant arrays.

The pipe-based interface is the preferred interface, since it allows messages to be
transmitted without precomputing the message length. But not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client and
server ORBs implementing DCE-CIOP must support the array-based interface3.

While server ORBs may provide both interfaces or just the array-based interface, it is
up to the client ORB to decide which to use for an invocation. If a client ORB tries to
use the pipe-based interface and receives a rpc_s_unknown_if error, it should fall
back to the array-based interface.

13.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(0e07f95c-37b0-11ce-90a7-0800090b5d3e),

version(1.0)

]

interface dce_ciop_pipe

{

 typedef pipe byte message_type;

 void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

 void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_pipe interface by using DCE stubs generated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

3. A future DCE-CIOP revision may eliminate the array-based interface and require support of the pipe-based interface.
CORBA V2.0 DCE-CIOP Message Transport July 1995 13-5

13
The dce_ciop_pipe interface is identified by the UUID and version number shown.
To provide maximal performance, all server ORBs and location agents implementing
DCE-CIOP should listen for and handle requests made to this interface. To maximize
the chances of interoperating with any DCE-CIOP client, servers should listen for
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE
RPCs on the dce_ciop_pipe interface.

The dce_ciop_pipe interface is made up of two DCE-RPC operations, invoke
and locate. The first parameter of each of these RPCs is a DCE binding handle,
which identifies the server process on which to perform the RPC. See “DCE-CIOP
String Binding Component” on page 13-16, “DCE-CIOP Binding Name Component”
on page 13-17, and “DCE-CIOP Object Location” on page 13-21 for discussion of how
these binding handles are obtained. The remaining parameters of the
dce_ciop_pipe RPCs are pipes of uninterpreted bytes. These pipes are used to
convey messages encoded using CDR. The request_message input parameters
send a request message from the client to the server, while the response_message
output parameters return a response message from the server to the client.

Figure 13-1 below illustrates the layering of DCE-CIOP messages on the DCE-RPC
protocol as NDR pipes:

Figure 13-1 Pipe-based interface protocol layering.

PDU

Chunk Chunk Data Chunk ChunkChunk Data

PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body
13-6 CORBA V2.0 July 1995

13
The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authentication is
performed4, are concatenated by the DCE-RPC run-time to form an NDR stream. This
stream is then interpreted as the NDR representation of a DCE IDL pipe.

A pipe is made up of chunks, where each chunk consists of a chunk length and chunk
data. The chunk length is an unsigned long indicating the number of pipe elements that
make up the chunk data. The pipe elements are DCE IDL bytes, which are
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe
chunks are concatenated to form a DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message pipe transmits a DCE-CIOP invoke request
message, encoded using CDR, from the client to the server. See “DCE_CIOP Invoke
Request Message” on page 13-10 for a description of its format. The
response_message pipe transmits a DCE-CIOP invoke response message, also
encoded using CDR, from the server to the client. See “DCE-CIOP Invoke Response
Message” on page 13-11 for a description of the response format.

Locate

The locate RPC is used by a DCE-CIOP client process to query the server process
identified by the binding_handle parameter for the location of the server process
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC. See “DCE-CIOP
Locate Request Message” on page 13-13 and “DCE-CIOP Locate Response Message”
on page 13-14 for descriptions of their formats. Use of the locate RPC is described
in detail in “DCE-CIOP Object Location” on page 13-21.

13.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(8108ae54-4cd9-11ce-acca-0800090b5d3e),

version(1.0)

]

interface dce_ciop_array

{

 typedef struct {

4. The use of authentication, or other DCE security services, has not yet been defined for DCE-CIOP.
CORBA V2.0 DCE-CIOP Message Transport July 1995 13-7

13
 unsigned long length;

 [size_is(length),ptr] byte *data;

 } message_type;

 void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

 void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDL specification, or
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and
handle requests made to the dce_ciop_array interface, and to maximize
interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing
locate and invoke RPCs on the dce_ciop_array interface.

As with the dce_ciop_pipe interface, the first parameter of each
dce_ciop_array RPC is a DCE binding handle that identifies the server process on
which to perform the RPC. The remaining parameters are structures containing CDR-
encoded messages. The request_message input parameters send a request message
from the client to the server, while the response_message output parameters return
a response message from the server to the client.

The message_type structure used to convey messages is made up of a length
member and a data member:

• length - This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array
containing the message.
13-8 CORBA V2.0 July 1995

13
The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated in
Figure 13-2 below:

Figure 13-2 Array-based interface protocol layering.

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the NDR
representation of the DCE IDL message_type structure. The length member is
encoded first, followed by the data member. The data member is a full pointer,
which is represented in NDR as a referent ID. In this case, this non-NULL pointer is
the first (and only) pointer to the referent, so the referent ID is 1 and it is followed by
the representation of the referent. The referent is a conformant array of bytes, which is
represented in NDR as an unsigned long indicating the length, followed by that number
of bytes. The bytes form the DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message input parameter contains a DCE-CIOP invoke
request message. The response_message output parameter returns a DCE-CIOP
invoke response message from the server to the client.

PDU PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body

length ref ID length bytes
CORBA V2.0 DCE-CIOP Message Transport July 1995 13-9

13
Locate

The locate RPC is used by a DCE-CIOP client process to query the server process
identified by the binding_handle parameter for the location of the server process
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC.

13.4 DCE-CIOP Message Formats

The section defines the message formats used by DCE-CIOP. These message formats
are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE-
RPC as either pipes or arrays of bytes as described in “DCE-CIOP Message Transport”
on page 13-5.

13.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations and CORBA::Object operations such as
get_interface and get_implementation. Invoke requests are passed from
client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The header
has a fixed format, while the format of the body is determined by the operation’s IDL
definition.

Invoke Request Header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string endpoint_id;
string operation;
CORBA::Principal principal;
sequence <string> client_context;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the
remainder of the message. A value of FALSE indicates big-endian byte ordering,
and TRUE indicates little-endian byte ordering.
13-10 CORBA V2.0 July 1995

13
• service_context contains any ORB service data that needs to be sent from the
client to the server.

• object_key contains opaque data used to identify the object that is the target of
the operation. See “Object Key Component” on page 13-19.

• endpoint_id contains an identifier for the endpoint at which the object is located,
if this was included in the IOR profile. If not, an empty string is used. See
“Endpoint ID Component” on page 13-19.

• operation contains the name of the CORBA operation being invoked. The case of
the operation name must match the case of the operation name specified in the
OMG IDL source for the interface being used.

Attribute accessors have names as follows:

• Attribute selector: operation name is "_get_<attribute>"

• Attribute mutator: operation name is "_set_<attribute>"

CORBA::Object pseudo-operations have operation names as follows:

• get_interface - operation name is "_interface"

• get_implementation - operation name is "_implementation"

• is_a - operation name is "_is_a"

• non_existent - operation name is "_non_existent"

• Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value. It is provided to support the
BOA::get_principal operation.

• client_context contains any context properties associated with the request. Each
property is encoded as a pair of strings; the first naming the property and the second
containing its value.

Clients are not required to include all properties listed in the context expression of
the operation’s OMG IDL definition. They are allowed to include properties not
listed in the OMG IDL definition.

Invoke Request Body

The invoke request body contains all in and inout parameters, in the order in which
they are specified in the operation definition, from left to right.

13.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the
response_message parameter of an invoke RPC.

Like invoke request messages, an invoke response message is made up of a header and
a body. The header has a fixed format, while the format of the body depends on the
operation’s OMG IDL definition and the outcome of the invocation.
CORBA V2.0 DCE-CIOP Message Formats July 1995 13-11

13
Invoke Response Header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::MultipleComponentsProfile follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the
remainder of the message. A value of FALSE indicates big-endian byte ordering,
and TRUE indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.

• status indicates the completion status of the associated request, and also
determines the contents of the body.

Invoke Response Body

The contents of the invoke response body depends on the value of the status
member of the invoke response header, as well as the OMG IDL definition of the
operation being invoked. Its format is one of the following:
13-12 CORBA V2.0 July 1995

13
• If the status value is INVOKE_NO_EXCEPTION, then the body contains the
operation result value (if any), followed by all inout and out parameters, in the
order in which they appear in the operation signature, from left to right.

• If the status value is INVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encoded
as in GIOP.

• If the status value is INVOKE_LOCATION_FORWARD, then the body contains
a new MultipleComponentProfile structure containing components that can
be used to communicate with the object specified in the invoke request message.
This profile must provide at least one new DCE-CIOP binding component. The
client ORB is responsible for re-sending the request to the server identified by the
new profile. This operation should be transparent to the client program making the
request. See “DCE-CIOP Object Location” on page 13-21 for more details.

• If the status value is INVOKE_TRY_AGAIN, then the body is empty and the
client should reissue the invoke RPC, possibly after a short delay5.

13.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the
request_message parameter of a locate RPC, to determine the following
regarding a specified object reference:

• Whether the object reference is valid

• Whether the current server is capable of directly receiving requests for the object
reference

• If not capable, to solicit an address to which requests for the object reference should
be sent.

For details on the usage of the locate RPC, see “DCE-CIOP Object Location” on
page 13-21.

Locate request messages contain a fixed-format header, but no body.

Locate Request Header

DCE-CIOP locate request headers have the following format:

5. An exponential back-off algorithm is recommended, but not required.
CORBA V2.0 DCE-CIOP Message Formats July 1995 13-13

13
module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string endpoint_id;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the
remainder of the message. A value of FALSE indicates big-endian byte ordering,
and TRUE indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target of
the operation. See “Object Key Component” on page 13-19.

• endpoint_id member contains an identifier for the endpoint at which the object is
located, if this was included in the IOR profile. If not, an empty string is used. See
“Endpoint ID Component” on page 13-19.

• operation contains the name of the CORBA operation being invoked. It is
encoded as in the invoke request header.

13.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the
response_message parameter of a locate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

Locate Response Header

DCE-CIOP locate response headers have the following format:
13-14 CORBA V2.0 July 1995

13
module DCE_CIOP { // IDL
enum LocateResponseStatus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};

struct LocateResponseHeader {
boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::MultipleComponentProfile follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the
remainder of the message. A value of FALSE indicates big-endian byte ordering,
and TRUE indicates little-endian byte ordering.

• status indicates whether the object is valid and whether it is located in this server.
It determines the contents of the body.

Locate Response Body

The contents of the locate response body depends on the value of the status member
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specified
in the corresponding locate request message is unknown to the server. The locate
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originator
of the locate response message) can directly receive requests for the specified
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate
response body contains a new MultipleComponentProfile structure containing
components that can be used to communicate with the object specified in the locate
request message. This profile must provide at least one new DCE-CIOP binding
component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty and
the client should reissue the locate RPC, possibly after a short delay6.

6. An exponential back-off algorithm is recommended, but not required.
CORBA V2.0 DCE-CIOP Message Formats July 1995 13-15

13
13.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS. The
profile_data for this profile is a CDR encapsulation of the
MultipleComponentProfile type, which is a sequence of TaggedComponent
structures. These types are described in “An Information Model for Object References”
on page 10-14.

DCE-CIOP defines a number of IOR components that can be included in a
MultipleComponentProfile. Each is identified by a unique tag, and the encoding
and semantics of the associated component_data are specified.

An IOR profile identified by TAG_MULTIPLE_COMPONENTS can contain
components for other protocols in addition to DCE-CIOP, and can contain components
used by other kinds of ORB services. For example, an ORB vendor can define its own
private components within this profile to support the vendor’s native protocol. Several
of the components defined for DCE-CIOP may be of use to other protocols as well.
The following component descriptions will note whether the component is intended
solely for DCE-CIOP or can be used by other protocols, whether the component is
required or optional for DCE-CIOP, and whether more than one instance of the
component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and
recognize the components defined here. Unrecognized components should be
preserved but ignored. Implementations should also be prepared to encounter profiles
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.

13.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING, contains a fully or partially bound string binding.
A string binding provides the information necessary for DCE-RPC to establish
communication with a server process that can either service the client’s requests itself,
or provide the location of another process that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert a string binding to
the DCE binding handle required to communicate with a server as described in “DCE-
CIOP Message Transport” on page 13-5.

This component is intended to be used only by DCE-CIOP. At least one string binding
or binding name component must be present for an IOR profile to support DCE-CIOP.

Multiple string binding components can be included in a profile to define endpoints for
different DCE protocols, or to identify multiple servers or agents capable of servicing
the request.

The string binding component is defined as follows:
13-16 CORBA V2.0 July 1995

13
module DCE_CIOP { \\ IDL
const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComponent structure is built for the string binding component by
setting the tag member to TAG_DCE_STRING_BINDING, and setting the
component_data member to the value of a DCE string binding. The string is
represented directly in the sequence of octets, including the terminating NUL, without
further encoding.

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed
Computing RPC Volume. The DCE API function
rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as the first parameter to the invoke and
locate RPCs.

A string binding contains:

• A protocol sequence

• A network address

• An optional endpoint

• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC
run-time uses an endpoint mapper to complete a partial binding, and multiple ORB
servers might be located on the same host, partially bound string bindings must contain
object UUIDs to distinguish different endpoints at the same network address.

13.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME. It contains a name that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle needed to communicate
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name
components can be included to identify multiple servers or agents capable of handling
a request. At least one binding name or string binding component must be present for
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:
CORBA V2.0 DCE-CIOP Object References July 1995 13-17

13
module DCE_CIOP { // IDL
const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComponent structure is built for the binding name component by setting
the tag member to TAG_DCE_BINDING_NAME, and setting the
component_data member to a CDR encapsulation of a
BindingNameComponent structure.

BindingNameComponent

The BindingNameComponent structure contains the information necessary to
query a DCE nameservice such as CDS. A client ORB can use the
entry_name_syntax, entry_name, and object_uuid members of the
BindingName structure with the rpc_ns_binding_import_* or
rpc_ns_binding_lookup_* families of DCE API routines to obtain binding
handles to communicate with a server. If the object_uuid member is an empty
string, a nil object UUID should be passed to these DCE API routines.

13.5.3 DCE-CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PIPES indicates to an ORB
client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is
only a hint, and can be safely ignored. As described in “DCE-CIOP Message
Transport” on page 13-5, the client must fall back to the array-based interface if the
pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::ComponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComponent structure with a tag member of TAG_DCE_NO_PIPES
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.
13-18 CORBA V2.0 July 1995

13
13.5.4 Object Key Component

An ORB server must include a single object key component, identified by
TAG_OBJECT_KEY, in a DCE-CIOP IOR profile to hold the data it uses to
identify the object. Its component_data value is used as the object_key member
in invoke and locate request message headers.

The object key component is available for use by all protocols that use the
TAG_MULTIPLE_COMPONENTS profile. By sharing this component, protocols
can avoid duplicating object identity information.

module IOP { \\ IDL
const ComponentId TAG_OBJECT_KEY = 10;

};

The component_data of this component is not interpreted by the client process. Its
format only needs to be understood by the server process and any location agent that it
uses.

13.5.5 Endpoint ID Component

An optional endpoint ID component can be included in IOR profiles to enable client
ORBs to minimize resource utilization and to avoid redundant locate messages. It can
be used by other protocols as well as by DCE-CIOP. No more than one endpoint ID
component should be included in a profile.

module IOP { \\ IDL
const ComponentId TAG_ENDPOINT_ID = 11;

};

An endpoint ID component, identified by TAG_ENDPOINT_ID, provides an
identifier for the endpoint at which operations on an object can be invoked. The
component_data is a NUL-terminated globally unique string identifying the
endpoint. The recommended format for the component_data is a stringified
UUID.

If multiple objects have the same endpoint ID, they can be messaged to at a single
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients can
use a single binding handle to invoke requests on all of the objects with a common
endpoint ID. See “Use of the Location Policy and the Endpoint ID” on page 13-23.
CORBA V2.0 DCE-CIOP Object References July 1995 13-19

13
The endpoint ID component, if present in the IOR profile, is included in invoke and
locate request message headers as the endpoint_id member. The server or agent can
use the endpoint ID in conjunction with the object key to identify the object and its
implementation. If no endpoint ID is included in the profile, an empty string is used as
the endpoint_id member of the request messages.

13.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIOP client ORB should perform a locate RPC before attempting to
perform an invoke RPC. No more than one location policy component should be
included in a profile, and it can be used by other protocols that have location
algorithms similar to DCE-CIOP.

module IOP { \\ IDL
const ComponentId TAG_LOCATION_POLICY = 12;

const octet LOCATE_NEVER = 0;
const octet LOCATE_OBJECT = 1;
const octet LOCATE_OPERATION = 2;
const octet LOCATE_ALWAYS = 3;

};

A TaggedComponent structure for a location policy component is built by setting
the tag member to TAG_LOCATION_POLICY, and setting the
component_data member to a sequence containing a single octet, whose value is
LOCATE_NEVER, LOCATE_OBJECT, LOCATE_OPERATION, or
LOCATE_ALWAYS.

If a location policy component is not present in a profile, the client should assume a
location policy of LOCATE_OBJECT.

A client should interpret the location policy as follows:

• LOCATE_NEVER Perform only the invoke RPC. No locate RPC is
necessary.

• LOCATE_OBJECT Perform a locate RPC once per object. The operation
member of the locate request message will be ignored.

• LOCATE_OPERATION Perform a separate locate RPC for each distinct
operation on the object. This policy can be used when different methods of an
object are located in different processes.

• LOCATE_ALWAYS Perform a separate locate RPC for each invocation on the
object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs
and to avoid invoke RPCs that return INVOKE_LOCATION_FORWARD status.
It is not needed to provide correct semantics, and can be ignored. Even when this hint
13-20 CORBA V2.0 July 1995

13
is utilized, an invoke RPC might result in an
INVOKE_LOCATION_FORWARD response. See “DCE-CIOP Object Location”
on page 13-21 for more detail.

A client does not need to implement all location policies to make use of this hint. A
location policy with a higher value can be substituted for one with a lower value. For
instance, a client might treat LOCATE_OPERATION as LOCATE_ALWAYS to
avoid having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perform a locate RPC for the
first object with a particular endpoint ID, and then just perform an invoke RPC for
other objects with the same endpoint ID. When a location policy of
LOCATE_NEVER is combined with an endpoint ID component, only invoke
RPCs need be performed. The LOCATE_ALWAYS and LOCATE_OPERATION
policies should not be combined with an endpoint ID component in a profile.

13.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that can
perform operations on an object via the invoke RPC.

13.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol features
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, server process, ORB process,
locator, etc.). It merely implies the existence of some agent to which requests may be
sent.

The "agent" (receiver of an RPC) may have one of the following roles with respect to
a particular object reference:

• The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may be
a gateway that transforms the request and passes it on to another process or ORB.
From DCE-CIOP’s perspective, it is only important that invoke request messages
can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead
as a location service. Any invoke request messages sent to the agent would result in
either exceptions or replies with INVOKE_LOCATION_FORWARD status,
providing new addresses to which requests may be sent. Such agents would also
respond to locate request messages with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.
CORBA V2.0 DCE-CIOP Object Location July 1995 13-21

13
• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time.

Server ORBs are not required to implement location forwarding mechanisms. An ORB
can be implemented with the policy that servers either support direct access to an
object, or return exceptions. Such a server ORB would always return locate response
messages with either LOCATE_OBJECT_HERE or
LOCATE_UNKNOWN_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages with INVOKE_LOCATION_FORWARD status.

Client ORBs must, however, be able to accept and process invoke response messages
with INVOKE_LOCATION_FORWARD status, since any server ORB may
choose to implement a location service. Whether a client ORB chooses to send locate
request messages is at the discretion of the client.

Client ORBs that send locate request messages can use the location policy component
found in DCE-CIOP IOR profiles to decide whether to send a locate request message
before sending an invoke request message. See “Location Policy Component” on
page 13-20. This hint can be safely ignored by a client ORB.

A client should not make any assumptions about the longevity of addresses returned by
location forwarding mechanisms. If a binding handle based on location forwarding
information is used successfully, but then fails, subsequent attempts to send requests to
the same object should start with the original address specified in the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORBs,
available to be used for optimization and to support flexible object location and
migration behaviors.

13.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless an
IOR refers to a transient object, the agent addressed by the IOR profile should either
be permanently active, or should be activated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB server
environments using rpcd, the agent addressed by an IOR must not only be capable of
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatic activation, but client ORB implementations
do not need to be aware of this distinction.

13.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handling
the invoke RPC for a particular operation:
13-22 CORBA V2.0 July 1995

13
1. Pick a profile with TAG_MULTIPLE_COMPONENTS from the IOR. Make
the MultipleComponentProfile structure encoded in the profile_data of this
the original profile and the current profile. If no profiles with
TAG_MULTIPLE_COMPONENTS are available, operations cannot be
invoked using DCE-CIOP with this IOR.

2. Get a binding handle to try from the current profile. See “DCE-CIOP String
Binding Component” on page 13-16 and “DCE-CIOP Binding Name Component”
on page 13-17. If no binding handles can be obtained, the server cannot be located
using the current profile, so go to step 1.

3. Perform either a locate or invoke RPC using the TAG_OBJECT_KEY
component and optional TAG_ENDPOINT_ID component from the original
profile.

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returns INVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN, try
the same RPC again, possibly after a delay.

• If the RPC returns either INVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD, make the new
MultipleComponentProfile structure returned in the response message body
the current profile and go to step 2.

• If the RPC returns LOCATE_UNKNOWN_OBJECT, the object no longer
exists.

• Otherwise, the server has been successfully located.

Any invoke RPC might return INVOKE_LOCATION_FORWARD, in which
case the client ORB should make the returned MultipleComponentProfile
structure the current profile, and re-enter the location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client ORB
should start over at step 1.

Note that the TAG_OBJECT_KEY and TAG_ENDPOINT_ID components for all
invoke and locate RPCs are taken from the original profile. These components
should not be included in the MultipleComponentProfile structure returned in
INVOKE_LOCATION_FORWARD and LOCATE_LOCATION_FORWARD
response messages. Only the TAG_DCE_STRING_BINDING and
TAG_DCE_BINDING_NAME components, and possibly the optional
TAG_LOCATION_POLICY and TAG_DCE_NO_PIPES components are taken
from the current profile.

13.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB, if
possible, so that operations can be invoked using DCE-CIOP. But unnecessary
locate RPCs may be performed, and invoke RPCs may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint ID
components can be used by the client ORB, if present in the IOR profile, to optimize
this algorithm.
CORBA V2.0 DCE-CIOP Object Location July 1995 13-23

13
Current Location Policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in
step 3 based on the location policy of the current IOR profile. If the current profile has
a TAG_LOCATION_POLICY component with a value of LOCATE_NEVER,
the client should perform an invoke RPC. Otherwise, it should perform a locate
RPC.

Original Location Policy

The client ORB can use the location policy of the original IOR profile as follows to
determine whether it is necessary to perform the location algorithm for a particular
invocation:

• LOCATE_OBJECT or LOCATE_NEVER A binding handle previously used
successfully to invoke an operation on an object can be reused for all operations on
the same object. The client only needs to perform the location algorithm once per
object.

• LOCATE_OPERATION A binding handle previously used successfully to invoke
an operation on an object can be reused for that same operation on the same object.
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS Binding handles should not be reused. The client needs to
perform the location algorithm once per invocation.

Original Endpoint ID

If a component with TAG_ENDPOINT_ID is present in the original IOR profile, the
client ORB can reuse a binding handle that was successfully used to perform an
operation on another object with the same endpoint ID component_data value. The
client only needs to perform the location algorithm once per endpoint.

An endpoint ID component should never be combined in the same profile with a
location policy of LOCATE_OPERATION or LOCATE_ALWAYS.

13.7 OMG IDL for the DCE CIOP Module

This section shows the DCE_CIOP module.
13-24 CORBA V2.0 July 1995

13
module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string endpoint_id;
string operation;
CORBA::Principal principal;
sequence <string> client_context;

// in and inout parameters follow
};

module DCE_CIOP {
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::MultipleComponentsProfile follows

};

module DCE_CIOP {
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string endpoint_id;
string operation;

// no body follows
};
CORBA V2.0 OMG IDL for the DCE CIOP Module July 1995 13-25

13
module IOP {
const ComponentId TAG_OBJECT_KEY = 10;
const ComponentId TAG_ENDPOINT_ID = 11;
const ComponentId TAG_LOCATION_POLICY = 12;
const octet LOCATE_NEVER = 0;
const octet LOCATE_OBJECT = 1;
const octet LOCATE_OPERATION = 2;
const octet LOCATE_ALWAYS = 3;

};

13.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company
Limited, Reading, UK
13-26 CORBA V2.0 July 1995

Interworking Architecture 13A
The Interworking chapters describe a specification for communication between two
similar but very distinct object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA. An optimal specification would allow objects from
either system to make their key functionality visible to clients using the other system
as transparently as possible. The architecture for Interworking is designed to meet this
goal.

13.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way
communication between CORBA objects and COM objects. The goal is that objects
from one object model should be able to be viewed as if they existed in the other
object model. For example, a client working in a CORBA model should be able to
view a COM object as if it were a CORBA object. Likewise, a client working in a
COM object model should be able to view a CORBA object as if it were a COM
object.

There are many similarities between the two systems. In particular, both are centered
around the idea that an object is a discrete unit of functionality that presents its
behavior through a set of fully-described interfaces. Each system hides the details of
implementation from its clients. To a large extent COM and CORBA are semantically
isomorphic. Much of the COM/CORBA Interworking specification simply involves a
mapping of the syntax, structure and facilities of each to the other — a straightforward
task.

There are, however, differences in the CORBA and COM object models. COM and
CORBA each have a different way of describing what an object is, how it is typically
used, and how the components of the object model are organized. Even among largely
isomorphic elements, these differences raise a number of issues as to how to provide
the most transparent mapping.
 CORBA V2.0 July 1996 13A-1

13A
13.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an application,
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certainly
not exclusively) tied to some visual presentation metaphor. Historically, the typical
domain of an COM object is a single-user, multitasking visual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to expedite
collaboration- and information-sharing among applications using the same desktop,
largely through user manipulation of visual elements (for example, drag-and-drop, cut-
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparently to any
CORBA client regardless of the location (or implementation) of either the object or the
client. Most CORBA objects focus on distributed control in a heterogeneous
environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable distributed network. In its current form, the main goal of CORBA is to allow
these independent components to be shared among a wide variety of applications (and
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both models are growing and evolving, and
will probably overlap in functionally in the future. Therefore, a good interworking
model must map the functionality of two systems to each other while preserving the
flavor of each system as it is typically presented to a developer.

The most obvious similarity between these two systems is that they are both based
architecturally on objects. The Interworking Object Model describes the overlap
between the features of the CORBA and COM object models, and how the common
features map between the two models.

Figure 13-1 Interworking Object Model

Object

Interface

Request

Parameters

Identity

Implementation
13A-2 CORBA V2.0 July 1996

13A
13.2 Interworking Object Model

13.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functionality
that presents itself through a published interface described in terms of a well-known,
fully-described set of interface semantics. An interface (and its underlying
functionality) is accessed through at least one well-known, fully described form of
request. Each request in turn targets a specific object—an object instance—based on a
reference to its identity. That target object is then expected to service the request by
invoking the expected behavior in its own particular implementation. Request
parameters are object references or nonobject data values described in the object
model’s data type system. Interfaces may be composed by combining other interfaces
according to some well-defined composition rules. In each object system, interfaces
are described in a specialized language or can be represented in some repository or
library.

In CORBA, the Interworking Object Model is mapped to an architectural abstraction
known as the Object Request Broker (ORB). Functionally, an ORB provides for the
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Language
(OMG IDL).

• Instance identities, from which the ORB can then construct appropriate references
to each object for interested clients.

A CORBA object may thereafter receive requests from interested clients that hold its
object reference and have the necessary information to make a properly-formed request
on the object’s interface. This request can be statically defined at compile time or
dynamically created at run-time based upon type information available through an
interface type repository.

While CORBA specifies the existence of an implementation type description called
ImplementationDef (and an Implementation Repository, which contains these type
descriptions), CORBA does not specify the interface or characteristics of the
Implementation Repository or the ImplementationDef. As such, implementation typing
and descriptions vary from ORB to ORB and are not part of this specification.

13.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstraction known as the Component Object Model (COM). Functionally, COM allows
an object to expose its interfaces in a well-defined binary form (that is, a virtual
function table) so that clients with static compile-time knowledge of the interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).
CORBA V2.0 Interworking Object Model July 1996 13A-3

13A
COM supports an implementation typing mechanism centered around the concept of a
COM class. A COM class has a well-defined identity and there is a repository (known
as the system registry) that maps implementations (identified by class IDs) to specific
executable code units that embody the corresponding implementation realizations.

COM also provides an extension called OLE Automation. Interfaces that are
Automation-compatible can be described in Object Definition Language (ODL) and
can optionally be registered in a binary Type Library. Automation interfaces can be
invoked dynamically by a client having no compile-time interface knowledge through
a special COM interface (IDispatch). Run-time type checking on invocations can be
implemented when a Type Library is supplied. Automation interfaces have properties
and methods, whereas COM interfaces have only methods. The data types that may be
used for properties and as method parameters comprise a subset of the types supported
in COM, with no support for user-defined constructed types.

Thus, use of and interoperating with objects exposing OLE Automation interfaces is
considerably different from other COM objects. Although Automation is implemented
through COM, for the purposes of this document, OLE Automation and COM are
considered to be distinct object models. Interworking between CORBA and OLE
Automation will be described separately from interworking with the basic COM
model.

13.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite
similar. Roughly speaking, COM interfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are very roughly
equivalent to CORBA object references. Assuming that lower-level design details
(calling conventions, data types, and so forth) are more or less semantically
isomorphic, a reasonable level of interworking is probably possible between the two
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking
Model, shown in Figure 13-2. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA object to be visible to a COM
client is a CORBA/COM mapping.
13A-4 CORBA V2.0 July 1996

13A
Figure 13-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target object
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object
in system A that presents the identity and interface of the target in system B mapped to
the vernacular of system A, and is described as an A View of a B target.

The View exposes an interface, called the View Interface, which is isomorphic to the
target’s interface in system B. The methods of the View Interface convert requests
from system A clients into requests on the target’s interface in system B. The View is
a component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and B,
and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into the
vernacular of object system B, and delivered to the target object. The net effect is that
a request made on an interface in A is transparently delivered to the intended instance
in B.

Object System A Object System B

Object reference in A

View in A of target in B
(object in system A)

Bridge

Object reference in B

Target object
implementation in B
CORBA V2.0 Interworking Object Model July 1996 13A-5

13A
The Interworking Model works in either direction. For example, if system A is COM,
and system B is CORBA, then the View is called the COM View of the CORBA target.
The COM View presents the target’s interface to the COM client. Similarly if system A
is CORBA and system B is COM, then the View is called the CORBA View of the
COM target. The CORBA View presents the target’s interface to the CORBA client.

Figure 13-3 shows the interworking mappings discussed in the Interworking chapters.
They represent the following:

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
13A-6 CORBA V2.0 July 1996

13A
Figure 13-3 Interworking Mapping

Note that the division of the mapping process into these architectural components does
not infer any particular design or implementation strategy. For example, a COM View
and its encapsulated CORBA reference could be implemented in COM as a single
component or as a system of communicating components on different hosts.

The architecture allows for a range of implementation strategies, including, but not
limited to generic and interface-specific mapping.

CORBA client COM server

CORBA object reference

CORBA View
(a real CORBA object)

Bridge

COM interface pointer

Target COM object

CORBA server COM client

CORBA object reference COM View
(a real COM object)

Bridge COM interface pointerTarget CORBA object

CORBA client Automation server

CORBA object reference

CORBA View
(a real CORBA object)

Bridge

Automation interface pointer

Target Automation object

CORBA server Automation client

CORBA object reference Automation View
(a real Automation object)

Bridge
Automation interface pointerTarget CORBA object

(IDispatch pointer)

(IDispatch pointer)

a)

b)

c)

d)
CORBA V2.0 Interworking Object Model July 1996 13A-7

13A
• Generic Mapping assumes that all interfaces can be mapped through a dynamic
mechanism supplied at run-time by a single set of bridge components. This allows
automatic access to new interfaces as soon as they are registered with the target
system. This approach generally simplifies installation and change management, but
may incur the run-time performance penalties normally associated with dynamic
mapping.

• Interface-Specific Mapping assumes that separate bridge components are
generated for each interface or for a limited set of related interfaces (for example,
by a compiler). This approach generally improves performance by “precompiling”
request mappings, but may create installation and change management problems.

13.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite many similarities, there are some
significant differences between CORBA and COM that complicate achieving this goal.
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distinct
forms of interfaces, OLE Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped to
COM single inheritance/aggregation. COM interface aggregation must be mapped
to the CORBA multiple inheritance model.

• Identity Mapping. The explicit notion of an instance identity in CORBA must be
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility. It may be desirable for the object model mappings to be
invertible, but the Interworking specification does not guarantee invertibility in all
situations.

13.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the requests
that an object supports. OLE provides two distinct and somewhat disjointed interface
models: COM and Automation. Each has its own respective request form, interface
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
13A-8 CORBA V2.0 July 1996

13A
We must also consider the bidirectional impact of a third, hybrid form of interface, the
Dual Interface, which supports both an Automation and a COM-like interface. The
succeeding sections summarize the main issues facing each of these mappings.

13.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interfaces.

This mapping is perhaps the most natural way to represent the interfaces of CORBA
objects in the COM environment. In practice, however, many COM clients (for
example, Visual Basic applications) can only bind to Automation Interfaces and cannot
bind to the more general COM Interfaces. Therefore, providing only a mapping of
CORBA to the COM Interfaces would not satisfy many COM/OLE clients.

13.4.2 CORBA/Automation

There is a limited fit between OLE Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, there
are primitives in both systems (for example, the OLE CURRENCY type and the
CORBA unsigned integral types) that must be mapped as special cases (possibly
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation constructs.
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially constructed
interfaces (for example, viewing a struct as an OLE object with its own interface).

• CORBA Interface Repositories can be mapped dynamically to Automation Type
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to OLE Automation interfaces.
All methods of the multiply-inherited interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering over
the methods if [dual] interfaces are to be supported. An alternative approach would
be to map multiple inheritance to multiple Automation interfaces. This mapping,
however, would require that an interface navigation mechanism be exposed to OLE
Automation controllers. Currently OLE Automation does not provide a canonical
way for clients (such as Visual Basic) to navigate between multiple interfaces.
CORBA V2.0 Interface Mapping July 1996 13A-9

13A
• CORBA attributes may be mapped to get and put properties in Automation
interfaces.

This form of interface mapping will place some restrictions on the types of argument
passing that can be mapped, and/or the cost (in terms of run-time translations) incurred
in those mappings. Nevertheless, it is likely to be the most popular form of CORBA-
to-COM interworking, since it will provide dynamic access to CORBA objects from
Visual Basic and other OLE Automation client development environments.

13.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long long,
and wide char) and constructed types (for example, wide string) are not currently
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

• Some unions, pointer types and the SAFEARRAY type require special handling.

The COM/CORBA mapping is somewhat further complicated, by the following issues:

• Though it is less common, COM objects may be built directly in C and C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interface can be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to such
a form before any formal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformation, and so forth) must be
custom-built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not
supported on certain Windows platforms; for example, MIDL is not available on
Win16 platforms.

13.4.4 Automation/CORBA

The Automation interface model and type system are markedly constrained, bounding
the size of the problem of mapping from OLE Automation interfaces to CORBA
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to CORBA
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain
Automations types (for example, CURRENCY) do not have corresponding
predefined CORBA types, but can easily be mapped onto isomorphic constructed
types.

• Automation properties map to CORBA attributes.
13A-10 CORBA V2.0 July 1996

13A
13.5 Interface Composition Mappings

CORBA provides a multiple inheritance model for aggregating and extending object
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possible
by deriving new interfaces from existing ones. Any given CORBA object reference
refers to a CORBA object that exposes, at any point in time, a single most-derived
interface in which all ancestral interfaces are joined. The CORBA object model does
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (that is,
the QueryInterface method). In addition, COM anticipates that the set of interfaces that
an object supports will vary at run-time. The only way to know if an object supports an
interface at a particular instant is to ask the object.

OLE Automation objects typically provide all Automation operations in a single
“flattened” IDispatch interface. While an analogous mechanism to QueryInterface
could be supported in OLE Automation as a standard method, it is not the current use
model for OLE Automation services.2

13.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicates two common uses of interface
inheritance, extending and mixing in. Inheritance may be used to extend an interface
linearly, creating a specialization or new version of the inherited interface. Inheritance
(particularly multiple inheritance) is also commonly used to mix in a new capability
(such as the ability to be stored or displayed) that may be orthogonal to the object’s
basic application function.

Ideally, extension maps well into a single inheritance model, producing a single linear
connection of interface elements. This usage of CORBA inheritance for specialization
maps directly to COM; a unique CORBA interface inheritance path maps to a single
COM interface vtable that includes all of the elements of the CORBA interfaces in the
inheritance path.3 The use of inheritance to mix in an interface maps well into COM’s
aggregation mechanism; each mixed-in inherited interface (or interface graph) maps to
a separate COM interface, which can be acquired by invoking QueryInterface with the
interface’s specific UUID.

Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determine whether a particular inherited interface is being extended or being mixed in
(or used with some other possible design intent). Therefore it is not possible to make

1. This is established in the CORBA 2.0 specification, Section 1.2.5, and in the Object Management Architec-
ture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-class. The “Dim
A as new Z” statement in Visual Basic 4.0 can be used to invoke a QueryInterface for the Z interface. Many
OLE Automation controllers, however, do not use the dual interface mechanism.
CORBA V2.0 Interface Composition Mappings July 1996 13A-11

13A
ideal mappings mechanically from CORBA multiply-inherited interfaces to collections
of COM interfaces without some additional annotation that describes the intended
design. Since extending OMG IDL (and the CORBA object model) to support
distinctions between different uses of inheritance is undesirable, alternative mappings
require arbitrary decisions about which nodes in a CORBA inheritance graph map to
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The
mapping described in Section 13.5.2, Ordering Rules for the CORBA->MIDL
Transformation, describes a compromise that balances the need to preserve linear
interface extensions with the need to keep the number of resulting COM interfaces
manageably small. It satisfies the primary requirement for interworking in that it
describes a uniform, deterministic mapping from any CORBA inheritance graph to a
composite set of COM interfaces.

COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA by
providing a set of CORBA interfaces that can be used to manage a collection of
multiple CORBA objects with different disjoint interfaces as a single composite unit.
The mechanism described in OMG IDL in Section 13.2.10, Interface Mapping, is
sufficiently isomorphic to allow composite COM interfaces to be uniformly mapped
into composite OMG IDL interfaces with no loss of capability.

CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on
ordering in a virtual function table. The target object implements the IDispatch
interface as a mini interpreter and exposes what amounts to a flattened single interface
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are COM
interfaces whose operations are restricted to the Automation data types. Since these are
COM interfaces, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interpreter
is being bypassed, the same ordering problems discussed in the previous section apply
for OLE Automation dual interfaces.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic mapping from
the OMG IDL interface to a COM vtable. The current ordering is lexicographical by bytes in machine-col-
lating sequence.
13A-12 CORBA V2.0 July 1996

13A
Automation/CORBA

OLE Automation interfaces are simple collections of operations, with no inheritance or
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG IDL-
described interface.

13.5.2 Detailed Mapping Rules

Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon the
operation name. The ordering is lexicographic by bytes in machine-collating order.

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating order. If
the attribute is not read-only, the get_<attribute name> method immediately
precedes the set_<attribute name> method.

Ordering Rules for the CORBA->OLE Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL
interface deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an ODL interface which derives using single inheritance from the mapping for the
first parent interface. The first parent interface is defined as the first interface when
the immediate parent interfaces are sorted based upon interface repository id. The
order of sorting is lexicographic by bytes in machine-collating order.

• Within an interface, the mapping for operations precede the mapping for attributes.

• An OMG IDL interface’s operations are ordered in the resulting mapping based
upon the operation name. The ordering is lexicographic by bytes in machine-
collating order.
CORBA V2.0 Interface Composition Mappings July 1996 13A-13

13A
• An OMG IDL interface’s attributes are ordered in the resulting mapping based upon
the attribute name. The ordering is lexicographic by bytes in machine-collating
order. For non-read-only attributes, the [propget] method immediately precedes the
[propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the operations
introduced in the current interface are mapped first and ordered based on the above
rules. After the interface’s operations are mapped, the operations are followed by
the ordered operations from the mapping of the parent interfaces (excluding the first
interface which was mapped using inheritance).

13.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 13-4.

interface A {// OMG IDL
void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 13-4 OMG IDL Description with Multiple Inheritance

A

B C

D
E

F

13A-14 CORBA V2.0 July 1996

13A
Following the rules in Section 13.5.2, Ordering Rules for the CORBA->MIDL
Transformation, the interface description would map to the Microsoft MIDL definition
shown in Figure 13-5 and would map to the ODL definition shown in Figure 13-6.

[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{// Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 13-5 MIDL Description

A

B C

D E FA

IU IU IU IU IU
CORBA V2.0 Interface Composition Mappings July 1996 13A-15

13A
13.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interoperate
across client/server boundaries (for example, a COM View created by product A can
invoke a CORBA server created with product B, given that they both share the same
IDL interface). To interoperate in this way, all COM Views mapped from a particular
CORBA interface must share the same COM Interface IDs. This section describes a
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29),
oleautomation, dual]
interface DA : IDispatch { //
Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571),
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 13-6 Example: ODL Mapping for Multiple Inheritance

IDispatch

A

B C

D

F

IDispatch

E

13A-16 CORBA V2.0 July 1996

13A
Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 128-
bit hash identifier. The least significant byte is byte 0 and the most significant byte is
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)

10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01 generated COM IID
10 generated Automation IID
11 generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They are
used only to avoid collisions in the name spaces when generating IIDs for multiple
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (stored in
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of a
CORBA interface except when the repository ID is a DCE UUID and the IID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (this
is done to allow CORBA server developers to implement existing COM interfaces).

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security, Inc., April
1992.

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in the hash value and
its popularity for creating unique keys for input text. The algorithm is designed such that on average, half of
the output bits change for each bit change in the input. The original algorithm provides a key with uniform
distribution in 128 bits. The modification used in this specification selects 118 bits. With a uniform distribu-
tion, the probability of drawing k distinct keys (using k distinct inputs) is n!/((n-k)!*nk), where n is the num-
ber of distinct key values (i.e., n=2118). If a million (i.e., k=106) distinct interface repository IDs are passed
through the algorithm, the probability of a collision in any of the keys is less than 1 in 1023.
CORBA V2.0 Interface Composition Mappings July 1996 13A-17

13A
This mechanism requires no change to IDL. However, there is an implicit assumption
that repository IDs should be unique across ORBs for different interfaces and identical
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across ORBs.

Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor specific. However,
the mapping should be the same as if the CORBA mapping of the COM interface were
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DCE:f4f2f07c-3a95-11cf-affb-08000970dac7”
...
};

13.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 13-2 and Figure 13-3 maps a View in one
object system to a reference in the other system. This relationship raises questions:

• How do the concepts of object identity and object life cycle in different object
models correspond, and to the extent that they differ, how can they be appropriately
mapped?

• How is a View in one system bound to an object reference (and its referent object)
in the other system?

13.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impact of
the differences between the two object models affects the transparency of presenting
CORBA objects as COM objects or COM objects as CORBA objects. The following
sections discuss the issues involved in mapping identities from one system to another.
They also describe the architectural mechanics of identity mapping and binding.
13A-18 CORBA V2.0 July 1996

13A
CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of relevant requests. An object
reference is defined as a name that reliably and consistently denotes a particular object.
A useful description of a particular object in CORBA terms is an entity that exhibits a
consistency of interface, behavior, and state over its lifetime. This description may fail
in many boundary cases, but seems to be a reasonable statement of a common intuitive
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is at
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used to
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted object’s
state or location; if an object is passively stored when a client makes a request on a
reference to the object, the ORB is responsible for transparently locating and
activating the object.

• There is no notion of “connectedness” between object reference and object, nor is
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere within
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine whether
both references identify the same object instance), although only a result of TRUE
for the test is guaranteed to be reliable.

COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less clearly
defined than under CORBA. In practice, this notion typically corresponds to an active
instance of an implementation, but not a particular persistent state. A COM instance
can be most precisely defined as “the entity whose interface (or rather, one of whose
interfaces) is returned by an invocation of IClassFactory::CreateInstance.”
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (e.g., a document
or drawing with no contents), or they are initialized to arbitrary states;
IClassFactory::CreateInstance has no parameters for describing initial
state.

• The only inherently available identity or reference for a COM instance is its
collection of interface pointers. Their usefulness for determining identity
equivalence is limited to the scope and extent of the process they live in. There is
CORBA V2.0 Object Identity, Binding, and Life Cycle July 1996 13A-19

13A
no canonical information model, visible or opaque, that defines the identity of a
COM object. Individual COM class types may establish a strong notion of
persistent identity, but this is not the responsibility of the COM model itself.

• There is no inherent mechanism to determine whether two interface pointers belong
to the same COM class or not.

• The identity and management of state are generally independent of the identity and
life cycle of COM class instances. Files that contain document state are persistent,
and are identified within the file system’s name space. A single COM instance of a
document type may load, manipulate, and store several different document files
during its lifetime; a single document file may be loaded and used by multiple
COM class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of the particular class type, or the
user’s imagination.

13.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in
defining binding and life cycle management mechanisms in the Interworking models.
Binding refers to the way in which an existing object in one system can be located by
clients in the other system and associated with an appropriate View. Life cycle, in this
context, refers to the way objects in one system are created and destroyed by clients in
the other system.

Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the
lifetimes of its clients. That is, in COM, when there are no more clients attached to an
object, it is destroyed. If clients remain, the object cannot be removed from memory.
Unfortunately, a reference counted lifecycle model such as COM’s has problems when
applied to wide area networks, when network traffic is heavy, and when networks and
routers are not fault tolerant (and thus not 100% reliable). For example, if the network
connection between clients and the server object were down, the server would think
that its clients had died, and would delete itself (if there were no local references to it).
When the network connection was later restored, even just seconds later, the clients
would then have invalid object references and would need to be restarted, or be
prepared to handle invalid interface reference errors for the previously valid
references. In addition, if clients exist for a server object but rarely use it, the server
object is still required to be in memory. In large, long-running distributed systems, this
type of memory consuming behavior is not typically acceptable.

In contrast, the CORBA Life Cycle model decouples the lifetime of the clients from
the lifetime of the active (in-memory) representation of the persistent server object.
The CORBA model allows clients to maintain references to CORBA server objects
even when the clients are no longer running. Server objects can deactivate and remove
themselves from memory whenever no clients are currently using them. This behavior
avoids the problems and limitations introduced by distributed reference counting.
Clients can be started and stopped without incurring expensive data reloads in the
server. Servers can relinquish memory (but can later be restored) if they have not been
13A-20 CORBA V2.0 July 1996

13A
used recently or if the network connection is down. In addition, since the client and
server lifetimes are decoupled, CORBA, unlike COM, has no requirement for the
servers to constantly “ping” their clients -- a requirement of distributed reference
counting which can become expensive across local networks and impractical across
wide area networks.

Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing active
objects. A single instance of a COM class can be registered in the active object
registry. COM or Automation clients can obtain an IUnknown pointer for an active
object with the COM GetActiveObject function or the Automation GetObject function.
The most natural way for COM or Automation clients to access existing CORBA
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object
and place them in the active object registry, so that the View (and thus, the object) can
be accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking
solutions will not be able to map objects efficiently through the registry. This
submission defines an interface, ICORBAFactory, which allows interworking solutions
to provide their own name spaces through which CORBA objects can be made
available to COM and Automation clients in a way that is similar to OLE’s native
mechanism (GetObject). This interface is described fully in Section 13.7.3,
ICORBAFactory Interface.

Binding COM Objects to CORBA Views

As described in Section 13.6.1, Object Identity Issues, COM class instances are
inherently transient. Clients typically manage COM and Automation objects by
creating new class instances and subsequently associating them with a desired stored
state. Thus, COM objects are made available through factories. The SimpleFactory
OMG IDL interface (described next in Section 13.7.1, SimpleFactory Interface) is
designed to map onto COM class factories, allowing CORBA clients to create (and
bind to) COM objects. A single CORBA SimpleFactory maps to a single COM class
factory. The manner in which a particular interworking solution maps SimpleFactories
to COM class factories is not specified. Moreover, the manner in which mapped
SimpleFactory objects are presented to CORBA clients is not specified.

COM View of CORBA Life Cycle

The SimpleFactory interface in Section 13.7.1, SimpleFactory Interface, provides a
create operation without parameters. CORBA SimpleFactory objects can be wrapped
with COM IClassFactory interfaces and registered in the Windows registry. The
process of building, defining, and registering the factory is implementation-specific.
CORBA V2.0 Object Identity, Binding, and Life Cycle July 1996 13A-21

13A
To allow COM and Automation developers to benefit from the robust CORBA
lifecycle model, the following rules apply to COM and Automation Views of CORBA
objects. When a COM or Automation View of a CORBA object is dereferenced and
there are no longer any clients for the View, the View may delete itself. It should not,
however, delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the interface is supported) on the
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is
controlled by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM objects
(equivalent to CORBA externalization). However, unlike CORBA, COM currently
provides no general-purpose mechanism for clients to deal with server objects, such as
databases, which are inherently persistent (i.e. they store their own state -- their state is
not stored through an outside interface such as IPersistStorage). COM does provide
monikers, which are conceptually equivalent to CORBA persistent object references.
However, monikers are currently only used for OLE graphical linking. To enable COM
developers to use CORBA objects to their fullest extent, the submission defines a
mechanism that allows monikers to be used as persistent references to CORBA
objects, and a new COM interface, IMonikerProvider, that allows clients to obtain an
IMoniker interface pointer from COM and Automation Views. The resulting moniker
encapsulates, stores, and loads the externalized string representation of the CORBA
reference managed by the View from which the moniker was obtained. The
IMonkierProvider interface and details of object reference monikers are described in
Section 13.7.2, IMonikerProvider Interface and Moniker Use.

CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interfaces.
These SimpleFactory Views of COM IClassFactories can then be installed in the
naming service or used via factory finders. The mechanisms used to register or
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObject interface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the View unless the
COM or Automation objects supports the IMonikerProvider interface. If the COM or
Automation object supports the IMonikerProvider interface, then the CORBA View
can safely be deactivated and reactivated provided it stores the object’s moniker in
persistent storage between activations. Interworking solutions are not required to
support deactivation and activation of CORBA View objects, but are enabled to do so
by the IMonikerProvider interface.
13A-22 CORBA V2.0 July 1996

13A
13.7 Interworking Interfaces

13.7.1 SimpleFactory Interface

CORBA allows object factories to be arbitrarily defined. In contrast, COM
IClassFactory is limited to having only one object constructor and the object
constructor method (called CreateInstance) has no arguments for passing data during
the construction of the instance. The SimpleFactory interface allows CORBA objects
to be created under the rigid factory model of COM. The interface also supports
CORBA Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with no
initial state. In the future, CORBA objects, which can be created with no initial state,
should provide factories, which implement the SimpleFactory interface.

13.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider
interface. COM clients may use QueryInterface for this interface.

[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use without
needing to keep the View in memory. The moniker returned by IMonikerProvider must
support at least the IMoniker and IPersistStorage interfaces. To allow CORBA object
reference monikers to be created with one COM/CORBA interworking solution and
later restored using another, IPersist::GetClassID must return the following
CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be four 0
(null) bytes followed by the length in bytes of the stringified IOR (stored as a little
endian 4-byte unsigned integer value) followed by the stringified IOR itself (without
null terminator).
CORBA V2.0 Interworking Interfaces July 1996 13A-23

13A
13.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose
the ICORBAFactory interface. This interface is designed to support general, simple
mechanisms for creating new CORBA object instances and binding to existing
CORBA object references by name.

interface ICORBAFactory: IUnknown
{

HRESULT CreateObject([in] LPTSTR factoryName, [out,
retval] IUknown ** val);

HRESULT GetObject([in] LPTSTR objectName, [out, retval]
IUknown ** val);
}

The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBAFactory must be registered in the Windows
System Registry on the client machine using the following class id, class id tag, and
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory,
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53,

0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object, i.e., subsequent
calls to create the object may return the same interface pointer.

We define a similar interface, DICORBAFactory, that supports creating new CORBA
object instances and binding to existing CORBA objects for OLE Automation clients.
DICORBAFactory is an Automation Dual Interface. (For an explanation of
Automation Dual interfaces, see Chapter 13C, Mapping: OLE Automation and
CORBA.)

interface DICORBAFactory: IDispatch
{

HRESULT CreateObject([in] BSTR factoryName, [out,
retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for the DICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by calling
on the client machine using the Program Id “CORBA.Factory.”
13A-24 CORBA V2.0 July 1996

13A
The CreateObject and GetObject methods are intended to approximate the usage model
and behavior of the Visual Basic CreateObject and GetObject functions.

The first method, CreateObject, causes the following actions:

• A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (and likely) implementation is that the
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryName,
identifies the type of CORBA object to be created. Since the CreateObject method
does not accept any parameters, the CORBA object must either be created by a null
factory (a factory whose creation method requires no parameters), or the View must
supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created, and
thus implicitly identifies (directly or indirectly) the interface supported by the View. In
general, the factoryName string takes the form of a sequence of identifiers separated
by period characters (“.”), such as “personnel.record.person”. The intent of this name
form is to provide a mechanism that is familiar and natural for COM and OLE
Automation programmers by duplicating the form of OLE ProgIDs. The specific
semantics of name resolution are determined by the implementation of the
interworking solution. The following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameService-
based factory finder. The CORBA object would be created by invoking the factory
create method. Internally, the interworking solution would map the factoryName
onto the appropriate COM class ID for the View, create the View, and bind it to the
CORBA object.

• The creation could be delegated directly to a COM class factory by interpreting the
factoryName as a COM ProgID. The ProgID would map to a class factory for the
COM View, and the View’s implementation would invoke the appropriate CORBA
factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a CORBA
object reference. The specific mechanism for associating names with references is
not specified. In order to appear familiar to COM and Automation users, this
parameter shall take the form of a sequence of identifiers separated by periods (.),
in the same manner as the parameter to CreateObject. An implementation could, for
example, choose to map the objectName parameter to a name in the OMG Naming
Service implementation. Alternatively, an interworking solution could choose to put
precreated COM Views bound to specific CORBA object references in the active
object registry, and simply delegate GetObject calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and
returned to the caller.
CORBA V2.0 Interworking Interfaces July 1996 13A-25

13A
Another name form that is specialized to CORBA is a single name with a preceding
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in the
ORB Initialization interface. Specifically, the name shall be used as the parameter to an
invocation of the CORBA::ORB::ResolveInitialReferences method on the
ORB pseudo-object associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned to
the caller.

13.7.4 IForeignObject Interface

As object references are passed back and forth between two different object models
through a bridge, and the references are mapped through Views (as is the case in this
specification), the potential exists for the creation of indefinitely long chains of Views
that delegate to other Views, which in turn delegate to other Views, and so on. To
avoid this, the Views of at least one object system must be able to expose the reference
for the “foreign” object managed by the View. This exposure allows other Views to
determine whether an incoming object reference parameter is itself a View and, if so,
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridge can avoid creating View chains.

This problem potentially exists for any View representing an object in a foreign object
system. The IForeignObject interface is specified to provide bridges access to object
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

long *pValue;
} objSystemIDs;
interface IForeignObject : IUnknown {

HRESULT GetForeignReference([in[objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetRepositoryId([out] RepositoryId
*repositoryId);

}

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to specific
object systems. These values must be positive, unique, and publicly known. The OMG
will manage the allocation of identifier values in this space to guarantee uniqueness.
The value for the CORBA object system is the long value 1. The systemIDs array
contains a list of IDs for object systems for which the caller is interested in obtaining
a reference. The order of IDs in the list indicates the caller’s order of preference. If the
View can produce a reference for at least one of the specified object systems, then the
13A-26 CORBA V2.0 July 1996

13A
second parameter (systemID) is the ID of the first object system in the incoming array
that it can satisfy. The objRef out parameter will contain the object reference converted
to a string form. Each object system is responsible for providing a mechanism to
convert its references to strings, and back into references. For the CORBA object
system, the string contains the IOR string form returned by
CORBA::ORB::object_to_string, as defined in the CORBA 2.0 specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation of
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed OLE Automation parameter type.

• The object reference being returned from GetForeignObject may be from a different
ORB than the caller. IORs in string form are the only externalized standard form of
object reference supported by CORBA.

The purpose of the GetRepositoryID method is to support the ability of DICORBAAny
(see Section 13.1.13, Mapping for anys) when it wraps an object reference, to produce
a type code for the object when asked to do so via DICORBAAny’s readonly typeCode
property.

It is not possible to provide a similar inverse interface exposing COM references to
CORBA clients through CORBA Views, because of limitations imposed by COM’s
View of object identity and use of interface pointer as references.

13.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views,
allowing COM clients to have access to operations on the CORBA object references,
defined on the CORBA::Object pseudo-interface. The ICORBAObject interface
can be obtained by COM clients through QueryInterface. ICORBAObject is defined as
follows:

interface ICORBAObject: IUnknown
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID, [out] boolean);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,[out] boolean *

val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

}

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}
CORBA V2.0 Interworking Interfaces July 1996 13A-27

13A
Automation controllers gain access to operations on the CORBA object reference
interface through the Dual Interface DIORBObject::GetCORBAObject method
described next.

interface DICORBAObject: IDispatch
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval]

boolean);
HRESULT IsNil([out, retval] boolean *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

boolean * val);
HRESULT NonExistent([out,retval] boolean *val);
HRESULT Hash([out, retval] long *val);

}

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

13.7.6 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to the
operations on the ORB pseudo-object.

The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj, [out] LPSTR
*val);
HRESULT StringToObject([in] LPTSTR ref, [out] IUnknown
*val);
HRESULT GetInitialReferences([out], CORBA_ORBObjectIdList
*val);
HRESULT ResolveInitialReference([in] LPTSTR name, [out]
IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}
13A-28 CORBA V2.0 July 1996

13A
A reference to this interface is obtained by calling
ICORBAFactory::GetObject(”CORBA.ORB.2”).

The methods of DIORBObject delegate their function to the similarly-named
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface:

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj, [out,retval]
BSTR *val);
HRESULT StringToObject([in] BSTR ref, [out,retval]
IDispatch * val);
HRESULT GetInitialReferences([out, retval]
SAFEARRAY(IDispatch *) *val);
HRESULT ResolveInitialReference([in] BSTR name, [out,
retval] IDispatch ** val));
HRESULT GetCORBAObject([in] IDispatch* obj, [out, retval]
DICORBAObject * val);

}

The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling
DICORBAFactory::GetObject(”CORBA.ORB.2”).

This interface is very similar to IORBObject, except for the additional method
GetCORBAObject. This method returns an IDispatch pointer to the DICORBAObject
interface associated with the parameter Object. This operation is primarily provided to
allow Automation controllers (i.e. Automation clients) that cannot invoke
QueryInterface on the View object to obtain the ICORBAObject interface.

13.7.7 Naming Conventions for View Components

Naming the COM View Interface Id

The default tag for the COM View’s Interface Id (IID) should be:

IID_I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface” then the default IID tag should be:

IID_IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
tag should be:
CORBA V2.0 Interworking Interfaces July 1996 13A-29

13A
IID_I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default IID tag shall be:

IID_IOuterModule_MyModule_MyInterface

Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client
programs written in Automation controller environments such as Visual Basic are not
expected to explicitly use the UUID value.

Naming the COM View Interface

The default name of the COM View’s Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_MyInterface

Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:
13A-30 CORBA V2.0 July 1996

13A
D<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

DI<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

DI<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DIOuterModule_MyModule_MyInterface

Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Program
Id for that class shall be:

<module name> “.” <module name> “.” ...<module name> “.”
<interface name>

where the module names read from outermost on the left to innermost on the right. In
our example, the default Program Id shall be:

“OuterModule.MyModule.MyInterface”

Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then the
default tag for the COM Class Id (CLSID) for that class should be:
CORBA V2.0 Interworking Interfaces July 1996 13A-31

13A
CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the right. In
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

13.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in its
currently released form) does not include any mechanism for distribution. CORBA
specifications define a distribution architecture, including a standard protocol (IIOP)
for request messaging. Consequently, the CORBA architecture, specifications, and
protocols shall be used for distribution.

13.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking
mechanism delivered on a COM client node to interoperate correctly with any CORBA
2.0-compliant components that use the same interface specifications. Compliant
interworking solutions must appear, for all intents and purposes, to be CORBA object
implementations and/or clients to other CORBA clients, objects, and services on an
attached network.

Figure 13-7 Bridge Locality

Figure 13-7 illustrates the required locality for interworking components. All of the
transformations between CORBA interfaces and COM interfaces described in this
submission will take place on the node executing the COM environment. Mapping
agents (COM views, CORBA views, and bridging elements) will reside and execute on
the COM client node. This requirement allows compliant interworking solutions to be

COM Node

COM Object

COM View

CORBA Nodes

Any compliant
interworking
bridge

CORBA
object

CORBA
client
object
reference

ORB X

ORB Y

IIOP
communications

CORBA
View
13A-32 CORBA V2.0 July 1996

13A
localized to a COM client node, and to interoperate with any CORBA V2.0-compliant
networking ORB that shares the same view of interfaces with the interworking
solution.

13.8.2 Distribution Architecture

External communications between COM client machines, and between COM client
machines and machines executing CORBA environments and services, will follow
specifications contained in CORBA V2.0. Figure 13-7 illustrates the required
distribution architecture. The following statements articulate the responsibilities of
compliant solutions.

• All externalized CORBA object references will follow CORBA V2.0 specifications
for Interoperable Object References (IORs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

• The mechanisms for negotiating protocols and binding references to remote objects
will follow the architectural model described in CORBA V2.0.

• A product component acting as a CORBA client may bind to an object by using any
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

• Any components that implement CORBA interfaces for remote use must support
the IIOP.

13.9 Interworking Targets

This specification is targeted specifically at interworking between the following
systems and versions:

• CORBA as described in CORBA V2.0: Common Object Request Broker
Architecture and Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries.

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage model for
Automation Views follows the Automation controller behavior established by Visual
Basic 4.0.

13.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general information
about compliance to CORBA specifications, refer to Section 0.6, Definition of
CORBA Compliance.
CORBA V2.0 Interworking Targets July 1996 13A-33

13A
13.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide
range of products. This specification is not intended to cover all possible products that
facilitate or use COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which are
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

Interworking Solutions

Products that facilitate the development of software that will bidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces and which also parses OLE Automation ODL and automatically
generates code for libraries that map the OLE Automation interfaces into CORBA
interfaces. Another example would be a generic bridging component that, based on
run-time interface descriptions, interpretively maps both COM and CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specification, and if the mapped
interfaces support all of the features and interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA
Interworking Solution.

Mapping Solutions

Products that facilitate the development of software that will unidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are described as Mapping Solutions. An example of this kind
of software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces. Another example would be a generic bridging component that
interpretively maps OLE Automation invocations onto CORBA objects based on run-
time interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the
resulting mapped interfaces are transformed as described in this specification, and if
the mapped interfaces support all of the features and interface components required in
this specification.
13A-34 CORBA V2.0 July 1996

13A
A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution, a
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

Mapped Components

Applications, components or libraries that expose a specific, fixed set of interfaces
mapped from CORBA to COM or Automation (and/or vice versa) are described as
Mapped Components. An example of this kind of product would be a set of business
objects defined and implemented in CORBA that also expose isomorphic OLE
Automation interfaces.

This type of product will be considered a compliant Mapped Component if the
interfaces it exposes are mapped as described in this specification, and if the mapped
interfaces support all of the features and interface components required in this
specification.

13.10.2 Compliance Points

The intent of this submission is to allow the construction of implementations that fit in
the design space described in Section 13.2, Interworking Object Model, and yet
guarantee interface uniformity among implementations with similar or overlapping
design centers. This goal is achieved by the following compliance statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM
and/or Automation interfaces, the mapping of COM and/or Automation interfaces
onto isomorphic CORBA interfaces, or when a product offers the ability to
automatically generate components that perform such mappings, then the product
must use the interface mappings defined in this specification. Note that products
may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or Automation objects. These interfaces are not in the
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required to
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject,
defined in Section 13.7.5, ICORBAObject Interface, and Section 13.7.6,
IORBObject Interface, respectively.

• Interworking solutions that expose Automation Views of CORBA objects are
required to expose the CORBA-specific Automation Dual interfaces
DICORBAObject and DIORBObject, defined in Section 13.7.5, ICORBAObject
Interface, and Section 13.7.6, IORBObject Interface, respectively.

• OMG IDL interfaces exposed as COM or Automation Views are not required to
provide type library and registration information in the COM client environment
where the interface is to be used. If such information is provided, however, then it
must be provided in the prescribed manner.
CORBA V2.0 Compliance to COM/CORBA Interworking July 1996 13A-35

13A
• Each COM and Automation View must map onto one and only one CORBA object
reference, and must also expose the IForeignObject interface, described in Section
13.7.4, IForeignObject Interface. This constraint guarantees the ability to obtain an
unambiguous CORBA object reference from any COM or Automation View via the
IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall do
so as specified in Section 13.7.2, IMonikerProvider Interface and Moniker Use.

• All COM interfaces specified in this submission have associated COM Interface
IDs. Compliant interworking solutions must use the IIDs specified herein, to allow
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the
CORBA 2.0 Internet Inter-ORB Protocol (IIOP), and use the interoperability
architecture described in CORBA 2.0 in the manner prescribed in Section 13.8,
Distribution. Interworking solutions are free to use any additional proprietary or
public protocols desired.

• Interworking solutions that expose COM Views of CORBA objects are required to
provide the ICORBAFactory object as defined in Section 13.7.3, ICORBAFactory
Interface.

• Interworking solutions that expose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in Section 13.7.3,
ICORBAFactory Interface.

• Interworking solutions that expose CORBA Views of COM or Automation objects
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, under Section 13.6.3.
13A-36 CORBA V2.0 July 1996

Mapping: COM and CORBA 13B
This chapter describes the data type and interface mapping between COM and
CORBA. The mappings are described in the context of both Win16 and Win32 COM
due to the differences between the versions of COM and between the automated tools
available to COM developers under these environments. The mapping is designed to be
able to be fully implemented by automated interworking tools.

13.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL (a
derivative of DCE IDL). COM interfaces using “custom marshalling” must be hand-
coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and custom-
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL since
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

Note that although the MIDL and ODL data type models are used as the reference for
the data model mapping, there is no requirement that either MIDL or ODL be used to
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data types.
However, in cases without exact mappings, run-time conversion errors may occur.
Conversion errors will be discussed in Mapping for Exception Types under Section
13.2.10.
 CORBA V2.0 July 1996 13B-1

13B
13.2 CORBA to COM Data Type Mapping

13.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 13-1.

13.2.2 Mapping for Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost
exactly the same. The following OMG IDL definitions for constants:

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

maps to the following the following Microsoft IDL and ODL definitions for constants:

Table 13-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1 character
set

boolean boolean boolean 8-bit quantity which is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not undergo
any conversion during transfer between systems.
13B-2 CORBA V2.0 July 1996

13B
// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

Note that OMG IDL supports the definition of constants for the data types float and
double, while COM does not. Because of this, any tool that generates Microsoft IDL
or ODL from OMG IDL should raise an error when a float or double constant is
encountered.

13.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL and
ODL support enumerators that are explicitly tagged with values. The constraint is that
any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering of the
enumerators as specified in the OMG IDL.

// OMG IDL
enum A_or_B_or_C {A, B, C};

CORBA enumerators are mapped to COM enumerations directly as per the CORBA C
language binding. The Microsoft IDL keyword v1_enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this
keyword be used on 32-bit platforms, since it increases the efficiency of marshalling
and unmarshalling data when such an enumerator is embedded in a structure or union.

// Microsoft IDL and ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

A maximum of 2ˆ32 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 2ˆ16 identifiers, and
therefore, truncation may result.

13.2.4 Mapping for String Types

CORBA currently defines the data type string to represent strings that consist of
8-bit quantities, which are NULL-terminated.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-3

13B
Microsoft IDL and ODL define a number of different data types which are used to
represent both 8-bit character strings and strings containing wide characters based on
Unicode.

Table 13-2 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a BSTR containing embedded nulls is passed to a CORBA server, the COM client
will receive an E_DATA_CONVERSION.

OMG IDL supports two different types of strings: bounded and unbounded. Bounded
strings are defined as strings that have a maximum length specified, whereas
unbounded string do not have a maximum length specified.

Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UNBOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the type
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft
IDL and ODL. The following OMG IDL definition for a bounded string:

Table 13-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG IDL Microsoft IDL Microsoft
ODL

Description

string LPSTR, char * LPSTR Null terminated 8-bit character string

LPTSTR LPTSTR Null terminated 8-bit or Unicode
string (depends upon compiler flags
used)
13B-4 CORBA V2.0 July 1996

13B
// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”

// Microsoft IDL and ODL
 const long N = ... ;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

13.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordered set
of name-value pairs representing the member types and names. A structure defined in
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each member
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE

{
T0 m0;
T1 ml;
T2 m2;

 ...
Tn mN;

 };

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as
follows.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-5

13B
// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
...
typedef ... Tn;
typedef struct
 {
 T0 m0;
 Tl ml;

T2 m2;
 ...
 TN mN;
 } STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
sequence<A> v1;
};

is mapped as:

typedef struct A {
struct { // MIDL
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;
} v1;
} A;

13.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminator
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The
discriminator tag must be a previously defined long, short, unsigned long,
unsigned short, char, boolean, or enum constant. The default case can appear
at most once in the definition of a discriminated union, and case labels must match or
be automatically castable to the defined type of the discriminator.
13B-6 CORBA V2.0 July 1996

13B
The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR
 {

dChar,
dShort,
dLong,
dFloat,
dDouble
};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble

} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-7

13B
default: byte v[8];
}UNION_OF_CHAR_AND_ARITH

13.2.7 Mapping for Sequence Types

OMG IDL defines the keyword sequence to be a one-dimensional array with two
characteristics: an optional maximum size which is fixed at compile time, and a length
that is determined at run-time. Like the definition of strings, OMG IDL allows
sequences to be defined in one of two ways: bounded and unbounded. A sequence is
bounded if a maximum size is specified, else it is considered unbounded.

Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of type T

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct
 {

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microsoft
IDL or ODL struct containing a unique pointer to a conformant array of type U, where
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsoft
IDL/ODL mapping is necessary to provide a scope in which extent and data bounds
can be defined.

Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type T
which can grow to be N size

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:
13B-8 CORBA V2.0 July 1996

13B
// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
typedef struct

{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

13.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and
ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type U
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG IDL
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of any
integral type, and const means (as in OMG IDL) that the value of N is fixed and
known at IDL compilation time. The generalization to multidimensional arrays follows
the obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to
be byte in Microsoft IDL or ODL. That is why the types of the array elements have
different names in the two texts.

13.2.9 Mapping for the any Type

The CORBA any type permits the specification of values that can express any OMG
IDL data type. There is no direct or simple mapping of this type into COM, thus we
map it to the following interface definition:
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-9

13B
// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {

anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

However, the data types that can be included in a VARIANT are too restrictive to
represent the data types that can be included in an any, such as structs and unions. In
cases where the data types can be represented in a VARIANT, they will be; in other
13B-10 CORBA V2.0 July 1996

13B
cases, they will optionally be returned as an IStream pointer in the VARIANT. An
implementation may choose not to represent these types as an IStream, in which case
an SCODE value of E_DATA_CONVERSION is returned when the VARIANT is
requested.

13.2.10 Interface Mapping

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)
known as an IID. As with CORBA, COM specifies that the textual names of interfaces
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorithm
for creating the mapping is detailed in Section 13.5.4, Mapping Interface Identity.

Mapping for Exception Types

The CORBA object model uses the concept of exceptions to report error information.
Additional, exception-specification information may accompany the exception. The
exception-specific information is a specialized form of a record. Because it is defined
as a record, the additional information may consist of any of the basic data types or a
complex data type constructed from one or more basic data types. Exceptions are
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return result of
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specified
as being the same as the HRESULT on Win32 platforms). The SCODE can then be
examined to determine whether the call succeeded or failed. The error or success code,
also contained within the SCODE, is composed of a “facility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception data
to the client. Also, there is no standard mechanism in COM to specify the completion
status of an invocation. In addition, it is not possible to predetermine what set of errors
a COM interface might return based on the definition of the interface as specified in
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can be
returned from a COM operation must be fixed when the operation is defined, there is
currently no machine-readable way to discover the set of valid codes.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-11

13B
Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility,
nor does it require any changes to COM. To return the User Exception data to a COM
client, an optional parameter is added to the end of a COM operation signature when
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORBA
specification and are used by the Object Request Broker (ORB) and object adapters
(OA). Standard exceptions may be returned as a result of any operation invocation,
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is generating
an appropriate HRESULT for the operation to return. The other aspect is conveying
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM View
when a CORBA System Exception is raised. Each of the CORBA System Exceptions
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower 16
bits) of the HRESULT. Because these errors are interface-specific, the COM facility
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion status
of the CORBA request. The bit value 00 indicates that the operation did not complete,
a bit value of 01 indicates that the operation did complete, and a bit value of 02
indicates that the operation may have completed. Table 13-3 lists the HRESULT
constants and their values.

Table 13-3 Standard Exception to SCODE Mapping

HRESULT Constant HRESULT
Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202

ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203
13B-12 CORBA V2.0 July 1996

13B
HRESULT Constant HRESULT
Value

ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

Table 13-3 Standard Exception to SCODE Mapping
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-13

13B
HRESULT Constant HRESULT
Value

ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

Table 13-3 Standard Exception to SCODE Mapping
13B-14 CORBA V2.0 July 1996

13B
It is not possible to map a System Exception’s minor code and RepositoryId into the
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writing
the exception information to an OLE Error Object is optional. However, if the Error
Object is used for this purpose, it must be done according to the following
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo
such that the View can respond affirmatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo
pointer parameter when the mapped CORBA operation is completed without an
exception being raised. Calling SetErrorInfo in this fashion assures that the Error
Object on that thread is thoroughly destroyed.

The properties of the OLE Error Object must be set according to Table 13-4.

Table 13-4 Error Object Usage for CORBA System Exceptions

HRESULT Constant HRESULT
Value

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA
interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of
the CORBA system exception. <completion status> is “YES,” “NO,”
or “MAYBE” based upon the value of the system exception’s CORBA
completion status. Spaces and square brackets are literals and must
be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface

Table 13-3 Standard Exception to SCODE Mapping
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-15

13B
A COM View supporting error objects would have code, which approximates the
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error
object
try
{

// Call the CORBA operation
}
catch(...)
{

...

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

 ->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

...

}

A client to a COM View would access the OLE Error Object with code approximating
the following.
13B-16 CORBA V2.0 July 1996

13B
// After obtaining a pointer to an interface on
// the COM View, the
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
 &pISupportErrorInfo);

hr = pISupportErrorInfo

->InterfaceSupportsErrorInfo(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hrOperation (above)
// has the completion status encoded into it.
pIErrorInfo->GetDescription(...);

}
}

The COM client program could use C++ exception handling mechanisms to avoid
doing this explicit check after every call to an operation on the COM View.

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in an
object server to report operation-specific errors. The definition of a User Exception is
identified in an OMG IDL file with the keyword exception. The body of a User
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to describe
various information about the exception — hereafter called an Exception structure. The
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interface
pointers to User Exceptions. The name of the structure is constructed from the name of
the CORBA module in which the exception is defined (if specified), the name of the
interface in which the exception is either defined or used, and the word “Exceptions.”
A template illustrating this naming convention is as follows.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-17

13B
// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}

ExceptionType;

typedef struct
{

ExceptionType type;
LPTSTR repositoryId;

<ModuleName><InterfaceName>UserException
*....piUserException;

} <ModuleName><InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as the last
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises a
User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions structure
as an output parameter by indirect reference allows the parameter to be treated as
optional by the callee. The following example illustrates this point.

// Microsoft IDL
interface IAccount

{
 HRESULT Withdraw([in] float fAmount,

[out] float pfNewBalance,
[out] BankExceptions

** ppException);
 };

The caller can indicate that no exception information should be returned, if an
exception occurs, by specifying NULL as the value for the Exceptions parameter of the
operation. If the caller expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to be placed.
COM’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the callee is
to return exception information, the callee is responsible for allocating any memory
used to hold the exception information being returned. If no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of the
HRESULT to the callee, indicating the operation succeeded. The value of the
HRESULT returned to the callee when a CORBA exception has been raised depends
upon the type of exception being raised and whether an Exception structure was
specified by the caller.
13B-18 CORBA V2.0 July 1996

13B
The following OMG IDL statements show the definition of the format used to
represent User Exceptions

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };

. ..
interface Account

 {
exception NotAuthorized { };
float Deposit(in float Amount)

raises(InvalidAmount);
float Withdraw(in float Amount)

raises(InvalidAmount, NotAuthorized);
};

};

and map to the following statements in Microsoft IDL and ODL.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-19

13B
// Microsoft IDL and ODL
struct BankInsufFunds

{
float balance;
};

struct BankInvalidAmount
{
float amount;
};

struct BankAccountNotAuthorized
{
};

interface IBankAccountUserExceptions : IUnknown
{
HRESULT get_InsufFunds([out] BankInsufFunds

* exceptionBody);
HRESULT get_InvalidAmount([out] BankInvalidAmount

* exceptionBody);
HRESULT get_NotAuthorized([out]

BankAccountNotAuthorized
* exceptionBody);

};

typedef struct
{
ExceptionType type;
LPTSTR repositoryId;
IBankAccountUserExceptions * piUserException;

} BankAccountExceptions;

User exceptions are mapped to a COM interface and a structure which describes the
body of information to be returned for the User Exception. A COM interface is defined
for each CORBA interface containing an operation that raises a User Exception. The
name of the interface defined for accessing User Exception information is constructed
from the fully scoped name of the CORBA interface on which the exception is raised.
A structure is defined for each User Exception, which contains the body of information
to be returned as part of that exception. The name of the structure follows the naming
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA interface
is mapped into an operation on the Exception interface. The name of the operation is
constructed by prefixing the name of the exception with the string “get_”. Each
accessor operation defined takes one output parameter in which to return the body of
information defined for the User Exception. The data type of the output parameter is a
structure that is defined for the exception. The operation is defined to return an
HRESULT value.
13B-20 CORBA V2.0 July 1996

13B
If a CORBA User Exception is to be raised, the value of the HRESULT returned to the
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, the
callee must allocate the memory to hold the exception information and fill in the
Exceptions structure as in Table 13-5.

When data conversion errors occur while mapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with the
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to
the client.

Mapping User Exceptions: A Special Case

If a CORBA operation raises only one User Exception, and it is the COM_ERROR
User Exception (defined under Section 13.3.10, Mapping for COM Errors), then the
mapped COM operation should not have the additional parameter for exceptions. This
proviso enables a CORBA implementation of a preexisting COM interface to be
mapped back to COM without altering the COM operation’s original signature.

COM_ERROR is defined as part of the CORBA to COM mapping. However, this
special rule in effect means that a COM_ERROR raises clause can be added to an
operation specifically to indicate that the operation was originally defined as a COM
operation.

Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The definition of an operation constitutes the operations signature. An
operation signature consists of the operation’s name, parameters (if any), and return
value. Optionally, OMG IDL allows the operation definition to indicate exceptions that
can be raised, and the context to be passed to the object as implicit arguments, both of
which are considered part of the operation.

OMG IDL parameter directional attributes in, out, inout map directly to Microsoft
IDL and ODL parameter direction attributes [in], [out], [in,out]. Operation
request parameters are represented as the values of in or inout parameters in OMG

Table 13-5 User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that is
being raised. Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the
exception definition.

piUserException Points to an interface with which to obtain
information about the User Exception raised.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-21

13B
IDL, and operation response parameters are represented as the values of inout or
out parameters. An operation return result can be any type that can be defined in
OMG IDL, or void if a result is not returned.

The OMG IDL sample (next) shows the definition of two operations on the Bank
interface. The names of the operations are bolded to make them stand out. Operations
can return various types of data as results, including nothing at all. The operation
Bank::Transfer is an example of an operation that does not return a value. The
operation Bank::OpenAccount returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank "IDL:BANK/Bank:1.2"

interface Bank
{
Account OpenAccount(in float StartingBalance,

in AccountTypes AccountType);
void Transfer(in Account Account1,

in Account Account2,
in float Amount)

raises(InSufFunds);
};

The operations defined in the preceding OMG IDL code is mapped to the following
lines of Microsoft IDL code

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface IBank : IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out] IAccount ** ppiNewAccount);

 HRESULT Transfer([in]IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,
 [out] IBankUserExceptions

** ppiUserException);
 };

and to the following statements in Microsoft ODL.
13B-22 CORBA V2.0 July 1996

13B
// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBank: IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out, retval] IAccount

** ppiNewAccount);
 HRESULT Transfer([in] IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,

[out]IBankUserExceptions
** ppiUserException);

 };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is
identical to the order in which parameters are specified in the text of the operation
definition in OMG IDL. The COM mapping of all CORBA operations must obey the
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Microsoft
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result value
becomes an HRESULT. Without an HRESULT return value, there would be no way for
COM to signal errors to clients when the client and server are not collocated. The
value of the HRESULT is determined based on a mapping of the CORBA exception, if
any, that was raised.

It is also important to note that if any user’s exception information is defined for the
operation, an additional parameter is added as the last argument of the operation
signature. The user exception parameter follows the return value parameter, if both
exist. See Mapping for Exception Types under Section 13.2.10 for further details.

Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the
communication service must provide for an operation. This indication is done through
the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which
does not guarantee delivery of the request. Best-effort implies that the operation will
be invoked, at most, once. Along with the invocation semantics, the use of the oneway
operation attribute restricts an operation from having output parameters, must have no
result value returned, and cannot raise any user-defined exceptions.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-23

13B
It may seem that the Microsoft IDL maybe operation attribute provides a closer match
since the caller of an operation does not expect any response. However, Microsoft RPC
maybe does not guarantee at most once semantics, and therefore is not sufficient.
Because of this, the mapping of an operation defined in OMG IDL with the oneway
operation attribute maps the same as an operation that has no output arguments.

Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentially
a short-hand for a pair of accessor functions to an object’s data; one to retrieve the
value and possibly one to set the value of the attribute. The definition of an attribute
must be contained within an interface definition and can indicate whether the value of
the attribute can be modified or just read. In the example OMG IDL next, the attribute
Profile is defined for the Customer interface and the read-only attribute is Balance
defined for the Account interface. The keyword attribute is used by OMG IDL to
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor function is
limited to only raising system exceptions. The value of the HRESULT is determined
based on a mapping of the CORBA exception, if any, that was raised.
13B-24 CORBA V2.0 July 1996

13B
// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};

#pragma ID::BANK::Account "IDL:BANK/Account:3.1"

interface Account
 {
 readonly attribute float Balance;
 float Deposit(in float amount) raises(InvalidAmount);
 float Withdrawal(in float amount) raises(InsufFunds, InvalidAmount);
 float Close();
 };

#pragma ID::BANK::Customer "IDL:BANK/Customer:1.2"

 interface Customer
 {
 attribute CustomerData Profile;
 };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the name
of the get accessor is the same as the name of the attribute prefixed with _get_ in
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL. The
name of the put accessor is the same as the name of the attribute prefixed with _put_
in Microsoft IDL and contains the operation attribute [propput] in Microsoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: one to
retrieve the value and one to set the value of the attribute unless the keyword readonly
precedes the attribute keyword. In the preceding example, the attribute Profile is
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IUnknown
 {
 HRESULT _get_Profile([out] CustomerData * Profile);
 HRESULT _put_Profile([in] CustomerData * Profile);
 };

Profile is mapped to these statements in Microsoft ODL.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-25

13B
// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface ICustomer : IUnknown
 {
 [propget] HRESULT Profile([out] CustomerData

* Profile);
 [propput] HRESULT Profile([in] CustomerData

* Profile);
 };

Note that the attribute is actually mapped as two different operations in both Microsoft
IDL and ODL. The ICustomer::Get_Profile, in Microsoft IDL operations and the
[propget] Profile, in Microsoft ODL operations are used to retrieve the value of the
attribute. The ICustomer::Set_Profile operation is used to set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keyword readonly is interpreted as only
supporting a single accessor function used to retrieve the value of the attribute. In the
previous example, the mapping of the attribute Balance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 HRESULT _get_Balance([out] float Balance);
 };

and the following statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 [propget] HRESULT Balance([out] float Balance);
 };

Note that only a single operation was defined since the attribute was defined to be
read-only.

13.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces. In
language bindings supporting typed object references, widening and narrowing support
convert object references as allowed by the true type of that object.
13B-26 CORBA V2.0 July 1996

13B
However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object, as defined in CORBA 2.0
(for example, CORBA::Object::is_a, CORBA::Object::get_interface)
use a description of the object’s principle type, which is defined in OMG IDL. CORBA
allows many ways in which implementations of interfaces can be structured, including
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to
CORBA, there is a standard mechanism by which an object can have multiple
interfaces (without an inheritance relationship between those interfaces) and by which
clients can query for these at run-time. (It defines no common way to determine if two
interface references refer to the same object, or to enumerate all the interfaces
supported by an entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces, which they must support. This type of statically defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces might be multiply inherited and
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance of
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknown.
Note that the Object interface is not surfaced in COM. For single inheritance, although
the most derived interface can be queried using IUnknown::QueryInterface,
each individual interface in the inheritance hierarchy can also be queried separately.

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon the
operation name. The ordering is lexicographic by bytes in machine-collating order.

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating order. If
the attribute is not readonly, the get_<attribute name> method immediately precedes
the set_<attribute name> method.

Figure 13-1 and the following OMG IDL and Microsoft MIDL illustrate this mapping.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-27

13B
Figure 13-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

CORBA Interface Inheritance COM Interface Inheritance

A

B

D E

F

C IU

B C

A

IU

D

A IU

E

IU

F

IU
13B-28 CORBA V2.0 July 1996

13B
//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-29

13B
Note that the co-class statement in Microsoft ODL allows the definition of an object
class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its corresponding
statements in Microsoft IDL, the name of the interface is proceeded by the letter I to
indicate that the name represents the name of an interface. This also makes the
mapping more natural to the COM programmer, since the naming conventions used
follow those suggested by Microsoft.

13.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects differ
from other objects in that they cannot be invoked with the Dynamic Invocation
Interface (DII) and do not have object references. Most pseudo-objects cannot be used
as general arguments. Currently, only the TypeCode and Principal pseudo-objects can
be used as general arguments to a request in CORBA.

The CORBA NamedValue and NVList are not mapped into COM as arguments to
COM operation signatures.

Mapping for TypeCode Pseudo-Object

CORBA TypeCodes represent the types of arguments or attributes and are typically
retrieved from the interface repository. The mapping of the CORBA TypeCode
interface follows the same rules as mapping any other CORBA interface to COM. The
result of this mapping is as follows.
13B-30 CORBA V2.0 July 1996

13B
// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;
[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT get_Bounds([out] TypeCodeBounds *ExceptionBody);
HRESULT get_BadKind([out] TypeCodeBadKind * pExceptionBody
);
};

typedef struct
{
 ExceptionType type;
 LPTSTR repositoryId;
 long minorCode;
 CompletionStatus completionStatus;
 ICORBA_SystemException * pSystemException;
 ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR RepositoryId;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
 HRESULT equal(
[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBATypeCodeExceptions** ppUserExceptions);
HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT id(
[out] RepositoryId * pszRetVal,
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-31

13B
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT name(
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT member_count(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT member_name(
[in] unsigned long ulIndex,
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT member_type(
[in] unsigned long ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT member_label(
[in] unsigned long ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT discriminator_type(
[out] ICORBA_TypeCode** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT default_index(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT length(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT content_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT param_count(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
 HRESULT parameter(
[in] long lIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
}

Mapping for Context Pseudo-Object

This specification provides no mapping for CORBA’s Context pseudo-object into
COM. Implementations that choose to provide support for Context could do so in the
following way. Context pseudo-objects should be accessed through the ICORBA
Context interface. This would allow clients (if they are aware that the object they are
dealing with is a CORBA object) to set a single Context pseudo-object to be used for
all subsequent invocations on the CORBA object from the client process space until
such time as the ICORBA_Context interface is released.
13B-32 CORBA V2.0 July 1996

13B
The ICORBA_Context interface has the following definition in Microsoft IDL and
ODL:

// Microsoft IDL and ODL
typedef struct
 {
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
 } ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IUnknown
 {
 HRESULT GetProperty([in]LPTSTR Name,

[out] ContextPropertyValue
** ppValues);

 HRESULT SetProperty([in] LPTSTR,
[in] ContextPropertyValue

* pValues);
 };

If a COM client application knows it is using a CORBA object, the client application
can use QueryInterface to obtain an interface pointer to the ICORBA_Context interface.
Obtaining the interface pointer results in a CORBA context pseudo-object being
created in the View, which is used with any CORBA request operation that requires a
reference to a CORBA context object. The context pseudo-object should be destroyed
when the reference count on the ICORBA_Context interface reaches zero.

This interface should only be generated for CORBA interfaces that have operations
defined with the context clause.

Mapping for Principal Pseudo-Object

The CORBA Principal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking will need to be defined
between the two object models.

13.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to COM
type libraries. However, the CORBA interface repository looks, to the client, to be one
unified service. Type libraries, on the other hand, are each stored in a separate file.
Clients do not have a unified, hierarchical interface to type libraries.
CORBA V2.0 CORBA to COM Data Type Mapping July 1996 13B-33

13B
Table 13-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for a CORBA object
interface using the IProvideClassInfo COM interface.

13.3 COM to CORBA Data Type Mapping

13.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the corresponding
data types available in OMG IDL as shown in Table 13-7.

Table 13-6 CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
13B-34 CORBA V2.0 July 1996

13B
13.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exactly
the same. The following Microsoft IDL definitions for constants

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

Table 13-7 Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

short short short Signed integer with a range of -215...215 -1

long long long Signed integer with a range of -231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 -1

float float float IEEE single -precision floating point
number

double double double IEEE double-precision floating point
number

char char char 8-bit quantity limited to the ISO Latin-1
character set

boolean boolean boolean 8-bit quantity, which is limited to 1 and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to not
undergo any conversion during transfer
between systems
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-35

13B
// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

13.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When COM
enumerations are mapped into CORBA, the enumerators are presented in CORBA,
ordered according to their tagged values. This Microsoft IDL or ODL

// Microsoft IDL or ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_or_C {A, B, C};

Because COM allows enumerators to be defined with explicit tagged values, the
enumerators are mapped to OMG IDL in the same order they appear in Microsoft IDL
or ODL and it is the COM View’s responsibility to maintain the mapping based on
names.

13.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded strings.
Bounded strings are defined as strings that have a maximum length specified, whereas
unbounded strings do not have a maximum length specified. COM also supports
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions for
bounded and unbounded strings differs from that specified in OMG IDL.
13B-36 CORBA V2.0 July 1996

13B
Table 13-8 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client, a
E_DATA_CONVERSION exception will be raised.

Mapping for Unbounded String Types

The definition of an unbounded string in Microsoft IDL and ODL denotes the
unbounded string as a stringified unique pointer to a character. The following
Microsoft IDL statement

// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconformant
array.” The following Microsoft IDL and ODL definition for a bounded string

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

Table 13-8 Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

LPSTR, char * LPSTR, string Null terminated 8-bit character
string

LPTSTR LPTSTR string Null terminated 8-bit character
string

BSTR on Win16 string Null-terminated 8-bit character
string
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-37

13B
// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPTSTR UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

Mapping for Unicode Bound String Types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] TCHAR (* BOUNDED_UNICODE_STRING)
[N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

13.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL.
Each structure members is mapped according to the mapping rules for that data type.
The structure definition in Microsoft IDL or ODL is as follows.
13B-38 CORBA V2.0 July 1996

13B
// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows.

// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct STRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

13.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any
interfaces that use them. For this reason, this specification does not provide any
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. The
discriminator for a nonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to be
constant expressions.

Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated unions
having constant discriminators are mapped to OMG IDL unions as shown next.
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-39

13B
// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.

// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

Mapping for Nonencapsulated Unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions with
nonconstant discriminators are mapped to an any in OMG IDL. The type of the any
is determined at run-time during conversion of the Microsoft IDL union.
13B-40 CORBA V2.0 July 1996

13B
// Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
 {
 [case(0)] char c;
 [case(1)] short s;
 [case(2)] long l;
 [case(3)] float f;
 [case(4)] double d;
 [default] byte v[8];
 } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef any UNION_OF_CHAR_AND_ARITHMETIC;

13.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OMG
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the array
elements is mapped according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying array
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that the
value of N is fixed and known at compilation time. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

Mapping for Nonfixed Arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports varying
arrays, and conformant varying arrays. These are arrays whose bounds and size can be
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapped
to sequence in OMG IDL, as shown in the following statements.
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-41

13B
// Microsoft IDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef sequence<short> BTYPE;
typedef sequence<char> CTYPE;

Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are determined
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL is
mapped to a CORBA sequence, as shown in the following statements.

// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence<element-type> SequenceName;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSION exception will be raised.

13.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBA any.
However, its allowable set of data types are currently limited to the data types
supported by OLE Automation. VARTYPE is an enumeration type used in the
VARIANT structure. The structure member vt is defined using the data type
VARTYPE. Its value acts as the discriminator for the embedded union and governs the
interpretation of the union. The list of valid values for the data type VARTYPE are
listed in Table 13-9, along with a description of how to use them to represent the OMG
IDL any data type.
13B-42 CORBA V2.0 July 1996

13B
Table 13-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you should
not return VT_EMPTY for the argument. Instead, you should
return the VT_ERROR value: DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored in bVal.

VT_UI1 |
VT_BYREF

A reference to an unsigned 1-byte character was passed; a
pointer to the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.

VT_I2 |
VT_BYREF

A reference to a 2-byte integer was passed; a pointer to the value
is in piVal.

VT_I4 A 4-byte integer value is stored in lVal.

VT_I4 |
VT_BYREF

A reference to a 4-byte integer was passed; a pointer to the value
is in plVal.

VT_R4 An IEEE 4-byte real value is stored in fltVal.

VT_R4 |
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer to the
value is in pfltVal.

VT_R8 An 8-byte IEEE real value is stored in dblVal.

VT_R8 |
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer to its
value is in pdblVal.

VT_CY A currency value was specified. A currency number is stored as
an 8-byte, two’s complement integer, scaled by 10,000 to give a
fixed-point number with 15 digits to the left of the decimal point
and 4 digits to the right. The value is in cyVal.

VT_CY |
VT_BYREF

A reference to a currency value was passed; a pointer to the
value is in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal. This pointer must be
obtained and freed via the BSTR functions.

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*, which points to a
BSTR, is in pbstrVal. The referenced pointer must be obtained or
freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not be
confused with the NULL pointer. The NULL value is used for
tri-state logic as with SQL.

VT_NULL |
VT_BYREF

Illegal.
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-43

13B
Value Description

VT_ERROR An SCODE was specified. The type of the error is specified in
code. Generally, operations on error values should raise an
exception or propagate the error to the return value, as
appropriate.

VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A pointer to the value is
in pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of 0xFFFF
(all bits one) indicates True; a value of 0 (all bits zero) indicates
False. No other values are legal.

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean value
is in pbool.

VT_DATE A value denoting a date and time was specified. Dates are
represented as double-precision numbers, where midnight,
January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on. The
value is passed in date.

This is the same numbering system used by most spreadsheet
programs, although some incorrectly believe that February 29,
1900 existed, and thus set January 1, 1900 to 1.0. The date can
be converted to and from an MS-DOS representation using
VariantTimeToDosDateTime.

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to the value is in
pdate.

VT_DISPATCH A pointer to an object was specified. The pointer is in pdispVal.
This object is only known to implement IDispatch; the object
can be queried as to whether it supports any other desired
interface by calling QueryInterface on the object. Objects that do
not implement IDispatch should be passed using
VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was specified. The pointer to
the object is stored in the location referred to by ppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed in pvarVal. This
referenced VARIANTARG will never have the VT_BYREF bit
set in vt, so only one level of indirection can ever be present.
This value can be used to support languages that allow functions
to change the types of variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown interface is
passed in punkVal.

VT_UNKNOWN
| VT_BYREF

A pointer to a pointer to the IUnknown interface is passed in
ppunkVal. The pointer to the interface is stored in the location
referred to by ppunkVal.

Table 13-9 Valid OLE VARIANT Data Types
13B-44 CORBA V2.0 July 1996

13B
A COM VARIANT is mapped to the CORBA any without loss. If at run-time a
CORBA client passes an inconvertible any to a COM server, a DATA_CONVERSION
exception is raised.

13.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot represent
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used for
data structures, which form cycles or have aliases.

A reference pointer is mapped to a CORBA sequence containing one element. Unique
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequence
containing zero or one elements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is returned
to the COM client. If a COM server attempts to return a full pointer containing aliases
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

13.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Although
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the following
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces.

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

Value Description

VT_ARRAY |
<anything>

An array of data type <anything> was passed. (VT_EMPTY and
VT_NULL are illegal types to combine with VT_ARRAY.) The
pointer in pByrefVal points to an array descriptor, which
describes the dimensions, size, and in-memory location of the
array. The array descriptor is never accessed directly, but instead
is read and modified using functions.

Table 13-9 Valid OLE VARIANT Data Types
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-45

13B
COM identifies interfaces using a structure similar to the DCE UUID (in fact, identical
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that the
textual names of interfaces are only for convenience and need not be globally unique.

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the
CORBA RepositoryId.

Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return result
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT, if
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as being
the same as the HRESULT on Win32). The SCODE can then be examined to determine
whether the call succeeded or failed. The error or success code, also contained within
the SCODE, is composed of a “facility” major code (13 bits on Win32 and 4 bits on
Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE values, or
use the facility FACILITY_ITF and an interface specific minor code. SCODE values
can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indicate a
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the return
value. This is because COM operations, which are defined to return an HRESULT, are
mapped to CORBA as returning an HRESULT.

Unlike CORBA, COM provides no standard way to return user-defined exception data
to the client. Also, there is no standard mechanism in COM to specify the completion
status of an invocation. In addition, it is not possible to predetermine what set of errors
a COM interface might return. Although the set of success codes that can be returned
from a COM operation must be fixed when the operation is defined, there is currently
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. COM user-defined error codes
are mapped to CORBA user exceptions.
13B-46 CORBA V2.0 July 1996

13B
COM system error codes are defined with the FACILITY_NULL and FACILITY_RPC
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to
CORBA standard exceptions. Table 13-10 lists the mapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 13-10 Mapping from COM FACILITY_NULL Error Codes to CORBA Standard
(System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-47

13B
Table 13-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA standard
exceptions. All FACILITY_RPC exceptions not listed in this table are mapped to the new
CORBA standard exception COM.

COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of the raises clause in OMG IDL. Since the
OMG IDL mapping from the Microsoft IDL and ODL is likely to be generated, this is
not a burden to the average programmer. The following OMG IDL illustrates such a
user exception.

Table 13-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard (System)
Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT
13B-48 CORBA V2.0 July 1996

13B
// OMG IDL
exception COM_ERROR { long hresult; };

When data conversion errors occur while mapping the data types between object
models (during a call from a CORBA client to a COM server), the system exception
DATA_CONVERSION will be raised.

Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within
interface definitions. The definition of an operation constitutes the operations
signature. An operation signature consists of the operation’s name, parameters (if any),
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the
operation definition to indicate the error information that can be returned.

Microsoft IDL and ODL parameter directional attributes ([in], [out], [in, out]) map
directly to OMG IDL (in, out, inout). Operation request parameters are
represented as the values of [in] or [inout] parameters in Microsoft IDL, and
operation response parameters are represented as the values of [inout] or [out]
parameters. An operation return result can be any type that can be defined in Microsoft
IDL/ODL, or void if a result is not returned. By convention, most operations are
defined to return an HRESULT. This provides a consistent way to return operation
status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the following
transformations. First, if the last parameter is tagged with the Microsoft ODL keyword
retval, that argument will be used as the return type of the operation. If the last
parameter is not tagged with retval, then the signature is mapped directly to OMG IDL
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown in the following
code.

// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify ([in] VARIANT value,

 [out, retval] LPSTR * pszValue);

HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-49

13B
In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Composite, CosLifeCycle::LifeCycleObject

{
string stringify(in any value) raises (COM_ERROR);

HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)
};

Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describing
properties. Microsoft IDL does not support this capability. Any operations that can be
determined to be either a put/set or get accessor are mapped to an attribute in OMG
IDL. Because Microsoft IDL does not provide a means to indicate that something is a
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to the
attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, properties in COM
are mapped in a similar fashion to that used to map attributes in OMG IDL to COM.
For example, the following Microsoft ODL statements define the attribute Profile for
the ICustomer interface and the read-only attribute Balance for the IAccount interface.
The keywords [propput] and [propget] are used by Microsoft ODL to indicate that the
statement is defining a property of an interface.

// Microsoft ODL
interface IAccount
 {
 [propget] HRESULT Balance([out, retval] float

* pfBalance);
 ...
 };

interface ICustomer
 {
 [propget] HRESULT Profile([out] CustomerData * Profile);
 [propput] HRESULT Profile([in] CustomerData * Profile);
 };

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor function is
limited to raising system exceptions. The value of the HRESULT is determined by a
mapping of the CORBA exception, if any, that was raised.
13B-50 CORBA V2.0 July 1996

13B
13.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as
only supporting an accessor function, which is used to retrieve the value of the
attribute. In the example above, the mapping of the attribute Balance is mapped to the
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attribute float Balance;
...
};

13.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as
only supporting an accessor function which is used to set the value of the attribute. In
the previous example, the attribute Profile is mapped to the following statements in
OMG IDL.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};

interface Customer
{
attribute CustomerData Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping must
assume that a property that has the keyword [propput] is mapped to a single read-write
attribute, even if there is no associated [propget] method defined.

Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in
language bindings supporting typed object references, widening and narrowing support
convert object references as allowed by the true type of that object.
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-51

13B
However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object (for example,
CORBA::Object::is_a, CORBA::Object::get_interface) use a
description of the object’s principle type, which is defined in OMG IDL. In terms of
implementation, CORBA allows many ways in which implementations of interfaces
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to
CORBA, there is a standard mechanism by which an object can have multiple
interfaces (without an inheritance relationship between those interfaces) and by which
clients can query for these at run-time. (It defines no common way to determine if two
interface references refer to the same object, or to enumerate all the interfaces
supported by an entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces that they must support. This type of statically-defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++
style implementation inheritance is not possible.

When COM interfaces are mapped into CORBA, their inheritance hierarchy (which
can only consist of single inheritance) is directly mapped into the equivalent OMG
IDL inheritance hierarchy.1

Note that although it is possible, using Microsoft ODL to map multiple COM
interfaces in a class to OMG IDL multiple inheritance, the necessary information is not
available for interfaces defined in Microsoft IDL. As such, this specification does not
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL,
at which time the mapping can be extended to allow for multiple COM interfaces to be
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, even though those
interfaces are not related by inheritance. Any existing ORB can support this interface,
although in some cases a specialized implementation framework may be desired to
take advantage of this interface.

1.This mapping fails in some cases, for example, if operation names are the same.
13B-52 CORBA V2.0 July 1996

13B
module CORBA // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

};
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multiply
inherited from CORBA::Composable and
CosLifeCycle::LifeCycleObject. Note that the IUnknown interface is not
surfaced in OMG IDL. Any COM method parameters that require IUnknown interfaces
as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object.

// Microsoft IDL or ODL
interface IFoo: IUnknown

{
HRESULT inquire([in] IUnknown *obj);
};

In OMG IDL, this becomes:

interface IFoo: CORBA::Composable, CosLifeCycle::LifeCycleObject
{
void inquire(in Object obj);
};

Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA
interface repositories. However, the CORBA interface repository looks, to the client, to
be one unified service. Type libraries, on the other hand, are each stored in a separate
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the field is left blank.
CORBA V2.0 COM to CORBA Data Type Mapping July 1996 13B-53

13B
Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for CORBA object
interface using the IProvideClassInfo COM interface.

Table 13-12 CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
13B-54 CORBA V2.0 July 1996

Mapping: OLE Automation and
CORBA 13C
This chapter describes the bidirectional data type and interface mapping between OLE
Automation and CORBA.

Microsoft’s Object Description Language (ODL) is used to describe Automation object
model constructs. However, many constructs supported by ODL are not supported by
Automation. Therefore, this specification is confined to the Automation-compatible
ODL constructs.

As described in Chapter 13A, Interworking Architecture, many implementation
choices are open to the vendor in building these mappings. One valid approach is to
generate and compile mapping code, an essentially static approach. Another is to map
objects dynamically.

Although some features of the CORBA-Automation mappings address the issue of
inverting a mapping back to its original platform, this specification does not assume
the requirement for a totally invertible mapping between Automation and CORBA.

13.1 Mapping CORBA Objects to OLE Automation

13.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote
CORBA object: the OLE Automation Controller; the COM Communication
Infrastructure; the OLE system registry; the client-side Automation View; the
operation’s type information; the Object Request Broker; and the CORBA object’s
implementation. These are illustrated in Figure 13-1 (the call to the Automation View
could be a call in the same process).
 CORBA V2.0 July 1996 13C-1

13C
Figure 13-1 CORBA Object Architectural Overview

The Automation View is an OLE Automation server with a dispatch interface that is
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an
Automation View Interface. The Automation server encapsulates a CORBA object
reference and maps incoming OLE Automation invocations into CORBA invocations
on the encapsulated reference. The creation and storage of the type information is not
specified.

There is a one-to-one correspondence between the methods of the Automation View
Interface and operations in the CORBA interface. The Automation View Interface’s
methods translate parameters bidirectionally between a CORBA reference and an OLE
reference.

OLE Automation
Controller

System

Automation

ORB

Object
Implementation

TypeInfo

COM

Registry

Communication

View
13C-2 CORBA V2.0 July 1996

13C
Figure 13-2 Methods of the Automation View Interface delegate to the CORBA Stub

13.1.2 Main Features of the Mapping

• OMG IDL attributes and operations map to Automation properties and methods
respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation where
possible. Since Automation supports a limited set of data types, some OMG IDL
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation
interfaces with appropriate attributes and operations. User exceptions are mapped
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, and
overflow conditions are identified.

• OMG IDL sequences and arrays map to Automation Safearrays.

Client Space Object Space

CORBA Stub
MyInterface methods CORBA Skeleton

MyInterface methods

Automation View

- Interface DIMyInterface

Client App

Real CORBA Object
Interface MyInterface

pDIMyInterface->Invoke(A_METHOD...

Network
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-3

13C
13.1.3 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View
Interface. For example, the following CORBA interface

module MyModule // OMG IDL
{

interface MyInterface
{

// Attributes and operations;
...

};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{

// Properties and methods;
...

};

The interface IMyModule_account is an OLE Automation Dual Interface. A Dual
Interface is a COM vtable-based interface which derives from IDispatch, meaning that
its methods can be late-bound via IDispatch::Invoke or early-bound through the
vtable portion of the interface. Thus, IMyModule_account contains the methods of
IDispatch as well as separate vtable-entries for its operations and property get/set
methods.

Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG IDL
attribute maps to an ODL property, which has one method to get and one to set the
value of the property. An OMG IDL readonly attribute maps to an OLE property,
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation interface
follows the rules described in “Ordering Rules for the CORBA->OLE Automation
Transformation” part of Section 13.5.2, Detailed Mapping Rules, in Chapter 13A,
Interworking Architecture.

For example, given the following CORBA interface,

interface account // OMG IDL
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};
13C-4 CORBA V2.0 July 1996

13C
the corresponding Automation View Interface is:

[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL

HRESULT makeLodgement ([in] float amount,
 [out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

}

OMG IDL in, out, and inout parameters map to ODL [in], [out], and
[in,out] parameters, respectively. Section 13.14, Mapping for Basic Data Types,
explains the mapping for basic data types. The mapping for CORBA oneway
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument in
the operation’s signature may be tagged [retval,out]. An argument tagged in this
fashion is considered syntactically to be a return value. Automation controller macro
languages map this special argument to a return value in their language syntax. Thus, a
CORBA operation’s return value is mapped to the last argument in the corresponding
operation of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optional out parameter of
type VARIANT. The optional parameter returns explicit exception information in the
context of each property set/get or method invocation. See Section 13.1.18, Mapping
CORBA Exceptions to Automation Exceptions, for a detailed discussion of how this
mechanism works.

If the CORBA operation has no return value, then the optional parameter is the last
parameter in the corresponding Automation operation. If the CORBA operation does
have a return value, then the optional parameter appears directly before the return
value in the corresponding Automation operation, since the return value must always
be the last parameter.

Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy of
Automation View Interfaces.

For example, given the interface account and its derived interface
checkingAccount defined as follows,
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-5

13C
module MyModule { // OMG IDL
interface account {

attribute float balance;
readonly attributestring owner;
void makeLodgement (in float amount, out float

balance);
void makeWithdrawal (in float amount, out float

theBalance);
};
interface checkingAccount: account {

readonly attribute float overdraftLimit;
boolean orderChequeBook ();

};
};

the corresponding Automation View Interfaces are as follows.

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
[propget] HRESULT balance ([retval,out] float *

[IT_retval];
[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

[propget] HRESULT overdraftLimit (
[retval,out] short * IT_retval);

};

Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance. Therefore, a direct mapping of a
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapping
splits such a hierarchy, at the points of multiple inheritance, into multiple singly-
inherited strands.

The mechanism for determining which interfaces appear on which strands is based on
a left branch traversal of the inheritance tree. At points of multiple inheritance, the
interface that is first in an ordering of the parent interfaces is included in what we call
13C-6 CORBA V2.0 July 1996

13C
the main strand, and other interfaces are assigned to other, secondary strands. (The
ordering of parent interfaces is explained later in this section.) For example, consider
the CORBA interface hierarchy, shown in Figure 13-3.

Figure 13-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows:

• B and C derive from A

• D derives from B and C

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance
hierarchies, shown in Figure 13-4.

Figure 13-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following the
left strand B at this point, our main strand is A-B-D and our secondary strand is A-C.
However, to access all of the object’s methods, a controller would have to navigate
among these disjoint strands via QueryInterface. While such navigation is expected of
COM clients and might be an acceptable requirement of C++ automation controllers,
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate the
operations of the secondary strands into the interface of the main strand. In our
example, we add the operations of C to D (A’s operations are not added because they

A

B C

D

E

A

B C

D

E

(+ methods of C)

A

CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-7

13C
already exist in the main strand). Thus, D has all the methods of the hierarchy and,
more important, an Automation controller holding a reference to D can access all of
the methods of the hierarchy without calling QueryInterface.

In order to have a reliable, deterministic, portable way to determine the inheritance
chain at points of multiple inheritance, an explicit ordering model must be used.
Furthermore, to achieve interoperability of virtual function tables for dual interfaces, a
precise model for ordering operations and attributes within an interface must be
specified.

Within an interface, attributes should appear before operations and both should be
ordered lexicographically by bytes in machine-collating sequence. For non-readonly
attributes, the [propget] method immediately precedes the [propput] method.
This ordering determines the position of the vtable portion of a Dual Interface. At
points of multiple inheritance, the base interfaces should be ordered from left to right
lexicographically by bytes in machine-collating order. (In all cases, the ordering is
based on ISO Latin-1.) Thus, the leftmost branch at a point of multiple inheritance is
the one ordered first among the base classes, not necessarily the one listed first in the
inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy
conforming to Figure 13-3.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

};
interface B: A{

void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that the
ordering of the base interfaces for D has been changed based on our ISO Latin-1
alphabetic ordering model and that operations from C are added to interface D.
13C-8 CORBA V2.0 July 1996

13C
// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);

}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed before D’s
operations. The ordering of these operations obeys the rules for operations within C
and is independent of the ordering within D.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-9

13C
13.1.4 Mapping for Basic Data Types

Basic Automation Types

Table 13-1 lists the basic data types supported by OLE Automation. The table contains
fewer data types than those allowed by ODL because not all types recognized by ODL
can be handled by the marshaling of IDispatch interfaces and by the implementation of
ITypeInfo::Invoke. Arguments and return values of operations and properties
are restricted to these basic types.

Table 13-1 OLE Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as return type for a function, or in a function
parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since December
30, 1899.

SCODE Built-in error type. In Win16, does not include additional data
contained in an HRESULT. In Win32, identical to HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the
mapping, an IDispatch pointer parameter is an object reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be
represented by its IUnknown interface.)
13C-10 CORBA V2.0 July 1996

13C
The formal mapping of CORBA types to Automation types is shown in Table 13-2.

13.1.5 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translation
of the Automation and CORBA parameters and return types. It must map from
Automation to CORBA for in parameters and from CORBA to Automation for out
parameters. The translation logic must handle the special conditions described in the
following sections.

Translating Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation should
return the HRESULT DISP_E_OVERFLOW.

Translating CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an
Automation long, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Translating Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum value of
a CORBA::UShort, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Table 13-2 OMG CORBA to OLE Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean boolean

char short

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-11

13C
Translating Automation boolean to CORBA boolean and CORBA
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0). True
and false values for Automation boolean are, respectively, negative one (-1) and zero
(0). Therefore, true values need to be adjusted accordingly.

13.1.6 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLE BSTR. For example,
given the OMG IDL definitions,

// OMG IDL
string sortCode<20>;
string name;

the corresponding ODL code is:

// ODL
BSTR sortCode;
BSTR name;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the only
support for internationalization of strings defined at this time.

13.1.7 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA
interface actually exists. Other equivalent expressions of CORBA interfaces, such as
the contents of an Interface Repository, may be used. Moreover, there is no
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface and
ODL is the appropriate medium for describing an Automation View Interface.
Therefore, the following OMG IDL code describes a CORBA interface that exercises
all of the CORBA base data types in the roles of attribute, operation in parameter,
operation out parameter, operation inout parameter, and return value. The OMG
IDL code is followed by ODL code describing the Automation View Interface that
would result from a conformant mapping.
13C-12 CORBA V2.0 July 1996

13C
module MyModule // OMG IDL
{

interface TypesTest
{

attribute boolean boolTest;
attribute char charTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned short ushortTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (

in boolean boolTest,
in char charTest,
in double doubleTest,
in float floatTest,
in long longTest,
in octet octetTest,
in short shortTest,
in string stringTest,
in string<10> stringnTest,
in unsigned long ulongTest,
in unsigned short ushortTest);

// Gets all the attributes
boolean getAll (

out boolean boolTest,
out char charTest,
out double doubleTest,
out float floatTest,
out long longTest,
out octet octetTest,
out short shortTest,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongTest,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolTest,
inout char charTest,
inout double doubleTest,
inout float floatTest,
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-13

13C
inout long longTest,
inout octet octetTest,
inout short shortTest,
inout string stringTest,
inout string<10> stringnTest,
inout unsigned longulongTest,
inout unsigned shortushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string stringReturn();
string<10> stringnReturn();
unsigned long ulongReturn ();
unsigned shortushortReturn();

}; // End of Interface TypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.
13C-14 CORBA V2.0 July 1996

13C
[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] double *IT_retval);

HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] float *IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] short *charTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *octetTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] BSTR *stringnTest,
[out] long *ulongTest,
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *IT_retval);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT setAll ([in] short boolTest,
[in] short charTest,
[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short octetTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] BSTR stringnTest,
[in] long ulongTest,
[in] long ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *octetTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest,
[in,out] long *ushortTest,
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-15

13C
[optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] BSTR *IT_retval);

HRESULT stringnReturn ([optional,out] VARIANT *
exep_OBJ,

[retval,out] BSTR *IT_retval);
HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *IT_retval);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short

*IT_retval);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *IT_retval);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long

*IT_retval);
[propput] HRESULT ushortTest([in] long ushortTest);

}

13C-16 CORBA V2.0 July 1996

13C
13.1.8 Mapping for Object References

Type Mapping

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The OMG IDL code defines an
interface Simple and another interface that references Simple as an in parameter, as an
out parameter, as an inout parameter, and as a return value. The ODL code
describes the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{

// A simple object we can use for testing object references
interface Simple
{

attribute short shortTest;
};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

 out Simple outTest,
 inout Simple inoutTest);

};

}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-17

13C
[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *
IT_retval);

[propput] HRESULT shortTest([in] short shortTest);
}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** IT_retval);

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple **
IT_retval);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*simpleTest);

}

Object Reference Parameters and IForeignObject

As described in Chapter 13A, Interworking Architecture, Automation and COM Views
must expose the IForeignObject interface in addition to the interface that is isomorphic
to the mapped CORBA interface. IForeignObject provides a mechanism to extract a
valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as an in parameter to an
operation M in View A. Operation M must somehow convert View B to a valid
CORBA object reference.

In Figure 13-5, Automation Views expose IForeignObject, as required of all Views.

Figure 13-5 Partial Picture of the Automation View

Automation View
Object

IDispatch

IForeignObject

IUnknown

...
13C-18 CORBA V2.0 July 1996

13C
The sequence of events involving IForeignObject::GetForeignReference
is as follows:

• The client calls Automation-View-A::M, passing an IDispatch-derived pointer
to Automation-View-B.

• Automation-View-A::M calls IDispatch::QueryInterface for
IForeignObject.

• Automation-View-A::M calls IForeignObject::GetForeignReference
to get the reference to the CORBA object of type B.

• Automation-View-A::M calls CORBA-Stub-A::M with the reference, narrowed to
interface type B, as the object reference in parameter.

13.1.9 Mapping for Enumerated Types

CORBA enums map to Automation enums.

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {

void op1(in color col);
};

};

Consider the following example, which maps to the following ODL:

// ODL
typedef enum {red, green, blue} MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out]
VARIANT * excep_OBJ);

}

Internally, OLE Automation maps enum parameters to the platform’s integer type. (For
Win32, the integer type is equivalent to a long.) If the number of elements in the
CORBA enum exceeds the maximum value of an integer, the condition should be
trapped at some point during static or dynamic construction of the Automation View
Interface corresponding to the CORBA interface in which the enum type appears as a
parameter. If the overflow is detected at run-time, the Automation View operation
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View
Interface exceeds the maximum value of the enum, the View operation should return
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into the
controller scripting language context, vendors may wish to generate a header file
containing an appropriate enum declaration or a set of constant declarations for the
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-19

13C
client language. Since the method for doing so is an implementation detail, it is not
specified here. However, it should be noted that some languages type enums other than
as longs, introducing the possibility of conversion errors or faults. If such problems
arise, it is best to use a series of constant declarations rather than an enumerated type
declaration in the client header file.

For example, the following enum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for
interfaces. That is, the name should be fully scoped with the names of enclosing
modules or interfaces. (See Section 13.7.7, Naming Conventions for View Components
in Chapter 13A, Interworking Architecture.)

If the enum is declared at global OMG IDL scope, as in the previous example, then the
name of the enum should also be included in the constant name.

13.1.10 Mapping for Arrays and Sequences

OLE Automation methods may have array parameters called Safearrays. Safearrays are
one or multidimensional arrays whose elements are of any of the basic Automation
types. The following ODL syntax describes an array parameter:

SAFEARRAY (elementtype) arrayname

A Safearray may be passed by reference, using the following syntax:

SAFEARRAY (elementtype) *arrayname

Safearrays have a header which describes certain characteristics of the array including
bounding information, and are thus relatively safe for marshaling. Note that the ODL
declaration of Safearrays does not include bound specifiers. OLE provides an API for
allocating and manipulating Safearrays, which includes a procedure for resizing the
array.

IDL arrays and sequences, both bounded and unbounded, are mapped to Safearrays.
Bounded sequences are mapped to Safearrays with the same boundaries; they do not
grow dynamically up to the bounded size but are statically allocated to the bounded
size. Unbounded sequences are mapped to Safearrays with some default bound.
Attempts to access past the boundary result in a resizing of the Safearray.
13C-20 CORBA V2.0 July 1996

13C
Since ODL Safearray declarations contain no boundary specifiers, the bounding
knowledge is contained in the Automation View. A method of the Automation View
Interface, which has a Safearray as a parameter, has the intelligence to handle the
parameter properly. When Safearrays are submitted as in parameters, the View
method uses the Safearray API to dynamically repackage the Safearray as a CORBA
array, bounded sequence, or unbounded sequence. When Safearrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA array or sequence as a Safearray. When an unbounded sequence grows
beyond the current boundary of the corresponding Safearray, the View’s method uses
the Safearray API to increase the size of the array by one allocation unit. The size of
an allocation unit is unspecified. If a Safearray is mapped from a bounded sequence
and a client of the View attempts to write to the Safearray past the maximum element
of the bounded sequence, the View operation considers this a run-time error and
returns the HRESULT DISP_E_OVERFLOW.

Multidimensional OMG IDL arrays map to multidimensional Safearrays. The order of
dimensions in the OMG IDL array from left to right corresponds to ascending order of
dimensions in the Safearray.

13.1.11 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions and Exceptions—cannot be mapped
directly to ODL constructed types, as Automation does not support them as valid
parameter types. Instead, constructed types are mapped to Pseudo-Automation
Interfaces. The objects that implement Pseudo-Automation Interfaces are called
pseudo-objects. Pseudo-objects do not expose the IForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from
IDispatch as do Automation View Interfaces. Instead, they derive from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch
{

[propget] HRESULT INSTANCE_repositoryId([retval,out]
BSTR *IT_retval);

HRESULT INSTANCE_clone([in] IDispatch *pDispatch,
[retval, out] IDispatch **IT_retval);

}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-21

13C
The purpose of the DIForeignComplexType::INSTANCE_clone method is to
provide the client programmer a way to duplicate a complex type. INSTANCE_clone
creates a new instance of the type with values identical to the input instance.
Therefore, INSTANCE_clone does not simply duplicate a reference to a complex
type.

The purpose of the INSTANCE_repositoryId readonly property is to support the
ability of DICORBAAny (see Section 13.1.13, Mapping for anys), when it wraps an
instance of a complex type, to produce a type code for the instance when asked to do
so via DICORBAAny’s readonly typeCode property.

Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is an Pseudo-Automation
Interface containing properties corresponding to the members of the struct. The names
of a Pseudo-Struct’s properties are identical to the names of the corresponding CORBA
struct members.

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodless DICORBAStruct interface is to mark the interface as
having its origin in the mapping of a CORBA struct. This information, which can be
stored in a type library, is essential for the task of mapping the type back to CORBA in
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interface
derives from DICORBAStruct.
13C-22 CORBA V2.0 July 1996

13C
// IDL
interface S
{

attribute long l;
attribute double d;
attribute float f;

};

Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-Union.
A Pseudo-Union contains properties that correspond to the members of the union, with
the addition of a discriminator property. The discriminator property’s name is
UNION_d, and its type is the Automation type that corresponds to the OMG IDL
union discriminant.

If a union element is accessed from the Pseudo-Union, and the current value of the
discriminant does not match the property being requested, then the operation of the
Pseudo-Union returns DISP_E_TYPEMISMATCH. Whenever an element is set, the
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interface DICORBAUnion which, in
turn, derives from DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUnion and its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-23

13C
An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long)
{

case 1: long l;
case 2: float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped
Automation Dual Interface derives from DICORBAUnion.

interface A; // IDL

interface U
{

// Switch discriminant
readonly attribute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

13.1.12 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to the DICORBATypeCode interface. The
DICORBATypeCode interface is defined as follows.
13C-24 CORBA V2.0 July 1996

13C
// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet,

tk_any, tk_typeCode, tk_principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,

tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * IT_retval);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *IT_retval);
[propget] HRESULT name([retval,out] BSTR * IT_retval);

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT member_count([retval,out]

long * IT_retval);
HRESULT member_name([in] long index,[retval,out]

BSTR * IT_retval);
HRESULT member_type([in] long index,

[retval,out] IDispatch ** IT_retval),

// tk_union
HRESULT member_label([in] long index,[retval,out]

VARIANT * IT_retval);
[propget] HRESULT discriminator_type([retval,out]

IDispatch ** IT_retval);
[propget] HRESULT default_index([retval,out]

long * IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * IT_retval);

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out]

IDispatch ** IT_retval);
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBATypeCode and its UUID is:

{E977F903-3B75-11cf-BBFC-444553540000}
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-25

13C
When generating Visual Basic constants corresponding to the values of the
CORBATCKind enumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

Since DICORBATypeCode derives from DIForeignComplexType, objects which
implement it are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA
Complex Types, for a description of the DIForeignComplexType interface.

13.1.13 Mapping for anys

The OMG IDL any data type maps to the DICORBAAny interface, which is declared
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType
{

[propget] HRESULT value([retval,out]
VARIANT * IT_retval);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out]

DICORBATypeCode ** IT_retval);
}

The UUID for DICORBAAny is:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAAny and its UUID is:

{E977F904-3B75-11cf-BBFC-444553540000}

Since DICORBAAny derives from DIForeignComplexType, objects that implement it
are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA Complex
Types, for a description of the DIForeignComplexType interface.

Note that the VARIANT value property of DICORBAAny can represent a Safearray or
can represent a pointer to a DICORBAStruct or DICORBAUnion interface. Therefore,
the mapping for any is valid for an any that represents a CORBA array, sequence,
structure, or union.
13C-26 CORBA V2.0 July 1996

13C
13.1.14 Mapping for Typedefs

The mapping of OMG IDL typedef definitions to OLE depends on the OMG IDL
type for which the typedef is defined. No mapping is provided for typedef
definitions for the basic types: float, double, long, short, unsigned long,
unsigned short, char, boolean, and octet. Hence, a Visual Basic
programmer cannot make use of these typedef definitions.

// OMG IDL
module MyModule {

module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interfaces,
the mapping creates an alias for the Automation View object. A conforming
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

13.1.15 Mapping for Constants

The notion of a constant does not exist in OLE Automation. Therefore, no mapping is
prescribed for a CORBA constant.

As with the mapping for enums, some vendors may wish to generate a header file
containing an appropriate constant declaration for the client language. For example, the
following OMG IDL declaration

// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-27

13C
13.1.16 Getting Initial CORBA Object References

The DICORBAFactory interface, described in Section 13.7.3, ICORBAFactory
Interface in Chapter 13A, Interworking Architecture, provides a mechanism that is
more suitable for the typical programmer in an Automation controller environment
such as Visual Basic.

The implementation of the DICORBAFactory interface is not prescribed, but possible
options include delegating to the OMG Naming Service and using the Windows
System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library,
the code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the rules
for arguments to DICORBAFactory::GetObject described in Section 13.7.3,
ICORBAFactory Interface in Chapter 13A, Interworking Architecture.

A special name space for names with a period in the first position can be used to
resolve an initial reference to the OMG Object Services (for example, the Naming
Service, the Life Cycle Service, and so forth). For example, a reference for the Naming
Service can be found using:

Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally the GetObject method will be used to retrieve object references from the
Registry/Naming Service. The CreateObject method is really just a shorthand
notation for GetObject(“someName”).create. It is intended to be used for object
references to objects supporting a CORBAServices Factory interface.

1. It is always permissible to directly register a CORBA/OLE Automation bridging object directly with the
Windows Registry. The administration and assignment of ProgIds for direct registration should follow the
naming rules described in Chapter 13A, Interworking Architecture.
13C-28 CORBA V2.0 July 1996

13C
13.1.17 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces,
creating an instance of a mapped CORBA complex type is not the same as creating an
instance of a mapped CORBA interface. The main difference lies in the fact that the
name space for CORBA complex types differs fundamentally from the CORBA object
and factory name spaces.

To support creation of instances of Automation objects exposing Pseudo-Automation
Interfaces, we define a new interface, derived from DICORBAFactory (see Section
13.7.3, ICORBAFactory Interface in Chapter 13A, Interworking Architecture, for a
description of DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName,

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The Automation object having the ProgId “CORBA.Factory” shown next actually
exposes DICORBAFactoryEx.

The CreateType method creates an Automation object that has been mapped from a
CORBA complex type. The parameters are used to determine the specific type of
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface. The
most derived interface type of the CORBA object bound to the View identifies the
scope within which the second parameter, typeName, is interpreted. For example,
assume the following CORBA interface exists:
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-29

13C
// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}
void op(in S s);

//
}

}
}

The following Visual Basic example illustrates the primary use of CreateType.

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject(“...”)

‘ creates Automation View of the CORBA object
supporting interface ‘ A::B::C

Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType.

• The typeName parameter can contain a fully-scoped name (i.e., the name begins
with a double colon “::”). If so, then the first parameter defines the type name space
within which the fully scoped name will be resolved.

• If the scopingObject parameter does not point to a valid Automation View Interface,
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space
associated with the scopingObject parameter, then CreateObject returns the
HRESULT TYPE_E_UNDEFINEDTYPE.

The CreateTypeByID method accomplishes the same general goal of CreateType, the
creation of Automation objects that are mapped from CORBA constructed types. The
second parameter, repositoryID, is a string containing the CORBA Interface
Repository ID of the CORBA type whose mapped Automation Object is to be created.
The Interface Repository associated with the CORBA object identified by the
scopingObject parameter defines the repository within which the ID will be resolved.

The following rules apply to CreateTypeById.

• If the scopingObject parameter does not point to a valid Automation View Interface,
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.
13C-30 CORBA V2.0 July 1996

13C
• If the repositoryID parameter does not identify a valid type in the Interface
Repository associated with the scopingObject parameter, then CreateObject returns
the HRESULT TYPE_E_UNDEFINEDTYPE.

ITypeFactory Interface

The DICORBAFactory interface delegates its CreateType and CreateTypeByID
methods to an ITypeFactory interface on the scoping object. ITypeFactory is defined as
a COM interface because it is not intended to be exposed to Automation controllers.
Every Automation View object must support the ITypeFactory interface:

//MIDL
interface ITypeFactory: IUnknown
{

HRESULT CreateType([in] LPSTR typeName, [out] VARIANT
*IT_retval);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *IT_retval);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods on ITypeFactory provide the behaviors previously described for the
corresponding DICORBAFactory methods.

13.1.18 Mapping CORBA Exceptions to Automation Exceptions

Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as
defined in C++ and CORBA. Automation methods are invoked with a call to
IDispatch::Invoke or to a vtable method on a Dual Interface. These methods
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, which
have the severity bit (bit 31 being the high bit) set, indicate that an error occurred
during the call, and thus are considered to be error codes. (In Win16, an SCODE was
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purposes
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called the
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility field
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choose to
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If a
non-NULL pointer is passed, the callee can choose to handle an error condition by
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO
structure.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-31

13C
OLE also provides Error Objects, which are task local objects containing similar
information to that contained in the EXCEPINFO structure. Error objects provide a
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically fired
when an invocation returns an HRESULT with the severity bit set. If the HRESULT is
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in the
EXCEPINFO structure or in the Error Object can be extracted in the error handling
routine.

CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error
handling model. Therefore, all methods of Automation View Interfaces have an
additional, optional out parameter of type VARIANT which is filled in by the View
when a CORBA exception is detected.

Both CORBA System exceptions and User exceptions map to Pseudo-Automation
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from IForeignException
which, in turn, derives from IForeignComplexType:

//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_repositoryID([retval,out] BSTR
*IT_retval);

};

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attribute EX_majorCode defines the broad category of exception raised, and has
one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2
13C-32 CORBA V2.0 July 1996

13C
These values may be specified as an enum in the typelibrary information:

typedef enum {NO_EXCEPTION,
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attribute EX_repositoryID is a unique string that identifies the exception. It is
the exception type’s repository ID from the CORBA Interface Repository.

CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whose
properties correspond one-to-one with the attributes of the CORBA user exception, and
which derives from the methodless interface DICORBAUserException:

//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as though it
were defined as an interface. The declaration

// OMG IDL
exception reject
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-33

13C
Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseudo-
Automation Interface, and the operation on the Pseudo-Interface returns the HRESULT
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from the
operation prevents an active Visual Basic Error Trap from being fired, allowing the
caller to retrieve the exception parameter in the context of the invoked method. The
View fills in the VARIANT by setting its vt field to VT_DISPATCH and setting the
pdispval field to point to the pseudo-exception. If no exception occurs, the optional
parameter is filled with an IForeignException pointer on a pseudo-exception object
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked via IDispatch::Invoke, then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.

• If the method was called via the vtable portion of a Dual Interface, then the OLE
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement the
standard OLE interface ISupportErrorInfo.

Table 13-3 EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA
interface, which this Automation View is representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION
13C-34 CORBA V2.0 July 1996

13C
CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception
DICORBASystemException, which derives from DIForeignException:

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_completionStatus([retval,out] long
*IT_retval);

}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attribute EX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE = 2

Table 13-4 ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA
interface, which this Automation View is representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-35

13C
These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES,
COMPLETION_NO,
COMPLETION_MAYBE } CORBA_ExceptionType;

Operations that Raise System Exceptions

As is the case for UserExceptions, system exceptions can be returned to the caller
using the optional last parameter, which is present on all mapped methods.

If the optional parameter is supplied and a system exception occurs, the optional
parameter is filled in with an IForeignException pointer to the pseudo-exception, and
the automation return value is S_FALSE. If no exception occurs, the optional
parameter is filled with an IForeignException pointer whose EX_majorCode
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the exception
is looked up in Table 3-5. This table maps a subset of the CORBA system exceptions
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exception
is on the table, the equivalent HRESULT is returned. If the exception is not on the
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESULT,
then the exception is mapped to an HRESULT according to Table 13-3 in Chapter 13B,
Mapping: COM and CORBA. This new HRESULT is used as follows.

• If the operation was invoked via IDispatch::Invoke:

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set to
the new HRESULT value.

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT.

Table 13-5 CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW
13C-36 CORBA V2.0 July 1996

13C
13.1.19 Conventions for Naming Components of the Automation View

The conventions for naming components of the Automation View are detailed in
Section 13.7.7, Naming Conventions for View Components in Chapter 13A,
Interworking Architecture.

Table 13-6 EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA
interface, which this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of
the CORBA system exception. <completion status> is “YES,” “NO,”
or “MAYBE” based upon the value of the system exceptions’s
CORBA completion status. Spaces and square brackets are literals
and must be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 13-3 in Chapter 13B.

Table 13-7 ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA
interface, which this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of
the CORBA system exception. <completion status> is “YES,” “NO,”
or “MAYBE” based upon the value of the system exceptions’s
CORBA completion status. Spaces and square brackets are literals
and must be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-37

13C
13.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo-
Exceptions

The formulas used to name components of the Automation View (see Section 13.7.7,
Naming Conventions for View Components in Chapter 13A, Interworking
Architecture) are also used to name components Pseudo-Structs, Pseudo-Unions, and
Pseudo-Exceptions. The CORBA type name is used as input to the formulas, just as
the CORBA interface name is used as input to the formulas when mapping interfaces.

These formulas apply to the name and IID of the Pseudo-Automation Interface, and to
the Program Id and Class Id of an object implementing the Pseudo-Automation
Interface if it is registered in the Windows System Registry.

13.1.21 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an OLE Automation
Dual Interface, it is also acceptable to map it as a generic Dispatch Interface.

In this case, the normal methods and attribute accessor/assign methods are not required
to have HRESULT return values. Instead, an additional “dispinterface” is defined,
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type> arg1, [out] <type> arg2,
[retval, out] <return type> IT_retval)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type> arg1, [out] <type> arg2)

Using the example from Section 13.1.3, Mapping for Interfaces:

interface account
{ // OMG IDL

attribute float balance;
readonly attribute string owner;
void makeLodgement (in float amount, out float
balance);
void makeWithdrawal (in float amount, out float
balance);

};

the corresponding Iaccount interfaces are defined as follows.
13C-38 CORBA V2.0 July 1996

13C
[odl, uuid(e268443e-43d9-3dab-1d7e-f303bbe9642f)]
interface Iaccount: IUnknown { // ODL

void makeLodgement ([in] float amount,
[out] float balance,[out,optional]

VARIANT *excep_OBJ);
void makeWithdrawal([in] float amount,

[out] float balance,[out,optional]
VARIANT *excep_OBJ);

[propget] float balance ([retval,out] *IT_retval);
[propput] void balance ([in] float balance)
[propget] BSTR owner ([retval,out] *IT_retval);

}
[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f)]
dispinterface Daccount {

interface Iaccount;
};

A separate “dispinterface” declaration is required because Iaccount derives from
IUnknown. The dispatch interface is DIaccount. Thus, in the example used for
mapping object references in Section 13.1.8, Mapping for Object References, the
reference to the Simple interface in the OMG IDL would map to a reference to
IMyModule_Simple rather than DIMyModule_Simple. The naming conventions
for Dispatch Interfaces (and for their IIDs) exposed by the View are slightly different
from Dual Interfaces. See Section 13.7.7, Naming Conventions for View Components
in Chapter 13A, Interworking Architecture, for details.

The Automation View Interface must correctly respond to a QueryInterface for the
specific Dispatch Interface Id (DIID) for that View. By conforming to this requirement,
the Automation View can be strongly type-checked. For example,
ITypeInfo::Invoke, when handling a parameter that is typed as a pointer to a
specific DIID, calls QueryInterface on the object for that DIID to make sure the object
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as structs,
unions, exceptions and the other noninterface constructs mapped to dispatch interfaces
can also be exposed as nondual dispatch interfaces.

13.1.22 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View objects
must either be capable of being aggregated in the standard COM fashion or must
follow COM rules to indicate their inability or unwillingness to be aggregated.

The same rule applies to pseudo-objects.

13.1.23 DII, DSI, and BOA

OLE Automation interfaces are inherently self-describing and may be invoked
dynamically. There is no utility in providing a mapping of the DII interfaces and
related pseudo-objects into OLE Automation interfaces.
CORBA V2.0 Mapping CORBA Objects to OLE Automation July 1996 13C-39

13C
13.2 Mapping OLE Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. It is
best to solve this problem in a manner similar to the approach for exposing CORBA
objects as Automation objects.

13.2.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implements
one or more dispatch interfaces and whose server application exposes a class factory
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of the
operations of each of those interfaces. The CORBA View object is in every way a legal
CORBA object. It is not an Automation object. The skeleton is placed on the machine
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View which, as previously
explained, is used to represent a CORBA object as an Automation object. The
Automation View has to reside on the client side because COM is not distributable. A
copy of the Automation View needs to be available on every client machine.

The CORBA View, however, can live in the real CORBA object’s space and can be
represented on the client side by the CORBA system’s stub because CORBA is
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the term CORBA View is distinct from CORBA stubs
and skeletons, from COM proxies and stubs, and from Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA
operations translate parameter types and delegate to the corresponding methods of the
real Automation object. When a CORBA client wishes to instantiate the real
Automation object, it instantiates the CORBA View.

Thus, from the point of view of the client, it is interacting with a CORBA object which
may be a remote object. CORBA handles all of the interprocess communication and
marshaling. No COM proxies or stubs are created.
13C-40 CORBA V2.0 July 1996

13C
Figure 13-6 The CORBA View: a CORBA Object, which is a Client of a COM Object

13.2.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operations,
respectively.

• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where
possible.

• Automation errors are mapped similarly to COM errors.

13.2.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA View
Interfaces. These interfaces may be registered as normal CORBA objects on the remote
machine.

Client Space Object Space

CORBA Stub

MyInterface methods
CORBA Skeleton

MyInterface methods

CORBA Client App

Real Automation Object

IUnknown

((MyInterface *)pObject)->Method(...

Network

CORBA View

MyInterface methods
pUnknown->QueryInterface(DIID_MyInterface,&
pIntface->Method(...

Dual Interface DIMyInterface

ORB
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-41

13C
13.2.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward.
Each interface maps to an OMG IDL interface. In general, we map all methods and
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interface IMyModule_account,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account
{

readonly attribute float balance;
};

If the ODL interface does not have a parameter with the [retval,out] attributes,
its return type is mapped to long. This allows COM SCODE values to be passed
through to the CORBA client.

13.2.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORBA
View Interfaces.

For example, given the interface “account” and its derived interface
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance([in] float balance);
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out]
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};
13C-42 CORBA V2.0 July 1996

13C
the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attribute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in float amount, out float

theBalance);
};
interface MyModule_checkingAccount: MyModule_account {

readonly attributeshort overdraftLimit;
short orderChequeBook ();

};

13.2.6 Mapping for ODL Properties and Methods

An ODL property which has either a get/set pair or just a set method is mapped to an
OMG IDL attribute. An ODL property with just a get accessor is mapped to an OMG
IDL readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance,
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement ([in] float amount,

 [out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
}

the corresponding OMG IDL interface is:

// OMG IDL
interface account {

attribute float balance;
readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float balance);

};

ODL [in], [out], and [in,out] parameters map to OMG IDL in, out, and
inout parameters, respectively. Section 13.1.4, Mapping for Basic Data Types,
explains the mapping for basic types.
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-43

13C
13.2.7 Mapping for Automation Basic Data Types

Basic Automation Types

The basic data types allowed by OLE Automation as parameters and return values are
detailed in Section 13.1.4, Mapping for Basic Data Types.

The formal mapping of CORBA types to Automation types is shown in Table 13-8.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fixed
point number with 15 digits left of the decimal point and 4 digits to the right. The
COM::Currency type is thus defined as follows:

module COM
{

struct Currency
{

unsigned long lower;
long upper;

}
}

This mapping of the CURRENCY type is transitional and should be revised when the
extended data types revisions to OMG IDL are adopted. These revisions are slated to
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing the
number of days since December 30, 1899.

Table 13-8 Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
13C-44 CORBA V2.0 July 1996

13C
13.2.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of the
Automation and CORBA parameters and return types. It must map from CORBA to
Automation for in parameters and from Automation to CORBA for out parameters.

When the CORBA View encounters an error condition while translating between
CORBA and Automation data types, it raises the CORBA system exception
DATA_CONVERSION.

13.2.9 Special Cases of Data Type Conversion

Translating COM::Currency to Automation CURRENCY

If the supplied COM::Currency value does not translate to a meaningful Automation
CURRENCY value, then the CORBA View should raise the CORBA System
Exception DATA_CONVERSION.

Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then the
CORBA View should raise the CORBA System Exception DATA_CONVERSION.

Translating CORBA boolean to Automation boolean and
Automation boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True and
false values for Automation boolean are, respectively, negative one (-1) and zero.
Therefore, true values need to be adjusted accordingly.

13.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the mapped
Automation interface actually exist. Other equivalent expressions of Automation
interfaces, such as the contents of a Type Library, may be used. Moreover, there is no
requirement that OMG IDL code corresponding to the CORBA View Interface be
generated.

However, ODL is the appropriate medium for describing an Automation interface, and
OMG IDL is the appropriate medium for describing a CORBA View Interface.
Therefore, we provide the following ODL code to describe an Automation interface,
which exercises all of the Automation base data types in the roles of properties,
method [in] parameter, method [out] parameter, method [inout] parameter, and
return value. The ODL code is followed by OMG IDL code describing the CORBA
View Interface, which would result from a conformant mapping.
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-45

13C
// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *IT_retval);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY

*IT_retval);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
HRESULT setAll ([in] short boolTest,

[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] DATE dateTest,
[in] CURRENCY currencyTest,
[retval,out] short * IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] DATE * dateTest,
13C-46 CORBA V2.0 July 1996

13C
[in,out] CURRENCY * currencyTest,
[retval,out] short *IT_retval);

HRESULT boolReturn ([retval,out] short *IT_retval);
HRESULT doubleReturn ([retval,out] double *IT_retval);
HRESULT floatReturn ([retval,out] float *IT_retval);
HRESULT longReturn ([retval,out] long *IT_retval);
HRESULT shortReturn ([retval,out] short *IT_retval);
HRESULT stringReturn ([retval,out] BSTR *IT_retval);
HRESULT octetReturn ([retval,out] DATE *IT_retval);
HRESULT currencyReturn ([retval,out] CURRENCY

*IT_retval);
}

The corresponding OMG IDL is as follows.
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-47

13C
// OMG IDL
interface MyModule_TypesTest
{

attribute boolean boolTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateTest;
attribute COM::Currency currencyTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (in boolean boolTest,

in double doubleTest,
in float floatTest,
in long longTest,
in short shortTest,
in string stringTest,
in double dateTest,
in COM::Currency currencyTest);

// Gets all the attributes
boolean getAll (out boolean boolTest,

out double doubleTest,
out float floatTest,
out long longTest,
out short shortTest,
out string stringTest,
out double dateTest,
out COM::Currency currencyTest);

boolean setAndIncrement (
inout boolean boolTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortTest,
inout string stringTest,
inout double dateTest,
inout COM::Currency currencyTest);

boolean boolReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
short shortReturn ();
string stringReturn();
double dateReturn ();
13C-48 CORBA V2.0 July 1996

13C
COM::CurrencycurrencyReturn();

}; // End of Interface TypesTest

13.2.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The ODL code defines an
interface “Simple” and another interface that references Simple as an in parameter, an
out parameter, an inout parameter, and as a return value. The OMG IDL code
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out]
short * IT_retval);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** IT_retval);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);

HRESULT simpleOp([in] DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **IT_retval);

}

The OMG IDL code for the CORBA View Dispatch Interface is as follows.
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-49

13C
// OMG IDL
// A simple object we can use for testing object references
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest,

 out MyModule_Simple outTest,
 inout MyModule_Simple inoutTest);

};

13.2.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
module COM {

enum MyModule_color {red, green, blue};
interfacefoo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

13.2.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, will
have the knowledge to handle the parameter properly.

When SafeArrays are in parameters, the View method uses the Safearray API to
dynamically repackage the SafeArray as a CORBA sequence. When arrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA sequence as a SafeArray.
13C-50 CORBA V2.0 July 1996

13C
Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding
information for each dimension, and indeed the number of dimensions, is not available
in the static typelibrary information or ODL definition. It is only available at run-time.

For this reason, SafeArrays, which have more than one dimension, are mapped to an
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follows:

• The number of elements in the linear sequence is the product of the dimensions.

• The position of each element is deterministic; for a SafeArray with dimensions d0,
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of 5 * 8 * 9 = 360. This gives us
valid offsets 0-359. In this example, the real offset to the element at location [4][5][1]
is 4*8*9 + 5*9 + 1 = 334.

13.2.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is the
case of an ODL enum, which is required to be a typedef. In this case the mapping is as
per Section 13.1.9, Mapping for Enumerated Types.

13.2.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA any. If the VARIANT contains a DATE or
CURRENCY element, these are mapped as per Section 13.2.7, Mapping for
Automation Basic Data Types.

13.2.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by an
Automation client such as the CORBA View. These ways differ based on the signature
of the method and the behavior of the server. For example, for vtable invocations on
dual interfaces, the HRESULT is the return value of the method. For
IDispatch::Invoke invocations, the significant HRESULT may be the return
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of the
HRESULT is the exactly the same as for COM to CORBA (see Mapping for COM
Errors under Section 13.3.10 in Chapter 13B, Mapping: COM and CORBA). The View
raises either a standard CORBA system exception or the COM_HRESULT user
exception.
CORBA V2.0 Mapping OLE Automation Objects as CORBA Objects July 1996 13C-51

13C
CORBA Views must supply an EXCEPINFO parameter when making
IDispatch::Invoke invocations to take advantage of servers using EXCEPINFO.
Servers do not use the EXCEPINFO parameter if it is passed to Invoke as NULL.

An Automation method with an HRESULT return value and an argument marked as a
[retval] maps to an IDL method whose return value is mapped from the
[retval] argument. This situation is common in dual interfaces and means that
there is no HRESULT available to the CORBA client. It would seem on the face of it
that there is a problem mapping S_FALSE scodes in this case because the fact that no
system exception was generated means that the HRESULT on the vtable method could
have been either S_OK or S_FALSE. However, this should not truly be a problem. A
method in a dual interface should never attach semantic meaning to the distinction
between S_OK and S_FALSE because a Visual Basic program acting as a client would
never be able to determine whether the return value from the actual method was S_OK
or S_FALSE.

An Automation method with an HRESULT return value and no argument marked as
[retval] maps to a CORBA interface with a long return value. The long HRESULT
returned by the original Automation operation is passed back as the long return value
from the CORBA operation.
13C-52 CORBA V2.0 July 1996

OMG IDL Tags B
This appendix lists the standardized profile, service, and component tags described in
the Interoperability chapters. Implementor-defined tags can also be registered in this
manual. Requests to register tags with the OMG should be sent to
tag_request@omg.org.

TBL. 17Standard Service Tags

TBL. 16Standard Profile Tags

Tag Name Tag Value Described in

ProfileId
TAG_INTERNET_IOP = 0

Section 10.6.2, “Interoperable Object Refer-
ences: IORs,” on page 10-14

ProfileId
TAG_MULTIPLE_COMPONENTS = 1

Section 10.6.2, “Interoperable Object Refer-
ences: IORs,” on page 10-14

Tag Name Tag Value Described in

ServiceId TransactionService = 0 Section 10.6.6, “Object Service Context,” on
page 10-18
 CORBA V2.0 July 1995 B-1

B

TBL. 18Standard Component Tags

Tag Name Tag Value Described in

ComponentId TAG_DCE_STRING_BINDING = 100 Section 13.5.1, “DCE-CIOP String Binding
Component,” on page 13-16

ComponentId TAG_DCE_BINDING = 101 Section 13.5.2, “DCE-CIOP Binding Name
Component,” on page 13-17

ComponentId TAG_DCE_NO_PIPES = 102 Section 13.5.3, “DCE-CIOP No Pipes Com-
ponent,” on page 13-18

ComponentId TAG_OBJECT_KEY = 10 Section 13.5.4, “Object Key Component,” on
page 13-19

ComponentId TAG_ENDPOINT_ID = 11 Section 13.5.5, “Endpoint ID Component,”
on page 13-19

ComponentId TAG_LOCATION_POLICY = 12 Section 13.5.6, “Location Policy Compo-
nent,” on page 13-20 and Section 13.6.3,
“Basic Location Algorithm,” on page 13-22
B-2 CORBA V2.0 July 1995

Sample Solutions for Older OLE
Automation Controllers C
This appendix provides some solutions that vendors might implement to support
existing and older OLE Automation controllers. These solutions are suggestions; they
are strictly optional.

 C.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some OLE Automation controllers do not support the use of SAFEARRAYs. For this
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no explicit
ICollection type interface, OLE does specify guidelines on the properties and methods
a collection interface should export.

// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index,

[retval,out] VARIANT * retval);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,
 [in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(

[retval, out] IEnumVARIANT * newEnum);
}

The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCollection and its UUID is:
 CORBA V2.0 July 1996 C-1

C

{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH
language construct can automatically iterate over a collection object such as that
previously described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access code
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then the
signatures for operations accepting SAFEARRAYs should be modified to accept a
VARIANT instead. In addition, the implementation code for the View wrapper method
should detect the kind of object being passed.
C-2 CORBA V2.0 July 1996

Example Mappings D
D.1 Mapping the OMG Naming Service to OLE Automation

This section provides an example of how a standard OMG Object Service, the Naming
Service, would be mapped according to the Interworking specification.

The Naming Service provides a standard service for CORBA applications to obtain
object references. The reference for the Naming Service is found by using the
resolve_initial_references() method provided on the ORB pseudo-
interface:

CORBA::ORB_ptr theORB = CORBA::ORB_init(argc, argv,
CORBA::ORBid, ev)
CORBA::Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =

CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA::Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent OLE
Automation interface using the mapping rules contained in the rest of this section. A
direct mapping would result in code from VisualBasic that appears as follows.
 CORBA V2.0 July 1996 D-1

Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“Naming-
Service”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

D.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is
mapped according to the rules provided in Section 13.3, COM to CORBA Data Type
Mapping in Chapter 13B. The example chosen is the COM ConnectionPoint set of
interfaces. The ConnectionPoint service is commonly used for supporting event
notification in OLE custom controls (OCXs). The service is a more general version of
the IDataObject/IAdviseSink interfaces.

The ConnectionPoint service is defined by four interfaces, described in Table D-1.

For purposes of this example, we describe these interfaces in Microsoft IDL. The
IConnectionPointContainer interface is shown next.

Table D-1 Interfaces of the ConnectionPoint Service

IConnectionPointContainer Used by a client to acquire a reference to one or more
of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint references

IEnumConnections Used to iterate over the connections currently
associated with a ConnectionPoint
D-2 CORBA V2.0 July 1996

// Microsoft IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
typedef struct {
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown
{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out]

IConnectionPoint **cp);
};
MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG IDL interface
shown next.

// OMG IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composite,
CosLifeCycle::LifeCycleObject

{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) raises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out

IConnectionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B196B284-BAB4-

101A-B69C-00AA00241D07”;
};

Similarly, the forward declared ConnectionPoint interface shown next is remapped to
the OMG IDL definition shown in the second following example.
CORBA V2.0 July 1996 D-3

// Microsoft IDL
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]
interface IConnectionPoint: IUnknown
{

HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out]

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);

};

// OMG IDL
interface IEnumConnections;
interface IConnectionPoint:: CORBA::Composite,

CosLifeCycle::LifeCycleObject
{

HRESULT GetConnectionInterface(out IID pIID)
raises (COM_HRESULT);

HRESULT GetConnectionPointContainer
(out IConnectionPointContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);

HRESULT EnumConnections(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B196B286-BAB4-101A-B69C-
00AA00241D07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum Connections
interfaces are shown next.
D-4 CORBA V2.0 July 1996

typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionPoint **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionData **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition for EnumConnectionPoints and
EnumConnections is shown next.
CORBA V2.0 July 1996 D-5

struct CONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

};
interface IEnumConnectionPoints: CORBA::Composite,
CosLifeCycle::LifeCycleObject
{

HRESULT Next(in unsigned long cConnections,
out IConnectionPoint rcpcn,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D07”;

};

interface IEnumConnections: CORBA::Composite,
CosLifeCycle::LifeCycleObject

{
HRESULT Next(in unsigned long cConnections,

 out IConnectData rgcd,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections =

“DCE:B196B287-BAB4-101A-B69C-00AA00241D07”;
};

D.3 Mapping an OMG Object Service to OLE Automation

This section provides an example of mapping an OMG-defined interface to an
equivalent OLE Automation interface. This example is based on the OMG Naming
Service and follows the mapping rules from Chapter 13C, Mapping: OLE Automation
and CORBA. The Naming Service is defined by two interfaces and some associated
D-6 CORBA V2.0 July 1996

types, which are scoped in the OMG IDL CosNaming module.

Microsoft ODL does not explicitly support the notions of modules or scoping domains.
To avoid name conflicts, all types defined in the scoping space of CosNaming are
expanded to global names.

The data type portion (interfaces excluded) of the CosNaming interface is shown next.

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...
}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is
shown next.

Table D-2 Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space in
which new associations between names and
object references can be created, and to retrieve
an object reference that has been associated with
a given name.

CosNaming::BindingIterator Used by a client to walk a list of registered names
that exist within a naming context.
CORBA V2.0 July 1996 D-7

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID
association
 library CosNaming
 {
importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-
string(“struct NameComponent”),
oleautomation, dual]
interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring **val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring

** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);
};
define Name SAFEARRAY(CosNaming_NameComponent *)

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)
[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),

helpstring(“struct Binding”),
oleautomation, dual]
interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]

CosNaming_IString ** val);
 [propput] HRESULT binding_name([in]

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in]

CosNaming_BindingType val);
};
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding)
interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...
};

The types scoped in an OMG IDL interface are also expanded using the notation
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within the
CosNaming::NamingContext interface (shown next) are expanded in Microsoft ODL as
shown in the second following example.
D-8 CORBA V2.0 July 1996

module CosNaming{
// ...

interface NamingContext
{

enum NotFoundReason { missing_node, not_context,
not_object };
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};

// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)]
library CosNaming
 {// ...
interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]
 interface DICosNaming_NamingContext_NotFound:

ICORBAException {
CORBA V2.0 July 1996 D-9

[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval]

CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name

* _val);
};
[uuid(d2fc8748-3650-cedd-1df6-026237b92940),

helpstring(“exception CannotProceed”),
oleautomation, dual]
interface DICosNaming_NamingContext_CannotProceed:

DICORBAException{
[propget] HRESULT cxt([out, retval]

DICosNaming_NamingContext ** _val);
[propput] HRESULT cxt([in] DICosNaming_NamingContext

* _val);
[propget] HRESULT rest_of_name([out, retval]

CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);
};
[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69),

helpstring(“exception InvalidName”),
oleautomation, dual]
interface DICosNaming_NamingContext_InvalidName:

DICORBAException {};
[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),

helpstring(“exception AlreadyBound”),
oleautomation, dual]
interface DICosNaming_NamingContext_AlreadyBound:

DICORBAException {};
[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),

helpstring(“exception NotEmpty”),
oleautomation, dual]
interface CosNaming_NamingContext_NotEmpty:

DICORBAException {};
typedef enum {[helpstring(“missing_node”)]

NamingContext_missing_node,
[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a),

helpstring(“NamingContext”),
oleautomation,dual]
interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT rebind([in] CosNaming_Name * n, in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);
D-10 CORBA V2.0 July 1996

HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);
HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)
HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);
HRESULT new_context([out, retval] DICosNaming_NamingContext
** pResult);
HRESULT bind_new_context([in] CosNaming_Name * n,

[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);
HRESULT destroy([out, optional] VARIANT* _user_exception);
HRESULT list([in] unsigned long how_many, [out]
CosNaming_BindingList ** bl,

[out] DICosNaming_BindingIterator ** bi);
};
};

The BindingIterator interface is mapped in a similar manner, as shown in the next two
examples.

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)]
library CosNaming
 {// ...

[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),

 helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}

CORBA V2.0 July 1996 D-11

D-12 CORBA V2.0 July 1996

C Language Mapping 14
CORBA is independent of the programming language used to construct clients or
implementations. In order to use the ORB, it is necessary for programmers to know
how to access ORB functionality from their programming languages. This chapter
defines the mapping of OMG IDL constructs to the C programming language.

 14.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the
means of expressing in the language:

• All OMG IDL basic data types

• All OMG IDL constructed data types

• References to constants defined in OMG IDL

• References to objects defined in OMG IDL

• Invocations of operations, including passing parameters and receiving results

• Exceptions, including what happens when an operation raises an exception and how
the exception parameters are accessed

• Access to attributes

• Signatures for the operations defined by the ORB, such as the dynamic invocation
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB
functionality in a way that is convenient for the particular programming language. To
support source portability, all ORB implementations must support the same mapping
for a particular language.
 CORBA V2.0 July 1996 14-1

14
14.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types defined
in Section 3.8.1, Basic Types. The ORB defines the range of values supported, but the
language mapping defines how a programmer sees those values. For example, the C
mapping might define TRUE as one, and FALSE as zero, whereas the LISP mapping
might define TRUE as T and FALSE as NIL. The mapping must specify the means to
construct and operate on these data types in the programming language.

14.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data types
defined in Section 3.8.2, Constructed Types. The ORB defines aggregates of basic data
types that are supported, but the language mapping defines how a programmer sees
those aggregates. For example, the C mapping might define an OMG IDL struct as a C
struct, whereas the LISP mapping might define an OMG IDL struct as a list. The
mapping must specify the means to construct and operate on these data types in the
programming language.

14.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as parameters
for certain operations. The language mapping should provide the means to access these
constants by name.

14.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular language.
The first specifies how an object is represented in the program and passed as a
parameter to operations. The second is how an object is invoked. The representation of
an object reference in a particular language is generally opaque, that is, some
language-specific data type is used to represent the object reference, but the program
does not interpret the values of that type. The language-specific representation is
independent of the ORB representation of an object reference, so that programs are not
ORB-dependent. In an object-oriented programming language, it may be convenient to
represent an ORB object as a programming language object. Any correspondence
between the programming language object types and the OMG IDL types including
inheritance, operation names, etc., is up to the language mapping.

There are only three uses that a program can make of an object reference: it may
specify it as a parameter to an operation (including receiving it as an output
parameter), it can invoke an operation on it, or it can perform an ORB operation
(including object adapter operations) on it.
14-2 CORBA V2.0 July 1996

14
14.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters to be supplied. There are a variety of
possible mappings, depending to a large extent on the procedure mechanism in the
particular language. Some possible choices for language mapping of invocation
include: interface-specific stub routines, a single general-purpose routine, a set of calls
to construct a parameter list and initiate the operation, or mapping ORB operations to
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how the
operation name is specified. It is also necessary to specify the effect of the call on the
flow of control in the program, including when an operation completes normally and
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the
corresponding call in the particular language. However, this may not always be
possible for languages where the type system or call mechanism is not powerful
enough to handle ORB objects. In this case, multiple calls may be required. For
example, in C, it is necessary to have a separate interface for dynamic construction of
calls, since C does not permit discovery of new types at run-time. In LISP, however, it
may be possible to make a language mapping that is the same for objects whether or
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the
storage allocation policy for parameters, for example, what happens to storage of input
parameters, and how and where output parameters are allocated. It is also necessary to
describe how a return value is handled, for operations that have one.

14.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. First is
the means for handling an exception when it occurs, including deciding which
exception occurred. If the programming language has a model of exceptions that can
accommodate ORB exceptions, that would likely be the most convenient choice; if it
does not, some other means must be used, for example, passing additional parameters
to the operations that receive the exception status.

It is commonly the case that the programmer associates specific code to handle each
kind of exception. It is desirable to make that association as convenient as possible.

Second, when an exception has been raised, it must be possible to access the
parameters of the exception. If the language exception mechanism allows for
parameters, that mechanism could be used. Otherwise, some other means of obtaining
the exception values must be provided.
CORBA V2.0 Requirements for a Language Mapping July 1996 14-3

14
14.1.7 Attributes

The ORB models attributes as a pair of operations, one to set and one to get the
attribute value. The language mapping defines the means of expressing these
operations. One reason for distinguishing attributes from pairs of operations is to allow
the language mapping to define the most natural way for accessing them. Some
possible choices include defining two operations for each attribute; defining two
operations that can set or get, respectively, any attribute; defining operations that can
set or get groups of attributes, and so forth.

14.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined objects
and data are accessed. Programmers who use the ORB must also access some
interfaces implemented directly by the ORB, for example, to convert an object
reference to a string. A language mapping must also specify how these interfaces
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allowing
additional ORB-related operations on objects, or defining interfaces that are similar to
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interface
that can (with a few exceptions) be defined in OMG IDL, but is not necessarily
implemented as an ORB object. Using stubs, a client of a pseudo-object writes calls to
it in the same way as if it were an ordinary object. Pseudo-object operations cannot be
invoked with the Dynamic Invocation Interface. However, the ORB may recognize
such calls as special and handle them directly. One advantage of pseudo-objects is that
the interface can be expressed in OMG IDL independent of the particular language
mapping, and the programmer can understand how to write calls by knowing the
language mapping for the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach.
However, this document defines interfaces in subsequent chapters using OMG IDL
wherever possible. A language mapping must define how these interfaces are accessed,
either by defining them as pseudo-objects and supporting a mapping similar to
ordinary objects, by defining language-specific interfaces for them, or in some other
way.

 14.2 Scoped Names

The C programmer must always use the global name for a type, constant, exception, or
operation. The C global name corresponding to an OMG IDL global name is derived
by converting occurrences of “::” to “_” (an underscore) and eliminating the leading
underscore.
14-4 CORBA V2.0 July 1996

14
Consider the following example:

typedef string<256> filename_t;
interface example0 {

enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };
• • •

};

Code to use this interface would appear as follows:

#include "example0.h" /* C */

filename_t FN;
example0_color C = example0_red;
example0_bar myUnion;

switch (myUnion._d) {
case example0_bar_room: • • •
case example0_bar_bell: • • •
};

Note that the use of underscores to replace the “::” separators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider the
following example:

typedef long foo_bar;
interface foo {

typedef short bar; /* A legal OMG IDL statement, but
ambigous in C */
• • •

};

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores
in identifiers.

 14.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for
an interface declaration is as follows:

interface example1 {
long op1(in long arg1);

};

The preceding example generates the following C declarations1.

1. Section 14.15, Implicit Arguments to Operations, describes the additional argu-
ments added to an operation in the C mapping.
CORBA V2.0 Mapping for Interfaces July 1996 14-5

14
typedef CORBA_Object example1 ; /* C */
extern CORBA_long example1_op1(

example1 o,
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-known,
opaque type CORBA_Object. The representation of CORBA_Object is a pointer. To
permit the programmer to decorate a program with typed references, a type with the
name of the interface is defined to be a CORBA_Object. The literal
CORBA_OBJECT_NIL is legal wherever a CORBA_Object may be used; it is
guaranteed to pass the is_nil operation defined in Section 7.2.3, Nil Object
References.

OMG IDL permits specifications in which arguments, return results, or components of
constructed types may be interface references. Consider the following example:

#include "example1.idl"

interface example2 {
example1 op2();

};

This is equivalent to the following C declaration.

#include "example1.h" /* C */

typedef CORBA_Object example2;
extern example1 example2_op2(example2 o, CORBA_Environment
*ev);

A C fragment for invoking such an operation is as follows.

#include "example2.h" /* C */

example1 ex1;
example2 ex2;
CORBA_Environment ev;

/* code for binding ex2 */

ex1 = example2_op2(ex2, &ev);

 14.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other
interfaces. Consider the following example.
14-6 CORBA V2.0 July 1996

14
interface example3 : example1 {
void op3(in long arg3, out long arg4);

};

This is equivalent to the following C declarations.

typedef CORBA_Object example3; /* C */
extern CORBA_long example3_op1(

example3 o,
CORBA_long arg1,
CORBA_Environment *ev

);
extern void example3_op3(

example3 o,
CORBA_long arg3,
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can access op1 as if it was directly declared in
example3. Of course, the programmer could also invoke example1_op1 on an
Object of type example3; the virtual nature of operations in interface definitions
will cause invocations of either function to cause the same method to be invoked.

 14.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the following
specification:

interface foo {
struct position_t {
float x, y;

};

attribute float radius;
readonly attribute position_t position;

};

This is exactly equivalent to the following illegal OMG IDL specification:

interface foo {
struct position_t {
float x, y;

};

float _get_radius();
void _set_radius(in float r);
position_t _get_position();

};

This latter specification is illegal, since OMG IDL identifiers are not permitted to start
with the underscore (_) character.
CORBA V2.0 Mapping for Attributes July 1996 14-7

14
The language mapping for attributes then becomes the language mapping for these
equivalent operations. More specifically, the function signatures generated for the
above operations are as follows.

typedef struct foo_position_t { /* C */
CORBA_float x, y;

} foo_position_t;

extern CORBA_float foo__get_radius(foo o, CORBA_Environment
*ev);
extern void foo__set_radius(

foo o,
CORBA_float r,
CORBA_Environment *ev

);
extern foo_position_t foo__get_position(foo o,
CORBA_Environment *ev);

Note that two underscore characters (__) separate the name of the interface from the
words “get” or “set” in the names of the functions.

If the “set” accessor function fails to set the attribute value, the method should return
one of the standard exceptions defined in Section 3.15, Standard Exceptions.

 14.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a literal of
that type is legal. In C, these constants are #defined.

The fact that constants are #defined may lead to ambiguities in code. All names
mandated by the mappings for any of the structured types below start with an
underscore.

 14.7 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 14-1. Implementations are
responsible for providing typedefs for CORBA_short, CORBA_long, and so forth,
consistent with OMG IDL requirements for the corresponding data types.

Table 14-1 Data Type Mappings

OMG IDL C

short CORBA_short

long CORBA_long

unsigned short CORBA_unsigned_short

unsigned long CORBA_unsigned_long

float CORBA_float

double CORBA_double

char CORBA_char
14-8 CORBA V2.0 July 1996

14
The C mapping of the OMG IDL boolean types is unsigned char with only the
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavior.
CORBA_boolean is provided for symmetry with the other basic data type mappings.

The C mapping of OMG IDL enum types is an unsigned integer type capable of
representing 232 enumerations. Each enumerator in an enum is #defined with an
appropriate unsigned integer value conforming to the ordering constraints described in
Section 3.8.2, Enumerations.

TypeCodes are described in Section 6.7, TypeCodes. The _value member for an any
is a pointer to the actual value of the datum.

The any type supports the notion of ownership of its _value member. By setting a
release flag in the any when a value is installed, programmers can control ownership
of the memory pointed to by _value. The location of this release flag is
implementation-dependent, so the following two ORB-supplied functions allow for the
setting and checking of the any release flag.

void CORBA_any_set_release(CORBA_any*, CORBA_boolean);/* C
*/
CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set_release can be used to set the state of the release flag. If the
flag is set to TRUE, the any effectively “owns” the storage pointed to by _value; if
FALSE, the programmer is responsible for the storage. If, for example, an any is
returned from an operation with its release flag set to FALSE, calling CORBA_free()
on the returned any* will not deallocate the memory pointed to by _value. Before
calling CORBA_free() on the _value member of an any directly, the programmer
should check the release flag using CORBA_any_get_release. If it returns FALSE,
the programmer should not invoke CORBA_free() on the _value member; doing
so produces undefined behavior. Also, passing a null pointer to either
CORBA_any_set_release or CORBA_any_get_release produces undefined
behavior.

If CORBA_any_set_release is never called for a given instance of any, the
default value of the release flag for that instance is FALSE.

boolean CORBA_boolean

octet CORBA_octet

enum CORBA_enum

any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }

 CORBA_any;

Table 14-1 Data Type Mappings (Continued)

OMG IDL C
CORBA V2.0 Mapping for Basic Data Types July 1996 14-9

14
 14.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any

• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object2

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is
deallocated in a single call.

The mapping of a variable-length type as an out parameter or operation return value
is a pointer to the associated class or array, as shown in Table 14-2.

For types whose parameter passing modes require heap allocation, an ORB
implementation will provide allocation functions. These types include variable-length
struct, variable-length union, sequence, any, string, and array of a variable-
length type. The return value of these allocation functions must be freed using
CORBA_free(). For one of these listed types T, the ORB implementation will
provide the following type-specific allocation function:

T *T__alloc(); /* C */

The functions are defined at global scope using the fully-scoped name of T converted
into a C language name (as described in Section 14.2, Scoped Names) followed by the
suffix __alloc (note the double underscore). For any and string, the allocation
functions are, respectively:

CORBA_any *CORBA_any_alloc();
char *CORBA_string_alloc();

 14.9 Mapping for Structure Types

OMG IDL structures map directly onto C structs. Note that all OMG IDL types that
map to C structs may potentially include padding.

2.Transmissible pseudo-objects are listed as “general arguments” in Table 14 on page
A-2.
14-10 CORBA V2.0 July 1996

14
 14.10 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C structs. Consider the following
OMG IDL declaration.

union Foo switch (long) {
case 1: long x;
case 2: float y;
default: char z;

};

This is equivalent to the following struct in C:

typedef struct { /* C */
CORBA_long _d;
union {
CORBA_long x;
CORBA_float y;
CORBA_char z;
} _u;

} Foo;

The discriminator in the struct is always referred to as _d; the union in the struct is
always referred to as _u.

Reference to union elements is as in normal C:

Foo *v; /* C */

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use a C union to hold the OMG IDL union
elements; a C struct may be used instead. In either case, the programmer accesses the
union elements via the _u member.

 14.11 Mapping for Sequence Types

The OMG IDL data type sequence permits passing of unbounded arrays between
objects. Consider the following OMG IDL declaration:

typedef sequence<long,10> vec10;
CORBA V2.0 Mapping for Union Types July 1996 14-11

14
In C, this is converted to:

typedef struct { /* C */
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} vec10;

An instance of this type is declared as follows:

vec10 x = {10L, 0L, (CORBA_long *)NULL); /* C */

Prior to passing &x as an in parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements, and must set the _length
member to the actual number of elements to transmit.

Prior to passing the address of a vec10* as an out parameter (or receiving a vec10*
as the function return), the programmer does nothing. The client stub will allocate
storage for the returned sequence; for bounded sequences, it also allocates a buffer of
the specified size, while for unbounded sequences, it also allocates a buffer big enough
to hold what was returned by the object. Upon successful return from the invocation,
the _maximum member will contain the size of the allocated array, the _buffer
member will point at allocated storage, and the _length member will contain the
number of values that were returned in the _buffer member. The client is
responsible for freeing the allocated sequence using CORBA_free().

Prior to passing &x as an inout parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements. The _length member
must be set to the actual number of elements to transmit. Upon successful return from
the invocation, the _length member will contain the number of values that were
copied into the buffer pointed to by the _buffer member. If more data must be
returned than the original buffer can hold, the callee can deallocate the original
_buffer member using CORBA_free() (honoring the release flag) and assign
_buffer to point to new storage.

For bounded sequences, it is an error to set the _length or _maximum member to a
value larger than the specified bound.

Sequence types support the notion of ownership of their _buffer members. By
setting a release flag in the sequence when a buffer is installed, programmers can
control ownership of the memory pointed to by _buffer. The location of this release
flag is implementation-dependent, so the following two ORB-supplied functions allow
for the setting and checking of the sequence release flag:

void CORBA_sequence_set_release(void*, CORBA_boolean);/* C
*/
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release can be used to set the state of the release flag. If
the flag is set to TRUE, the sequence effectively “owns” the storage pointed to by
_buffer; if FALSE, the programmer is responsible for the storage. If, for example, a
sequence is returned from an operation with its release flag set to FALSE, calling
14-12 CORBA V2.0 July 1996

14
CORBA_free() on the returned sequence pointer will not deallocate the memory
pointed to by _buffer. Before calling CORBA_free() on the _buffer member of
a sequence directly, the programmer should check the release flag using
CORBA_sequence_get_release. If it returns FALSE, the programmer should not
invoke CORBA_free() on the _buffer member; doing so produces undefined
behavior. Also, passing a null pointer or a pointer to something other than a sequence
type to either CORBA_sequence_set_release or
CORBA_sequence_get_release produces undefined behavior.

CORBA_sequence_set_release should only be used by the creator of a
sequence. If it is not called for a given sequence instance, then the default value of the
release flag for that instance is FALSE.

Two sequence types are the same type if their sequence element type and size arguments
are identical. For example,

const long SIZE = 25;
typedef long seqtype;

typedef sequence<long, SIZE> s1;
typedef sequence<long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1, s2, s3, and s4 to be of the same type.

The OMG IDL type

sequence<type,size>

maps to

#ifndef _CORBA_sequence_type_defined /* C */
#define _CORBA_sequence_type_defined
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;

} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

The ifdefs are needed to prevent duplicate definition where the same type is used
more than once. The type name used in the C mapping is the type name of the effective
type, e.g. in

typedef CORBA_long FRED; /* C */
typedef sequence<FRED,10> FredSeq;
CORBA V2.0 Mapping for Sequence Types July 1996 14-13

14
the sequence is mapped onto

struct { ... } CORBA_sequence_long;

If the type in sequence<type,size> consists of more than one identifier (e.g.
unsigned long), then the generated type name consists of the string
CORBA_sequence_ concatenated to the string consisting of the concatenation of
each identifier separated by underscores (e.g. unsigned_long).

If the type is a string, the string “string” is used to generate the type name. If the
type is a sequence, the string “sequence” is used to generate the type name,
recursively. For example

sequence<sequence<long> >

generates a type of

CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence type.

In addition to providing a type-specific allocation function for each sequence, an ORB
implementation must provide a buffer allocation function for each sequence type.
These functions allocate vectors of type T for sequence<T>. They are defined at
global scope and are named similarly to sequences:

T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);/* C
*/

Here, T refers to the type name. For the type

sequence<sequence<long> >

for example, the sequence buffer allocation function is named

T *CORBA_sequence_sequence_long_allocbuf(CORBA_unsigned_long
len);

Buffers allocated using these allocation functions are freed using CORBA_free().

 14.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of
the string is encoded in the character array itself through the placement of the 0-byte.
Note that the storage for C strings is one byte longer than the stated OMG IDL bound.
Consider the following OMG IDL declarations:

typedef string<10> sten;
typedef string sinf;
14-14 CORBA V2.0 July 1996

14
In C, this is converted to:

typedef CORBA_char *sten; /* C */
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

sten s1 = NULL; /* C */
sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For example,

const long SIZE = 25; /* C */

typedef string<SIZE> sx;
typedef string<25> sy;

declares sx and sy to be of the same type.

Prior to passing s1 or s2 as an in parameter, the programmer must assign the address
of a character buffer containing a 0-byte terminated string to the variable. The caller
cannot pass a null pointer as the string argument.

Prior to passing &s1 or &s2 as an out parameter (or receiving an sten or sinf as
the return result), the programmer does nothing. The client stub will allocate storage
for the returned buffer; for bounded strings, it allocates a buffer of the specified size,
while for unbounded strings, it allocates a buffer big enough to hold the returned
string. Upon successful return from the invocation, the character pointer will contain
the address of the allocated buffer. The client is responsible for freeing the allocated
storage using CORBA_free().

Prior to passing &s1 or &s2 as an inout parameter, the programmer must assign the
address of a character buffer containing a 0-byte terminated array to the variable. If the
returned string is larger than the original buffer, the client stub will call
CORBA_free() on the original string and allocate a new buffer for the new string.
The client should therefore never pass an inout string parameter that was not
allocated using CORBA_string_alloc. The client is responsible for freeing the
allocated storage using CORBA_free(), regardless of whether or not a reallocation
was necessary.

Strings are dynamically allocated using the following ORB-supplied function:

char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocates len+1 bytes, enough to hold the string and its terminating
NULL character.

Strings allocated in this manner are freed using CORBA_free().
CORBA V2.0 Mapping for Strings July 1996 14-15

14
 14.13 Mapping for Arrays

OMG IDL arrays map directly to C arrays. All array indices run from zero to
<size-1>.

For each named array type in OMG IDL, the mapping provides a C typedef for pointer
to the array’s slice. A slice of an array is another array with all the dimensions of the
original except the first. For example, given the following OMG IDL definition:

typedef long LongArray[4][5];

The C mapping provides the following definitions:

typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending _slice to the
original array name.

If the return result, or an out parameter for an array holding a variable-length type of
an operation is an array, the array storage is dynamically allocated by the stub; a
pointer to the array slice of the dynamically allocated array is returned as the value of
the client stub function. When the data is no longer needed, it is the programmer’s
responsibility to return the dynamically allocated storage by calling CORBA_free().

For an array, T of a variable-length type is dynamically allocated using the following
ORB-supplied function:

T_slice *T__alloc(); /* C */

This function is identical to the allocation functions described in Section 14.8,
Mapping Considerations for Constructed Types, except that the return type is pointer to
array slice, not pointer to array.

 14.14 Mapping for Exception Types

Each defined exception type is defined as a struct tag and a typedef with the C global
name for the exception. An identifier for the exception, in string literal form, is also
#defined, as is a type-specific allocation function. For example:

exception foo {
long dummy;

};

yields the following C declarations:
14-16 CORBA V2.0 July 1996

14
typedef struct foo { /* C */
CORBA_long dummy;
/* ...may contain additional
 * implementation-specific members...
 */

} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example, it
could be the Interface Repository identifier for the exception (see Section 6.5.19,
ExceptionDef).

The allocation function dynamically allocates an instance of the exception and returns
a pointer to it. Each exception type has its own dynamic allocation function.
Exceptions allocated using a dynamic allocation function are freed using
CORBA_free().

 14.15 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interface
have additional leading parameters preceding the operation-specific parameters:

• The first parameter to each operation is a CORBA_Object input parameter; this
parameter designates the object to process the request.

• The last parameter to each operation is a (CORBA_Environment *) output
parameter; this parameter permits the return of exception information.

• If an operation in an OMG IDL specification has a context specification, then a
CORBA_Context input parameter precedes the (CORBA_Environment *)
parameter and follows any operation-specific arguments.

As described above, the CORBA_Object type is an opaque type. The
CORBA_Environment type is partially opaque; Section 14.20, Handling Exceptions,
provides a description of the nonopaque portion of the exception structure and an
example of how to handle exceptions in client code. The CORBA_Context type is
opaque; see Chapter 4, Dynamic Invocation Interface, for more information on how to
create and manipulate context objects.

 14.16 Interpretation of Functions with Empty Argument Lists

A function declared with an empty argument list is defined to take no operation-
specific arguments.
CORBA V2.0 Implicit Arguments to Operations July 1996 14-17

14
 14.17 Argument Passing Considerations

For all OMG IDL types (except arrays), if the OMG IDL signature specifies that an
argument is an out or inout parameter, then the caller must always pass the address
of a variable of that type (or the value of a pointer to that type); the callee must
dereference the parameter to get to the type. For arrays, the caller must pass the
address of the first element of the array.

For in parameters, the value of the parameter must be passed for all of the basic types,
enumeration types, and object references. For all arrays, the address of the first
element of the array must be passed. For all other structured types, the address of a
variable of that type must be passed, regardless of whether they are fixed- or variable-
length. For strings, a char* must be passed.

For inout parameters, the address of a variable of the correct type must be passed for
all of the basic types, enumeration types, object references, and structured types. For
strings, the address of a char* must be passed. For all arrays, the address of the first
element of the array must be passed.

Consider the following OMG IDL specification:

interface foo {
typedef long Vector[25];

void bar(out Vector x, out long y);
};

Client code for invoking the bar operation would look like:

foo object; /* C */
foo_Vector_slice x;
CORBA_long y;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out parameters of type variable-length struct, variable-length union,
string, sequence, an array holding a variable-length type, or any, the ORB will
allocate storage for the output value using the appropriate type-specific allocation
function. The client may use and retain that storage indefinitely, and must indicate
when the value is no longer needed by calling the procedure CORBA_free, whose
signature is:

extern void CORBA_free (void *storage); /* C */

The parameter to CORBA_free() is the pointer used to return the out parameter.
CORBA_free() releases the ORB-allocated storage occupied by the out parameter,
including storage indirectly referenced, such as in the case of a sequence of strings or
array of object reference. If a client does not call CORBA_free() before reusing the
14-18 CORBA V2.0 July 1996

14
pointers that reference the out parameters, that storage might be wasted. Passing a
null pointer to CORBA_free() is allowed; CORBA_free() simply ignores it and
returns without error.

 14.18 Return Result Passing Considerations

When an operation is defined to return a nonvoid return result, the following rules
hold:

• If the return result is one of the types float, double, long, short, unsigned
long, unsigned short, char, boolean, octet, Object, or an
enumeration, then the value is returned as the operation result.

• If the return result is one of the fixed-length types struct or union, then the
value of the C struct representing that type is returned as the operation result. If the
return result is one of the variable-length types struct, union, sequence, or
any, then a pointer to a C struct representing that type is returned as the operation
result.

• If the return result is of type string, then a pointer to the first character of the
string is returned as the operation result.

• If the return result is of type array, then a pointer to the slice of the array is
returned as the operation result.

Consider the following interface:

interface X {
struct y {

long a;
float b;

};

long op1();
y op2();

}

The following C declarations ensue from processing the specification:

typedef CORBA_Object X; /* C */
typedef struct X_y {

CORBA_long a;
CORBA_float b;

} X_y;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-length struct, variable-length union,
string, sequence, array, or any, the ORB will allocate storage for the return
value using the appropriate type-specific allocation function. The client may use and
CORBA V2.0 Return Result Passing Considerations July 1996 14-19

14
retain that storage indefinitely, and must indicate when the value is no longer needed
by calling the procedure CORBA_free() described in Section 14.17, Argument
Passing Considerations.

 14.19 Summary of Argument/Result Passing

Table 14-2 summarizes what a client passes as an argument to a stub and receives as a
result. For brevity, the CORBA_ prefix is omitted from type names in the tables.

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

Table 14-2 Basic Argument and Result Passing

Data Type In Inout Out Return

short short short* short* short

long long long* long* long

unsigned short unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned long unsigned_long unsigned_long* unsigned_long* unsigned_long

float float float* float* float

double double double* double* double

boolean boolean boolean* boolean* boolean

char char char* char* char

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr1 objref_ptr objref_ptr* objref_ptr* objref_ptr

struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

sequence sequence* sequence* sequence** sequence*

array, fixed array array array array slice*2

array, variable array array array slice**2 array slice*2

any any* any* any** any*
14-20 CORBA V2.0 July 1996

14
A client is responsible for providing storage for all arguments passed as in arguments.

Table 14-3 Client Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 14-4 Argument Passing Cases

Case1

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call
CORBA_Object_release on the original input value. To continue to use an object reference
passed in as an inout, the caller must first duplicate the reference. The client is responsible for
the release of all out and return object references. Release of all object references embedded in
other out and return structures is performed automatically as a result of calling CORBA_free.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned instance into a new instance, then modify the new instance.
CORBA V2.0 Summary of Argument/Result Passing July 1996 14-21

14
 14.20 Handling Exceptions

The CORBA_Environment type is partially opaque; the C declaration contains at
least the following:

typedef struct CORBA_Environment { /* C */
CORBA_exception_type _major;
...

} CORBA_Environment;

Upon return from an invocation, the _major field indicates whether the invocation
terminated successfully; _major can have one of the values
CORBA_NO_EXCEPTION, CORBA_USER_EXCEPTION, or
CORBA_SYSTEM_EXCEPTION; if the value is one of the latter two, then any
exception parameters signaled by the object can be accessed.

Three functions are defined on an CORBA_Environment structure for accessing
exception information; their signatures are:

extern CORBA_char *CORBA_exception_id(CORBA_Environment
ev); / C */
extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);

CORBA_exception_id() returns a pointer to the character string identifying the
exception. If invoked on an CORBA_Environment which identifies a nonexception
(_major==CORBA_NO_EXCEPTION), a NULL is returned.

1. As listed in Table 21.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to
it. The callee may deallocate the input string and reassign the char* to point to new storage to
hold the output value. The size of the out string is therefore not limited by the size of the in
string. The caller is responsible for freeing the storage for the out. The callee is not allowed to
return a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
boolean release in the sequence or any.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned array instance into a new array instance, then modify the new
instance.

Table 14-4 Argument Passing Cases (Continued)

Case1
14-22 CORBA V2.0 July 1996

14
CORBA_exception_value() returns a pointer to the structure corresponding to
this exception. If invoked on an CORBA_Environment which identifies a
nonexception or an exception for which there is no associated information, a NULL is
returned.

CORBA_exception_free() returns any storage which was allocated in the
construction of the CORBA_Environment. It is permissible to invoke
CORBA_exception_free() regardless of the value of the _major field.

Consider the following example:

interface exampleX {
exception BadCall {
string<80> reason;
};

void op() raises(BadCall);
};

This interface defines a single operation, which returns no results and can raise a
BadCall exception. The following user code shows how to invoke the operation and
recover from an exception.
CORBA V2.0 Handling Exceptions July 1996 14-23

14
#include "exampleX.h" /* C */

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
*some code to initialize obj to a reference to an object
*supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/

/* process out and inout arguments */
break;

case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exampleX_BadCall,CORBA_exception_id(&ev))

== 0) {
bc = (exampleX_BadCall *)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",

bc->reason);
}
else { /* should never get here ... */

fprintf(stderr,
"unknown user-defined exception -%s\n",
CORBA_exception_id(&ev));

}
break;

default:/* standard exception */
/*

 * CORBA_exception_id() can be used to determine
 * which particular standard exception was
 * raised; the minor member of the struct

 * associated with the exception (as yielded by
 * CORBA_exception_value()) may provide additional

 * system-specific information about the exception
 */

break;
}
/* free any storage associated with exception */
CORBA_exception_free(&ev);

 14.21 Method Routine Signatures

The signatures of the methods used to implement an object depend not only on the
language binding, but also on the choice of object adapter. Different object adapters
may provide additional parameters to access object adapter-specific features.
14-24 CORBA V2.0 July 1996

14
Most object adapters are likely to provide method signatures similar in most respects to
those of the client stubs. In particular, the mapping for the operation parameters
expressed in OMG IDL should be the same as for the client side.

See Section 14.25, BOA: Mapping for Object Implementations, for the description of
method signatures for implementations using the Basic Object Adapter.

 14.22 Include Files

Multiple interfaces may be defined in a single source file. By convention, each
interface is stored in a separate source file. All OMG IDL compilers will, by default,
generate a header file named Foo.h from Foo.idl. This file should be
#included by clients and implementations of the interfaces defined in Foo.idl.

Inclusion of Foo.h is sufficient to define all global names associated with the
interfaces in Foo.idl and any interfaces from which they are derived.

 14.23 Pseudo-Objects

In the C language mapping, there are several interfaces defined as pseudo-objects;
Table 14 on page A-2 lists the pseudo-objects. A client makes calls on a pseudo-object
in the same way as an ordinary ORB object. However, the ORB may implement the
pseudo-object directly, and there are restrictions on what a client may do with a
pseudo-object.

The ORB itself is a pseudo-object with the following partial definition (see Chapter 7,
ORB Interface, for the complete definition):

interface ORB {
string object_to_string (in Object obj);
Object string_to_object (in string str);

};

This means that a C programmer may convert an object reference into its string form
by calling:

CORBA_Environment ev; /* C */
CORBA_char *str = CORBA_ORB_object_to_string(orbobj, &ev,
obj);

just as if the ORB were an ordinary object. The C library contains the routine
CORBA_ORB_object_to_string, and it does not do a real invocation. The
orbobj is an object reference that specifies which ORB is of interest, since it is
possible to choose which ORB should be used to convert an object reference to a string
(see Chapter 7, ORB Interface, for details on this specific operation).
CORBA V2.0 Include Files July 1996 14-25

14
Although operations on pseudo-objects are invoked in the usual way defined by the C
language mapping, there are restrictions on them. In general, a pseudo-object cannot be
specified as a parameter to an operation on an ordinary object. Pseudo-objects are also
not accessible using the dynamic invocation interface, and do not have definitions in
the interface repository.

Operations on pseudo-objects may take parameters that are not permitted in operations on
ordinary objects. For example, the set_exception operation on the Basic Object
Adapter pseudo-object takes a C (void *) to specify the exception parameters (see Sec-
tion 14.25.2, Method Signatures, for details). Generally, these parameters will be lan-
guage-mapping specific.

Because the programmer uses pseudo-objects in the same way as ordinary objects, some
ORB implementations may choose to implement some pseudo-objects as ordinary objects.
For example, assuming it could be efficient enough, a context object might be imple-
mented as an ordinary object.

 14.24 Mapping of the Dynamic Skeleton Interface to C

For general information about mapping of the Dyanmic Skeleton Interface to
programming languages, refer to Section 5.3, Dynamic Skeleton Interface: Language
Mapping.

This section contains:

• A mapping of the Dynamic Skelton Interface’s ServerRequest to C

• A mapping of the Basic Object Adapter’s Dynamic Implementation Routine to C

14.24.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo-object in the CORBA module that
supports the following operations:

CORBA_Identifier CORBA_ServerRequest_op_name (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

CORBA_ContextCORBA_ServerRequest_ctx (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s OMG
IDL definition; for example, attribute operations have none.
14-26 CORBA V2.0 July 1996

14
voidCORBA_ServerRequest_params (
CORBA_ServerRequest req,
CORBA_NVList parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters from the ServerRequest, and to find the
addresses used to pass pointers to result values to the ORB. It must always be called by
each DIR, even when there are no parameters.

The caller passes ownership of the parameters NVList to the ORB. Before this
routine is called, that NVList should be initialized with the TypeCodes for each of the
parameters to the operation being implemented: in, out, and inout parameters inclusive.
When the call returns, the parameters NVList is still usable by the DIR, and all in
and inout parameters will have been unmarshaled. Pointers to those parameter values
will at that point also be accessible through the parameters NVList.

The implementation routine will then process the call, producing any result values. If
the DIR does not need to report an exception, it will replace pointers to inout values in
parameters with the values to be returned, and assign pointers to out values in that
NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate, and the NVList itself is freed by the ORB.

void CORBA_ServerRequest_result (
CORBA_ServerRequest req,
CORBA_Any value,
CORBA_Environment *env

);

This function is used to report any result value for an operation; if the operation has
no result, it must not be called. It also must not be called before the parameters have
been retrieved, or if an exception is being reported.

void CORBA_ServerRequest_exception (
CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_Any value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client who
made the original invocation. The parameters are as follows:

• major indicates whether the exception is a user exception or system exception.

• value is the value of the exception, including an exceptionTypeCode.
CORBA V2.0 Mapping of the Dynamic Skeleton Interface to C July 1996 14-27

14
14.24.2 Mapping of BOA’s Dynamic Implementation Routine to C

In C, a DIR is a function with the following signature.

typedef void (*DynamicImplementationRoutine) (/* C */
CORBA_Object target,
CORBA_ServerRequest request,
CORBA_Environment *env

);

Such a function will be invoked by the BOA when an invocation is received on an
object reference whose implementation has registered a dynamic skeleton.

• target is the name object reference to which the invocation is directed.

• request is the ServerRequest used to access explicit parameters and report results
(and exceptions).

• env may be passed to CORBA_BOA_get_principal if desired.

Unlike other BOA object implementations, the CORBA_BOA_set_exception API
is not used. Instead, CORBA_ServerRequest_exception is used; this provides
the TypeCode for the exception to the ORB, so it does not need to consult the Interface
Repository (or rely on compiled stubs) to marshal the exception value.

 14.25 BOA: Mapping for Object Implementations

This section describes the details of the OMG IDL-to-C language mapping that apply
specifically to the Basic Object Adapter, such as how the implementation methods are
connected to the skeleton.

14.25.1 Operation-specific Details

This chapter defines most of the details of naming of parameter types and parameter
passing conventions. Generally, for those parameters that are operation-specific, the
method implementing the operation appears to receive the same values that would be
passed to the stubs.

14.25.2 Method Signatures

With the BOA, implementation methods have signatures that are identical to the stubs.
If the following interface is defined in OMG IDL:

interface example4 { // IDL
long op5(in long arg6);

};
14-28 CORBA V2.0 July 1996

14
a method for the op5 routine must have the following function signature:

CORBA_long example4_op5(/* C */
example4 object,
CORBA_Environment *ev,
CORBA_long arg6

);

The object parameter is the object reference that was invoked. The method can
identify which object was intended by using the get_id BOA operation. The ev
parameter is used for authentication on the get_principal BOA operation, and is
used for indicating exceptions.

The method terminates successfully by executing a return statement returning the
declared operation value. Prior to returning the result of a successful invocation, the
method code must assign legal values to all out and inout parameters.

The method terminates with an error by executing the set_exception BOA
operation prior to executing a return statement. The set_exception operation
has the following C language definition:

void CORBA_BOA_set_exception (/* C */
CORBA_Object boa,
CORBA_Environment *ev,
CORBA_exception_type major,
CORBA_char *exceptname,
void *param

);

The ev parameter is the environment parameter passed into the method. The caller
must supply a value for the major parameter. The value of the major parameter
constrains the other parameters in the call as follows:

• If the major parameter has the value NO_EXCEPTION, then it specifies that this
is a normal outcome to the operation. In this case, both exceptname and param
must be NULL. Note that it is not necessary to invoke set_exception() to
indicate a normal outcome; it is the default behavior if the method simply returns.

• For any other value of major it specifies either a user-defined or standard
exception. The exceptname parameter is a string representing the exception type
identifier. If the exception is declared to take parameters, the param parameter
must be the address of a struct containing the parameters according to the C
language mapping, coerced to a void *; if the exception takes no parameters,
param must be NULL.

When raising an exception, the method code is not required to assign legal values to
any out or inout parameters. Due to restrictions in C, it must return a legal function
value.
CORBA V2.0 BOA: Mapping for Object Implementations July 1996 14-29

14
14.25.3 Binding Methods to Skeletons

It is not specified as part of the language mapping how the skeletons are connected to
the methods. Different means will be used in different environments. For example, the
skeletons may make references to the methods that are resolved by the linker or there
may be a system-dependent call done at program startup to specify the location of the
methods.

14.25.4 BOA and ORB Operations

The operations on the BOA defined earlier in this chapter and the operations on the
ORB defined in the ORB Interface chapter are used as if they had the OMG IDL
definitions described in the document, and then mapped in the usual way with the C
language mapping.

For example, the string_to_object ORB operation has the following signature:

CORBA_Object CORBA_ORB_string_to_object (/* C */
CORBA_Object orb,
CORBA_Environment *ev,
CORBA_char *objectstring

);

The create BOA operation has the following signature:

CORBA_Object CORBA_BOA_create (/* C */
CORBA_Object boa,
CORBA_Environment *ev,
CORBA_ReferenceData *id,
CORBA_InterfaceDef intf,
CORBA_ImplementationDef impl

);

Although in each example we are using an “object” that is special (an ORB, an object
adapter, or an object reference), the method name is generated as
interface_operation in the same way as ordinary objects. Also, the signature
contains a CORBA_Environment parameter for error indications.

In the first two cases, the signature calls for an object reference to represent the
particular ORB or object adapter being manipulated. Programs may obtain these
objects in a variety of ways, for example, in a global variable before program startup if
there is only one ORB or BOA that makes sense, or by obtaining them from a name
service if more than one is available. In the third case, the object reference being
operated on is specified as the first parameter.

Following the same procedure, the C language binding for the remainder of the ORB,
BOA, and object reference operations may be determined.
14-30 CORBA V2.0 July 1996

14
 14.26 ORB and OA/BOA Initialization Operations

14.26.1 ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in Section 7.4, ORB
Initialization.

// PIDL
module CORBA {

 typedef string ORBid;
 typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBid
orb_identifier);

};

The mapping of the preceding PIDL operations to C is as follows:

/* C language mapping */
typedef CORBA_string CORBA_ORBid;
extern CORBA_ORB CORBA_ORB_init (int *argc,

char **argv,
CORBA_ORBid orb_identifier,
CORBA_Environment *env);

The C mapping for ORB_init deviates from the PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, which has a natural C (and C++) binding. To this end, the
arg_list structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the int* parameter.

If a NULL ORBid is used, then argv arguments can be used to determine which ORB
should be returned. This is achieved by searching the argv parameters for one tagged
ORBid, e.g. -ORBid “ORBid_example.”

For C, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters, they do not recognize that the ORB initialization function must be called
before the remainder of the parameters are consumed. Therefore, after the ORB_init
call, the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reorder
or remove references to parameters from the argv list, this restriction is made in order
to avoid potential memory management problems caused by trying to free parts of the
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char***.
CORBA V2.0 ORB and OA/BOA Initialization Operations July 1996 14-31

14
14.26.2 OA/BOA Initialization

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo object references; it is described in detail in Section 7.5, OA
and BOA Initialization.

// PIDL

module CORBA {

interface ORB
{

typedef sequence <string> arg_list;
typedef string OAid;

 // Template for OA initialization operations
// <OA> <OA>_init (inout arg_list argv,
// in OAid oa_identifier);

BOA BOA_init (inout arg_list argv,
 in OAid boa_identifier);

 };

 }

The mapping of the OAinit (BOA_init) operation (in the ORB interface) to the C
programming language is as follows.
14-32 CORBA V2.0 July 1996

14
/* C language mapping */

typedef CORBA_string CORBA_OAid;

/* Template C binding for <OA>_init */
/*
CORBA_<OA> CORBA_ORB_<OA>_init (CORBA_ORB orb,
 int *argc,
 char **argv,
 CORBA_ORB_OAid boa_identifier,
 CORBA_Environment *env);
 */

CORBA_BOA CORBA_ORB_BOA_init (CORBA_ORB orb,
int *argc,
char **argv,
CORBA_ORB_OAid boa_identifier,
CORBA_Environment *env);

The arglist structure from the PIDL definition is replaced in the C mapping with
argv and argc parameters. The argv parameters is an unbound array of strings
(char**) and the number of strings in the array is passed in the argc (int*).

If a NULL OAid is used, then argv arguments can be used to determine which OA
should be returned. This is achieved by searching the argv parameters for one tagged
OAid, e.g. -OAid “OAid_example.”

For C, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters, they do not recognize the OA initialization function must be called before
the remainder of the parameters are consumed by the application. Therefore, after the
<OA>_init call, the argv and argc parameters will have been modified to remove
the OA understood arguments. It is important to note that the OA_init call can only
reorder or remove references to parameters from the argv list; this restriction is made
in order to avoid potential memory management problems caused by trying to free
parts of the argv list or extending the argv list of parameters. This is why argv is
passed as a char** and not a char***.

 14.27 Operations for Obtaining Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo-object references for the Interface Repository and Object
Services. It is described in detail in Section 7.6, Obtaining Initial Object References.
CORBA V2.0 Operations for Obtaining Initial Object References July 1996 14-33

14
// PIDL interface for getting initial object references

module CORBA {
interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId identifier)
raises (InvalidName);
 }

}

The mapping of the preceding PIDL to C is as follows.

/* C Mapping */
typedef CORBA_string CORBA_ORB_ObjectId;
typedef CORBA_sequence_CORBA_ORB_ObjectId

CORBA_ORB_ObjectIdList;
typedef struct CORBA_ORB_InvalidName CORBA_ORB_InvalidName;

CORBA_ORB_ObjectIdList CORBA_ORB_list_initial_services (

CORBA_ORB orb,
CORBA_Environment *env);

CORBA_Object CORBA_ORB_resolve_initial_references (
CORBA_ORB orb,
CORBA_ORB_ObjectId identifier,
CORBA_Environment *env);
14-34 CORBA V2.0 July 1996

C++ Mapping Overview 15
This chapter explains how the C++ mapping was designed, and how it is organized in
this manual.

15.1 Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including a
design that achieves reasonable performance, portability, efficiency, and usability for
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

For more information about the general requirements of a mapping from OMG IDL to
any programming language, refer to Section 14.1, Requirements for a Language
Mapping.

15.1.1 Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming client
or server program is therefore portable across all conforming implementations. For
more information about CORBA compliance, refer to Section 0.6, Definition of
CORBA Compliance.

15.1.2 C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports all the
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
 CORBA V2.0 July 1996 15-1

15
exception handling. In addition, it assumes that the C++ environment supports the
namespace construct recently adopted into the language. Because C++
implementations vary widely in the quality of their support for templates, this mapping
does not explicitly require their use, nor does it disallow their use as part of a CORBA-
compliant implementation.

15.1.3 C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work directly
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such
compatibility. In addition to providing better interoperability and portability, the C++
call style solves the memory management problems seen by C programmers who use
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL.
However, to provide continuity for earlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both call
styles, it is recommended that the C call style be phased out.

Note that the mapping in Chapter 14, C Language Mapping, has been modified from
CORBA V1.2 to achieve compatibility between the C and C++ mappings.

15.1.4 No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

15.2 Organization of the C++ Mapping

In addition to this overview, the mapping of OMG IDL to the C++ programming
language is divided into the following chapters:

• Mapping of all OMG IDL constructs (as defined in Chapter 3, OMG IDL Syntax
and Semantics) to C++ constructs

• Mapping of OMG IDL pseudo-objects to C++

• Server-side mapping, which refers to the portability constraints for an object
implementation written in C++

Three appendices are also included at the end of the C++ chapters. One appendix
contains C++ definitions for the CORBA module; another contains C++ keywords for
the CORBA module; and another contains workarounds for C++ dialects that do not
match the assumptions specified in Section 15.1.2, C++ Implementation Requirements.
15-2 CORBA V2.0 July 1996

Mapping of OMG IDL to C++ 16
This chapter explains how OMG IDL constructs are mapped to the constructs of the
C++ programming language. It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, structure, struct, union, sequence, array, typedefs, any, exception)

• Operations and attributes

• Arguments

16.1 Preliminary Information

16.1.1 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ name spaces.

• OMG IDL interfaces are mapped to C++ classes (as described in Section 16.3,
Mapping for Interfaces).

• All OMG IDL constructs scoped to an interface are accessed via C++ scoped
names. For example, if a type mode were defined in interface printer, then the
type would be referred to as printer::mode.

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be
used to build scoped names. For instance:
 CORBA V2.0 July 1996 16-1

16
// IDL
module M
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

and E can be referred outside of M as M::E. Alternatively, a C++ using statement
for name space M can be used so that E can be referred to simply as E:

// C++
using namespace M;
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E:

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ key word as an
identifier is mapped into the same name preceded by an underscore. The list of C++
key words from the 05/27/94 working draft of the ANSI/ISO C++ standardization
committees (X3J16, WG21) can be found in Appendix C, C++ Definitions for
CORBA.

16.1.2 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the sizeof(T) for
anything except basic types (see Section 16.5, Mapping for Basic Data Types) and
string (see Section 16.7, Mapping for String Types).
16-2 CORBA V2.0 July 1996

16
16.1.3 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logically
defined in a module named CORBA. The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names
or C++ using statements for the CORBA name space would be required in the
application source. See Appendix A, Standard OMG IDL Types.

16.2 Mapping for Modules

A shown in Section 16.1.1, Scoped Names, a module defines a scope, and as such is
mapped to a C++ namespace with the same name:

// IDL
module M
{

// definitions
};

// C++
namespace M
{

// definitions
}

Because name spaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ name spaces are in Appendix D, Alternative Mappings for C++
Dialects.

16.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA-C++-compliant program cannot

• Create or hold an instance of an interface class.

• Use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a name space that one cannot enter via a using statement. This example
shows the behavior of the mapping of an interface.
CORBA V2.0 Mapping for Modules July 1996 16-3

16
// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);

16.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because of the
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are named A_var and A_ptr. For historical reasons, the type ARef is
defined as a synonym for A_ptr, but usage of the Ref names is deprecated. These
types need not be distinct—A_var may be identical to A_ptr, for example—so a
compliant program cannot overload operations using these types solely.

An operation can be performed on an object by using an arrow (“->”) on a reference
to the object. For example, if an interface defines an operation op with no parameters
and obj is a reference to the interface type, then a call would be written obj->op().
The arrow operator is used to invoke operations on both the _ptr and _var object
reference types.

Client code frequently will use the object reference variable type (A_var) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer type (A_ptr) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_ptr as A*, but is not required to. Unlike C++
pointers, however, conversion to void*, arithmetic operations, and relational
operations, including test for equality, are all noncompliant. A compliant
implementation need not detect these incorrect uses because requiring detection is not
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because of
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the following code will result in the object reference held by p
to be released at the end of the block containing the declaration of a.
16-4 CORBA V2.0 July 1996

16
// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

16.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes
are related, though that is certainly one possible implementation. However, if interface
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

• B_ptr to A_ptr

• B_ptr to Object_ptr

• B_var to A_ptr

• B_var to Object_ptr

Implicit widening from a B_var to A_var or Object_var need not be supported;
instead, widening between _var types for object references requires a call to
_duplicate (described in Section 16.3.3, Object Reference Operations).1 An
attempt to implicitly widen from one _var type to another must cause a compile-time
error.2 Assignment between two _var objects of the same type is supported, but
widening assignments are not and must cause a compile-time error. Widening
assignments may be done using _duplicate.

// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains

ownership // of bp

obp = bv; // implicit widening, bv retains
ownership // of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av and bv both refer to bp

1.When T_ptr is mapped to T*, it is impossible in C++ to provide implicit widening between
T_var types while also providing the necessary duplication semantics for T_ptr types.

2.This can be achieved by deriving all T_var types for object references from a base _var class,
then making the assignment operator for _var private within each T_var type.
CORBA V2.0 Mapping for Interfaces July 1996 16-5

16
B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

16.3.3 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for all
CORBA objects. Any object reference can therefore be widened to the type
Object_ptr. As with other interfaces, the CORBA name space also defines the type
Object_var.

CORBA defines three operations on any object reference: duplicate, release,
and is_nil. Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require object references to be C++
objects themselves, the “->” syntax cannot be employed to express the usage of these
operations. Also, for convenience these operations are allowed to be performed on a nil
object reference.

The release and is_nil operations depend only on type Object, so they can be
expressed as regular functions within the CORBA name space as follows:

// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the reference so
that associated resources may be deallocated. If the given object reference is nil,
release does nothing. The is_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neither the
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static member
function name _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{
 public:

static A_ptr _duplicate(A_ptr obj);
};

If the given object reference is nil, _duplicate will return a nil object reference.
The _duplicate operation can throw CORBA system exceptions.
16-6 CORBA V2.0 July 1996

16
16.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _narrow that
returns a new object reference given an existing reference. Like _duplicate, the
_narrow function returns a nil object reference if the given reference is nil. Unlike
_duplicate, the parameter to _narrow is a reference of an object of any interface
type (Object_ptr). If the actual (run-time) type of the parameter object can be
widened to the requested interface’s type, then _narrow will return a valid object
reference. Otherwise, _narrow will return a nil object reference. For example,
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to an
A_ptr variable called ap, the

• A::_narrow(ap) returns a valid object reference;

• B::_narrow(ap) returns a valid object reference;

• C::_narrow(ap) returns a valid object reference;

• D::_narrow(ap) returns a nil object reference.

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
The D::_narrow returns a nil object reference because the object does not support
the D interface.

If successful, the _narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

For example, suppose A, B, C, and D are interface types. C inherits from B, and both
B and D inherit from A. Now suppose that an object of type C is passed to a function
as an A. If the function calls B::_narrow or C::_narrow, a new object reference
will be returned. A call to D::_narrow will fail and return nil.

The _narrow operation can throw CORBA system exceptions.

16.3.5 Nil Object Reference

The mapping for an interface defines a static member function named _nil that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from
the _nil function.

As described in Section 16.3.1, Object Reference Types, object references may not be
compared using operator==, so is_nil is the only compliant way an object
reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.
CORBA V2.0 Mapping for Interfaces July 1996 16-7

16
A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

16.3.6 Interface Mapping Example

The following example shows one possible mapping for an interface. Other mappings
are also possible, but they must provide the same semantics and usage as this example.

// IDL
interface A
{

A op(in A param);
};

// C++
class A;
typedef A *A_ptr;
typedef A_ptr ARef;
class A : public virtual Object
{
 public:

static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr param) = 0;

 protected:
A();
virtual ~A();

 private:
A(const A&);
void operator=(const A&);

};

class A_var : public _var
{
 public:

A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a))) {}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
16-8 CORBA V2.0 July 1996

16
A_ptr operator->() const { return ptr_; }

 protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

 private:
// hidden assignment operators for var types to
// fulfill the rules specified in Section 16.3.2
void operator=(const A_var &);
void operator=(const _var &);

};

16.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following example,
a top-level OMG IDL constant maps to a file-scope C++ constant whereas a nested
constant maps to a class-scope C++ constant. This inconsistency occurs because C++
file-scope constants may not require storage (or the storage may be replicated in each
compilation unit), while class-scope constants always take storage. As a side effect,
this difference means that the generated C++ header file might not contain values for
constants defined in the OMG IDL file.

// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};

// C++
static const char *const name = "testing";

class A
{
 public:

static const Float pi;
};

In certain situations, use of a constant in OMG IDL must generate the constant’s value
instead of the constant’s name.3 For example,

3.A recent change made to the C++ language by the ANSI/ISO C++ standardization committees
allows static integer constants to be initialized within the class declaration, so for some C++ com-
pilers, the code generation issues described here may not be a problem.
CORBA V2.0 Mapping for Constants July 1996 16-9

16
// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{
 public:

static const long n;
typedef long V[10];

};

16.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 16-1. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behavior.

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and long, may have different representations on
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits, the
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for the
sizes of basic types are shown in Section 3.8.1, Basic Types.

Except for boolean, char, and octet, the mappings for basic types must be
distinguishable from each other for the purposes of overloading. That is, one can safely
write overloaded C++ functions on Short, UShort, Long, ULong, Float, and
Double.

Programmers concerned with portability should use the CORBA types. However, some
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a name space, a C++ using statement may help this

Table 16-1 Basic Data Type Mappings

OMG IDL C++

short CORBA::Short

long CORBA::Long

unsigned short CORBA::UShort

unsigned long CORBA::ULong

float CORBA::Float

double CORBA::Double

char CORBA::Char

boolean CORBA::Boolean

octet CORBA::Octet
16-10 CORBA V2.0 July 1996

16
problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation therefore may generate the native
C++ type.

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing
FALSE) are defined; other values produce undefined behavior. Since many existing
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUE and FALSE, this mapping does not require that such definitions be
provided by a compliant implementation. Requiring definitions for TRUE and FALSE
could cause compilation problems for CORBA applications that make use of such
packages and libraries. Instead, we recommend that compliant applications simply use
the values 1 and 0 directly.4 Alternatively, for those C++ compilers that support the
new bool type, the key words TRUE and FALSE may be used.

16.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The only
difference is that the generated C++ type may need an additional constant that is large
enough to force the C++ compiler to use exactly 32 bits for values declared to be of
the enumerated type.

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

16.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded, is
mapped to char* in C++. String data is null-terminated. In addition, the CORBA
module defines a class String_var that contains a char* value and automatically
frees the pointer when a String_var object is deallocated. When a String_var is
constructed or assigned from a char*, the char* is consumed and thus the string
data may no longer be accessed through it by the caller. Assignment or construction
from a const char* or from another String_var causes a copy. The
String_var class also provides operations to convert to and from char* values, as
well as subscripting operations to access characters within the string. The full
definition of the String_var interface is given in Section C.2, String_var Class.

Because its mapping is char*, the OMG IDL string type is the only nonbasic type for
which this mapping makes size requirements.

4.Examples and descriptions in this document still use TRUE and FALSE for purposes of clarity.
CORBA V2.0 Mapping for Enums July 1996 16-11

16
For dynamic allocation of strings, compliant programs must use the following
functions from the CORBA name space:

// C++
namespace CORBA {

char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...

}

The string_alloc function dynamically allocates a string, or returns a null pointer
if it cannot perform the allocation. It allocates len+1 characters so that the resulting
string has enough space to hold a trailing NULL character. The string_dup function
dynamically allocates enough space to hold a copy of its string argument, including the
NULL character, copies its string argument into that memory, and returns a pointer to
the new string. If allocation fails, a null pointer is returned. The string_free
function deallocates a string that was allocated with string_alloc or
string_dup. Passing a null pointer to string_free is acceptable and results in no
action being performed. These functions allow ORB implementations to use special
memory management mechanisms for strings if necessary, without forcing them to
replace global operator new and operator new[].

The string_alloc, string_dup, and string_free functions may not throw
CORBA exceptions.

Note that a static array of char in C++ decays to a char*, so care must be taken when
assigning one to a String_var, since the String_var will assume the pointer
points to data allocated via string_alloc, and thus will eventually attempt to
string_free it:

// C++
// The following is an error, since the char* should point
// to data allocated via string_alloc so it can be consumed
String_var s = “static string”;// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = “static string”;
s = sp;
s = (const char*)“static string too”;

16.8 Mapping for Structured Types

The mapping for struct, union, and sequence (but not array) is a C++ struct
or class with a default constructor, a copy constructor, an assignment operator, and a
destructor. The default constructor initializes object reference members to
appropriately-typed nil object references and string members to NULL; all other
members are initialized via their default constructors. The copy constructor performs a
deep-copy from the existing structure to create a new structure, including calling
16-12 CORBA V2.0 July 1996

16
_duplicate on all object reference members and performing the necessary heap
allocations for all string members. The assignment operator first releases all object
reference members and frees all string members, and then performs a deep-copy to
create a new structure. The destructor releases all object reference members and frees
all string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any

• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object5

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is
deallocated in a single call.

The mapping of a variable-length type as an out parameter or operation return value
is a pointer to the associated class or array. As a convenience for managing this
pointer, the mapping also provides another class for each variable-length type. This
type, which is named by adding the suffix _var to the original type’s name,
automatically deletes the pointer when an instance is destroyed. An object of type
T_var behaves similarly to the structured type T, except that members must be
accessed indirectly. For a struct, this means using an arrow (“–>”) instead of a dot
(“.”).

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

5.Transmissible pseudo-objects are listed as “general arguments” in Table 14, Pseudo-Objects, in
Appendix A.
CORBA V2.0 Mapping for Structured Types July 1996 16-13

16
16.8.1 T_var Types

The general form of the T_var types is shown next.

// C++
class T_var
{
 public:

T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T *operator-> const ();
// other conversion operators to support
// parameter passing

};

The default constructor creates a T_var containing a null T*. Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded operator-> without first assigning to it a valid T* or another
valid T_var. Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a null T_var to a T*& is allowed, however,
so that a T_var can legally be passed as an out parameter.

The T* constructor creates a T_var that, when destroyed, will delete the storage
pointed to by the T* parameter. The parameter to this constructor should never be a
null pointer. Compliant implementations are not required to detect null pointers passed
to this constructor.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var, except
for strings and array types, which are deallocated using the string_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of the T* parameter.

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it.

The overloaded operator-> returns the T* held by the T_var, but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with a valid T* or T_var.
16-14 CORBA V2.0 July 1996

16
In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing modes
shown in Table 16-2. The form of these conversion functions is not specified so as to
allow different implementations, but the conversions must be automatic (i.e., they must
require no explicit application code to invoke them).

The T_var types are also produced for fixed-length structured types for reasons of
consistency. These types have the same semantics as T_var types for variable-length
types. This allows applications to be coded in terms of T_var types regardless of
whether the underlying types are fixed- or variable-length.

Each T_var type must be defined at the same level of nesting as its T type.

T_var types do not work with a pointer to constant T, since they provide no
constructor nor operator= taking a const T* parameter. Since C++ does not
allow delete to be called on a const T*, the T_var object would normally have
to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a copy is
really wanted or not. Explicit copying of const T* objects into T_var types can be
achieved via the copy constructor for T:

// C++
const T *t = ...;
T_var tv = new T(*t);

16.9 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped
to a corresponding member of the C++ struct. This mapping allows simple field access
as well as aggregate initialization of most fixed-length structs. To facilitate such
initialization, C++ structs must not have user-defined constructors, assignment
operators, or destructors, and each struct member must be of self-managed type. With
the exception of strings and object references, the type of a C++ struct member is the
normal mapping of the OMG IDL member’s type.

For a string or object reference member, the name of the C++ member’s type is not
specified by the mapping. Therefore, a compliant program cannot create an object of
that type. The behavior6 of the type is the same as the normal mapping (char* for
string, A_ptr for an interface A) except the type’s copy constructor copies the
member’s storage, and its assignment operator releases the member’s old storage.

6.Those implementations concerned with data layout compatibility with the C mapping in this man-
ual will also want to ensure that the sizes of these members match those of their C mapping coun-
terparts.
CORBA V2.0 Mapping for Struct Types July 1996 16-15

16
Assignment between a string or object reference member and a corresponding T_var
type (String_var or A_var) always results in copying the data, while assignment
with a pointer does not. The one exception to the rule for assignment is when a const
char* is assigned to a member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct Fixed{ float x, y, z; };

// C++
Fixed x1 = {1.2, 2.4, 3.6};
Fixed_var x2 = new Fixed;
x2->y = x1.z;

The previous example shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated Fixed object
using delete.

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition.

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1; // str1.name is initially NULL
Variable_var str2 = new Variable;// str2->name is initially
NULL
char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3; // 1: free old storage, copy
str2->name = const4; // 2: free old storage, copy

In the previous example, the name components of variables str1 and str2 both start
out as null. On the line marked 1, const3 is assigned to the name component of
str1; this results in the previous str1.name being freed, and since const3 points
to const data, the contents of const3 being copied. In this case, str1.name started
out as null, so no previous data needs to be freed before the copying of const3 takes
place. Line 2 is similar to line 1, except that str2 is a T_var type.
16-16 CORBA V2.0 July 1996

16
Continuing with the example:

// C++
non_const = str1.name; // 3: no free, no copy
const2 = str2->name; // 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const. Since non_const is
a pointer type (char*), str1.name is not freed, nor are the data it points to copied.
After the assignment, str1.name and non_const effectively point to the same
storage, with str1.name retaining ownership of that storage. Line 4 is identical to
line 3, even though const2 is a pointer to const char; str2->name is neither freed
nor copied because const2 is a pointer type.

// C++
str1.name = non_const; // 5: free, no copy
str1.name = const2; // 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name, which results in the old
str1.name being freed and the value of the non_const pointer, but not the data it
points to, being copied. In other words, after the assignment, str1.name points to
the same storage as non_const points to. Line 6 is the same as line 5 except that
because const2 is a const char*, the data it points to are copied.

// C++
str2->name = str1.name; // 7: free old storage, copy
str1.name = string_var; // 8: free old storage, copy
string_var = str2->name;// 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the original
value of the left-hand member is freed and the new value is copied. Similarly, lines 8
and 9 involve assignment to or from a String_var, so in both cases the original
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name;// 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for structs so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs use new to dynamically allocate structs and delete to free
them.
CORBA V2.0 Mapping for Struct Types July 1996 16-17

16
16.10 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant. The default union constructor performs no application-visible
initialization of the union. It does not initialize the discriminator, nor does it initialize
any union members to a state useful to an application. (The implementation of the
default constructor can do whatever type of initialization it wants to, but such
initialization is implementation-dependent. No compliant application can count on a
union ever being properly initialized by the default constructor alone.)

It is therefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing so.
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

The union discriminant access functions have the name _d to both be brief and avoid
name conflicts with the members. The _d discriminator modifier function can only be
used to set the discriminant to a value within the same union member. In addition to
the _d accessors, a union with an implicit default member provides a _default()
member function that sets the discriminant to a legal default value. A union has an
implicit default member if it does not have a default case and not all permissible values
of the union discriminant are listed.

Setting the union value through an access function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an access function that does not match the current discriminant results in
undefined behavior. If an access function for a union member with multiple legal
discriminant values is used to set the value of the discriminant, the union
implementation is free to set the discriminant to any one of the legal values for that
member. The actual discriminant value chosen under these circumstances is
implementation dependent.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
default: A obj;

};
16-18 CORBA V2.0 July 1996

16
// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class U
{
 public:

U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*); // free old storage, no copy
void z(const char*);// free old storage, copy
void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &); // deep copy
const S &w() const; // read-only access
S &w(); // read-write access

void obj(A_ptr); // release old objref, duplicate
A_ptr obj() const; // no duplicate

};

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy of
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Accessors that return a reference to a non-const
object can be used for read-write access, but such accessors are only provided for the
following types: struct, union, sequence, and any.

For an array union member, the accessor returns a pointer to the array slice, where the
slice is an array with all dimensions of the original except the first (array slices are
described in detail in Section 16.12, Mapping for Array Types). The array slice return
type allows for read-write access for array members via regular subscript operators.
For members of an anonymous array type, supporting typedefs for the array must be
generated directly into the union. For example:
CORBA V2.0 Mapping for Union Types July 1996 16-19

16
// IDL
union U switch (long) {
 default: long array[20][20];
};

// C++
class U
{
 public:

// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...

};

The name of the supporting array slice typedef is created by prepending an underscore
and appending _slice to the union member name. In the previous example, the array
member named “array” results in an array slice typedef called _array_slice nested
in the union class.

For string union members, the char* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char*
modifier and the String_var modifier7 both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member returns a
const char* to allow examination, but not modification, of the string storage.8

For object reference union members, object reference parameters to modifier functions
are duplicated after the old object reference is released. An object reference return
value from an accessor function is not duplicated because the union retains ownership
of the object reference.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U, previously shown.

7.A separate modifier for String_var is needed because it can automatically convert to both a
char* and a const char*; since unions provide modifiers for both of these types, an attempt
to set a string member of a union from a String_var would otherwise result in an ambiguity
error at compile time.

8.A return type of char* allowing read-write access could mistakenly be assigned to a
String_var, resulting in the String_var and the union both assuming ownership for the
string’s storage.
16-20 CORBA V2.0 July 1996

16
// C++
S s = {10};
U u;
u.w(s); // member w selected
u._d(4); // OK, member w selected
u._d(5); // OK, member w selected
u._d(1); // error, different member selected
A_ptr a = ...;
u.obj(a); // member obj selected
u._d(7); // OK, member obj selected
u._d(1); // error, different member selected

As shown here, the _d modifier function cannot be used to implicitly switch between
different union members. The following shows an example of how the _default()
member function is used.

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d(); // disc == FALSE
U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the _default() member function causes the union’s value to be
composed solely of the discriminator value of FALSE, since there is no explicit default
member. For union U, calling _default() causes a compilation error because U has
an explicitly declared default case and thus no _default() member function. A
_default() member function is only generated for unions with implicit default
members.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for unions so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs use new to dynamically allocate unions and delete to free
them.

16.11 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. For a bounded sequence, the maximum length is implicit in the
sequence’s type and cannot be explicitly controlled by the programmer. For an
unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The
programmer may always explicitly modify the current length of any sequence.
CORBA V2.0 Mapping for Sequence Types July 1996 16-21

16
For an unbounded sequence, setting the length to a larger value than the current length
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to be the
same as the new sequence. Setting the length to a smaller value than the current length
does not affect how the storage associated with the sequence is manipulated. Note,
however, that the elements orphaned by this reduction are no longer accessible and that
their values cannot be recovered by increasing the sequence length to its original value.

For a bounded sequence, attempting to set the current length to a value larger than the
maximum length given in the OMG IDL specification produces undefined behavior.

For each different named OMG IDL sequence type, a compliant implementation
provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;

// C++
class LongSeq // unbounded sequence
{
 public:

LongSeq(); // default constructor
LongSeq(ULong max); // maximum constructor
LongSeq(// T *data constructor

ULong max,
ULong length,
Long *value,
Boolean release = FALSE

);
LongSeq(const LongSeq&);
~LongSeq();
...

};

class LongSeqSeq // bounded sequence
{
 public:

LongSeqSeq(); // default constructor
LongSeqSeq(// T *data constructor

ULong length,
LongSeq *value,
Boolean release = FALSE

);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...

};
16-22 CORBA V2.0 July 1996

16
For both bounded and unbounded sequences, the default constructor (as shown in the
previous example) sets the sequence length equal to zero. For bounded sequences, the
maximum length is part of the type and cannot be set or modified, while for
unbounded sequences, the default constructor also sets the maximum length to zero.
The default constructor for a bounded sequence always allocates a contents vector, so
it always sets the release flag to TRUE.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the previous
example). This allows applications to control how much buffer space is initially
allocated by the sequence. This constructor also sets the length to zero and the
release flag to TRUE.

The “T *data” constructor (as shown in the previous example) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequences, it
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the contents vector is determined by the release parameter—FALSE
means the caller owns the storage, while TRUE means that the sequence assumes
ownership of the storage. If release is TRUE, the contents vector must have been
allocated using the sequence allocbuf function, and the sequence will pass it to
freebuf when finished with it. The allocbuf and freebuf functions are
described in Section 16.11.3, Additional Memory Management Functions.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements (items zero through length–1),
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if necessary.
It behaves as if the original sequence is destroyed via its destructor and then the source
sequence copied using the copy constructor.

If release=TRUE, the destructor destroys each of the current elements (items zero
through length–1).

For an unbounded sequence, if a reallocation is necessary due to a change in the length
and the sequence was created using the release=TRUE parameter in its constructor,
the sequence will deallocate the old storage. If release is FALSE under these
circumstances, old storage will not be freed before the reallocation is performed. After
reallocation, the release flag is always set to TRUE.

For an unbounded sequence, the maximum() accessor function returns the total
amount of buffer space currently available. This allows applications to know how
many items they can insert into an unbounded sequence without causing a reallocation
to occur. For a bounded sequence, maximum() always returns the bound of the
sequence as given in its OMG IDL type declaration.

The overloaded subscript operators (operator[]) return the item at the given index.
The non-const version must return something that can serve as an lvalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.
CORBA V2.0 Mapping for Sequence Types July 1996 16-23

16
The overloaded subscript operators may not be used to access or modify any element
beyond the current sequence length. Before either form of operator[] is used on a
sequence, the length of the sequence must first be set using the length(ULong)
modifier function, unless the sequence was constructed using the T *data
constructor.

For strings and object references, operator[] for a sequence must return a type with
the same semantics as the types used for string and object reference members of structs
and arrays, so that assignment to the string or object reference sequence member via
operator=() will release old storage when appropriate. Note that whatever these
special return types are, they must honor the setting of the release parameter in the
T *data constructor with respect to releasing old storage.

For the T *data sequence constructor, the type of T for strings and object references
is char* and T_ptr, respectively. In other words, string buffers are passed as
char** and object reference buffers are passed as T_ptr*.

16.11.1 Sequence Example

The next example shows full declarations for both a bounded and an unbounded
sequence.

// IDL
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 2> V2; // bounded sequence

// C++
class V1 // unbounded sequence
{
 public:

V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,

Boolean release =FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

};

class V2 // bounded sequence
{
 public:
16-24 CORBA V2.0 July 1996

16
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

};

16.11.2 Using the “release” Constructor Parameter

Consider the following example:

// IDL
typedef sequence<string, 3> StringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2"; // no free, no copy
char *str = string_dup("2");
seq2[1] = str; // free old storage, no copy

In this example, both seq1 and seq2 are constructed using user-specified data, but
only seq2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into
seq1[1], the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[1],
however, the old user data must be freed before ownership of the right-hand side can
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and freebuf on the buffer given to
it in its constructor.
CORBA V2.0 Mapping for Sequence Types July 1996 16-25

16
When the release flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each element
before releasing the contents buffer. It will release strings using string_free, and it
will release object references using the release function from the CORBA name
space.

In general, assignment should never take place in a sequence element via
operator[] unless release=TRUE due to the possibility of memory management
errors. In particular, a sequence constructed with release=FALSE should never be
passed as an inout parameter because the callee has no way to determine the setting
of the release flag, and thus must always assume that release is set to TRUE.
Code that creates a sequence with release=FALSE and then knowingly and
correctly manipulates it in that state as shown with seq1 in the previous example is
compliant, but care should always be taken to avoid memory leaks under these
circumstances.

As with other out and return values, out and return sequences must not be assigned
to by the caller without first copying them. This is more fully explained in Section
16.18, Argument Passing Considerations.

When a sequence is constructed with release=TRUE, a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

16.11.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
sequences so that dynamic allocation uses the same mechanism as the C language
dynamic allocation functions. Whether these operators are overloaded by the
implementation or not, compliant programs use new to dynamically allocate
sequences, and delete to free them.

Sequences also provide additional memory management functions for their buffers. For
a sequence of type T, the following static member functions are provided in the
sequence class public interface.

// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to the T
*data constructor. The length of the vector is given by the nelems function
argument. The allocbuf function initializes each element using its default
constructor except for strings, which are initialized to null pointers, and object
references, which are initialized to suitably typed nil object references. A null pointer
is returned if allocbuf for some reason cannot allocate the requested vector. Vectors
allocated by allocbuf should be freed using the freebuf function. The freebuf
function ensures that the destructor for each element is called before the buffer is
16-26 CORBA V2.0 July 1996

16
destroyed except for string elements, which are freed using string_free(), and
object reference elements, which are freed using release(). The freebuf function
will ignore null pointers passed to it. Neither allocbuf nor freebuf may throw
CORBA exceptions.

16.11.4 Sequence T_var Type

In addition to the regular operations defined for T_var types, the T_var for a
sequence type also supports an overloaded operator[] that forwards requests to the
operator[] of the underlying sequence.9 This subscript operator should have the
same return type as that of the corresponding operator on the underlying sequence
type.

16.12 Mapping for Array Types

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically initialized data using the array. If the array element is a string or
an object reference, then the mapping uses the same type as for structure members.
That is, assignment to an array element will release the storage associated with the old
value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M[1][2][3];
void op(out F p1, out V p2, out M p3);

// C++
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;

f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1]; // free old storage, copy
m1[0][1][2] = m2[0][1][2];// free old storage, copy

In the previous example, the last two assignments result in the storage associated with
the old value of the left-hand side being automatically released before the value from
the right-hand side is copied.

9.Note that since T_var types do not handle const T*, there is no need to provide the const ver-
sion of operator[] for Sequence_var types.
CORBA V2.0 Mapping for Array Types July 1996 16-27

16
As shown in Table 16-2, out and return arrays are handled via pointer to array slice,
where a slice is an array with all the dimensions of the original specified, except the
first one. As a convenience for application declaration of slice types, the mapping also
provides a typedef for each array slice type. The name of the slice typedef consists of
the name of the array type followed by the suffix _slice. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

A T_var type for an array should overload operator[] instead of operator->.
The use of array slices also means that a T_var type for an array should have a
constructor and assignment operator that each take a pointer to array slice as a
parameter, rather than T*. The T_var for the previous example would be:

// C++
class LongArray_var
{
 public:

LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;
// other conversion operators to support
// parameter passing

};

Because arrays are mapped into regular C++ arrays, they present special problems for
the type-safe any mapping described in Section 16.14, Mapping for the any Type. To
facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array name
followed by the suffix _forany. These types must be distinct so as to allow functions
to be overloaded on them. Like Array_var types, Array_forany types allow
access to the underlying array type, but unlike Array_var, the Array_forany type
does not delete the storage of the underlying array upon its own destruction. This is
because the any mapping retains storage ownership, as described in Section 16.14.3,
Extraction from any.

The interface of the Array_forany type is identical to that of the Array_var type,
but it may not be implemented as a typedef to the Array_var type by a compliant
implementation since it must be distinguishable from other types for purposes of
16-28 CORBA V2.0 July 1996

16
function overloading. Also, the Array_forany constructor taking an
Array_slice* parameter also takes a Boolean nocopy parameter, which defaults
to FALSE.

// C++
class Array_forany
{
 public:

Array_forany(Array_slice*, Boolean nocopy = FALSE);
...

};

The nocopy flag allows for a noncopying insertion of an Array_slice* into an any.

Each Array_forany type must be defined at the same level of nesting as its Array
type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For array T, the following functions will be
available to a compliant program.

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_free(T_slice *);

The T_alloc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. The T_free function deallocates an array that was allocated with
T_alloc or T_dup. Passing a null pointer to T_free is acceptable and results in no
action being performed. These functions allow ORB implementations to utilize special
memory management mechanisms for array types if necessary, without forcing them to
replace global operator new and operator new[].

The T_alloc, T_dup, and T_free functions may not throw CORBA exceptions.

16.13 Mapping for Typedefs

A typedef creates an alias for a type. If the original type maps to several types in C++,
then the typedef creates the corresponding alias for each type. The following example
illustrates the mapping.

// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence<long> S1;
typedef S1 S2;
CORBA V2.0 Mapping for Typedefs July 1996 16-29

16
// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1Ref A2Ref;
typedef A1_var A2_var;

// ...definitions for S1...

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an OMG IDL type that maps to multiple C++ types such as arrays, the
typedef maps to all of the same C++ types and functions that its base type requires. For
example:

// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice*
another_array_dup(another_array_slice *a) {

return array_dup(a);
}

inline void another_array_free(another_array_slice *a) {
array_free(a);

}

16.14 Mapping for the any Type

A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.
16-30 CORBA V2.0 July 1996

16
The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

16.14.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used for
these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail, is that the appropriate TypeCode is
implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described next is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 16.5, Mapping for Basic Data Types, the boolean, octet,
and char OMG IDL types are not required to map to distinct C++ types, which
means that a separate means of distinguishing them from each other for the purpose
of function overloading is necessary. The means of distinguishing these types from
each other is described in Section 16.14.4, Distinguising boolean, octet, char, and
Bounded String.

• Since all strings are mapped to char* regardless of whether they are bounded or
unbounded, another means of creating or setting an any with a bounded string
value is necessary. This is described in Section 16.14.4, Distinguishing boolean,
octet, char, and Bounded String.

• In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguish
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described next and in Section 16.12, Mapping for Array
Types.

16.14.2 Insertion into any

To allow a value to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type T.

// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short, UShort, Long, ULong, Float, Double

• Enumerations
CORBA V2.0 Mapping for the any Type July 1996 16-31

16
• Unbounded strings (char* passed by value)

• Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of
the insertion function are provided.

// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able to
set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<=, the lifetime of the value in the any is
independent of the lifetime of the value passed to operator<<=. The
implementation of the any may not store its value as a reference or pointer to the
value passed to operator<<=.

• For the noncopying version of operator<<=, the inserted T* is consumed by the
any. The caller may not use the T* to access the pointed-to data after insertion,
since the any assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

• With both the copying and noncopying versions of operator<<=, any previous
value held by the any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor (described in Section 16.14.6,
Handling Untyped Values) was called to create the any, the any is responsible for
deallocating the memory pointed to by the void* before copying the new value.

Copying insertion of a string type causes the following function to be invoked:

// C++
void operator<<=(Any&, const char*);

Since all string types are mapped to char*, this insertion function assumes that the
value being inserted is an unbounded string. Section 16.14.4, Distinguishing boolean,
octet, char, and Bounded String, describes how bounded strings may be correctly
16-32 CORBA V2.0 July 1996

16
inserted into an any. Noncopying insertion of both bounded and unbounded strings
can be achieved using the Any::from_string helper type described in Section
16.14.4, Distinguishing boolean, octet, char, and Bounded String.

Type-safe insertion of arrays uses the Array_forany types described in Section
16.12, Mapping for Array Types. Compliant implementations must provide a version
of operator<<= overloaded for each Array_forany type. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to
const. The nocopy flag in the Array_forany constructor is used to control whether
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly
recommended that portable code explicitly10 use the appropriate Array_forany type
when inserting an array into an any:

// IDL
struct S {... };
typedef S SA[5];

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

10.A mapping implementor may use the new C++ key word “explicit” to prevent implicit conver-
sions through the Array_forany constructor, but this feature is not yet widely available in current
C++ compilers.
CORBA V2.0 Mapping for the any Type July 1996 16-33

16
Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due
to the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of
the T_ptr type.

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed to by
T_ptr*; therefore after insertion the caller may not access the object referred to by
T_ptr since the any may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<= is also supported on the Any_var type. Note
that due to the conversion operators that convert Any_var to Any& for parameter
passing, only those operator<<= functions defined as member functions of any
need to be explicitly defined for Any_var.

16.14.3 Extraction from any

To allow type-safe retrieval of a value from an any, the mapping provides the
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are normally passed by value.
For values of type T that are too large to be passed by value efficiently, this function
may be prototyped as follows:

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

• Boolean, Char, Octet, Short, UShort, Long, ULong, Float, Double

• Enumerations

• Unbounded strings (char* passed by reference, i.e., char*&)

• Object references (T_ptr)

For all other types, the second form of the function is used.
16-34 CORBA V2.0 July 1996

16
All versions of operator>>= implemented as member functions of class any, such
as those for primitive types, should be marked as const.

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

In this case, the version of operator>>= for type Long must be able to determine
whether the any truly does contain a value of type Long and, if so, copy its value into
the reference variable provided by the caller and return TRUE. If the any does not
contain a value of type Long, the value of the caller’s reference variable is not
changed, and operator>>= returns FALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the
following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {

// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any, and operator>>= will return TRUE. The caller must not try to delete or
otherwise release this storage. The caller also should not use the storage after the
contents of the any variable are replaced via assignment, insertion, or the replace
function, or after the any variable is destroyed. Care must be taken to avoid using
T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the any.

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, and operator>>= returns FALSE.
CORBA V2.0 Mapping for the any Type July 1996 16-35

16
Correct extraction of array types relies on the Array_forany types described in
Section 16.12, Mapping for Array Types.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&);// for type B

The Array_forany types are always passed to operator>>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the
any to be sure that they do not overstep the bounds of the array or string object when
using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those operator>>= functions defined as member functions of any need to be
explicitly defined for Any_var.

16.14.4 Distinguishing boolean, octet, char, and Bounded String

Since the boolean, octet, and char OMG IDL types are not required to map to
distinct C++ types, another means of distinguishing them from each other is necessary
so that they can be used with the type-safe any interface. Similarly, since both
bounded and unbounded strings map to char*, another means of distinguishing them
must be provided. This is done by introducing several new helper types nested in the
any class interface. For example, this can be accomplished as shown next.

// C++
class Any
{
 public:

// special helper types needed for boolean, octet, char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
16-36 CORBA V2.0 July 1996

16
Octet val;
};
struct from_char {

from_char(Char c) : val(c) {}
Char val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
char *val;
ULong bound;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_octet);
void operator<<=(from_string);

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;

// other public Any details omitted
CORBA V2.0 Mapping for the any Type July 1996 16-37

16
private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and operator>>=
functions for these special helper types. These helper types are used as shown next.

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an any, the nocopy
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1);// any consumes p

Assuming that boolean, char, and octet all map the C++ type unsigned char,
the private and unimplemented operator<<= and operator>>= functions for
unsigned char will cause a compile-time error if straight insertion or extraction of
any of the boolean, char, or octet types is attempted.

// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct);// but this one will
16-38 CORBA V2.0 July 1996

16
It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined static any member functions if boolean, char,
and octet are in fact mapped to distinct C++ types. All compliant C++ mapping
implementations must provide these helpers, however, for purposes of portability.

16.14.5 Widening to Object

Sometimes it is desirable to extract an object reference from an any as the base
Object type. This can be accomplished using a helper type similar to those required
for extracting boolean, char, and octet.

// C++
class Any
{
 public:

...
struct to_object {

to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

};
Boolean operator>>=(to_object) const;
...

};

The to_object helper type is used to extract an object reference from an any as the
base Object type. If the any contains a value of an object reference type as indicated
by its TypeCode, the extraction function operator>>=(to_object) explicitly
widens its contained object reference to Object and returns TRUE, otherwise it
returns FALSE. This is the only object reference extraction function that performs
widening on the extracted object reference. As with regular object reference extraction,
no duplication of the object reference is performed by the to_object extraction
operator.

16.14.6 Handling Untyped Values

Under some circumstances the type-safe interface to any is not sufficient. An example
is a situation in which data types are read from a file in binary form and used to create
values of type any. For these cases, the any class provides a constructor with an
explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the given TypeCode pseudo object
reference. If the release parameter is TRUE, then the any object assumes ownership
of the storage pointed to by the value parameter. A compliant application should
make no assumptions about the continued lifetime of the value parameter once it has
been handed to an any with release=TRUE, since a compliant any implementation
CORBA V2.0 Mapping for the any Type July 1996 16-39

16
is allowed to copy the value parameter and immediately free the original pointer. If
the release parameter is FALSE (the default case), then the any object assumes the
caller will manage the memory pointed to by value. The value parameter can be a
null pointer.

The any class also defines three unsafe operations:

// C++
void replace(

TypeCode_ptr,
void *value,
Boolean release = FALSE

);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with the
type-safe insertion interface, and so is similar to the constructor previously described.
The existing TypeCode is released and value storage deallocated, if necessary. The
TypeCode function parameter is duplicated. If the release parameter is TRUE, then
the any object assumes ownership for the storage pointed to by the value parameter.
A compliant application should make no assumptions about the continued lifetime of
the value parameter once it has been handed to the Any::replace function with
release=TRUE, since a compliant any implementation is allowed to copy the
value parameter and immediately free the original pointer. If the release
parameter is FALSE (the default case), then the any object assumes the caller will
manage the memory occupied by the value. The value parameter of the replace
function can be a null pointer.

For C++ mapping implementations that use Environment parameters to pass
exception information, the default release argument can be simulated by providing
two overloaded replace functions, one that takes a nondefaulted release
parameter and one that takes no release parameter. The second function simply
invokes the first with the release parameter set to FALSE.

Note that neither the constructor shown above nor the replace function is type-safe.
In particular, no guarantees are made by the compiler or run-time as to the consistency
between the TypeCode and the actual type of the void* argument. The behavior of
an ORB implementation when presented with an any that is constructed with a
mismatched TypeCode and value is not defined.

The type function returns a TypeCode_ptr pseudo-object reference to the
TypeCode associated with the any. Like all object reference return values, the caller
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the any. If the any has no
associated value, the value function returns a null pointer. The type to which the
void* returned by the value function may be cast depends on the ORB
implementation; thus, use of the value function is not portable across ORB
16-40 CORBA V2.0 July 1996

16
implementations and its usage is therefore deprecated. Note that ORB implementations
are allowed to make stronger guarantees about the void* returned from the value
function, if so desired.

16.14.7 any Constructors, Destructor, Assignment Operator

The default constructor creates an any with a TypeCode of type tk_null, and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its any
parameter and deep-copies the parameter’s value. The assignment operator releases its
own TypeCode_ptr and deallocates storage for the current value if necessary, then
duplicates the TypeCode_ptr of its any parameter and deep-copies the parameter’s
value. The destructor calls release on the TypeCode_ptr and deallocates storage
for the value, if necessary.

Other constructors are described in Section 16.14.6, Handling Untyped Values.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for anys so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs use new to dynamically allocate anys and delete to free
them.

16.14.8 any Class

The full definition of the any class can be found in Section C.3, any Class.

16.14.9 Any_var Class

Since anys are returned via pointer as out and return parameters, there exists an
Any_var class similar to the T_var classes for object references. Any_var obeys
the rules for T_var classes described in Section 16.8, Mapping for Structured Types,
calling delete on its Any* when it goes out of scope or is otherwise destroyed. The
full interface of the Any_var class is shown in Section C.4, Any_var Class.

16.15 Mapping for Exception Types

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see Section 16.1.3, CORBA
Module). The generated class is like a variable-length struct, regardless of whether or
not the exception holds any variable-length members. Just as for variable-length
structs, each exception member must be self-managing with respect to its storage.

The copy constructor, assignment operator, and destructor automatically copy or free
the storage associated with the exception. For convenience, the mapping also defines a
constructor with one parameter for each exception member—this constructor initializes
the exception members to the given values. For exception types that have a string
member, this constructor should take a const char* parameter, since the
constructor must copy the string argument. Similarly, constructors for exception types
CORBA V2.0 Mapping for Exception Types July 1996 16-41

16
that have an object reference member must call _duplicate on the corresponding
object reference constructor parameter. The default constructor performs no explicit
member initialization.

The UserException class is derived from a base Exception class, which is also
defined in the CORBA module.

All standard exceptions are derived from a SystemException class, also defined in
the CORBA module. Like UserException, SystemException is derived from the
base Exception class. The SystemException class interface is shown next.

// C++
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};
class SystemException : public Exception
{
 public:

SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

};

The default constructor for SystemException causes minor() to return zero and
completed() to return COMPLETED_NO.

Each specific system exception (described in Section 14.1.6, Exceptions) is derived
from SystemException.

// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching the
Exception type.
16-42 CORBA V2.0 July 1996

16
// C++
try {

...
} catch (const Exception &exc) {

...
}

Alternatively, all user exceptions can be caught by catching the UserException
type, and all system exceptions can be caught by catching the SystemException
type.

// C++
try {

...
} catch (const UserException &ue) {

...
} catch (const SystemException &se) {

...
}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

C++ compilers that support official C++ Run-Time Type Information (RTTI) need not
support narrowing for the Exception hierarchy. RTTI supports, among other things,
determination of the run-time type of a C++ object. In particular, the
dynamic_cast<T*> operator11 allows for narrowing from a base pointer to a more
derived pointer if the object pointed to really is of the more derived type. This operator
is not useful for narrowing object references, since it cannot determine the actual type
of remote objects, but it can be used to narrow within the exception hierarchy. Since
catch clauses can catch by type, this feature is mainly used for narrowing exceptions
received via Environments from the DII.

For those C++ environments that do not support dynamic_cast<T*>, the exception
hierarchy provides a narrowing mechanism. This is described in Section D.4, Without
Run-Time Type Information (RTTI).

Request invocations made through the DII may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception type
was not known at compile time. The mapping provides the
UnknownUserException so that such exceptions can be represented in the calling
process.

11.It is unlikely that a compiler would support RTTI without supporting exceptions, since much of a
C++ exception handling implementation is based on RTTI mechanisms.
CORBA V2.0 Mapping for Exception Types July 1996 16-43

16
// C++
class UnknownUserException : public UserException
{
 public:

Any &exception();
};

As shown here, UnknownUserException is derived from UserException. It
provides the exception() accessor that returns an any holding the actual
exception. Ownership of the returned any is maintained by the
UnknownUserException—the any merely allows access to the exception data.
Conforming applications should never explicitly throw exceptions of type
UnknownUserException—it is intended for use with the DII.

16.16 Mapping for Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same name),
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
readonly maps to only one C++ function, to get the attribute’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for
regular operations.

OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operation is oneway or not.

The mapping does not define whether exceptions specified for an OMG IDL operation
are part of the generated operation’s type signature or not.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additional Environment
parameter for passing exception information—real C++ exceptions are used for this
purpose. See Section 16.15, Mapping for Exception Types, and Section D.3, Without
Exception Handling, for more details.
16-44 CORBA V2.0 July 1996

16
16.17 Implicit Arguments to Operations

If an operation in an OMG IDL specification has a context specification, then a
Context_ptr input parameter (see Section 17.8.1, Context Interface) follows all
operation-specific arguments. In an implementation that does not support real C++
exceptions, an output Environment parameter is the last argument following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Environment is described in Section D.3, Without
Exception Handling.

16.18 Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the type P for primitives and enumerations and the
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach
has the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call. There
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storage
associated with a parameter passed as a T_var managed type. The following examples
demonstrate the compliant behavior.

// IDL
struct S { string name; float age; };
void f(out S p);
CORBA V2.0 Implicit Arguments to Operations July 1996 16-45

16
// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters
works only with T_var types, not with other types.

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)

q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller is
not invoking string_free on the out result. There are two ways to fix this, as
shown next.

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {

q(s);
string_free(s); // explicit deallocation
// OR:
q(svar); // implicit deallocation

}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For example,
before assigning to an inout string parameter, the implementor of an operation may
first delete the old character data. Similarly, an inout interface parameter should be
released before being reassigned. One way to ensure that the parameter storage is
released is to assign it to a local T_var variable with an automatic release, as in the
following example.
16-46 CORBA V2.0 July 1996

16
// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {

String_var s_tmp = s;
s = /* new data */;
A_var obj_tmp = obj;
obj = /* new reference */

}

To allow the callee the freedom to allocate a single contiguous area of storage for all
the data associated with a parameter, we adopt the policy that the callee-allocated
storage is not modifiable by the caller. However, trying to enforce this policy by
returning a const type in C++ is problematic, since the caller is required to release
the storage, and calling delete on a const object is an error12. A compliant
mapping therefore is not required to detect this error.

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T*&), a compliant program is not allowed to pass or return a null pointer; the result of
doing so is undefined. In particular, a caller may not pass a null pointer under any of
the following circumstances:

• in and inout string

• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it. A
callee may not return a null pointer under any of the following circumstances:

• out and return variable-length struct

• out and return variable-length union

• out and return string

• out and return sequence

• out and return variable-length array, return fixed-length array

• out and return any

12.It is very likely that the upcoming ANSI/ISO C++ standard will allow delete on a const
object, but many C++ compilers do not yet support this feature.
CORBA V2.0 Argument Passing Considerations July 1996 16-47

16
Since OMG IDL has no concept of pointers in general or null pointers in particular,
allowing the passage of null pointers to or from an operation would project C++
semantics onto OMG IDL operations.13 A compliant implementation is allowed but
not required to raise a BAD_PARAM exception if it detects such an error.

Table 16-2 displays the mapping for the basic OMG IDL parameter passing modes and
return type according to the type being passed or returned, while Table 16-3 displays
the same information for T_var types. Table 16-2 is merely for informational
purposes; it is expected that operation signatures will be written in terms of the
parameter passing modes shown in Table 16-2, and that T_var types will support the
necessary conversion operators to allow them to be passed directly.

In Table 16-2, fixed-length arrays are the only case where the type of an out
parameter differs from a return value, which is necessary because C++ does not allow
a function to return an array. The mapping returns a pointer to a slice of the array,
where a slice is an array with all the dimensions of the original specified except the
first one.

13.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever an Environment containing an exception is returned; see Section D.3, With-
out Exception Handling, for more details.

Table 16-2 Basic Argument and Result Passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

float Float Float& Float& Float

double Double Double& Double& Double

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1 objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*
16-48 CORBA V2.0 July 1996

16
A caller is responsible for providing storage for all arguments passed as in arguments.

Table 16-4 and Table 16-5 describe the caller’s responsibility for storage associated
with inout and out parameters and for return results.

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

1. Including pseudo-object references.

Table 16-3 T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var1 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

Table 16-4 Caller Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6
CORBA V2.0 Argument Passing Considerations July 1996 16-49

16
1. As listed in Table 16-4.

array, variable 1 6 6

any 5 3 3

Table 16-5 Argument Passing Cases

Case1

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release
on the original input value. To continue to use an object reference passed in as an inout, the
caller must first duplicate the reference. The caller is responsible for the release of all out and
return object references. Release of all object references embedded in other structures is
performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to
it. Since the callee may deallocate the input string and reassign the char* to point to new
storage to hold the output value, the caller should allocate the input string using
string_alloc(). The size of the out string is therefore not limited by the size of the in string.
The caller is responsible for deleting the storage for the out using string_free(). The
callee is not allowed to return a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.

Table 16-4 Caller Argument Storage Responsibilities (Continued)

Type
Inout
Param

Out
Param

Return
Result
16-50 CORBA V2.0 July 1996

Mapping of Pseudo-Objects to C++ 17
CORBA pseudo-objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

• Serverless object types do not inherit from CORBA::Object.

• Individual serverless objects are not registered with any ORB.

• Serverless objects do not necessarily follow the same memory management rules as
for regular OMG IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects passed
as parameters may result in the construction of independent, functionally identical
copies of objects used by receivers of these references. To support this, the otherwise
hidden representational properties (such as data layout) of serverless objects are made
known to the ORB. Specifications for achieving this are not contained in this chapter:
making serverless objects known to the ORB is an implementation detail.

This chapter provides a standard mapping algorithm for all pseudo-object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo-object
types, and accommodates any pseudo-object types that may be proposed in future
revisions of CORBA. It also avoids representation dependence in the C mapping while
still allowing implementations that rely on C-compatible representations.

17.1 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo-object types follow the exact
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo.
 CORBA V2.0 July 1996 17-1

17
• Their declarations may refer to other1 serverless object types not otherwise
necessarily allowed in OMG IDL.

As explained in Section 14.23, Pseudo-Objects, the pseudo prefix means that the
interface may be implemented in either a normal or serverless fashion. That is, apply
either the rules described in the following sections or the normal mapping rules
described in Chapter 16, Mapping of OMG IDL to C++.

17.2 Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA name space.

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. Implementations are allowed
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, such as CORBA::NVList, are essentially just containers for
several levels of other serverless objects. Requiring callers to explicitly free the values
returned from accessor functions for the contained serverless objects would be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

• The types of references to serverless objects, T_ptr, may or may not simply be a
typedef of T*.

• Each mapped class supports the following static member functions.

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

1.In particular, exception used as a data type and a function name.
17-2 CORBA V2.0 July 1996

17
Legal implementations of _duplicate include simply returning the argument or
constructing references to a new instance. Individual implementations may provide
stronger guarantees about behavior.

• The corresponding C++ classes may or may not be directly instantiable or have other
instantiation constraints. For portability, users should invoke the appropriate
constructive operations. When none are listed, users cannot depend on any portable
means for constructing such objects, and should consult documentation for their
implementations.

• As with normal interfaces, assignment operators are not supported.

• Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signatures and rules as well as memory management
rules are identical to those for normal objects, unless otherwise noted.

17.3 Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analogs
in the C mapping. The mapped C++ classes can, but need not be, implemented using
representations compatible to those chosen for the C mapping. Differences between the
pseudo-object specifications for C-PIDL and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo-objects in their interfaces,
including a few cases of redesignated functionality as noted.

• In C++-PIDL, the release performs the role of the associated free and delete
operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined next, may be found in the relevant sections of this
document.

17.4 Environment

Environment provides a vehicle for dealing with exceptions in those cases where
true exception mechanics are unavailable or undesirable (for example in the DII). They
may be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair
of C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attributes.
The set C++ function assumes ownership of the Exception pointer passed to it.
The Environment will eventually call delete on this pointer, so the Exception
it points to must be dynamically allocated by the caller. The get function returns a
pointer to the Exception, just as an attribute for a variable-length struct would, but
the pointer refers to memory owned by the Environment. Once the Environment
is destroyed, the pointer is no longer valid. The caller must not call delete on the
CORBA V2.0 Relation to the C PIDL Mapping July 1996 17-3

17
Exception pointer returned by the get function. The Environment is responsible
for deallocating any Exception it holds when it is itself destroyed. If the
Environment holds no exception, the get function returns a null pointer.

The clear() function causes the Environment to delete any Exception it is
holding. It is not an error to call clear() on an Environment holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
clear(). If an Environment contains exception information, the caller is
responsible for calling clear() on it before passing it to an operation.

17.4.1 Environment Interface

// IDL
pseudo interface Environment
{

attribute exception exception;
void clear();

};

17.4.2 Environment C++ Class

// C++
class Environment
{
 public:

void exception(Exception*);
Exception *exception() const;
void clear();

};

17.4.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Supports an attribute allowing operations on exception values as a whole rather than
on major numbers and/or identification strings.

• Supports a clear() function that is used to destroy any Exception the
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception information.

17.4.4 Memory Management

Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the
Exception* given to it.
17-4 CORBA V2.0 July 1996

17
• Ownership of the return value of the Exception *exception() member
function is maintained by the Environment; this return value must not be freed by
the caller.

17.5 NamedValue

NamedValue is used only as an element of NVList, especially in the DII.
NamedValue maintains an optional name, an any value, and labeling flags. Legal
flag values are ARG_IN, ARG_OUT, and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.

17.5.1 NamedValue Interface

// IDL
pseudo interface NamedValue
{

readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};

17.5.2 NamedValue C++ Class

// C++
class NamedValue
{
 public:

const char *name() const;
Any *value() const;
Flags flags() const;

};

17.5.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Provides no analog of the len field.

17.5.4 Memory Management

NamedValue has the following special memory management rule:

• Ownership of the return values of the name() and value() functions is
maintained by the NamedValue; these return values must not be freed by the caller.
CORBA V2.0 NamedValue July 1996 17-5

17
17.6 NVList

NVList is a list of NamedValues. A new NVList is constructed using the
ORB::create_list operation (see Section 17.12, ORB). New NamedValues may be
constructed as part of an NVList, in any of three ways:

• add—creates an unnamed value, initializing only the flags.

• add_item—initializes name and flags.

• add_value—initializes name, value, and flags.

• add_item_consume—initializes name and flags, taking over memory
management responsibilities for the char* name parameter.

• add_value_consume—initializes name, value, and flags, taking over memory
management responsibilities for both the char* name parameter and the Any*
value parameter.

Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value, add_item_consume, and add_value_consume functions lengthen
the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

17.6.1 NVList Interface

// IDL
pseudo interface NVList
{

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name,
in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};
17-6 CORBA V2.0 July 1996

17
17.6.2 NVList C++ Class

// C++
class NVList
{
 public:

ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(

const char*,
const Any&,
Flags

);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
Status remove(ULong);

};

17.6.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef.

• Provides different signatures for operations that add items in order to avoid
representation dependencies.

• Provides indexed access methods.

17.6.4 Memory Management

NVList has the following special memory management rules:

• Ownership of the return values of the add, add_item, add_value,
add_item_consume, and add_value_consume functions is maintained by the
NVList; these return values must not be freed by the caller.

• The char* parameters to the add_item_consume and add_value_consume
functions and the Any* parameter to the add_value_consume function are
consumed by the NVList. The caller may not access these data after they have been
passed to these functions, because the NVList may copy them and destroy the
CORBA V2.0 NVList July 1996 17-7

17
originals immediately. The caller should use the NamedValue::value()
operation in order to modify the value attribute of the underlying NamedValue, if
desired.

• The remove function also calls CORBA::release on the removed NamedValue.

17.7 Request

Request provides the primary support for DII. A new request on a particular target
object may be constructed using the short version of the request creation operation
shown in Section 17.13, Object.

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage.

// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {

*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor functions, the
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions.

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {

req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the creation
operation shown in the Object interface in Section 17.13, Object.
17-8 CORBA V2.0 July 1996

17
// C++
Status Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the OUT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they are
meaningless and thus ignored because argument insertion and extraction are done via
the any type.

Request also allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

• A target object reference

• An operation name

• A list of arguments (optional)

• A place to put the result (optional)

• A place to put any returned exceptions

• A Context (optional)

• A list of the user-defined exceptions that can be thrown (optional)

• A list of Context strings that must be sent with the operation (optional)

Since the Object::create_request operation allows all of these except the last
two to be specified, an ORB may have to utilize the Interface Repository in order to
discover them. Some applications, however, may not want the ORB performing
potentially expensive Interface Repository look-ups during a request invocation, so
two new serverless objects have been added to allow the application to specify this
information instead:

• ExceptionList: allows an application to provide a list of TypeCodes for all
user-defined exceptions that may result when the Request is invoked.
CORBA V2.0 Request July 1996 17-9

17
• ContextList: allows an application to provide a list of Context strings that
must be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the
context strings whose values are to be looked up and sent with the request invocation
(if applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList, ContextList, and Request are
shown next.

17.7.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attribute unsigned long count;
void add(in string ctxt);
string item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface Request
{

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute context ctx;

Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
boolean poll_response();

};
17-10 CORBA V2.0 July 1996

17
17.7.2 Request C++ Class

// C++
class ExceptionList
{
 public:

ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);

};

class ContextList
{
 public:

ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

};

class Request
{
 public:

Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
CORBA V2.0 Request July 1996 17-11

17
Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

};

17.7.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument, and so forth, with attribute-based accessors.

• Use of env attribute to access exceptions raised in DII calls.

• The invoke operation does not take a flag argument, since there are no flag values
that are listed as legal in CORBA V2.0.

• The send_oneway and send_deferred operations replace the single send
operation with flag values, in order to clarify usage.

• The get_response operation does not take a flag argument, and an operation
poll_response is defined to immediately return with an indication of whether
the operation has completed. This was done because in CORBA V2.0, if the type
Status is void, the version with RESP_NO_WAIT does not enable the caller to
determine if the operation has completed.

• The add_*_arg, set_return_type, and return_value member functions
are added as shortcuts for using the attribute-based accessors.

17.7.4 Memory Management

Request has the following special memory management rule.

• Ownership of the return values of the target, operation, arguments,
result, env, exceptions, contexts, and ctx functions is maintained by the
Request; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules.

• The add_consume function consumes its TypeCode_ptr argument. The caller
may not access the object referred to by the TypeCode_ptr after it has been
passed in because the add_consume function may copy it and release the original
immediately.

• Ownership of the return value of the item function is maintained by the
ExceptionList; this return value must not be released by the caller.

ContextList has the following special memory management rules.

• The add_consume function consumes its char* argument. The caller may not
access the memory referred to by the char* after it has been passed in because the
add_consume function may copy it and free the original immediately.
17-12 CORBA V2.0 July 1996

17
• Ownership of the return value of the item function is maintained by the
ContextList; this return value must not be released by the caller.

17.8 Context

A Context supplies optional context information associated with a method
invocation.

17.8.1 Context Interface

// IDL
pseudo interface Context
{

readonly attribute Identifier context_name;
readonly attribute context parent;

Status create_child(in Identifier child_ctx_name, out

Context child_ctx);

Status set_one_value(in Identifier propname, in any

propvalue);
Status set_values(in NVList values);
Status delete_values(in Identifier propname);
Status get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};

17.8.2 Context C++ Class

// C++
class Context
{
 public:

const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char *, Context_ptr&);

Status set_one_value(const char *, const Any &);
Status set_values(NVList_ptr);
CORBA V2.0 Context July 1996 17-13

17
Status delete_values(const char *);
Status get_values(

const char*,
Flags,
const char*,
NVList_ptr&

);
};

17.8.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.

• The signatures for values are uniformly set to any.

• In the C mapping, set_one_value used strings, while others used
NamedValues containing any. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.

17.8.4 Memory Management

Context has the following special memory management rule.

• Ownership of the return values of the context_name and parent functions is
maintained by the Context; these return values must not be freed by the caller.

17.9 Principal

A Principal represents information about principals requesting operations. There
are no defined operations.

There are no differences from the C-PIDL mapping.

17.9.1 Principal Interface

// IDL
pseudo interface Principal {};

17.9.2 Principal C++ Class

// C++
class Principal {};
17-14 CORBA V2.0 July 1996

17
17.10 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo-object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in any, as arguments for equal, and so
on. In the names of these TypeCode reference constants, <type> refers to the local
name of the type within its defining scope. Each C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo-object reference constants, the prefix _tc_ should be
used instead of the TC_ prefix prescribed in Section 6.7, Type Codes. This is to avoid
name clashes for CORBA applications that simultaneously use both the C and C++
mappings.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode. This operation can be
used to initialize TypeCode references embedded within constructed types. However,
a nil TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

17.10.1 TypeCode Interface

// IDL
pseudo interface TypeCode
{

exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal(in TypeCode tc);
TCKind kind();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

and tk_except
RepositoryId id() raises(BadKind);
Identifier name() raises(BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count() raises(BadKind);
Identifier member_name(in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type(in unsigned long index)

raises(BadKind, Bounds);
CORBA V2.0 TypeCode July 1996 17-15

17
// for tk_union
any member_label(in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type() raises(BadKind);
long default_index() raises(BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length() raises(BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type() raises(BadKind);

// deprecated interface
long param_count();
any parameter(in long index) raises(bounds);

};

17.10.2 TypeCode C++ Class

// C++
class TypeCode
{
 public:

class Bounds { ... };
class BadKind { ... };

Boolean equal(TypeCode_ptr) const;
TCKind kind() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

Long param_count() const;
Any *parameter(Long) const;

};
17-16 CORBA V2.0 July 1996

17
17.10.3 Differences from C-PIDL

For C++, use prefix _tc_ instead of TC_ for constants.

17.10.4 Memory Management

TypeCode has the following special memory management rule.

• Ownership of the return values of the id, name, and member_name functions is
maintained by the TypeCode; these return values must not be freed by the caller.

17.11 BOA

A BOA mediates between the ORB and object implementations.

17.11.1 BOA Interface

// IDL
pseudo interface BOA
{

Object create(

in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl

);
void dispose(in Object obj);
ReferenceData get_id(in Object obj);
void change_implementation(in Object obj, in

ImplementationDef impl);
Principal get_principal(in Object obj, in
Environmentev);
void impl_is_ready(in ImplementationDef impl);
void deactivate_impl(in ImplementationDef impl);
void obj_is_ready(in Object obj, in Implementation
Def impl);
void deactivate_obj(in Object obj);

};
CORBA V2.0 BOA July 1996 17-17

17
17.11.2 BOA C++ Class

// C++
class BOA
{
 public:

Object_ptr create(
const ReferenceData &,
InterfaceDef_ptr,
ImplementationDef_ptr

);
void dispose(Object_ptr);
ReferenceData *get_id(Object_ptr);
void change_implementation(

Object_ptr,
ImplementationDef_ptr

);
Principal_ptr get_principal(

Object_ptr,
Environment_ptr

);
void impl_is_ready(ImplementationDef_ptr);
void deactivate_impl(ImplementationDef_ptr);
void obj_is_ready(Object_ptr, ImplementationDef_ptr);
void deactivate_obj(Object_ptr);

};

17.11.3 Differences from C-PIDL

Means to set exceptions are moved to Environment.

17.12 ORB

An ORB is the programmer interface to the Object Request Broker.

17.12.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);
17-18 CORBA V2.0 July 1996

17
Status create_list(in long count, out NVList new_list);
Status create_operation_list(in OperationDef oper, out
NVList new_list);
Status create_named_value(out NamedValue nmval);
Status create_exception_list(out ExceptionList exclist);
Status create_context_list(out ContextList ctxtlist);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_multiple_requests_oneway(in RequestSeq req);
Status send_multiple_requests_deferred(in RequestSeq
req);
boolean poll_next_response();
Status get_next_response(out Request req);

};

17.12.2 ORB C++ Class

// C++
class ORB
{
 public:

class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
Status create_list(Long, NVList_ptr&);
Status create_operation_list(

OperationDef_ptr,
NVList_ptr&

);
Status create_named_value(NamedValue_ptr&);
Status create_exception_list(ExceptionList_ptr&);
Status create_context_list(ContextList_ptr&);

Status get_default_context(Context_ptr&);
Status create_environment(Environment_ptr&);

Status send_multiple_requests_oneway(
const RequestSeq&

);
Status send_multiple_requests_deferred(

const RequestSeq &
);
Boolean poll_next_response();
Status get_next_response(Request_ptr&);

};
CORBA V2.0 ORB July 1996 17-19

17
17.12.3 Differences from C-PIDL

• Added create_environment. Unlike the struct version, Environment
requires a construction operation. (Since this is overly constraining for
implementations that do not support real C++ exceptions, these implementations
may allow Environment to be declared on the stack. See Section D.3, Without
Exception Handling, for details.)

• Assigned multiple request support to ORB, made usage symmetrical with that in
Request, and used a sequence type rather than otherwise illegal unbounded arrays
in signatures.

• Added create_named_value, which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

• Added create_exception_list and create_context_list (see Section
17.7, Request, for more details).

17.12.4 Mapping of ORB and OA/BOA Initialization Operations

ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in Section 7.4, ORB
Initialization.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid
orb_identifier);

};

The mapping of the preceding PIDL operations to C++ is as follows:

// C++
namespace CORBA {

typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier
);

};
17-20 CORBA V2.0 July 1996

17
The C++ mapping for ORB_init (and OA_init, described in the next section)
deviates from the OMG IDL PIDL in its handling of the arg_list parameter. This is
intended to provide a meaningful PIDL definition of the initialization interface, which
has a natural C and C++ binding. To this end, the arg_list structure is replaced with
argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **), and the
number of strings in the array is passed in the argc (int &) parameter.

If a NULL ORBid is used, then argc arguments can be used to determine which ORB
should be returned. This is achieved by searching the argc parameters for one tagged
ORBid, e.g. -ORBid “ORBid_example.”

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters, they do not recognize that the ORB initialization function must be called
before the remainder of the parameters are consumed. Therefore, after the ORB_init
call, the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reorder
or remove references to parameters from the argv list; this restriction is made in order
to avoid potential memory management problems caused by trying to free parts of the
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char**&.

OA/BOA Initialization

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo-object references; it is described in detail in Section 7.5, OA
and BOA Initialization.

// PIDL
module CORBA {

interface ORB {
typedef sequence <string> arg_list;
typedef string OAid;

// Template for OA initialization operations
// <OA> <OA>_init (inout arg_list argv,
// in OAid oa_identifier);
BOA BOA_init (inout arg_list argv,

 in OAid boa_identifier);
 };

};

The mapping of the OAinit (BOA_init) operation (in the ORB interface) to the
C++ programming language is as follows.
CORBA V2.0 ORB July 1996 17-21

17
// C++
namespace CORBA {

class ORB
{
 public:

typedef string OAid;

// Template C++ binding for OA init op
// <OA>_ptr <OA>_init (int * argc,
// char **argv,
// OAid oa_identifier);
BOA_ptr BOA_init(

int & argc,
char ** argv,
const char *boa_identifier

);
};

}

If a NULL OAid is used, then argc arguments can be used to determine which OA
should be returned. This is achieved by searching the argc parameters for one tagged
OAid, e.g. -OAid “OAid_example.”

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters, they do not recognize that the OA initialization function must be called
before the remainder of the parameters are consumed by the application. Therefore,
after the <OA>_init call, the argv and argc parameters will have been modified to
remove the OA understood arguments. It is important to note that the OA_init call
can only reorder or remove references to parameters from the argv list; this
restriction is made in order to avoid potential memory management problems caused
by trying to free parts of the argv list or extending the argv list of parameters. This
is why argv is passed as a char** and not a char**&.

17.12.5 Mapping of Operations to Obtain Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo-object references for the Interface Repository and Object
Services. It is described in detail in Section 7.6, Obtaining Initial Object References.
17-22 CORBA V2.0 July 1996

17
// PIDL
module CORBA {

interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId
identifier) raises (InvalidName);

};
};

The mapping of the preceding PIDL to the C++ language is as follows.

// C++
namespace CORBA {

class ORB {
 public:

typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(

const char *identifier
);

};
}

17.13 Object

The rules in this section apply to OMG IDL interface Object, the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo-object. However, it is included here because it references other pseudo-objects.

17.13.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
Status create_request(

in Context ctx,
CORBA V2.0 Object July 1996 17-23

17
in Identifier operation,
in NVList arg_list,
in NamedValue result,
out Request request,
in Flags req_flags

);
Status create_request2(

in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags

);
};

17.13.2 Object C++ Class

In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is
split into three forms, corresponding to the usage styles described in Section 4.2.1,
create_request, and in Section 17.7, Request. The is_nil and release functions
are provided in the CORBA name space, as described in Section 16.3.3, Object
Reference Operations.

// C++
class Object
{
 public:

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
17-24 CORBA V2.0 July 1996

17
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);
Request_ptr _request(const char* operation);

};
CORBA V2.0 Object July 1996 17-25

17
17-26 CORBA V2.0 July 1996

Server-Side Mapping 18
Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross address space or machine boundaries. This mapping
addresses any implementation of an OMG IDL interface.

The required functionality for a server described here is probably a subset of the
functionality an implementor will actually need. As a consequence, in practice, few
servers will be completely compliant. However, we expect most of the server code to
be portable from one ORB implementation to another. In particular, the body of an
operation implementation will usually comply with this mapping.

18.1 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a nonstatic member
function with the mapped name of the operation (the mapped name is the same as the
OMG IDL identifier except when the identifier is a C++ keyword, in which case an
underscore (‘_’) is prepended to the identifier, as noted in Section 16.1, Preliminary
Information). Note that the ORB implementation may allow one implementation class
to derive from another, so the statement “the class defines a member function” does
not mean the class must explicitly define the member function—it could inherit the
function.

The mapping does not specify how the implementation class is related to any other
classes, including the generated class for the interface. This approach allows
implementations to use either inheritance or delegation and to include other features
from the ORB implementation (such as choosing a default transport representation).
The examples in this chapter provide sample solutions for defining implementation
classes. CORBA-compliant implementations are not required to use these alternatives.
 CORBA V2.0 July 1996 18-1

18
18.2 Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate exception (throw) specification. This
requirement allows the compiler to detect when an invalid exception is raised, which is
necessary in the case of a local C++-to-C++ library call (otherwise the call would have
to go through a wrapper that checked for a valid exception). For example:

// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyFavoriteImplementationOfA ...
{
 public:

class B : public UserException {};
void f() throw(B);
...

};

The mapping provides two operations that are accessible from within the body of a
member function: _this() and _boa(). The _this() function returns an object
reference (T_ptr) for the target object. The _boa() function returns a BOA_ptr to
the appropriate BOA object. The implementation may not assume where the _boa()
function is defined, only that it is available within the member function. The _boa()
function could be a member function, a static member function, or a static function
defined in a name space that is accessible from the member functions of the
implementation. The return values of _this() and _boa() must be released via
CORBA::release().

Within a member function, the “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

// IDL
interface A
{

void f();
void g();

};
18-2 CORBA V2.0 July 1996

18
// C++
class MyFavoriteImplementationOfA ...
{
 public:

void f();
void g();

 private:
long x_;

};

void MyFavoriteImplementationOfA::f()
{

x_ = 3;
g();

}

18.3 Examples

As with other examples shown in this mapping, the following examples are not meant
to mandate a particular implementation. Rather, they show some of the
implementations that are possible in order to help clarify the descriptions of the
mapping.

18.3.1 Using C++ Inheritance for Interface Implementation

Implementation classes can be derived from a generated base class based on the OMG
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton class.
The signature of the member function is identical to that of the generated client stub
class. The implementation class provides implementations for these member functions.
The BOA invokes the methods via calls to the skeleton class’s virtual functions.

The following OMG IDL interface will be used in all the examples in this section.

// IDL
interface A
{

short op1();
void op2(in long l);

};

An IDL compiler generates an interface class A for this interface. This class contains
the C++ definitions for the typedefs, constants, exceptions, attributes, and operations in
the OMG IDL interface. It has a form similar to the following:
CORBA V2.0 Examples July 1996 18-3

18
// C++
class A : public virtual CORBA::Object
{
 public:

virtual Short op1() = 0;
virtual void op2(Long l) = 0;
...

};

Some ORB implementations might not use public virtual inheritance from
CORBA::Object, and might not make the operations pure virtual, but the signatures
of the operations will be the same.

On the server side, a skeleton class can be generated. This class is partially opaque to
the programmer, though it will contain a member function corresponding to each
operation in the interface.

// C++
class _sk_A : public A
{
 public:

// ...server-side implementation-specific detail
// goes here...
virtual Short op1() = 0;

virtual void op2(Long l) = 0;
...

};

To implement this interface, a programmer must derive from this skeleton class and
implement each of the operations in the OMG IDL interface. An implementation class
declaration for interface A would take the following form:

// C++
class A_impl : public _sk_A
{
 public:

Short op1();

void op2(Long l);
...

};

18.3.2 Using Delegation for Interface Implementation

Inheritance is not always the best solution for implementing interfaces. Using
inheritance from the OMG IDL–generated classes forces a C++ inheritance hierarchy
on the implementor. Sometimes, the overhead of such inheritance is too high. For
example, implementing OMG IDL interfaces with existing legacy code might be
impossible if inheritance from some global class was enforced.
18-4 CORBA V2.0 July 1996

18
In some cases delegation can be used to good effect to solve this problem. Rather than
inheriting from some global class, the implementation can be coded in any way at all,
and some wrapper classes will delegate up-calls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 18.3.1, Using
C++ Inheritance for Interface Implementation, will again be used.

// IDL
interface A
{

short op1();
void op2(in long l);

};

An OMG IDL compiler will generate a (possibly abstract) class A in C++ defining this
interface.

Normally, the server implementor will have to derive from this class or some related
class to implement a server-side object. However, the OMG IDL compiler could
generate another class, called a tie. This class is partially opaque to the application
programmer, though like the skeleton, it provides a method corresponding to each
OMG IDL operation.

// C++
template <class T>
class _tie_A : public A
{
 public:

_tie_A(T &t);
Short op1();
void op2(Long l);
...

};

This class performs the task of delegation. When the template is instantiated with a
class that supports the operations of A, then the _tie_A class will delegate all
operations to that implementation class. When an instance of this class is created, then
a reference to the actual implementation class is passed to the constructor. Typically
the implementation will just call the corresponding method in the implementation class
via this reference.
CORBA V2.0 Examples July 1996 18-5

18
// C++
template <class T>
class _tie_A : public A
{
 public:

_tie_A(T &t) : _ref(t) {}
Short op1() {return _ref.op1();}
void op2(Long l) {_ref.op2(l);}

 private:
T &_ref;

};

18.4 Mapping of Dynamic Skeleton Interface to C++

Section 5.3, Dynamic Skeleton Interface: Language Mapping, contains general
information about mapping the Dynamic Skeleton Interface to programming
languages.

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++

• Mapping of the Basic Object Adapter’s Dynamic Implementation Routine to C++

18.4.1 Mapping of ServerRequest to C++

The ServerRequest pseudo-object maps to a C++ class in the CORBA name space,
which supports the following operations and signatures.

// C++
class ServerRequest
{
 public:

Identifier op_name() throw(SystemException);
OperationDef_ptr op_def() throw(SystemException);
Context_ptr ctx() throw(SystemException);
void params(NVList_ptr parameters)

throw(SystemException);
void result(Any *value) throw(SystemException);
void exception(Any *value) throw(SystemException);

};

Note that, as with the rest of the C++ mapping, ORB implementations are free to make
such operations virtual, and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the
string returned by op_name(), in parameters in the NVList, or the context returned
18-6 CORBA V2.0 July 1996

18
by ctx(). Similarly, data allocated by the DIR and handed to the ORB (the NVList
parameters, any result value, and exception values) is freed by the ORB rather than by
the DIR.

18.4.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
params() operation. The NVList provided by the DIR to the ORB includes the
TypeCodes (inside a NamedValue) for all parameters, including out ones (their values
are null pointers at first), for the operation. This allows the ORB to verify that the
correct parameter types have been provided before filling their values in, but does not
require it to do so. It also relieves the ORB of all responsibility to consult the interface
repository, promoting high-performance implementations.

The NVList provided to the ORB then becomes owned by the ORB. It will not be
deallocated until after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVList after
params() has been called.

In order to guarantee that the ORB could always verify parameter lists, and to detect
errors such as omitted parameters, Dynamic Implementation Routines are always
required to call params(), even when the DIR believes that no parameters are used
by the operation. When the DIR believes no parameters are used by the operation, it
passes an empty NVList.

The ServerRequest will not send a response to the invocation until the DIR
returns. If a return value is required, the result() operation must be invoked to
provide that value to the ORB. Where no return value is required, this need not be
invoked.

The params() and result() operations may be called only once, and in that exact
order.

18.4.3 Sample Usage

In typical use, the DIR receives an up-call. It will determine the operation signature by
using op_def() to consult a private cache of OperationDef information. This
allows it to create an NVList and fill in the TypeCodes for all the operation’s
parameters: the in values, out values, and inout values. Then the DIR calls
params() with that NVList. At this point, the value pointers for all in and inout
(the input side only) parameters in that NVList are valid.

The DIR then performs the work for the request, using the target object reference to
determine to which real object the request relates. Next, it stores the value pointers for
out and inout parameters into the NVList, and reports any result() data. It then
returns from the DIR up-call, signifying to the ORB that it could send any response
message. Finally, the ORB frees the data allocated by the DIR (in the NVList and in
the result) after it to the client.
CORBA V2.0 Mapping of Dynamic Skeleton Interface to C++ July 1996 18-7

18
18.4.4 Reporting Exceptions

To report an exception, rather than provide return values, the DIR provides the
exception value inside an any, and passes that to exception(). As with result data,
the data would be freed by the ORB after the DIR returns. (The DIR cannot in general
throw exceptions, since in order to “throw” or “catch,” C++ systems require type
information that can only be generated at compile time. DSI, like DII, cannot rely on
such compile-time support.)

All exceptions are presented as values embedded in an any. This is required since the
use of C++ catch/throw for user-defined exceptions relies on data generated by a C++
compiler, which will not be available to general bridges (which are constructed without
any OMG IDL compiler support).

The exception() routine can be called only once, after params() is called. It may
not be called if result() has been called.

18.4.5 Mapping of BOA’s Dynamic Implementation Routine

C++ server side mappings, implementation objects are C++ objects. To use the DSI, an
object implements a class in the BOA name space that has a single member function
with the following signature:

// C++
class DynamicImplementation
{
 public:

virtual void invoke(
CORBA::ServerRequestRef request,
CORBA::Environment&env

) throw (
// NO exceptions... uses ServerRequest::exception()

) = 0;
...

};

The env parameter is used in the BOA::get_principal() operation. Note that, as
with the rest of the C++ mapping, the implementation inherits this interface, and may
support other methods as well.

As with other C++ based operation implementations, two functions are accessible
within the body of methods: _this(), returning an object reference
(Object_ptr) for the target object, and _boa(), returning a BOA_ptr to the
appropriate BOA. The method code may not assume where these two routines are
defined.
18-8 CORBA V2.0 July 1996

C++ Definitions for CORBA E
This appendix provides a complete set of C++ definitions for the CORBA module. The
definitions appear within the C++ name space named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations; they are not the
required definitions for these types.

 E.1 Primitive Types
typedef unsigned char Boolean;
typedef unsigned char Char;
typedef unsigned char Octet;
typedef short Short;
typedef unsigned short UShort;
typedef long Long;
typedef unsigned long ULong;
typedef float Float;
typedef double Double;

 E.2 String_var Class
 class String_var
 {
 public:

 String_var();
 String_var(char *p);
 String_var(const char *p);
 String_var(const String_var &s);
 ~String_var();
 String_var &operator=(char *p);
 CORBA V2.0 July 1996 E-1

E

 String_var &operator=(const char *p);
 String_var &operator=(const String_var &s);
 operator char*();
 operator const char*() const;
 char &operator[](ULong index);
 char operator[](ULong index) const;

 };

 E.3 Any Class
class Any
{

 public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);
~Any();

Any &operator=(const Any&);

void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
void operator<<=(Float);
void operator<<=(Double);
void operator<<=(const Any&);
void operator<<=(const char*);

Boolean operator>>=(Short&) const;
Boolean operator>>=(UShort&) const;
Boolean operator>>=(Long&) const;
Boolean operator>>=(ULong&) const;
Boolean operator>>=(Float&) const;
Boolean operator>>=(Double&) const;

Boolean operator>>=(Any&) const;
Boolean operator>>=(char*&) const;

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
E-2 CORBA V2.0 July 1996

struct from_char {
from_char(Char c) : val(c) {}
Char val;

};
struct from_string {

from_string(char* s, ULong b) : val(s), bound(b) {}
char *val;
ULong bound;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_octet);
void operator<<=(from_string);

// special types needed for boolean, octet, char extraction
// these are suggested implementations only
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_object {

to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;

void replace(TypeCode_ptr, void *value, Boolean release =
CORBA V2.0 July 1996 E-3

E

FALSE);

TypeCode_ptr type() const;
const void *value() const;

 private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert or extract
// multiple IDL types mapped to unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

};

 E.4 Any_var Class
class Any_var
{
 public:

Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();
// other conversion operators for parameter passing

};

 E.5 Exception Class
// C++
class Exception
{
 public:

Exception(const Exception &);
~Exception();
Exception &operator=(const Exception &);

 protected:
Exception();

};

 E.6 SystemException Class
// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,
E-4 CORBA V2.0 July 1996

COMPLETED_MAYBE };
class SystemException : public Exception
{
 public:

SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

};

 E.7 UserException Class
// C++
class UserException : public Exception
{
 public:

UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

};

 E.8 UnknownUserException Class
// C++
class UnknownUserException : public UserException
{
 public:

Any &exception();
};

 E.9 release and is_nil
// C++
namespace CORBA {

void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
CORBA V2.0 July 1996 E-5

E

void release(Principal_ptr);
void release(TypeCode_ptr);
void release(BOA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(Principal_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(BOA_ptr);
Boolean is_nil(ORB_ptr);
...

}

 E.10 Object Class
// C++
class Object
{
 public:

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);
Request_ptr _request(const char* operation);

};
E-6 CORBA V2.0 July 1996

 E.11 Environment Class
// C++
class Environment
{
 public:

void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate();
static Environment_ptr _nil();

};

 E.12 NamedValue Class
// C++
class NamedValue
{
 public:

const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate();
static NamedValue_ptr _nil();

};

 E.13 NVList Class
// C++
class NVList
{
 public:

ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&, Flags);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
CORBA V2.0 July 1996 E-7

E

Status remove(ULong);

static NVList_ptr _duplicate();
static NVList_ptr _nil();

};

 E.14 ExceptionList Class
// C++
class ExceptionList
{

 public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);

};

 E.15 ContextList Class
class ContextList
{
 public:

ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

};

 E.16 Request Class
// C++
class Request
{
 public:

Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;
E-8 CORBA V2.0 July 1996

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();

Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

static Request_ptr _duplicate();
static Request_ptr _nil();

};

 E.17 Context Class
// C++
class Context
{
 public:

const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char*, Context_ptr&);

Status set_one_value(const char*, const Any&);
Status set_values(NVList_ptr);
Status delete_values(const char*);
Status get_values(const char*, Flags, const char*,
NVList_ptr&);

static Context_ptr _duplicate();
static Context_ptr _nil();

};

 E.18 Principal Class
// C++
class Principal
{
 public:

static Principal_ptr _duplicate();
static Principal_ptr _nil();

};
CORBA V2.0 July 1996 E-9

E

 E.19 TypeCode Class
// C++
class TypeCode
{
 public:

class Bounds { ... };
class BadKind { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;
ULong length() const;

TypeCode_ptr content_type() const;

Long param_count() const;
Any *parameter(Long) const;

static TypeCode_ptr _duplicate();
static TypeCode_ptr _nil();

};

 E.20 BOA Class
// C++
class BOA
{
 public:

Object_ptr create(
const ReferenceData&,
InterfaceDef_ptr,
ImplementationDef_ptr

);
void dispose(Object_ptr);
ReferenceData *get_id(Object_ptr);
void change_implementation(Object_ptr, ImplementationDef_ptr);
Principal_ptr get_principal(Object_ptr, Environment_ptr);
E-10 CORBA V2.0 July 1996

void impl_is_ready(ImplementationDef_ptr);
void deactivate_impl(ImplementationDef_ptr);
void obj_is_ready(Object_ptr, ImplementationDef_ptr);
void deactivate_obj(Object_ptr);

static BOA_ptr _duplicate();
static BOA_ptr _nil();

};

 E.21 ORB Class
// C++
class ORB
{
 public:

typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
Status create_list(Long, NVList_ptr&);
Status create_operation_list(OperationDef_ptr, NVList_ptr&);
Status create_named_value(NamedValue_ptr&);
Status create_exception_list(ExceptionList_ptr&);
Status create_context_list(ContextList_ptr&);

Status get_default_context(Context_ptr&);
Status create_environment(Environment_ptr&);

Status send_multiple_requests_oneway(const RequestSeq&);
Status send_multiple_requests_deferred(const RequestSeq&);
Boolean poll_next_response();
Status get_next_response(Request_ptr&);

// OA initialization
typedef string OAid;

// Template C++ binding for OA init op
// <OA>_ptr <OA>_init(int * argc,
// char **argv,
// OAid oa_identifier);
BOA_ptr BOA_init(int & argc, char ** argv, const char
*boa_identifier);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(const char *identifier);

static ORB_ptr _duplicate();
CORBA V2.0 July 1996 E-11

E

static ORB_ptr _nil();
};

 E.22 ORB Initialization
// C++
typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier
);

 E.23 ServerRequest Class

// C++
class ServerRequest
{
 public:

Identifier op_name() throw(SystemException);
OperationDef_ptr op_def() throw(SystemException);
Context_ptr ctx() throw(SystemException);
void params(NVList_ptr parameters)

throw(SystemException);
void result(Any *value) throw(SystemException);
void exception(Any *value) throw(SystemException);

};
E-12 CORBA V2.0 July 1996

Alternative Mappings for C++
Dialects F
This appendix describes alternative mappings for C++ dialects that do not match the
assumptions specified in Section 15.1.2, C++ Implementation Requirements.
Conforming implementations do not have to provide these workarounds if their C++
compiler supports the required features.

 F.1 64-bit Integers

IDL translators that support 64-bit integer types should map the signed type to
LongLong and the unsigned type to ULongLong, where both names are defined in
the CORBA name space.

 F.2 Without Name Spaces

If the target environment does not support the namespace construct but does support
nested classes, then a module should be mapped to a C++ class. If the environment
does not support nested classes, then the mapping for modules should be the same as
for the CORBA C mapping (concatenating identifiers using an underscore (“_”)
character as the separator).

Note that module constants map to file-scope constants on systems that support name
spaces and class-scope constants on systems that map modules to classes.

 F.3 Without Exception Handling

For those C++ environments that do not support real C++ exception handling, referred
to here as non-exception handling (non-EH) C++ environments, an Environment
parameter passed to each operation is used to convey exception information to the
caller.

As shown in Section 17.4, Environment, the Environment class supports the ability
to access and modify the Exception it holds.
 CORBA V2.0 July 1996 F-1

F

As shown in Section 16.15, Mapping for Exception Types, both user-defined and
system exceptions form an inheritance hierarchy that normally allow types to be caught
either by their actual type or by a more general base type. When used in a non-EH C++
environment, the narrowing functions provided by this hierarchy allow for examination
and manipulation of exceptions.

// IDL
interface A
{
exception Broken { ... };
void op() raises(Broken);
};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {
if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception
} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...
}
}

Section 17.12, ORB, specifies that Environment must be created using
ORB::create_environment, but this is overly constraining for implementations
requiring an Environment to be passed as an argument to each method invocation.
For implementations that do not support real C++ exceptions, Environment may be
allocated as a static, automatic, or heap variable. For example, all of the following are
legal declarations on a non-EH C++ environment.

// C++
Environment global_env; // global
static Environment static_env;// file static

class MyClass
{

 public:
...
 private:
static Environment class_env; // class static

};

void func()
{
Environment auto_env; // auto
Environment *new_env = new Environment;// heap
F-2 CORBA V2.0 July 1996

F

...
}

For ease of use, Environment parameters are passed by reference in non-EH
environments.

// IDL
interface A
{
exception Broken { ... };
void op() raises(Broken);
};

// C++
class A ...
{
 public:
void op(Environment &);
...
};

For additional ease of use in non-EH environments, Environment should support
copy construction and assignment from other Environment objects. These additional
features are helpful for propagating exceptions from one Environment to another
under non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and
ORB run-times must ensure that all out and return pointers are returned to the caller
as null pointers. If noninitialized or “garbage” pointer values are returned, client
application code could experience run-time errors due to the assignment of bad
pointers to T_var types. When a T_var goes out of scope, it attempts to delete the
T* given to it; if this pointer value is garbage, a run-time error will almost certainly
occur.

 F.4 Without Run-Time Type Information (RTTI)

For C++ environments that do not support RTTI, the Exception class provides for
narrowing within the exception hierarchy.

// C++
class UserException : public Exception
{
 public:
static UserException *_narrow(Exception *);
};

class SystemException : public Exception
{
 public:
static SystemException *_narrow(Exception *);
};
CORBA V2.0 July 1996 F-3

F

Each exception class supports a static member function named _narrow. The
parameter to the _narrow call is a pointer to the base class Exception. If the
parameter is a null pointer, the return type of _narrow is a null pointer. If the actual
(run-time) type of the parameter exception can be widened to the requested exception’s
type, then _narrow will return a valid pointer to the parameter Exception.
Otherwise, _narrow will return a null pointer.

Unlike the _narrow operation on object references, the _narrow operation on
exceptions returns a suitably-typed pointer to the same exception parameter, not a
pointer to a new exception. If the original exception goes out of scope or is otherwise
destroyed, the pointer returned by _narrow is no longer valid.
F-4 CORBA V2.0 July 1996

C++ Keywords G
Table G-1 lists all C++ keywords from the 4/28/95 Committee Draft of the ANSI
(X3J16) C++ Language Standardization Committee.

Table G-1 C++ Keywords

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit extern

false float for friend goto

if inline int long mutable

namespace new not not_eq operator

or or_eq private protected public

register reinterpret_cast return short signed

sizeof static static_cast struct switch

template this throw true try

typedef typeid typename union unsigned

using virtual void volatile wchar_t

while xor xor_eq
 CORBA V2.0 July 1996 G-1

G

G-2 CORBA V2.0 July 1996

Smalltalk Mapping Overview 19
This chapter provides the following information:

• A rationale for the design of the Smalltalk mapping

• An overview of how the Smalltalk mapping is organized in this manual

• A mini-glossary of terms used in the Smalltalk chapters

• Requirements for an implementation of an OMG IDL–to–Smalltalk mapping

• Constraints imposed on an implementation of the OMG IDL–to–Smalltalk
mapping

19.1 Key Design Decisions
The mapping of OMG IDL to the Smalltalk programming language was designed with the
following goals in mind:

• The Smalltalk mapping does not prescribe a specific implementation. Smalltalk
class names are specified, as needed, since client code will need the class name
when generating instances of datatypes. A minimum set of messages that classes
must support is listed for classes that are not documented in the Smalltalk
Common Base. The inheritance structure of classes is never specified.

• Whenever possible, OMG IDL types are mapped directly to existing, portable
Smalltalk classes.

• The Smalltalk constructs defined in this mapping rely primarily upon classes and
methods described in the Smalltalk Common Base document.

• The Smalltalk mapping only describes the public (client) interface to Smalltalk
classes and objects supporting IDL. Individual IDL compilers or CORBA
implementations might define additional private interfaces.

• The implementation of OMG IDL interfaces is left unspecified. Implementations
may choose to map each OMG IDL interface to a separate Smalltalk class;
provide one Smalltalk class to map all OMG IDL interfaces; or allow arbitrary
Smalltalk classes to map OMG IDL interfaces.
 CORBA V2.0 July 1995 19-1

19
• Because of the dynamic nature of Smalltalk, the mapping of the any and union
types is such that an explicit mapping is unnecessary. Instead, the value of the
any and union types can be passed directly. In the case of the any type, the
Smalltalk mapping will derive a TypeCode which can be used to represent the
value. In the case of the union type, the Smalltalk mapping will derive a
discriminator which can be used to represent the value.

• The explicit passing of environment and context values on operations is not
required.

• Except in the case of object references, no memory management is required for
data parameters and return results from operations. All such Smalltalk objects
reside within Smalltalk memory, so garbage collection will reclaim their storage
when they are no longer used.

• The proposed language mapping has been designed with the following vendor's
Smalltalk implementations in mind: VisualWorks; Smalltalk/V; and VisualAge.

19.1.1 Consistency of Style, Flexibility and Portability of Implementation

To ensure flexibility and portability of implementations, and to provide a consistent
style of language mapping, the Smalltalk chapters use the programming style and
naming conventions as described in the following documents:

• Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-
Wesley Publishing Company, Reading, MA. 1989.

• Smalltalk Portability: A Common Base. ITSC Technical Bulletin GG24-3093,
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapters, Smalltalk Portability: A Common Base is referred to
as Smalltalk Common Base.)

The items listed below are the same for all Smalltalk classes used in the Smalltalk
mapping:

• If the class is described in the Smalltalk Common Base document, the class must
conform to the behavior specified in the document. If the class is not described in
the Smalltalk Common Base document, the minimum set of class and instance
methods that must be available is described for the class.

• All data types (except object references) are stored completely within Smalltalk
memory, so no explicit memory management is required.

• The mapping is consistent with the common use of Smalltalk. For example,
sequence is mapped to instances of OrderedCollection, instead of
creating a Smalltalk class for the mapping.

19.2 Organization of the Smalltalk Mapping

In addition to this overview, the mapping of OMG IDL to the Smalltalk programming
language is divided into the following chapters:

• Mapping of all OMG IDL constructs (as defined in Chapter 3, OMG IDL Syntax
and Semantics) to Smalltalk constructs

• Mapping of OMG IDL pseudo-objects to Smalltalk
19-2 CORBA V2.0 July 1995

19
19.3 Glossary of Terms

Smalltalk object. An object defined using the Smalltalk language.

Message. Invocation of a Smalltalk method upon a Smalltalk object.

Message Selector. The name of a Smalltalk message. In this document, the message
selectors are denoted by just the message name when the class or protocol they are
associated with is given in context, otherwise the notation class>>method or
protocol>>method will be used to explicitly denote the class or protocol the
message is associated with.

Method. The Smalltalk code associated with a message.

Class. A Smalltalk class.

Protocol. A set of messages that a Smalltalk object must respond to. Protocols are
used to describe the behavior of Smalltalk objects without specifying their class.

CORBA Object. An object defined in OMG IDL, accessed and implemented through
an ORB.

Object Reference. A value which uniquely identifies an object.

IDL compiler. Any software that accesses OMG IDL specifications and generates or
maps Smalltalk code that can be used to access CORBA objects.

19.4 Implementation Constraints

This sections describes how to avoid potential problems with an OMG IDL–to–
Smalltalk implementation.

19.4.1 Avoiding Name Space Collisions

There is one aspect of the language mapping that can cause an OMG IDL compiler to
map to incorrect Smalltalk code and cause name space collisions. Because Smalltalk
implementations generally only support a global name space, and disallow underscore
characters in identifiers, the mapping of identifiers used in OMG IDL to Smalltalk
identifiers can result in a name collision. See Section 20.2, “Conversion of Names to
Smalltalk Identifiers,” on page 20-2 for a description of the name conversion rules.

As an example of name collision, consider the following OMG IDL declaration:

interface Example {
void sample_op () ;
CORBA V2.0 Glossary of Terms July 1995 19-3

19
void sampleOp () ;
};

Both of these operations map to the Smalltalk selector sampleOp. In order to prevent
name collision problems, each implementation must support an explicit naming
mechanism, which can be used to map an OMG IDL identifier into an arbitrary
Smalltalk identifier. For example, #pragma directives could be used as the
mechanism.

19.4.2 Limitations on OMG IDL Types

This language mapping places limitations on the use of certain types defined in OMG
IDL.

For the any and union types, specific integral and floating point types may not be
able to be specified as values. The implementation will map such values into an
appropriate type, but if the value can be represented by multiple types, the one actually
used cannot be determined.1 For example, consider the union definition below.

union Foo switch (long) {
 case 1: long x;
 case 2: short y;
};

When a Smalltalk object corresponding to this union type has a value that fits in both
a long and a short, the Smalltalk mapping can derive a discriminator 1 or 2, and map
the integral value into either a long or short value (corresponding to the value of the
discriminator determined).

19.5 Smalltalk Implementation Requirements
This mapping places requirements on the implementation of Smalltalk that is being used
to support the mapping. These are:

• An integral class, conforming to the Integer class definition in the Smalltalk
Common Base.

• A floating point class, conforming to the Float class definition in the Smalltalk
Common Base.

• A class named Character conforming to the Character class definition in
the Smalltalk Common Base.

• A class named Array conforming to the Array class definition in the
Smalltalk Common Base.

• A class named OrderedCollection conforming to the
OrderedCollection class definition in the Smalltalk Common Base.

• A class named Dictionary conforming to the Dictionary class
definition in the Smalltalk Common Base.

1.To avoid this limitation for union types, the mapping allows programmers to specify an explicit
binding to retain the value of the discriminator. See Section 20.12, “Mapping for Union Types,”
on page 20-8 for a complete description.
19-4 CORBA V2.0 July 1995

19
• A class named Association conforming to the Association class
definition in the Smalltalk Common Base.

• A class named String conforming to the String class definition in the
Smalltalk Common Base.

• Objects named true, false conforming to the methods defined for Boolean
objects, as specified in the Smalltalk Common Base.

• An object named nil, representing an object without a value.

• A global variable named Processor, which can be sent the message
activeProcess to return the current Smalltalk process, as defined in the
document Smalltalk-80: The Language. This Smalltalk process must respond to
the messages corbaContext: and corbaContext.

• A class which conforms to the CORBAParameter protocol. This protocol
defines Smalltalk instance methods used to create and access inout and out
parameters. The protocol must support the following instance messages:

value
Answers the value associated with the instance

value: anObject
Resets the value associated with the instance to anObject

To create an object that supports the CORBAParameter protocol, the message
asCORBAParameter can be sent to any Smalltalk object. This will return a
Smalltalk object conforming to the CORBAParameter protocol, whose value will be
the object it was created from. The value of that CORBAParameter object can be
subsequently changed with the value: message.
CORBA V2.0 Smalltalk Implementation Requirements July 1995 19-5

19
19-6 CORBA V2.0 July 1995

 Mapping of OMG IDL to Smalltalk 20
This chapter describes the mapping of OMG IDL constructs to Smalltalk constructs.

20.1 Mapping Summary

TABLE 30 on page 20-1 provides a brief description of the mapping of OMG IDL
constructs to the Smalltalk language, and where in this chapter they are discussed.

Table 20-1 Summary of this Chapter

OMG IDL
Construct Smalltalk Mapping Where Discussed

Interface Set of messages that Smalltalk objects which
represent object references must respond to. The
set of messages corresponds to the attributes and
operations defined in the interface and inherited
interfaces.

Section 20.3, “Mapping for Inter-
faces,” on page 20-3.

Object Refer-
ence

Smalltalk object that represents a CORBA object.
The Smalltalk object must respond to all
messages defined by a CORBA object’s interface.

Section 20.5, “Mapping for
Objects,” on page 20-3.

Operation Smalltalk message. Section 20.1.7, “Mapping for Oper-
ations,” on page 20-10.

Attribute
Smalltalk message.

Section 20.7, ”Mapping for
Attributes,” on page 20-4.

Constant Smalltalk objects available in the
CORBAConstants dictionary.

Section 20.7.1, “Mapping for Con-
stants,” on page 20-5.

Integral Type Smalltalk objects that conform to the Integer
class.

Section 20.8, “Mapping for Basic
Data Types,” on page 20-5.
 CORBA V2.0 July 1995 20-1

20
20.2 Conversion of Names to Smalltalk Identifiers

The use of underscore characters in OMG IDL identifiers is not allowed in all
Smalltalk language implementations. Thus, a conversion algorithm is required to
convert names used in OMG IDL to valid Smalltalk identifiers.

To convert an OMG IDL identifier to a Smalltalk identifier, remove each underscore
and capitalize the following letter (if it exists). In order to eliminate possible
ambiguities which may result from these conventions, an explicit naming mechanism
must also be provided by the implementation. For example, the #pragma directive
could be used.

Floating Point
Type

Smalltalk objects which conform to the Float
class.

Described in Section 20.8, “Map-
ping for Basic Data Types,” on
page 20-5.

Boolean Type Smalltalk true or false objects. Described in Section 20.8,
“Mapping for Basic Data Types,”
on page 20-5.

Enumeration
Type

Smalltalk objects which conform to the COR-
BAEnum protocol.

Section 20.10, “Mapping for
Enums,” on page 20-7.

Any Type
Smalltalk objects that can be mapped into an
OMG IDL type.

Section 20.9, “Mapping for the any
Type,” on page 20-7.

Structure
Type

Smalltalk object that conforms to the
Dictionary class.

Section 20.11, “Mapping for Struct
Types,” on page 20-8.

Union Type Smalltalk object that maps to the possible value
types of the OMG IDL union or that conform to
the CORBAUnion protocol.

Section 20.12, “Mapping for Union
Types,” on page 20-8.

Sequence
Type

Smalltalk object that conforms to the
OrderedCollection class.

Section 20.13, “Mapping for
Sequence Types,” on page 20-10.

String Type Smalltalk object that conforms to the String
class.

Section 20.14, “Mapping for String
Types,” on page 20-10.

Array Type Smalltalk object that conforms to the Array
class.

Section 20.15, “Mapping for Array
Types,” on page 20-10.

Exception
Type Smalltalk object that conforms to the Dictio-

nary class.

Section 20.16, “Mapping for
Exception Types,” on page 20-10.

Table 20-1 Summary of this Chapter (Continued)

OMG IDL
Construct Smalltalk Mapping Where Discussed
20-2 CORBA V2.0 July 1995

20
For example, the OMG IDL identifiers:

add_to_copy_map
describe_contents

become Smalltalk identifiers

addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables have an
uppercase first letter, while other names have a lowercase first letter.

20.3 Mapping for Interfaces

Each OMG IDL interface defines the operations that object references with that
interface must support. In Smalltalk, each OMG IDL interface defines the methods that
object references with that interface must respond to.

Implementations are free to map each OMG IDL interface to a separate Smalltalk class,
map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary Smalltalk classes
to OMG IDL interfaces.

20.4 Memory Usage

One of the design goals is to make every Smalltalk object used in the mapping a pure
Smalltalk object: namely datatypes used in mappings do not point to operating system
defined memory. This design goal permits the mapping and users of the mapping to
ignore memory management issues, since Smalltalk handles this itself (via garbage
collection). Smalltalk objects which are used as object references may contain pointers
to operating system memory, and so must be freed in an explicit manner.

20.5 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object called an object
reference. The object must respond to all messages defined by that CORBA object's
interface.

An object reference can have a value which indicates that it represents no CORBA object.
This value is the standard Smalltalk value nil.

20.6 Invocation of Operations
OMG IDL and Smalltalk message syntaxes both allow zero or more input parameters to
be supplied in a request. For return values, Smalltalk methods yield a single result object,
whereas OMG IDL allows an optional result and zero or more out or inout parameters to
be returned from an invocation. In this binding, the non-void result of an operation is
returned as the result of the corresponding Smalltalk method, whereas out and inout
parameters are to be communicated back to the caller via instances of a class conforming
to the CORBAParameter protocol, passed as explicit parameters.
CORBA V2.0 Mapping for Interfaces July 1995 20-3

20
For example, the following operations in OMG IDL:

boolean definesProperty(in string key);
void defines_property(
in string key,
out boolean is_defined);

are used as follows in the Smalltalk language:

aBool := self definesProperty: aString.

self
definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property_protection(in string key,
out Protection pval);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_list,
inout DynamicInvocation::NamedValue result,
out Request request,
in Flags req_flags);

would be invoked in the Smalltalk language as:

aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject
createRequest: aContext
operation: anIdentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of OMG IDL operations that are specified with a void return type is
undefined.

20.7 Mapping for Attributes

OMG IDL attribute declarations are a shorthand mechanism to define pairs of simple
accessing operations; one to get the value of the attribute and one to set it. Such
accessing methods are common in Smalltalk programs as well, thus attribute
declarations are mapped to standard methods to get and set the named attribute value,
respectively.
20-4 CORBA V2.0 July 1995

20
For example:

attribute string title;
readonly attribute string my_name;

means that Smalltalk programmers can expect to use title and title: methods to
get and set the title attribute of the CORBA object, and the myName method to retrieve
the my_name attribute.

20.7.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interface
and module definitions. OMG IDL constant values are stored in a dictionary named
CORBAConstants under the fully qualified name of the constant, not subject to the
name conversion algorithm. The constants are accessed by sending the at: message
to the dictionary with an instance of a String whose value is the fully qualified
name.

For example, given the following OMG IDL specification,

module ApplicationBasics{
const CopyDepth shallow_cpy = 4;
};

the ApplicationBasics::shallow_cpy constant can be accessed with the following
Smalltalk code

value := CORBAConstants at:
'::ApplicationBasics::shallow_cpy'.

After this call, the value variable will contain the integral value 4.

20.8 Mapping for Basic Data Types
The following basic datatypes are mapped into existing Smalltalk classes. In the case of
short, unsigned short, long, unsigned long, float, double, and octet, the actual
class used is left up to the implementation, for the following reasons:

• There is no standard for Smalltalk that specifies integral and floating point classes
and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the classes are
made available as constants included in code, or as the result of computation.

The basic datatypes are mapped as follows:

short

An OMG IDL short integer falls in the range [-215,215-1]. In Smalltalk, a short is
represented as an instance of an appropriate integral class.
CORBA V2.0 Mapping for Basic Data Types July 1995 20-5

20
long

An OMG IDL long integer falls in the range [-231,231-1]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.

unsigned short

An OMG IDL unsigned short integer falls in the range [0,216-1]. In Smalltalk, an
unsigned short is represented as an instance of an appropriate integral class.

unsigned long

An OMG IDL unsigned long integer falls in the range [0,232-1]. In Smalltalk, an
unsigned long is represented as an instance of an appropriate integral class.

float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an instance
of an appropriate floating point class.

double

An OMG IDL double conforms to the IEEE double-precision (64-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a double is represented as an
instance of an appropriate floating point class.

char

An OMG IDL character holds an 8-bit quantity mapping to the ISO Latin-1 (8859.1)
character set. In Smalltalk, a character is represented as an instance of Character.

boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In Smalltalk,
a boolean is represented by the values true or false, respectively.

octet

An OMG IDL octet is an 8-bit quantity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instance of an appropriate
integral class with a value in the range [0,255].
20-6 CORBA V2.0 July 1995

20
20.9 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determined
at runtime, an explicit mapping of the any type to a particular Smalltalk class is not
required. Instead, wherever an any is required, the user may pass any Smalltalk object
which can be mapped into an OMG IDL type. For instance, if an OMG IDL structure
type is defined in an interface, a Dictionary for that structure type will be mapped.
Instances of this class can be used wherever an any is expected, since that Smalltalk
object can be mapped to the OMG IDL structure.

Likewise, when an any is returned as the result of an operation, the actual Smalltalk
object which represents the value of the any data structure will be returned.

20.10 Mapping for Enums
OMG IDL enumerators are stored in a dictionary named CORBAConstants under the
fully qualified name of the enumerator, not subject to the name conversion algorithm. The
enumerators are accessed by sending the at: message to the dictionary with an instance
of a String whose value is the fully qualified name.

These enumerator Smalltalk objects must support the CORBAEnum protocol, to allow
enumerators of the same type to be compared. The order in which the enumerators are
named in the specification of an enumeration defines the relative order of the enumerators.
The protocol must support the following instance methods:

< aCORBAEnum
Answers true if the receiver is less than aCORBAEnum, otherwise answers
false.

<= aCORBAEnum
Answers true if the receiver is less than or equal to aCORBAEnum, otherwise
answers false.

= aCORBAEnum
Answers true if the receiver is equal to aCORBAEnum, otherwise answers false.

> aCORBAEnum
Answers true if the receiver is greater than aCORBAEnum, otherwise answers
false.

>= aCORBAEnum
Answers true if the receiver is greater than or equal to aCORBAEnum, otherwise
answers false.
CORBA V2.0 Mapping for the Any Type July 1995 20-7

20
For example, given the following OMG IDL specification,

module Graphics{
enum ChartStyle

{lineChart, barChart, stackedBarChart, pieChart};
};

the Graphics::lineChart enumeration value can be accessed with the following
Smalltalk code

value := CORBAConstants at: '::Graphics::lineChart'.

After this call, the value variable is assigned to a Smalltalk object that can be compared
with other enumeration values.

20.11 Mapping for Struct Types
An OMG IDL struct is mapped to an instance of the Dictionary class. The key for
each OMG IDL struct member is an instance of Symbol whose value is the name of the
element converted according to the algorithm in Section 20.2. For example, a structure
with a field of my_field would be accessed by sending the at: message with the key
#myField.

For example, given the following OMG IDL declaration:

struct Binding {
Name binding_name;
BindingType binding_type;
};

the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName

and set as follows:

aBindingStruct at: #bindingName put: aName

20.12 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are provided: an implicit binding
and an explicit binding.1 The implicit binding takes maximum advantage of the
dynamic nature of Smalltalk and is the least intrusive binding for the Smalltalk
programmer. The explicit binding retains the value of the discriminator and provides
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding semantics
is implementation specific, all implementations must provide both mechanisms.

1.Although not required, implementations may choose to provide both implicit and explicit map-
pings for other OMG IDL types, such as structs and sequences. In the explicit mapping, the
OMG IDL type is mapped to a user specified Smalltalk class.
20-8 CORBA V2.0 July 1995

20
Binding semantics is expected to be specifiable on a per-union declaration basis, for
example using the #pragma directive.

20.12.1 Implicit Binding

Wherever a union is required, the user may pass any Smalltalk object that can be
mapped to an OMG IDL type, and whose type matches one of the types of the values
in the union. Consider the following example:

structure S { long x; long y; };

union U switch (short) {
case 1: S s;
case 2: long l;
default: char c;
};

In the example above, a Dictionary for structure S will be mapped. Instances of
Dictionary with runtime elements as defined in structure S, integral numbers, or
characters can be used wherever a union of type U is expected. In this example,
instances of these classes can be mapped into one of the S, long, or char types, and
an appropriate discriminator value can be determined at runtime.

Likewise, when an union is returned as the result of an operation, the actual Smalltalk
object which represents the value of the union will be returned.

20.12.2 Explicit Binding

Use of the explicit binding will result in specific Smalltalk classes being accepted and
returned by the ORB. Each union object must conform to the CORBAUnion protocol.
This protocol must support the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the discriminator associated with the instance.

value
Answers the value associated with the instance.

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by any Smalltalk object.
This method will return a Smalltalk object conforming to the CORBAUnion protocol,
whose discriminator will be set to aDiscriminator and whose value will be set to
the receiver of the message.
CORBA V2.0 Mapping for Union Types July 1995 20-9

20
20.13 Mapping for Sequence Types

Instances of the OrderedCollection class are used to represent OMG IDL
elements with the sequence type.

20.14 Mapping for String Types

Instances of the Smalltalk String class are used to represent OMG IDL elements
with the string type.

20.15 Mapping for Array Types

Instances of the Smalltalk Array class are used to represent OMG IDL elements with
the array type.

20.16 Mapping for Exception Types

Each defined exception type is mapped to an instance of the Dictionary class. See
Section 6.20.1 for a complete description.

20.17 Mapping for Operations

OMG IDL operations having zero parameters map directly to Smalltalk unary
messages, while OMG IDL operations having one or more parameters correspond to
Smalltalk keyword messages. To determine the default selector for such an operation,
begin with the OMG IDL operation identifier and concatenate the parameter name of
each parameter followed by a colon, ignoring the first parameter. The mapped selector
is subject to the identifier conversion algorithm.
For example, the following OMG IDL operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect_push_supplier(
in EventComm::PushSupplier push_supplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:
20-10 CORBA V2.0 July 1995

20
20.18 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional context
must be passed as parameters to each operation, this Smalltalk mapping does not
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message. So
although it is not a parameter on the operation, it is a required part of the operation
invocation.

This mapping defines the CORBAExceptionEvent protocol to convey exception
information in place of the environment used in the C mapping. This protocol can
either be mapped into native Smalltalk exceptions or used in cases where native
Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk process by sending
the message corbaContext: to the current process, along with a valid context
parameter. The current context can be retrieved by sending the corbaContext
message to the current process.

The current process may be obtained by sending the message activeProcess to
the Smalltalk global variable named Processor.

20.19 Argument Passing Considerations

All parameters passed into and returned from the Smalltalk methods used to invoke
operations are allocated in memory maintained by the Smalltalk virtual machine. Thus,
explicit free()ing of the memory is not required. The memory will be garbage
collected when it is no longer referenced.

The only exception is object references. Since object references may contain pointers
to memory allocated by the operating system, it is necessary for the user to explicitly
free them when no longer needed. This is accomplished by using the operation
release of the CORBA::Object interface.

20.20 Handling Exceptions

OMG IDL allows each operation definition to include information about the kinds of
run-time errors which may be encountered. These are specified in an exception
definition which declares an optional error structure which will be returned by the
operation should an error be detected. Since Smalltalk exception handling classes are
not yet standardized between existing implementations, a generalized mapping is
provided.

In this binding, an IDL compiler creates exception objects and populates the
CORBAConstants dictionary. These exception objects are accessed from the
CORBAConstants dictionary by sending the at: message with an instance of a
String whose value is the fully qualified name. Each exception object must conform
to the CORBAExceptionEvent protocol. This protocol must support the
following instance methods:
CORBA V2.0 Implicit Arguments to Operations July 1995 20-11

20
corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message
corbaHandle:do: with appropriate handler and scoping blocks as parameters.
The aBlock parameter is the Smalltalk block to evaluate. It is passed no parameters.
The aHandlerBlock parameter is a block to evaluate when an exception occurs.
It has one parameter: a Smalltalk object which conforms to the
CORBAExceptionValue protocol.

corbaRaise

Exceptions may be raised by sending an exception object the message corbaRaise.

corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message
corbaRaiseWith:. The parameter is expected to be an instance of the Smalltalk
Dictionary class, as described below.

For example, given the following OMG IDL specification,

interface NamingContext {
...

exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};

the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev | "error handling logic here"]
do: [aNamingContext destroy].

20.20.1 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values are
constructed using instances of the Smalltalk Dictionary class. The keys of the
dictionary are the names of the elements of the exception, the names of which are
converted using the algorithm in Section 20.2, “Conversion of Names to Smalltalk
Identifiers,” on page 20-2. The following example illustrates how exception values are
used:
20-12 CORBA V2.0 July 1995

20
interface NamingContext {

 ...

 exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

Object resolve (in Name n)
raises (CannotProceed);

 ...

};

would be raised in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value:
aNamingContext)

with: (Association key: #restOfName value:
aName)).

20.20.2 The CORBAExceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing it one argument
which conforms to the CORBAExceptionValue protocol. This protocol must
support the following instance messages:

corbaExceptionValue

Answers the Dictionary the exception was raised with.

Given the NamingContext interface defined in the previous section, the following code
illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle:[:ev |

cxt:=ev corbaExceptionValue at: #cxt.
restOfName :=ev corbaExceptionValue at:

#restOfName]
do:[aNamingContext destroy].

In this example, the cxt and restOfName variables will be set to the respective
values from the exception structure, if the exception is raised.
CORBA V2.0 Handling Exceptions July 1995 20-13

20
20-14 CORBA V2.0 July 1995

Mapping of Pseudo-Objects to
Smalltalk 21
CORBA defines a small set of standard interfaces which define types and operations for
manipulating object references, for accessing the Interface Repository, and for Dynamic
Invocation of operations. Other interfaces are defined in pseudo OMG IDL (PIDL) to
represent in a more abstract manner programmer access to ORB services which are
provided locally. These PIDL interfaces sometimes resort to non-OMG IDL constructs,
such as pointers, which have no meaning to the Smalltalk programmer. This chapter
specifies the minimal requirements for the Smalltalk mapping for PIDL interfaces. The
operations are specified below as protocol descriptions.

Parameters with the name aCORBAObject are expected to be Smalltalk objects, which
can be mapped to an OMG IDL interface or data type.

Unless otherwise specified, all messages are defined to return undefined objects.

21.1 CORBA::Request

The CORBA::Request interface is mapped to the CORBARequest protocol, which
must include the following instance methods:

addArg: aCORBANamedValue
Corresponds to the add_arg operation.

invoke
Corresponds to the invoke operation with the invoke_flags set to 0.

invokeOneway
Corresponds to the invoke operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

send
Corresponds to the send operation with the invoke_flags set to 0.
 CORBA V2.0 July 1995 21-1

21
sendOneway
Corresponds to the send operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

pollResponse
Corresponds to the get_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if the response is complete, false
otherwise.

getResponse
Corresponds to the get_response operation, with the response_flags set to 0.

21.2 CORBA::Context

The CORBA::Context interface is mapped to the CORBAContext protocol, which
must include the following instance methods:

setOneValue: anAssociation
Corresponds to the set_one_value operation.

setValues: aCollection
Corresponds to the set_values operation. The parameter passed in should be a
collection of Associations.

getValues: aString
Corresponds to the get_values operation without a scope name and op_flags =
CXT_RESTRICT_SCOPE. Answers a collection of Associations.

getValues: aString propName: aString
Corresponds to the get_values operation with op_flags set to
CXT_RESTRICT_SCOPE. Answers a collection of Associations.

getValuesInTree: aString propName: aString
Corresponds to the get_values operation with op_flags set to 0. Answers a collection
of Associations.

deleteValues: aString
Corresponds to the delete_values operation.

createChild: aString
Corresponds to the create_child operation. Answers a Smalltalk object conforming to
the CORBAContext protocol.

delete
Corresponds to the delete operation with flags set to 0.

deleteTree
Corresponds to the delete operation with flags set to
CTX_DELETE_DESCENDENTS.
21-2 CORBA V2.0 July 1995

21
21.3 CORBA::Object

The CORBA::Object interface is mapped to the CORBAObject protocol, which
must include the following instance methods:

getImplementation
Corresponds to the get_implementation operation. Answers a Smalltalk object
conforming to the CORBAImplementationDef protocol.

getInterface
Corresponds to the get_interface operation. Answers a Smalltalk object conforming
to the CORBAInterfaceDef protocol.

isNil
Corresponds to the is_nil operation. Answers true or false indicating whether or
not the object reference represents an object.

createRequest: aCORBAContext

operation: aCORBAIdentifier

argList: aCORBANVListOrNil

result: aCORBAParameter

request: aCORBAParameter

reqFlags: flags

Corresponds to the create_request operation.

duplicate
Corresponds to the duplicate operation. Answers a Smalltalk object representing an
object reference, conforming to the interface of the CORBA object.

release1

Corresponds to the release operation.

21.4 CORBA::ORB

The CORBA::ORB interface is mapped to the CORBAORB protocol, which must
include the following instance methods:

objectToString: aCORBAObject
Corresponds to the object_to_string operation. Answers an instance of the String
class.

1.The semantics of this operation will have no meaning for those implementations that rely
exclusively on the Smalltalk memory manager.
CORBA V2.0 CORBA::Object July 1995 21-3

21
stringToObject: aString
Corresponds to the string_to_object operation. Answers an object reference, which
will be an instance of a class which corresponds to the InterfaceDef of the CORBA
object.

createOperationList: aCORBAOperationDef
Corresponds to the create_operation_list operation. Answers an instance of
OrderedCollection of Smalltalk objects conforming to the
CORBANamedValue protocol.

getDefaultContext
Corresponds to the get_default_context operation. Answers a Smalltalk object
conforming to the CORBAContext protocol.

sendMultipleRequests: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to
0.The parameter passed in should be a collection of Smalltalk objects conforming to
the CORBARequest protocol.

sendMultipleRequestsOneway: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set
to CORBA::INV_NO_RESPONSE. The parameter passed in should be a
collection of Smalltalk objects conforming to the CORBARequest protocol.

pollNextResponse
Corresponds to the get_next_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if there are completed requests
pending, false otherwise.

getNextResponse
Corresponds to the get_next_response operation, with the response_flags set to 0.

21.5 CORBA::NamedValue

PIDL for C defines CORBA::NamedValue as a struct while C++-PIDL specifies it
as an interface. CORBA::NamedValue in this mapping is specified as an interface
that conforms to the CORBANamedValue protocol. This protocol must include the
following instance methods:

name
Answers the name associated with the instance.

name: aString
Resets the name associated with instance to aString.

value
Answers the value associated with the instance.

value: aCORBAObject
Resets the value associated with instance to aCORBAObject.
21-4 CORBA V2.0 July 1995

21
flags
Answers the flags associated with the instance.

flags: argModeFlags
Resets the flags associated with instance to argModeFlags.

To create an object that supports the CORBANamedValue protocol, the instance
method asCORBANamedValue: aName flags: argModeFlags can be
invoked by any Smalltalk object. This method will return a Smalltalk object conforming to
the CORBANamedValue protocol, whose attributes associated with the instance will
be set appropriately.

21.6 CORBA::NVList
The CORBA::NVList interface is mapped to the equivalent of the OMG IDL definition

typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing the NVList type should be instances of the
OrderedCollection class, whose elements are Smalltalk objects conforming to
the CORBANamedValue protocol.
CORBA V2.0 CORBA::NVList July 1995 21-5

21
21-6 CORBA V2.0 July 1995

Glossary
activation Preparing an object to execute an operation. For example, copying the persistent
form of methods and stored data into an executable address space to allow execu-
tion of the methods on the stored data.

adapter Same as object adapter.

attribute An identifiable association between an object and a value. An attribute A is made
visible to clients as a pair of operations: get_A and set_A. Readonly attributes
only generate a get operation.

basic object adapter The object adapter described in Chapter 8.

behavior The observable effects of an object performing the requested operation including
its results binding. See language binding, dynamic invocation, static invocation,
or method resolution for alternatives.

class See interface and implementation for alternatives.

client The code or process that invokes an operation on an object.

context object A collection of name-value pairs that provides environmental or user-preference
information. See Chapter 4.

CORBA Common Object Request Broker Architecture.

data type A categorization of values operation arguments, typically covering both behavior
and representation (i.e., the traditional non-OO programming language notion of
type).

deactivation The opposite of activation.

deferred synchronous request A request where the client does not wait for completion of the request, but does
intend to accept results later. Contrast with synchronous request and one-way
request.
 CORBA V2.0 July 1996 Glossary-1

domain A concept important to interoperability, it is a distinct scope, within which com-
mon characteristics are exhibited, common rules observed, and over which a dis-
tribution transparency is preserved.

dynamic invocation Constructing and issuing a request whose signature is possibly not known until
run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle requests
whose signatures are possibly not known until run-time.

externalized object reference An object reference expressed as an ORB-specific string. Suitable for storage in
files or other external media.

implementation A definition that provides the information needed to create an object and allow
the object to participate in providing an appropriate set of services. An imple-
mentation typically includes a description of the data structure used to represent
the core state associated with an object, as well as definitions of the methods that
access that data structure. It will also typically include information about the
intended interface of the object.

implementation definition language
A notation for describing implementations. The implementation definition lan-
guage is currently beyond the scope of the ORB standard. It may contain vendor-
specific and adapter-specific notations.

implementation inheritance The construction of an implementation by incremental modification of other
implementations. The ORB does not provide implementation inheritance. Imple-
mentation inheritance may be provided by higher level tools.

implementation object An object that serves as an implementation definition. Implementation objects
reside in an implementation repository.

implementation repository A storage place for object implementation information.

inheritance The construction of a definition by incremental modification of other definitions.
See interface and implementation inheritance.

instance An object is an instance of an interface if it provides the operations, signatures
and semantics specified by that interface. An object is an instance of an imple-
mentation if its behavior is provided by that implementation.

interface A listing of the operations and attributes that an object provides. This includes
the signatures of the operations, and the types of the attributes. An interface defi-
nition ideally includes the semantics as well. An object satisfies an interface if it
can be specified as the target object in each potential request described by the
interface.

interface inheritance The construction of an interface by incremental modification of other interfaces.
The IDL language provides interface inheritance.

interface object An object that serves to describe an interface. Interface objects reside in an inter-
face repository.
Glossary-2 CORBA V2.0 July 1996

interface repository A storage place for interface information.

interface type A type satisfied by any object that satisfies a particular interface.

interoperability The ability for two or more ORBs to cooperate to deliver requests to the proper
object. Interoperating ORBs appear to a client to be a single ORB.

language binding or mapping The means and conventions by which a programmer writing in a specific pro-
gramming language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perform a
requested service. Methods associated with an object may be structured into one
or more programs.

method resolution The selection of the method to perform a requested operation.

multiple inheritance The construction of a definition by incremental modification of more than one
other definition.

object A combination of state and a set of methods that explicitly embodies an abstrac-
tion characterized by the behavior of relevant requests. An object is an instance
of an implementation and an interface. An object models a real-world entity, and
it is implemented as a computational entity that encapsulates state and operations
(internally implemented as data and methods) and responds to request or ser-
vices.

object adapter The ORB component which provides object reference, activation, and state
related services to an object implementation. There may be different adapters
provided for different kinds of implementations.

object creation An event that causes the existence of an object that is distinct from any other
object.

object destruction An event that causes an object to cease to exist.

object implementation Same as implementation.

object reference A value that unambiguously identifies an object. Object references are never
reused to identify another object.

objref An abbreviation for object reference.

one-way request A request where the client does not wait for completion of the request, nor does it
intend to accept results. Contrast with deferred synchronous request and synchro-
nous request.

operation A service that can be requested. An operation has an associated signature, which
may restrict which actual parameters are valid.

operation name A name used in a request to identify an operation.

ORB Object Request Broker. Provides the means by which clients make and receive
requests and responses.
CORBA V2.0 July 1996 Glossary-3

ORB core The ORB component which moves a request from a client to the appropriate
adapter for the target object.

parameter passing mode Describes the direction of information flow for an operation parameter. The
parameter passing modes are IN, OUT, and INOUT.

persistent object An object that can survive the process or thread that created it. A persistent object
exists until it is explicitly deleted.

referential integrity The property ensuring that an object reference that exists in the state associated
with an object reliably identifies a single object.

repository See interface repository and implementation repository.

request A client issues a request to cause a service to be performed. A request consists of
an operation and zero or more actual parameters.

results The information returned to the client, which may include values as well as status
information indicating that exceptional conditions were raised in attempting to
perform the requested service.

server A process implementing one or more operations on one or more objects.

server object An object providing response to a request for a service. A given object may be a
client for some requests and a server for other requests.

signature Defines the parameters of a given operation including their number order, data
types, and passing mode; the results if any; and the possible outcomes (normal
vs. exceptional) that might occur.

single inheritance The construction of a definition by incremental modification of one definition.
Contrast with multiple inheritance.

skeleton The object-interface-specific ORB component which assists an object adapter in
passing requests to particular methods.

state The time-varying properties of an object that affect that object’s behavior.

static invocation Constructing a request at compile time. Calling an operation via a stub proce-
dure.

stub A local procedure corresponding to a single operation that invokes that operation
when called.

synchronous request A request where the client pauses to wait for completion of the request. Contrast
with deferred synchronous request and one-way request.

transient object An object whose existence is limited by the lifetime of the process or thread that
created it.

type See data type and interface.

value Any entity that may be a possible actual parameter in a request. Values that serve
to identify objects are called object references.
Glossary-4 CORBA V2.0 July 1996

Symbols
_boa 18-2
_duplicate 16-5, 16-6
_major 14-23
_narrow 16-7, F-4
_nil 16-7
_ptr field accessor 16-16
_this 18-2
_tie_A class 18-5
_var 16-5

Numerics
64-bit integer

C++
mapping for 64-bit integer-supporting compilers F-1

A
A_ptr 16-4, F-2
A_var 16-4
aBool 20-4
abstract base class 16-3
access function 16-18
aCORBAObject 21-1, 21-4
activation 1-8, Glossary-1
addArg 21-1
aDiscriminator instance method 20-9
aggregate type 16-45
alias 16-29
AliasDef

OMG IDL for 6-21
alignment 12-8
ANSI/ISO C++ standardization committees 15-1, G-1
Any class

helper types 16-36
any class E-2
any type 3-22, 4-2, 12-14, 13B-9, 13B-41, 14-9, 16-30, 19-2, 20-7

conversion of typed values into 16-31
Any_var 16-41
application object 3
ARef 16-4
argv 14-31
array

sample mapping to OLE collection C-1
syntax of 3-26

array slice 16-19
Array_forany 16-28
Array_var 16-28
ArrayDef

OMG IDL for 6-23
assignment operator 16-12, 16-18
attribute Glossary-1

defined 1-7
mapped to OLE 13C-4
mapping to COM 13B-24
mapping to OLE Automation 13A-10
mapping to programming languages 14-4

attribute declaration
syntax of 3-30

Attribute_Def
OMG IDL for 6-25
July 1996 Index-1

Automation View Dual interface, default name 13A-31
Automation View interface 13C-2, 13C-17

non-dual 13C-38
Automation View interface class id 13A-31
Automation View interface, default name 13A-30
Automation View interface, default tag 13A-30

B
BAD_PARAM exception 16-48
BadCall exception 14-23
base exception class 16-42
base interface 3-15
base interface type 16-6
basic data types

and different platforms 16-10
mapped from OMG IDL to C 14-9
mapped from OMG IDL to C++ 16-10
mapped to programming languages 14-2

basic object adapter 13C-39, 17-17, 17-21, 18-3
and persistence 8-10
implementation policies 8-6
mapped to C 14-28
mapped to C++ 18-8
requests to 8-5
requests to an implementation 8-5

big-endian 12-6, 12-7
binding 13A-20
BindingIterator interface D-11
BOA

see basic object adapter
BOA interface

OMG PIDL for 8-4, 17-17
BOA_init operation

mapped to C++ 17-21
BOA_ptr 18-2
boolean D-11
boolean is_a operation

OMG PIDL for 7-4
boolean type 16-10, 20-6
boolean types 3-22, 12-7, 16-10

mapped to C 14-9
bridge

architecture of inter-ORB 10-2
in networks 10-10
inter-domain 10-9
inter-ORB 9-2, 9-5, 10-6
locality 13A-32

bridging techniques 10-8

C
C

_major field 14-23
and is_nil operation 14-6
any type 14-9
argv parameter 14-31
attribute mapping examples 14-7
BadCall exception 14-23
basic data type mapping 14-9
boolean types 14-9
get_principal operation 14-29
Index-2 CORBA V2.0

getting object references for Interface Repository and Object Services 14-33
global name 14-4
inheritance of operations 14-7
object adapter initialization 14-32
ORB initialization 14-31
set_exception operation 14-29
signature of Dynamic Implementation Routine 14-28
underscore characters in mapping 14-7

C++ 16-44
_boa operation 18-2
_duplicate 16-5, 16-6
_narrow 16-7, F-4
_nil 16-7
_ptr field accessor 16-16
_this operation 18-2
_tie_A class 18-5
_var 16-5
A* 16-4
A_ptr 16-4, F-2
A_var 16-4
abstract base class 16-3
aggregate types 16-45
alias 16-29
and struct 16-15
Any class interface 16-36
any type 16-39
Any_var 16-41
ARef 16-4
arglist 17-21
arithmetic operations 16-4
array 16-27
array slice 16-19
Array_forany 16-28
Array_var 16-28
assignment operator 16-18
automatic release 16-46
basic data type mapping 16-10
BOA interface, OMG PIDL for 17-17
BOA_init operation 17-21
BOA_ptr 18-2
boolean type 16-10
catch clause 16-43
char type 16-10
char* 16-11
CompletionStatus 16-42
constant 16-9
Context interface, OMG PIDL for 17-13
conversion to void* 16-4
CORBA

Object 17-1
CORBA Boolean 16-10
CORBA Char 16-10
CORBA Double 16-10
CORBA Float 16-10
CORBA long 16-10
CORBA namespace E-1
CORBA Octet 16-10
CORBA Short 16-10
CORBA ULong 16-10
July 1996 Index-3

CORBA UShort 16-10
delete 16-14
deleting old character data 16-46
discriminant 16-18
Double 16-10
duplicate 16-6
dynamic_cast<T*> 16-43
enumeration type 16-11
Environment F-2
Environment interface, OMG PIDL for 17-3
example of inheritance and interfaces 18-3
extraction of values 16-35
Float 16-10
function overloading 16-31
generated class 16-3
getting object references for Interface Repository and Object Services 17-22
implicit release 16-4
implicit widening 16-5
insertion of a string type 16-32
insertion of arrays,type-safe 16-33
is_nil operation 16-6
keywords 16-2, G-1
keywords, list of G-1
left-shift-assign operator 16-32
Long 16-10
mapped for non-exception handling environments F-1
mapped for non-namespace environments F-1
mapped for non-RTTI environments F-3
mapped to object adapter initialization operations 17-21
mapped to ORB initialization operations 17-20
mapping compatability to C 15-2
modifier function 16-19
NamedValue interface, OMG PIDL for 17-5
namespace 15-2, 16-3
nested constant 16-9
NVList interface, OMG PIDL for 17-6
NVList type 18-7
OAinit 17-21
object adapter initialization 17-21
Object interface, OMG PIDL for 17-23
object reference variable type 16-4
Object_ptr 16-6
Object_var 16-6
octet type 16-10
oneway 16-44
operation-specific arguments 16-45
operator< 16-31
operator-> 16-14
operator>>= 16-35
operator[] 16-23
ORB initialization 17-20
ORB interface, OMG PIDL for 17-18
ORB_init operation 17-21
overloaded subscript operator 16-23
parameter passing 16-45
pointer type 16-4
portability of implementations 16-10
primitive type E-1
principal pseudo object 17-14
Index-4 CORBA V2.0

read-write access 16-19
relational operations 16-4
release operation 16-6
release parameter 16-23
replace function 16-40
Request interface, OMG PIDL for 17-10
returning or passing null pointers 16-47
right-shift-operator 16-35
run time type information 16-43
sample COM mapping 13B-16
sample interface mapping 16-8
sequence types 16-21
server 18-1
set function 16-44
setting union value 16-18
sizeof(T) 16-2
skeleton class 18-4
slice 16-28
split allocation 16-45
storage 16-47
string union members 16-20
String_var 16-11
structured types 16-12
SystemException 16-42
T *data constructor 16-23
T_ptr 18-2
T_ptr* 16-24
T_var 16-13, F-3
template 18-5
throw exception 18-2
tie class 18-5
type function 16-40
TypeCode 16-31
TypeCode and value, mismatched 16-31
TypeCode interface, OMG PIDL for 17-15
TypeCode_ptr 16-41, 17-15
typedef 16-29
ULong 16-10
underscore 18-1
union members 16-18
unsafe operations 16-40
untyped value 16-39
UserException 16-41
UShort 16-10
using statement 16-2, 16-3
value function 16-40
void* 16-40

catch clause 16-43
caught 16-43
CDR 12-4

features of 12-2
change_implementation operation 8-9
char type 3-22, 16-10
char* 16-11
char** 16-24
character type 12-7
client 2-6
CloseConnection 12-25
CLSID 13A-31, 13B-46
July 1996 Index-5

COM
described 13A-3

COM View interface, default name 13A-30
COM View interface,default tag 13A-29
Common Data Representation

see CDR
Common Facilities 3
CompletionStatus 16-42
compliance 6
component

tags for B-1
Component Object Model

see COM 13A-3
ConnectionPoint Service D-2
constant 16-9
constant declaration

syntax of 3-17
constants

mapping to programming languages 14-2
constructed data types 12-8

mapping to programming languages 14-2
Contained interface

OMG IDL for 6-9
Container interface 6-7

OMG IDL for 6-12
containment 10-6
Context interface

OMG PIDL for 17-13
context object 4-12
copy constructor 16-12
CORBA

contributors 7
core 4
documentation set 3
general language mapping requirements 14-1
getResponse instance method 21-2
interoperability 4
namespace E-1
Object 17-1
object references and request level bridging 11-5

CORBA module
C++ definitions for E-1
Context interface 4-14
description of 3-31
NVList interface 4-10
object class 16-6
Request interface 4-4
types defined by 4-1

CORBA_free 4-3
CORBAComposite interface 13B-52
CORBAConstants 20-5, 20-7, 20-11, 20-12
CORBAContext protocol 21-2, 21-4
CORBAEnum protocol 20-7
CORBAExceptionEvent 20-11
CORBAExceptionEvent protocol 20-11
CORBAExceptionValue protocol 20-12, 20-13
CORBANamedValue protocol 21-4, 21-5
CORBAObject protocol 21-3
CORBAORB protocol 21-3
Index-6 CORBA V2.0

CORBAParameter 20-3
corbaRaise message 20-12
CORBARequest protocol 21-1
CORBAUnion protocol 20-9
core, compliance 6
CosNaming interface D-7
create_list operation 4-2
create_request operation 7-3
createRequest 20-4
CreateType method 13C-30

D
data type

basic OMG IDL 3-20–3-22
constructed OMG IDL 3-22–3-25
constructs for OMG IDL 3-19
native 3-21
OMG IDL template 3-25–3-26

DCE 9-1, 13B-1
DCE CIOP

pipe interface, DCE IDL for 13-5
DCE CIOP module

OMG IDL for 13-25
DCE ESIOP 10-18

see also DCE CIOP
DCE UUID 13A-17
DCE-CIOP

storage in IOR 13-4
DCORBATypeCode interface 13C-25
DCORBAUnion interface 13C-23
DCORBAUserException interface 13C-33
deactivate_impl operation 8-7
deactivate_obj operation 8-7
deactivation 1-8
derived interface 3-15
DICORBAAny interface 13A-27, 13C-26
DICORBAFactory interface 13A-24, 13C-28, 13C-29
DICORBAStruct interface 13C-22
DICORBASystemException interface 13C-35
DICORBATypeCode interface 13C-25
DICORBAUnion interface 13C-23, 13C-24
DICORBAUserException interface 13C-33
Dictionary 20-12
DIForeignComplexType interface 13C-21
DII

see Dynamic Invocation interface
discriminant 16-18
discriminator instance method 20-9
dispose operation 8-9
domain 10-1

architecture 10-5
containment 10-6
federation 10-6
naming objects for multiple 10-11
object references 10-12
object referencing for 10-12–10-14
security 11-3

double 20-6
double type 16-10
Dual interface 13A-12, 13C-4
July 1996 Index-7

duplicate 16-6
duplicate operation 16-6
Dynamic Implementation Routine

C signature 14-28
mapped to C 14-28
mapped to C++ 18-8

Dynamic Invocation interface 12-14, 13B-30, 13C-39
overview of 2-3, 2-8
parameters 4-1
request level bridging 11-5
request routines 4-4
return status 4-3

Dynamic Skeleton interface 11-4, 13C-39
mapped to C++ 18-6
mapping to C 14-26
overview of 2-4, 2-8

dynamic_cast<T*> 16-43

E
encapsulation 12-9

defined 12-4
enum 12-9
enumerated types 3-24
enumeration type 16-11
Environment interface

OMG PIDL for 17-3
environment specific inter-ORB protocol for OSF’s DCE environment

see DCE ESIOP
environment-specific inter_ORB protocol

see ESIOP
ESIOP 9-1, 9-4
ExceptionDef interface

OMG IDL for 6-24
exceptions 16-44

COM and CORBA compared 13B-12
COM exception structure example 13B-17
mapped to COM error codes 13B-48, 13C-36
mapped to COM interfaces 13B-20
mapped to programming languages 14-3

expression
context 3-29
raises 3-29

F
federation 10-6
fixed-length 14-10
float type 16-10, 20-6
floating point data type 12-6
floating point type 3-21
fonts

used in this manual 7
foreign object system

integration of 2-17
full bridge 11-2
fully scoped names

defined 3-31

G
general inter-ORB protocol

see GIOP
Index-8 CORBA V2.0

generated class 16-3
generic pointer 16-39
get function 16-44
get_interface operation 7-3

OMG PIDL for 7-3
get_interface() operation 6-7
get_principal operation 14-29
GIOP 9-2, 10-18

alignment for primitive data types 12-5
and language mapping 12-8
and primitive data types 12-3, 12-5
any type 12-14
array type 12-8
cancel request header, OMG IDL for 12-20
close connection message 12-23, 12-24
constucted data types 12-8
context pseudo object 12-14
exception 12-14
floating point data type 12-6
goals of 12-1
implementation on various transport protocols 12-23
integer data types 12-5
locate reply header, OMG IDL for 12-22
locate request header, OMG IDL for 12-21
magic 12-29
mapping to TCP/IP transport protocol 12-27
message header, OMG IDL for 12-16
message type 12-15
primitive data types 12-5
principal pseudo object 12-14
relationship to IIOP 9-3
reply message, OMG IDL for 12-19
RepositoryId parameters 12-12
request header, OMG IDL for 12-17
TCKind 12-10
typecode 12-10

GIOP module 12-17, 12-21, 12-22
OMG IDL for 12-29

global name 3-32, 14-4
and inheritance 3-32
and Interface Repository ScopedName 6-8
and Smalltalk 19-3

H
hash operation 7-5
hexadecimal string 10-18
HRESULT 13B-11, 13C-5, 13C-10, 13C-38

constants and their values 13B-12

I
IConnectionPointContainer interface D-2
ICORBA_Context interface 13B-33
ICORBAFactory interface 13A-24, 13A-36
ICORBAObject interface 13A-27
ICustomer

Get_Profile interface 13B-26
identifier 3-14
IDispatch interface 13A-4, 13A-11, 13C-10
IDLType interface 6-8
July 1996 Index-9

IEnumConnectionPoints interface D-4
IEnumConnections interface D-4
IForeignException interface 13C-32
IForeignObject interface 13A-26, 13A-36, 13C-18
IID 13A-17, 13A-29, 13B-46
IIOP 10-15, 10-18, 12-1, 12-27, 13A-18, 13A-32, 13A-33

defined 12-27
host 12-28
object key 12-28
port 12-28
relationship to GIOP 9-3
version 12-28

IIOP module 12-28
OMG IDL for 12-31

IIOP profile
OMG IDL for 12-27

IMonikerProvider interface 13A-23, 13A-36
impl_is_ready operation 8-6
implementation

defined 1-8, Glossary-2
model for 1-7

Implementation Repository
overview of 2-10
relationship to Basic Object Adapter 8-5

implementation skeleton
overview of 2-8

ImplementationDef interface 8-5
implicit context 10-9, 11-6
infix operator 3-18
inheritance

COM mapping for 13B-26
OLE Automation mapping for 13C-5

inheritance, multiple 13A-11
inheritance, single 13C-5
Initialization interfaces 7-6, 13C-41
initializing the CORBA environment 7-6
in-line bridging 11-1
integer data type 12-5
integer tdata type 3-21
interface

defined 1-5, Glossary-2
interface identifier

see IID 13A-17
interface inheritance 16-5
interface object 6-6
Interface Repository 2-5, 12-12

AliasDef, OMG IDL 6-21
and COM EX repository id 13C-33
and COM mapping 13A-11
and identifiers 6-8
and request level bridging 11-5
ArrayDef, OMG IDL 6-23
AttributeDef, OMG IDL 6-25
Contained interface, OMG IDL 6-9
Container 6-7
Container interface, OMG IDL 6-12
ExceptionDef interface 6-24
IDLType 6-8
inserting information 6-3
Index-10 CORBA V2.0

InterfaceDef, OMG IDL 6-28
IRObject interface 6-7
IRObject interface, OMG IDL 6-9
legal typecodes 6-37
location of interfaces in 6-7
mapped to OLE type library 13B-53
ModuleDef interface, OMG IDL 6-17
OMG IDL for 6-41
OperationDef, OMG IDL 6-26
overview of 2-9, 6-1
PrimitiveDef, OMG IDL 6-21
Repository interface, OMG IDL 6-16
SequenceDef, OMG IDL 6-22
StringDef, OMG IDL 6-22
StructDef, OMG IDL 6-19
TypeCode 6-40
TypeCode interface, OMG IDL 6-34

InterfaceDef 6-7
OMG IDL for 6-28

InterfaceDef interface 8-5, 13B-54
Internet inter-ORB protocol

see IIOP
interoperability

and Object Services 10-19
architecture of 10-1
compliance 9-5
domain 10-5
examples of 9-5
object service-specific information, passing 10-18, 12-3
overview of 9-1
primitive data types 12-5
RFP for 10-1

interoperability, compliance 6
interoperable object reference

see IOR
interworking 13A-13

any type 13B-41
array to collection mapping C-1
Automation View Dual interface 13A-31
Automation View interface 13A-30, 13A-31
BindingIterator interface, mapped to ODL D-11
bridges 13A-32
COM aggregation mechanism 13C-39
COM data types mapped to CORBA types 13B-2
COM Service D-2
COM View interface 13A-29, 13A-30
compliance 6
ConnectionPoint Service D-2
CORBA_Context interface 13B-33
CORBAComposite interface 13B-52
CosNaming interface

mapped to ODL D-7
DCORBATypeCode interface 13C-25
DCORBAUnion interface 13C-23
DCORBAUserException interface 13C-33
DICORBAAny interface 13A-27, 13C-26
DICORBAFactory interface 13A-24, 13C-28, 13C-29
DICORBAStruct interface 13C-22
DICORBASystemException interface 13C-35
July 1996 Index-11

DICORBATypeCode interface 13C-25
DICORBAUnion interface 13C-23, 13C-24
DICORBAUserException interface 13C-33
DIForeignComplexType interface 13C-21
Dual interface 13A-12, 13C-4
HRESULT 13B-11, 13C-5, 13C-10, 13C-38
IConnectionPointContainer interface D-2
ICORBAFactory interface 13A-24, 13A-36
ICORBAObject interface 13A-27
ICustomer

Get_Profile interface 13B-26
IDispatch interface 13A-4
IDisptach interface 13C-10
IEnumConnectionPoints interface D-4
IEnumConnections interface D-4
IForeignException interface 13C-32
IForeignObject interface 13A-26, 13A-36, 13C-18
IMonikerProvider interface 13A-23, 13A-36
inheritance,mapping for 13B-51
IORBObject interface 13A-28
IProvideClassInfo interface 13B-34, 13B-54
ISO Latin1alphabetic ordering model 13C-8
ISupportErrorInfo interface 13B-15
ITypeFactory interface 13C-31
ITypeInfo interface 13B-34, 13B-54
IUnknown interface 13C-10
mapping between OMG IDL and OLE, overview 13C-3
MIDL and ODL data types mapped to CORBA types 13B-34
MIDL data types 13B-2
MIDL pointers 13B-45
multiple inheritance 13C-6
OLE data types 13C-10
OLE data types mapped to CORBA types 13C-44
pseudo object mapping 13B-30
QueryInterface 13A-11, 13C-8
sequence to collection mapping C-1
SetErrorInfo interface 13B-15
SimpleFactory interface 13A-23
single inheritance 13C-5
target 13A-5
types of mappings 13A-8
VARIANT 13B-42, 13C-5, 13C-51
VARIANT data types 13B-43
view 13A-5
View interface program id 13A-31

interworking object model 13A-2
IOP module

and DCE ESIOP 10-18
and GIOP 10-18
and IIOP 10-18
OMG IDL for 10-15

IOR 10-15, 10-16, 12-22, 13-4
converting to object reference 10-18
externalized 10-17

IORBObject interface 13A-28
IProvideClassInfo interface 13B-34, 13B-54
IRObject interface 6-7

OMG IDL for 6-9
Index-12 CORBA V2.0

is 16-6
is_equivalent operation 7-5
is_nil operation 16-6
ISupportErrorInfo interface 13B-15
ITypeFactory interface 13C-31
ITypeInfo interface 13B-34, 13B-54
IUknown interface 13C-10

L
language mapping 5

overview 2-7
left-shift-assign operator 16-32
list_initial_services 14-33, 17-23
little endian 12-6
little-endian 12-7
logical_type_id string 7-4
long type 16-10, 20-6

M
magic 12-16, 12-29
mediated bridging 10-8
method 1-8
Microsoft Interface Definition Language

see MIDL 13A-3
MIDL 13A-3

transformation rules 13A-13
modifier function 16-19
ModuleDef interface

OMG IDL for 6-17
multiple inheritance 3-15, 13A-11, 13C-6
MultipleComponentProfile 10-16

N
NamedValue interface

OMG PIDL for 17-5
NamedValue type 4-1, 4-2
namespace 15-2, F-1, 19-4
NamingContext 11-7
NamingContext interface

mapped to Smalltalk 20-12, 20-13
nested scope

and definitions 3-31
nil 20-3
nil object reference 16-7
null pointer 16-35, 16-47
NVList 13B-30, 21-5
NVList interface

add_item operation 4-11
create_list operation 4-10
create_operation_list 4-12
free operation 4-11
get_count operation 4-12
OMG PIDL for 17-6

NVList operation
free_memory operation 4-11

NVList type 4-2, 18-7

O
OAinit operation 17-21

mapped to C 14-32
July 1996 Index-13

obj_is_ready operation 8-6, 8-7
object

context 4-12
CORBA and COM compared 13A-9
defined Glossary-3
implementation 1-8, 2-6
invocation 2-8, 2-9
mapping to programming languages 14-2
reference 2-6
reference canonicalization 10-13
reference embedding 10-12
reference encapsulation 10-13
references, stringified 10-17
request 10-3

object adapter 2-5, 2-8, 2-13
and request level bridging 11-5
examples of 2-16
functions of 2-14
overview of 2-4, 2-9

object adapter initialization
mapped to C++ 17-21

object adapter intialization
mapped to C 14-32

object class 16-6
object create operation 8-8
Object Definition Language 13A-4
object duplicate operation

OMG PIDL for 7-4
object identifiers

and hash operation 7-5
Object interface

create_request operation 7-3
OMG PIDL for 7-3, 17-23

object key 12-15
Object Management Group 1

address of 3
object reference 16-4

and Basic Object Adapter 8-8
and COM interface pointers 13A-4
obtaining for Interface Repository 14-33, 17-22
obtaining for View interface 13C-42
testing for equivalence 7-5
union members 16-20

object reference variable type 16-4
object references

obtaining for automation controller environments 13C-28
Object Request Broker 2

explained 2-1
how implemented 2-5
interfaces to 2-2
sample implementations 2-10, ??–2-12

Object Services 2
and GIOP module 12-17
and interoperability 11-7
and IOP module 10-18
Life Cycle 13A-20, 13A-22, 13A-23, 13B-53, 13C-28
Naming 11-7, 13A-25, 13C-28, 13C-41
Naming, sample mapping to OLE D-1, D-6
Relationship 9-4
Index-14 CORBA V2.0

tags for B-1
Transaction 10-10, 10-19

Object_ptr 16-6
object_to_string operation 7-1

OMG PIDL for 7-2
Object_var 16-6
ObjectId 14-33, 17-23
octet type 3-22, 12-4, 12-7, 16-10, 20-6
ODL 13B-4, 13C-1
OLE Automation 13A-4

basic data types 13C-10
basic data types mapped to CORBA types 13C-44
relationship to OMG IDL 13C-3
transformation rules 13A-13

OLE automation controller 13C-2
OMG IDL

overview of 2-7
relationship to OLE 13C-3
syntax of 3-13
types A-1

OMG IDL global name 3-32
OMG IDL struct

mapping to C++ 16-15
OMG IDL tags

requests to allocate 10-17, B-1
OMG IDL-to-programming language mapping 5

overview 2-7
oneway 13B-23, 16-44, Glossary-3
opaque data type 12-4
operation 16-4

attribute,syntax of 3-28
declaration,syntax of 3-27
defined 1-5
mapping to programming languages 14-3
signature of 1-6

OperationDef
OMG IDL for 6-26

Operations 13C-36
operator 16-32
operator< 16-31
operator-> 16-14
operator>>= 16-35
operator[] 16-23
ORB

backbone 10-11
connecting 6-3
core 10-2
kernel 10-2

ORB initialization 7-6
mapped to C 14-31
mapped to C++ 17-20

ORB Interface
overview of 2-9

ORB interface
and create_list operation 4-10
and create_operation_list operation 4-12
and NVList objects 4-10
mapping to programming languages 14-4
OMG PIDL for 17-18
July 1996 Index-15

ORB Services 10-2, 10-7
how selected 10-4
vs. Object Services 10-3

ORB_init operation 17-21
mapped to C 14-31
mapped to C++ 17-21

P
parameter

defined 1-6
parameter declaration

syntax of 3-28
pointer type 16-4
pragma directive

and Interface Repository 6-31
id 6-31
prefix 6-31
use in Smalltalk mapping 20-9

PrimitiveDef
OMG IDL for 6-21

principal 12-9, 12-18
principal pseudo object 13B-30, 13B-33, 17-14
profile

tags for B-1
property name 4-13
pseudo keyword 17-1

Q
qualified name 3-32
QueryInterface 13A-11, 13C-8

R
readonly 16-44
reference encapsulation 11-4
reference model 2
reference translation 11-4
ReferenceData get_id operation 8-9
Relationship Service 9-4
release operation 7-4, 16-6
release parameter 16-23
replace function 16-40
Repository interface

OMG IDL for 6-16
RepositoryId

and COM interface identifiers 13B-46
and COM mapping 13B-11
and pragma directive 6-31
format of 6-30

Request interface
add_arg operation 4-6
delete operation 4-7
get_next_response operation 4-9
get_response operation 4-9
invoke operation 4-7
OMG PIDL for 17-10
send operation 4-7
send_multiple_requests operation 4-8

request level bridging 11-1
types of 11-5

result
Index-16 CORBA V2.0

defined 1-6
right-shift-operator 16-35
RPC 13-20, 13-23
RTTI 16-43, F-3
Run time type information

see RTTI

S
SAFEARRAY 13A-10, 13B-42, 13C-20
scoped name identifier 3-32
scoped_name 3-16
scoping

and C language mapping 14-5
and C++ mapping 16-1
and identifiers 3-31
explained 3-31

see ODL 13A-4
selectors

mapped to OMG IDL operations 20-10
sequence octet 12-9, 12-14
sequence type 3-23, 3-25, 3-29, 12-8, 16-21, 20-10
SequenceDef

OMG IDL for 6-22
server 18-1, Glossary-4
ServerRequest

mapped to C 14-26
mapped to C++ 18-6

ServerRequest pseudo interface
mapped to C 14-26

ServiceContext 10-19
ServiceID 10-19
set function 16-44
set_exception operation 14-29
SetErrorInfo interface 13B-15
Short 16-10
short type 16-10, 20-5
signature Glossary-4
SimpleFactory interface 13A-23
single 16-47
sizeof(T) 16-2
skeleton class 18-3, 18-4
slice 16-28, 16-48
Smalltalk 20-6

aBindingStruct 20-8
aBool 20-4
aCORBAObject 21-1, 21-4
active Process message 20-11
add_arg operation 21-1
addArg instance method 21-1
aDiscriminator instance method 20-9
any 20-7
argList 20-4
array class 20-10
array type 20-10
Association 21-2
at message 20-7, 20-11
boolean 20-6
char 20-6
Character 20-6
Common Base 19-2
July 1996 Index-17

CORBAConstants 20-5, 20-7, 20-11
corbaContext message 20-11
CORBAContext protocol 21-2, 21-4
CORBAEnum protocol 20-7
CORBAExceptionEvent protocol 20-11
CORBAExceptionValue protocol 20-12, 20-13
CORBANamedValue protocol 21-4, 21-5
CORBAObject protocol 21-3
CORBAORB protocol 21-3
CORBAParameter protocol 20-3
corbaRaise message 20-12
CORBARequest protocol 21-1
CORBAUnion protocol 20-9
create_child operation 21-2
create_operation_list operation 21-4
create_request operation 21-3
createChild instance method 21-2
createOperationList instance method 21-4
createRequest 20-4, 21-3
cxt 20-13
delete instance method 21-2
delete operation 21-2
design of mapping 19-1
Dictionary 20-12
Dictionary class 20-8, 20-10
discriminator instance method 20-9
duplicate 21-3
exceptions 20-10
explicit vs implicit mappings 20-8
flags instance method 21-5
float 20-6
garbage collection 20-3, 20-11
get_next_response operation 21-4
get_response operation 21-2
getDefaultContext instance method 21-4
invoke instance method 21-1
invoke operation 21-1
invokeOneway instance method 21-1
long 20-6
memory management 20-3, 21-3
memory management for object references 20-11
mini-glossary 19-3
name instance method 21-4
namespace 19-4
nil 20-3
NVlist type and OrderedCollection class 21-5
obect_to_string operation 21-3
objectToString instance method 21-3
octet 20-6
operation 20-4
OrderedCollection class 20-10
overview of mapping 20-1
pollNextResponse instance method 21-4
pollResponse instance method 21-2
Processor variable 20-11
reference books 19-2
release operation 21-3
reqFlags 20-4
request 20-4
Index-18 CORBA V2.0

restOfName 20-13
result 20-4
send instance method 21-1
send operation 21-1
send_multiple_requests operation 21-4
sendMultipleRequests instance method 21-4
sequence 20-10
set and get value instance methods 21-2
set and get value operations 21-2
set value operations 21-2
short 20-5
String class 20-10
string type 20-10
struct type 20-8
underscore characters in mapping 20-2
unsigned short and long 20-6
value instance method 20-9, 21-4
Value instance methods 21-2

split allocation
avoiding errors with 16-45

statically-initialized 16-27
Status result 4-3
string type 3-26, 3-29, 12-8, 16-11
string union members 16-20
string_to_object operation 7-1

OMG PIDL for 7-2
String_var 16-11
StringDef

OMG IDL for 6-22
struct type 3-23, 12-8
StructDef

OMG IDL for 6-19
stub Glossary-4
stub interface 2-7, 2-8
subject 3-30
SystemException 16-42

T
T *data constructor 16-23
T_ptr 18-2
T_ptr* 16-24
T_var 16-13, F-3
tag

component 10-17
protocol 10-17
requests to allocate B-1

TAG_MULTIPLE_COMPONENTS tag 10-16
target 13A-5, 13A-33
TCKind 12-10
TCP/IP 12-23, 12-27
template 15-2, 18-5
test 14-2
this pointer 18-2
throw exception 16-43, 18-2
tie class 18-5
top 16-9
Transaction Service 10-10, 10-19
transfer syntax

between ORBs and inter-ORB bridges 12-2
transparency 10-4
July 1996 Index-19

transparency of location 10-1
type 16-34
type function 16-40
type specifier

syntax of 3-20
type unknown to the receiver 16-31
TypeCode 4-2, 13B-30, 16-31

OMG IDL for 6-40
typecode 19-2
TypeCode interface

OMG IDL for 6-34
OMG PIDL for 17-15

TypeCode_ptr 16-41, 17-15
typedef 16-29
types

any 1-4
basic 1-4
constructed 1-4
defined 1-4
found in all ORB implementations A-1
interface 1-5
legal values 1-4

type-safe 16-30
typographical conventions 7

U
unbounded sequence 14-10, 16-13
unbounded string 14-10, 16-13
Unicode 13A-10, 13B-38, 13C-12
union member 16-18
union type 3-23, 12-8, 19-2
unsigned long type 16-10
unsigned short type 16-10, 20-6
UserException 16-41

V
value function 16-40
value instance method 20-9
variable-length 14-10
VARIANT 13B-42, 13C-5, 13C-32, 13C-51

OLE data types 13B-43
view 13A-5, 13A-21
View interface 13A-31
Visual Basic 13A-9
void* 16-40

W
Windows System Registry 13A-24, 13C-1, 13C-27

X
X/Open 2
Index-20 CORBA V2.0

	Table of Contents
	Preface
	0.1 About This Document
	0.1.1 Object Management Group
	0.1.2 X/Open

	0.2 Intended Audience
	0.3 Context of CORBA
	0.4 Associated Documents
	0.5 Structure of This Manual
	0.6 Definition of CORBA Compliance
	0.7 Typographical Conventions
	0.8 Acknowledgements

	1. The Object Model
	1.1 Overview
	1.2 Object Semantics
	1.2.1 Objects
	1.2.2 Requests
	1.2.3 Object Creation and Destruction
	1.2.4 Types
	1.2.5 Interfaces
	1.2.6 Operations
	Parameters
	Return Result
	Exceptions
	Contexts
	Execution Semantics

	1.2.7 Attributes

	1.3 Object Implementation
	1.3.1 The Execution Model: Performing Services
	1.3.2 The Construction Model

	2. CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object References
	2.1.4 OMG Interface Definition Language
	2.1.5 Mapping of OMG IDL to Programming Languages
	2.1.6 Client Stubs
	2.1.7 Dynamic Invocation Interface
	2.1.8 Implementation Skeleton
	2.1.9 Dynamic Skeleton Interface
	2.1.10 Object Adapters
	2.1.11 ORB Interface
	2.1.12 Interface Repository
	2.1.13 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 Example Object Adapters
	2.6.1 Basic Object Adapter
	2.6.2 Library Object Adapter
	2.6.3 Object-Oriented Database Adapter

	2.7 The Integration of Foreign Object Systems

	3. OMG IDL Syntax and Semantics
	3.1 About This Chapter
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals
	Integer Literals
	Character Literals
	Floating-point Literals
	String Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.5.1 Module Declaration
	3.5.2 Interface Declaration
	Interface Header
	Inheritance Specification
	Interface Body
	Forward Declaration

	3.6 Inheritance
	3.7 Constant Declaration
	3.7.1 Syntax
	3.7.2 Semantics

	3.8 Type Declaration
	3.8.1 Basic Types
	Integer Types
	Floating-Point Types
	Char Type
	Boolean Type
	Octet Type
	Any Type

	3.8.2 Constructed Types
	Structures
	Discriminated Unions
	Enumerations

	3.8.3 Template Types
	Sequences
	Strings

	3.8.4 Complex Declarator
	Arrays

	3.9 Exception Declaration
	3.10 Operation Declaration
	3.10.1 Operation Attribute
	3.10.2 Parameter Declarations
	3.10.3 Raises Expressions
	3.10.4 Context Expressions

	3.11 Attribute Declaration
	3.12 CORBA Module
	3.13 Names and Scoping
	3.14 Differences from C++
	3.15 Standard Exceptions
	3.15.1 Standard Exceptions Definitions
	3.15.2 Object Non-Existence

	4. Dynamic Invocation Interface
	4.1 Overview
	4.1.1 Common Data Structures
	4.1.2 Memory Usage
	4.1.3 Return Status and Exceptions

	4.2 Request Operations
	4.2.1 create_request
	4.2.2 add_arg
	4.2.3 invoke
	4.2.4 delete

	4.3 Deferred Synchronous Operations
	4.3.1 send
	4.3.2 send_multiple_requests
	4.3.3 get_response
	4.3.4 get_next_response

	4.4 List Operations
	4.4.1 create_list
	4.4.2 add_item
	4.4.3 free
	4.4.4 free_memory
	4.4.5 get_count
	4.4.6 create_operation_list

	4.5 Context Objects
	4.6 Context Object Operations
	4.6.1 get_default_context
	4.6.2 set_one_value
	4.6.3 set_values
	4.6.4 get_values
	4.6.5 delete_values
	4.6.6 create_child
	4.6.7 delete

	4.7 Native Data Manipulation

	5. Dynamic Skeleton Interface
	5.1 Overview
	5.2 Explicit Request State: ServerRequest Pseudo-O...
	5.3 Dynamic Skeleton Interface: Language Mapping
	5.3.1 ServerRequest’s Handling of Operation Parame...
	5.3.2 Registering Dynamic Implementation Routines

	6. The Interface Repository
	6.1 Overview
	6.2 Scope of an Interface Repository
	6.3 Implementation Dependencies
	6.3.1 Managing Interface Repositories

	6.4 Basics of the Interface Repository Interface
	6.4.1 Names and Identifiers
	6.4.2 Types and TypeCodes
	6.4.3 Interface Objects
	6.4.4 Structure and Navigation of Interface Object...

	6.5 Interface Repository Interfaces
	6.5.1 Supporting Type Definitions
	6.5.2 IRObject
	Read Interface
	Write Interface

	6.5.3 Contained
	Read Interface
	Write Interface

	6.5.4 Container
	Read Interface
	Write Interface

	6.5.5 IDLType
	6.5.6 Repository
	Read Interface
	Write Interface

	6.5.7 ModuleDef
	6.5.8 ConstantDef Interface
	Read Interface
	Write Interface

	6.5.9 TypedefDef Interface
	6.5.10 StructDef
	Read Interface
	Write Interface

	6.5.11 UnionDef
	Read Interface
	Write Interface

	6.5.12 EnumDef
	Read Interface
	Write Interface

	6.5.13 AliasDef
	6.5.14 Read Interface
	Write Interface

	6.5.15 PrimitiveDef
	6.5.16 StringDef
	6.5.17 SequenceDef
	Read Interface
	Write Interface

	6.5.18 ArrayDef
	Read Interface
	Write Interface

	6.5.19 ExceptionDef
	Read Interface
	Write Interface

	6.5.20 AttributeDef
	Read Interface
	Write Interface

	6.5.21 OperationDef
	Read Interface
	Write Interface

	6.5.22 InterfaceDef
	Read Interface
	Write Interface

	6.6 RepositoryIds
	6.6.1 OMG IDL Format
	6.6.2 DCE UUID Format
	6.6.3 LOCAL Format
	6.6.4 Pragma Directives for RepositoryId
	The ID Pragma
	The Prefix Pragma
	The Version Pragma
	Generation of OMG IDL - Format IDs
	For More Information

	6.7 TypeCodes
	6.7.1 The TypeCode Interface
	6.7.2 TypeCode Constants
	6.7.3 Creating TypeCodes

	6.8 OMG IDL for Interface Repository

	7. ORB Interface
	7.1 Converting Object References to Strings
	7.2 Object Reference Operations
	7.2.1 Determining the Object Implementation and In...
	7.2.2 Duplicating and Releasing Copies of Object R...
	7.2.3 Nil Object References
	7.2.4 Equivalence Checking Operation
	7.2.5 Probing for Object Non-Existence
	7.2.6 Object Reference Identity
	Hashing: Object Identifiers
	Equivalence Testing

	7.3 Overview: ORB and OA Initialization and Initia...
	7.4 ORB Initialization
	7.5 OA and BOA Initialization
	7.6 Obtaining Initial Object References

	8. The Basic Object Adapter
	8.1 Role of the Basic Object Adapter
	8.2 Basic Object Adapter Interface
	8.2.1 Registration of Implementations
	8.2.2 Activation and Deactivation of Implementatio...
	Shared Server Activation Policy
	Unshared Server Activation Policy
	Server-per-Method Activation Policy
	Persistent Server Activation Policy

	8.2.3 Generation and Interpretation of Object Refe...
	8.2.4 Authentication and Access Control
	8.2.5 Persistent Storage

	9. Interoperability Overview
	9.1 Elements of Interoperability
	9.1.1 ORB Interoperability Architecture
	9.1.2 Inter-ORB Bridge Support
	9.1.3 General Inter-ORB Protocol (GIOP)
	9.1.4 Internet Inter-ORB Protocol (IIOP)
	9.1.5 Environment-Specific Inter-ORB Protocols (ES...

	9.2 Relationship to Previous Versions of CORBA
	9.3 Examples of Interoperability Solutions
	9.3.1 Example 1
	9.3.2 Example 2
	9.3.3 Example 3
	9.3.4 Interoperability Compliance

	9.4 Motivating Factors
	9.4.1 ORB Implementation Diversity
	9.4.2 ORB Boundaries
	9.4.3 ORBs Vary in Scope, Distance, and Lifetime

	9.5 Interoperability Design Goals
	9.5.1 Non-Goals

	10. ORB Interoperability Architecture
	10.1 Overview
	10.1.1 Domains
	10.1.2 Bridging Domains

	10.2 ORBs and ORB Services
	10.2.1 The Nature of ORB Services
	10.2.2 ORB Services and Object Requests
	10.2.3 Selection of ORB Services

	10.3 Domains
	10.3.1 Definition of a Domain
	10.3.2 Mapping Between Domains: Bridging

	10.4 Interoperability Between ORBs
	10.4.1 ORB Services and Domains
	10.4.2 ORBs and Domains
	10.4.3 Interoperability Approaches
	Mediated Bridging
	Immediate Bridging
	Location of Inter-Domain Functionality
	Bridging Level

	10.4.4 Policy-Mediated Bridging
	10.4.5 Configurations of Bridges in Networks

	10.5 Object Addressing
	10.5.1 Domain-relative Object Referencing
	10.5.2 Handling of Referencing Between Domains

	10.6 An Information Model for Object References
	10.6.1 What Information Do Bridges Need?
	10.6.2 Interoperable Object References: IORs
	10.6.3 Profile and Component Composition in IORs
	10.6.4 IOR Creation and Scope
	10.6.5 Stringified Object References
	10.6.6 Object Service Context

	11. Building Inter-ORB Bridges
	11.1 In-Line and Request-Level Bridging
	11.1.1 In-line Bridging
	11.1.2 Request-level Bridging
	11.1.3 Collocated ORBs

	11.2 Proxy Creation and Management
	11.3 Interface-specific Bridges and Generic Bridge...
	11.4 Building Generic Request-Level Bridges
	11.5 Bridging Non-Referencing Domains
	11.6 Bootstrapping Bridges

	12. General Inter-ORB Protocol
	12.1 Goals of the General Inter-ORB Protocol
	12.2 General Inter-ORB Protocol Overview
	12.2.1 Common Data Representation (CDR)
	12.2.2 GIOP Message Overview
	12.2.3 GIOP Message Transfer

	12.3 CDR Transfer Syntax
	12.3.1 Primitive Types
	Alignment
	Integer Data Types
	Floating Point Data Types
	Octet
	Boolean
	Character Types

	12.3.2 OMG IDL Constructed Types
	Alignment
	Struct
	Union
	Array
	Sequence
	String
	Enum

	12.3.3 Encapsulation
	12.3.4 Pseudo-Object Types
	TypeCode
	Any
	Principal
	Context
	Exception

	12.3.5 Object References

	12.4 GIOP Message Formats
	12.4.1 GIOP Message Header
	Request Message
	Request Header
	Request Body

	12.4.2 Reply Message
	Reply Header
	Reply Body

	12.4.3 CancelRequest Message
	Cancel Request Header

	12.4.4 LocateRequest Message
	LocateRequest Header.

	12.4.5 LocateReply Message
	Locate Reply Header
	LocateReply Body

	12.4.6 CloseConnection Message
	12.4.7 MessageError Message

	12.5 GIOP Message Transport
	12.5.1 Connection Management
	Connection Closure
	Multiplexing Connections

	12.5.2 Message Ordering

	12.6 Object Location
	12.7 Internet Inter-ORB Protocol (IIOP)
	12.7.1 TCP/IP Connection Usage
	12.7.2 IIOP IOR Profiles

	12.8 OMG IDL for the GIOP and IIOP Specifications
	12.8.1 GIOP Module
	12.8.2 IIOP Module

	13. The DCE ESIOP
	13.1 Goals of the DCE Common Inter-ORB Protocol
	13.2 DCE Common Inter-ORB Protocol Overview
	13.2.1 DCE-CIOP RPC
	13.2.2 DCE-CIOP Data Representation
	13.2.3 DCE-CIOP Messages
	13.2.4 Interoperable Object Reference (IOR)

	13.3 DCE-CIOP Message Transport
	13.3.1 Pipe-based Interface
	Invoke
	Locate

	13.3.2 Array-based Interface
	Invoke
	Locate

	13.4 DCE-CIOP Message Formats
	13.4.1 DCE_CIOP Invoke Request Message
	Invoke Request Header
	Invoke Request Body

	13.4.2 DCE-CIOP Invoke Response Message
	Invoke Response Header
	Invoke Response Body

	13.4.3 DCE-CIOP Locate Request Message
	Locate Request Header

	13.4.4 DCE-CIOP Locate Response Message
	Locate Response Header
	Locate Response Body

	13.5 DCE-CIOP Object References
	13.5.1 DCE-CIOP String Binding Component
	13.5.2 DCE-CIOP Binding Name Component
	BindingNameComponent

	13.5.3 DCE-CIOP No Pipes Component
	13.5.4 Object Key Component
	13.5.5 Endpoint ID Component
	13.5.6 Location Policy Component

	13.6 DCE-CIOP Object Location
	13.6.1 Location Mechanism Overview
	13.6.2 Activation
	13.6.3 Basic Location Algorithm
	13.6.4 Use of the Location Policy and the Endpoint...
	Current Location Policy
	Original Location Policy
	Original Endpoint ID

	13.7 OMG IDL for the DCE CIOP Module
	13.8 References for this Chapter

	13A. Interworking Architecture
	13.1 Purpose of the Interworking Architecture
	13.1.1 Comparing COM Objects to CORBA Objects

	13.2 Interworking Object Model
	13.2.1 Relationship to CORBA Object Model
	13.2.2 Relationship to the OLE/COM Model
	13.2.3 Basic Description of the Interworking Model...

	13.3 Interworking Mapping Issues
	13.4 Interface Mapping
	13.4.1 CORBA/COM
	13.4.2 CORBA/Automation
	13.4.3 COM/CORBA
	13.4.4 Automation/CORBA

	13.5 Interface Composition Mappings
	13.5.1 CORBA/COM
	COM/CORBA
	CORBA/Automation
	Automation/CORBA

	13.5.2 Detailed Mapping Rules
	Ordering Rules for the CORBA->MIDL Transformation
	Ordering Rules for the CORBA->OLE Automation Trans...

	13.5.3 Example of Applying Ordering Rules
	13.5.4 Mapping Interface Identity
	Mapping Interface Repository IDs to COM IIDs
	Mapping COM IIDs to CORBA Interface IDs

	13.6 Object Identity, Binding, and Life Cycle
	13.6.1 Object Identity Issues
	CORBA Object Identity and Reference Properties
	COM Object Identity and Reference Properties

	13.6.2 Binding and Life Cycle
	Lifetime Comparison
	Binding Existing CORBA Objects to COM Views
	Binding COM Objects to CORBA Views
	COM View of CORBA Life Cycle
	CORBA View of COM/Automation Life Cycle

	13.7 Interworking Interfaces
	13.7.1 SimpleFactory Interface
	13.7.2 IMonikerProvider Interface and Moniker Use
	13.7.3 ICORBAFactory Interface
	13.7.4 IForeignObject Interface
	13.7.5 ICORBAObject Interface
	13.7.6 IORBObject Interface
	13.7.7 Naming Conventions for View Components
	Naming the COM View Interface Id
	Tag for the Automation Interface Id
	Naming the COM View Interface
	Naming the Automation View Dispatch Interface
	Naming the Automation View Dual Interface
	Naming the Program Id for the COM Class
	Naming the Class Id for the COM Class

	13.8 Distribution
	13.8.1 Bridge Locality
	13.8.2 Distribution Architecture

	13.9 Interworking Targets
	13.10 Compliance to COM/CORBA Interworking
	13.10.1 Products Subject to Compliance
	Interworking Solutions
	Mapping Solutions
	Mapped Components

	13.10.2 Compliance Points

	13B. Mapping: COM and CORBA
	13.1 Data Type Mapping
	13.2 CORBA to COM Data Type Mapping
	13.2.1 Mapping for Basic Data Types
	13.2.2 Mapping for Constants
	13.2.3 Mapping for Enumerators
	13.2.4 Mapping for String Types
	Mapping for Unbounded String Types
	Mapping for Bounded String Types

	13.2.5 Mapping for Struct Types
	13.2.6 Mapping for Union Types
	13.2.7 Mapping for Sequence Types
	Mapping for Unbounded Sequence Types
	Mapping for Bounded Sequence Types

	13.2.8 Mapping for Array Types
	13.2.9 Mapping for the any Type
	13.2.10 Interface Mapping
	Mapping for Interface Identifiers
	Mapping for Exception Types
	Mapping for Operations
	Mapping for Oneway Operations
	Mapping for Attributes

	13.2.11 Inheritance Mapping
	13.2.12 Mapping for Pseudo-Objects
	Mapping for TypeCode Pseudo-Object
	Mapping for Context Pseudo-Object
	Mapping for Principal Pseudo-Object

	13.2.13 Interface Repository Mapping

	13.3 COM to CORBA Data Type Mapping
	13.3.1 Mapping for Basic Data Types
	13.3.2 Mapping for Constants
	13.3.3 Mapping for Enumerators
	13.3.4 Mapping for String Types
	Mapping for Unbounded String Types
	Mapping for Bounded String Types
	Mapping for Unicode Unbounded String Types
	Mapping for Unicode Bound String Types

	13.3.5 Mapping for Structure Types
	13.3.6 Mapping for Union Types
	Mapping for Encapsulated Unions
	Mapping for Nonencapsulated Unions

	13.3.7 Mapping for Array Types
	Mapping for Nonfixed Arrays
	Mapping for SAFEARRAY

	13.3.8 Mapping for VARIANT
	13.3.9 Mapping for Pointers
	13.3.10 Interface Mapping
	Mapping for Interface Identifiers
	Mapping for COM Errors
	Mapping for Operations
	Mapping for Properties

	13.3.11 Mapping for Read-Only Attributes
	13.3.12 Mapping for Read-Write Attributes
	Inheritance Mapping
	Type Library Mapping

	13C. Mapping: OLE Automation and CORBA
	13.1 Mapping CORBA Objects to OLE Automation
	13.1.1 Architectural Overview
	13.1.2 Main Features of the Mapping
	13.1.3 Mapping for Interfaces
	Mapping for Attributes and Operations
	Mapping for OMG IDL Single Inheritance
	Mapping of OMG IDL Multiple Inheritance

	13.1.4 Mapping for Basic Data Types
	Basic Automation Types

	13.1.5 Special Cases of Basic Data Type Mapping
	Translating Automation long to CORBA unsigned long...
	Translating CORBA unsigned long to Automation long...
	Translating Automation long to CORBA unsigned shor...
	Translating Automation boolean to CORBA boolean an...

	13.1.6 Mapping for Strings
	13.1.7 A Complete IDL to ODL Mapping for the Basic...
	13.1.8 Mapping for Object References
	Type Mapping
	Object Reference Parameters and IForeignObject

	13.1.9 Mapping for Enumerated Types
	13.1.10 Mapping for Arrays and Sequences
	13.1.11 Mapping for CORBA Complex Types
	Mapping for Structure Types
	Mapping for Union Types

	13.1.12 Mapping for TypeCodes
	13.1.13 Mapping for anys
	13.1.14 Mapping for Typedefs
	13.1.15 Mapping for Constants
	13.1.16 Getting Initial CORBA Object References
	13.1.17 Creating Initial in Parameters for Complex...
	ITypeFactory Interface

	13.1.18 Mapping CORBA Exceptions to Automation Exc...
	Overview of Automation Exception Handling
	CORBA Exceptions
	CORBA User Exceptions
	Operations that Raise User Exceptions
	CORBA System Exceptions
	Operations that Raise System Exceptions

	13.1.19 Conventions for Naming Components of the A...
	13.1.20 Naming Conventions for Pseudo-Structs, Pse...
	13.1.21 Automation View Interface as a Dispatch In...
	13.1.22 Aggregation of Automation Views
	13.1.23 DII, DSI, and BOA

	13.2 Mapping OLE Automation Objects as CORBA Objec...
	13.2.1 Architectural Overview
	13.2.2 Main Features of the Mapping
	13.2.3 Getting Initial Object References
	13.2.4 Mapping for Interfaces
	13.2.5 Mapping for Inheritance
	13.2.6 Mapping for ODL Properties and Methods
	13.2.7 Mapping for Automation Basic Data Types
	Basic Automation Types

	13.2.8 Conversion Errors
	13.2.9 Special Cases of Data Type Conversion
	Translating COM::Currency to Automation CURRENCY
	Translating CORBA double to Automation DATE
	Translating CORBA boolean to Automation boolean an...

	13.2.10 A Complete OMG IDL to ODL Mapping for the ...
	13.2.11 Mapping for Object References
	13.2.12 Mapping for Enumerated Types
	13.2.13 Mapping for SafeArrays
	Multidimensional SafeArrays

	13.2.14 Mapping for Typedefs
	13.2.15 Mapping for VARIANTs
	13.2.16 Mapping Automation Exceptions to CORBA

	14. C Language Mapping
	14.1 Requirements for a Language Mapping
	14.1.1 Basic Data Types
	14.1.2 Constructed Data Types
	14.1.3 Constants
	14.1.4 Objects
	14.1.5 Invocation of Operations
	14.1.6 Exceptions
	14.1.7 Attributes
	14.1.8 ORB Interfaces

	14.2 Scoped Names
	14.3 Mapping for Interfaces
	14.4 Inheritance and Operation Names
	14.5 Mapping for Attributes
	14.6 Mapping for Constants
	14.7 Mapping for Basic Data Types
	14.8 Mapping Considerations for Constructed Types
	14.9 Mapping for Structure Types
	14.10 Mapping for Union Types
	14.11 Mapping for Sequence Types
	14.12 Mapping for Strings
	14.13 Mapping for Arrays
	14.14 Mapping for Exception Types
	14.15 Implicit Arguments to Operations
	14.16 Interpretation of Functions with Empty Argum...
	14.17 Argument Passing Considerations
	14.18 Return Result Passing Considerations
	14.19 Summary of Argument/Result Passing
	14.20 Handling Exceptions
	14.21 Method Routine Signatures
	14.22 Include Files
	14.23 Pseudo-Objects
	14.24 Mapping of the Dynamic Skeleton Interface to...
	14.24.1 Mapping of ServerRequest to C
	14.24.2 Mapping of BOA’s Dynamic Implementation Ro...

	14.25 BOA: Mapping for Object Implementations
	14.25.1 Operation-specific Details
	14.25.2 Method Signatures
	14.25.3 Binding Methods to Skeletons
	14.25.4 BOA and ORB Operations

	14.26 ORB and OA/BOA Initialization Operations
	14.26.1 ORB Initialization
	14.26.2 OA/BOA Initialization

	14.27 Operations for Obtaining Initial Object Refe...

	15. C++ Mapping Overview
	15.1 Key Design Decisions
	15.1.1 Compliance
	15.1.2 C++ Implementation Requirements
	15.1.3 C Data Layout Compatibility
	15.1.4 No Implementation Descriptions

	15.2 Organization of the C++ Mapping

	16. Mapping of OMG IDL to C++
	16.1 Preliminary Information
	16.1.1 Scoped Names
	16.1.2 C++ Type Size Requirements
	16.1.3 CORBA Module

	16.2 Mapping for Modules
	16.3 Mapping for Interfaces
	16.3.1 Object Reference Types
	16.3.2 Widening Object References
	16.3.3 Object Reference Operations
	16.3.4 Narrowing Object References
	16.3.5 Nil Object Reference
	16.3.6 Interface Mapping Example

	16.4 Mapping for Constants
	16.5 Mapping for Basic Data Types
	16.6 Mapping for Enums
	16.7 Mapping for String Types
	16.8 Mapping for Structured Types
	16.8.1 T_var Types

	16.9 Mapping for Struct Types
	16.10 Mapping for Union Types
	16.11 Mapping for Sequence Types
	16.11.1 Sequence Example
	16.11.2 Using the “release” Constructor Parameter
	16.11.3 Additional Memory Management Functions
	16.11.4 Sequence T_var Type

	16.12 Mapping for Array Types
	16.13 Mapping for Typedefs
	16.14 Mapping for the any Type
	16.14.1 Handling Typed Values
	16.14.2 Insertion into any
	16.14.3 Extraction from any
	16.14.4 Distinguishing boolean, octet, char, and B...
	16.14.5 Widening to Object
	16.14.6 Handling Untyped Values
	16.14.7 any Constructors, Destructor, Assignment O...
	16.14.8 any Class
	16.14.9 Any_var Class

	16.15 Mapping for Exception Types
	16.16 Mapping for Operations and Attributes
	16.17 Implicit Arguments to Operations
	16.18 Argument Passing Considerations

	17. Mapping of Pseudo-Objects to C++
	17.1 Usage
	17.2 Mapping Rules
	17.3 Relation to the C PIDL Mapping
	17.4 Environment
	17.4.1 Environment Interface
	17.4.2 Environment C++ Class
	17.4.3 Differences from C-PIDL
	17.4.4 Memory Management

	17.5 NamedValue
	17.5.1 NamedValue Interface
	17.5.2 NamedValue C++ Class
	17.5.3 Differences from C-PIDL
	17.5.4 Memory Management

	17.6 NVList
	17.6.1 NVList Interface
	17.6.2 NVList C++ Class
	17.6.3 Differences from C-PIDL
	17.6.4 Memory Management

	17.7 Request
	17.7.1 Request Interface
	17.7.2 Request C++ Class
	17.7.3 Differences from C-PIDL
	17.7.4 Memory Management

	17.8 Context
	17.8.1 Context Interface
	17.8.2 Context C++ Class
	17.8.3 Differences from C-PIDL
	17.8.4 Memory Management

	17.9 Principal
	17.9.1 Principal Interface
	17.9.2 Principal C++ Class

	17.10 TypeCode
	17.10.1 TypeCode Interface
	17.10.2 TypeCode C++ Class
	17.10.3 Differences from C-PIDL
	17.10.4 Memory Management

	17.11 BOA
	17.11.1 BOA Interface
	17.11.2 BOA C++ Class
	17.11.3 Differences from C-PIDL

	17.12 ORB
	17.12.1 ORB Interface
	17.12.2 ORB C++ Class
	17.12.3 Differences from C-PIDL
	17.12.4 Mapping of ORB and OA/BOA Initialization O...
	17.12.5 Mapping of Operations to Obtain Initial Ob...

	17.13 Object
	17.13.1 Object Interface
	17.13.2 Object C++ Class

	18. Server-Side Mapping
	18.1 Implementing Interfaces
	18.2 Implementing Operations
	18.3 Examples
	18.3.1 Using C++ Inheritance for Interface Impleme...
	18.3.2 Using Delegation for Interface Implementati...

	18.4 Mapping of Dynamic Skeleton Interface to C++
	18.4.1 Mapping of ServerRequest to C++
	18.4.2 Handling Operation Parameters and Results
	18.4.3 Sample Usage
	18.4.4 Reporting Exceptions
	18.4.5 Mapping of BOA’s Dynamic Implementation Rou...

	19. Smalltalk Mapping Overview
	19.1 Key Design Decisions
	19.1.1 Consistency of Style, Flexibility and Porta...

	19.2 Organization of the Smalltalk Mapping
	19.3 Glossary of Terms
	19.4 Implementation Constraints
	19.4.1 Avoiding Name Space Collisions
	19.4.2 Limitations on OMG IDL Types

	19.5 Smalltalk Implementation Requirements

	20. Mapping of OMG IDL to Smalltalk
	20.1 Mapping Summary
	20.2 Conversion of Names to Smalltalk Identifiers
	20.3 Mapping for Interfaces
	20.4 Memory Usage
	20.5 Mapping for Objects
	20.6 Invocation of Operations
	20.7 Mapping for Attributes
	20.7.1 Mapping for Constants

	20.8 Mapping for Basic Data Types
	short
	long
	unsigned short
	unsigned long
	float
	double
	char
	boolean
	octet

	20.9 Mapping for the Any Type
	20.10 Mapping for Enums
	20.11 Mapping for Struct Types
	20.12 Mapping for Union Types
	20.12.1 Implicit Binding
	20.12.2 Explicit Binding

	20.13 Mapping for Sequence Types
	20.14 Mapping for String Types
	20.15 Mapping for Array Types
	20.16 Mapping for Exception Types
	20.17 Mapping for Operations
	20.18 Implicit Arguments to Operations
	20.19 Argument Passing Considerations
	20.20 Handling Exceptions
	20.20.1 Exception Values
	20.20.2 The CORBAExceptionValue Protocol

	21. Mapping of Pseudo-Objects to Smalltalk
	21.1 CORBA::Request
	21.2 CORBA::Context
	21.3 CORBA::Object
	21.4 CORBA::ORB
	21.5 CORBA::NamedValue
	21.6 CORBA::NVList

	Glossary
	Index

