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Preface
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this 
document is a candidate for endorsement by X/Open, initially as a Preliminary 
Specification and later as a full CAE Specification. The collaboration between OMG 
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications. 

X/Open Preliminary Specifications undergo close scrutiny through a review process at 
X/Open before publication and are inherently stable specifications. Upgrade to full 
CAE Specification, after a reasonable interval, takes place following further review by 
X/Open. This further review considers the implementation experience of members and 
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 500 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG's objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 
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0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of 
the world's largest information system suppliers, user organizations and software 
companies. Its mission is to bring to users greater value from computing, through the 
practical implementation of open systems. X/Open’s strategy for achieving its mission 
is to combine existing and emerging standards into a comprehensive, integrated 
systems environment called the Common Applications Environment (CAE). 

The components of the CAE are defined in X/Open CAE specifications. These contain, 
among other things, an evolving portfolio of practical application programming 
interfaces (APIs), which significantly enhance portability of application programs at 
the source code level. The APIs also enhance the interoperability of applications by 
providing definitions of, and references to, protocols and protocol profiles. 

The X/Open specifications are also supported by an extensive set of conformance tests 
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is 
carried only on products that comply with the CAE specifications. 

0.2 Intended Audience

The architecture and specifications described in this manual are aimed at software 
designers and developers who want to produce applications that comply with OMG 
standards for the Object Request Broker (ORB). The benefit of compliance is, in 
general, to be able to produce interoperable applications that are based on distributed, 
interoperating objects. As defined by the Object Management Group (OMG) in the 
Object Management Architecture Guide, the ORB provides the mechanisms by which 
objects transparently make requests and receive responses. Hence, the ORB provides 
interoperability between applications on different machines in heterogeneous 
distributed environments and seamlessly interconnects multiple object systems. 

0.3 Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference 
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive 
requests and responses in a distributed environment. It is the foundation for 
building applications from distributed objects and for interoperability between 
applications in hetero- and homogeneous environments. The architecture and 
specifications of the Object Request Broker are described in this manual. 

• Object Services, a collection of services (interfaces and objects) that support 
basic functions for using and implementing objects. Services are necessary to 
construct any distributed application and are always independent of application 
domains. For example, the Life Cycle Service defines conventions for creating, 
deleting, copying, and moving objects; it does not dictate how the objects are 
implemented in an application. Specifications for Object Services are contained in 
CORBAservices: Common Object Services Specification.
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• Common Facilities , a collection of services that many applications may share, 
but which are not as fundamental as the Object Services. For instance, a system 
management or electronic mail facility could be classified as a common facility. 
Information about Common Facilities will be contained in CORBAfacilities: 
Common Facilities Architecture . 

• Application Objects, which are products of a single vendor on in-house 
development group which controls their interfaces. Application Objects 
correspond to the traditional notion of applications, so they are not standardized 
by OMG. Instead, Application Objects constitute the uppermost layer of the 
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a 
telephone exchange, providing the basic mechanism for making and receiving calls. 
Combined with the Object Services, it ensures meaningful communication between 
CORBA-compliant applications. 

(For more information about the OMG Reference Model and the OMG Object Model, 
refer to the Object Management Architecture Guide). 

0.4 Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives 
and terminology and describes the conceptual models upon which OMG standards 
are based. It also provides information about the policies and procedures of 
OMG, such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications 
for the Object Services. 

• CORBAfacilities: Common Facilities Architecture contains the architecture for 
Common Facilities. 

OMG collects information for each book in the documentation set by issuing Requests 
for Information, Requests for Proposals, and Requests for Comment and, with its 
membership, evaluating the responses. Specifications are adopted as standards only 
when representatives of the OMG membership accept them as such by vote. 

To obtain books in the documentation set, or other OMG publications, refer to the 
enclosed subscription card or contact the Object Management Group, Inc. at: 

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org/
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0.5 Structure of This Manual

This manual is divided into the categories of Core, Interoperability, Interworking, and 
individual Language Mappings. These divisions reflect the compliance points of 
CORBA, as explained in Section 0.6, “Definition of CORBA Compliance,” on page 6. 
In addition to this preface, CORBA: Common Object Request Broker Architecture and 
Specification contains the following chapters:

Core

The Object Model describes the computation model that underlies the CORBA 
architecture. 

Architecture describes the overall structure of the ORB architecture and includes 
information about CORBA interfaces and implementations. 

OMG IDL Syntax and Semantics describes OMG interface definition language 
(OMG IDL), which is the language used to describe the interfaces that client objects 
call and object implementations provide. 

The Dynamic Invocation Interface describes the DII, the client’s side of the interface 
that allows dynamic creation and invocation of request to objects. 

The Dynamic Skeleton Interface describes the DSI, the server’s-side interface that can 
deliver requests from an ORB to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing. DSI is the server’s 
analogue of the client’s Dynamic Invocation Interface (DII).

Interface Repository describes the component of the ORB that manages and provides 
access to a collection of object definitions. 

ORB Interface describes the interface to the ORB functions that do not depend on 
object adapters: these operations are the same for all ORBs and object 
implementations.

Basic Object Adapter describes the primary interface than an implementation uses to 
access ORB functions. 

An appendix that contains standard OMG IDL types.

Interoperability

Interoperability Overview explains the interoperability architecture and introduces 
the subjects pertaining to interoperability: inter-ORB bridges; general and Internet 
inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-ORB protocols 
(ESIOPs).

Interoperability Architecture introduces the framework of ORB interoperability, 
including information about domains; approaches to inter-ORB bridges; what it means 
to be compliant with ORB interoperability; and ORB Services and Requests. 

Inter-ORB Bridges explains how to build bridges for an implementation of 
interoperating ORBs. 
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Inter-ORB Protocols describes the general inter-ORB protocol (GIOP) and includes 
information about the GIOP’s goals, syntax, format, transport, and object location. This 
chapter also includes information about the Internet inter-ORB protocol (IIOP). 

Environment-Specific Inter-ORB Protocol (ESIOP) describes a protocol for the 
OSF DCE environment. The protocol is called the DCE Environment Inter-ORB 
Protocol (DCE ESIOP). 

An appendix  containing  OMG IDL tags that can identify an Object Service, a 
component, or a profile. 

Interworking

Interworking Architecture describes the architecture for communication between two 
object management systems: Microsoft’s COM (including OLE) and the OMG’s 
CORBA.

Mapping: OLE Automation and CORBA describes the two-way mapping between 
OLE Automation (in ODL) and CORBA (in OMG IDL).

Mapping: COM and CORBA describes the data type and interface mapping between 
COM and CORBA. The mappings are described in the context of both Win16 and 
Win32 COM. 

An appendix describing solutions that vendors might implement to support existing 
and older OLE Automation controllers.

An appendix that provides an example of how the Naming Service could be mapped 
to an OLE Automation interface according to the Interworking specification.

C Language Mapping 

Mapping of OMG IDL to C maps OMG IDL to the C programming language.

C++ Language Mapping

C++ Mapping Overview introduces the mapping of OMG IDL to the C++ 
programming language.

Mapping of OMG IDL to C++ maps the constructs of OMG IDL to the C++ 
programming language. 

Mapping of Pseudo Objects to C++ maps OMG IDL pseudo objects to the C++ 
programming language.

Server-Side Mapping explains the portability constraints for an object implementation 
written in C++. 

The C++ language mapping also includes several appendices. One contains C++ 
definitions for CORBA, another contains alternate C++ mappings, and another 
contains C++ keywords.
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Smalltalk Language Mapping

Smalltalk Mapping Overview  introduces the mapping of OMG IDL to the Smalltalk 
programming language.

Mapping of OMG IDL to Smalltalk maps the constructs of OMG IDL to the 
Smalltalk programming language.

Mapping of Pseudo Objects to Smalltalk  maps OMG IDL pseudo-objects to 
Smalltalk.

0.6 Definition of CORBA Compliance

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and 
components. Likewise, the body of CORBA specifications is divided into core and 
component-like specifications. The structure of this manual reflects that division. 

The CORBA specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-8

CORBA Interoperability, as specified in Chapters 9-13

CORBA Interworking, as specified in Chapters 13A, 13B, and 13C

Mapping of OMG IDL to the C programming language, as specified in Chapter 14

Mapping of OMG IDL to the C++ programming language, as specified in Chapters 
15-18

Mapping of OMG IDL to the Smalltalk programming language, as specified in 
Chapters 19-21

(Additional OMG IDL mappings will be available with future updates of CORBA.)

The minimum required for a CORBA-compliant system is adherence to the 
specifications in CORBA Core and one mapping. Each additional language mapping is 
a separate, optional compliance point. Optional means users aren’t required to 
implement these points if they are unnecessary at their site, but if implemented, they 
must adhere to the CORBA specifications to be called CORBA-compliant. For 
instance, if a vendor supports C++, their ORB must comply with the OMG IDL to C++ 
binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed 
information about Interworking compliance, refer to Section 13.10.1, “Products 
Subject to Compliance,” on page 13A-34.
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0.7 Typographical Conventions

The type styles shown below are used in this document to distinguish programming 
statements from ordinary English. However, these conventions are not used in tables or 
section headings, where no distinction is necessary, nor are the type styles used in text 
where their density would be distracting. 

Helvetica bold OMG Interface Definition Language (OMG IDL) language and 
syntax elements.

Times bold Pseudo-OMG IDL (PIDL) language elements.

Courier bold Programming language elements or any interface definition 
language other than OMG IDL.

Code examples written in PIDL and programming languages are further identified by a 
comment; unidentified examples are written in OMG IDL. 
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The Object Model 1
This chapter describes the concrete object model that underlies the CORBA 
architecture. The model is derived from the abstract Core Object Model defined by the 
Object Management Group in the Object Management Architecture Guide. 
(Information about the OMA Guide and other books in the CORBA documentation set 
is provided in this document’s preface.)

1.1 Overview

The object model provides an organized presentation of object concepts and 
terminology. It defines a partial model for computation that embodies the key 
characteristics of objects as realized by the submitted technologies. The OMG object 
model is abstract in that it is not directly realized by any particular technology. The 
model described here is a concrete object model. A concrete object model may differ 
from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for 
example, by defining the form of request parameters or the language used to 
specify types

• It may populate the model by introducing specific instances of entities defined by 
the model, for example, specific objects, specific operations, or specific types

• It may restrict the model by eliminating entities or placing additional restrictions 
on their use

An object system is a collection of objects that isolates the requestors of services 
(clients) from the providers of services by a well-defined encapsulating interface. In 
particular, clients are isolated from the implementations of services as data 
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such 
concepts as object creation and identity, requests and operations, types and signatures. 
It then describes concepts related to object implementations, including such concepts 
as methods, execution engines, and activation.
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The object model is most specific and prescriptive in defining concepts meaningful to 
clients. The discussion of object implementation is more suggestive, with the intent of 
allowing maximal freedom for different object technologies to provide different ways 
of implementing objects. 

There are some other characteristics of object systems that are outside the scope of the 
object model. Some of these concepts are aspects of application architecture, some are 
associated with specific domains to which object technology is applied. Such concepts 
are more properly dealt with in an architectural reference model. Examples of excluded 
concepts are compound objects, links, copying of objects, change management, and 
transactions. Also outside the scope of the object model is the model of control and 
execution.

This object model is an example of a classical object model, where a client sends a 
message to an object. Conceptually, the object interprets the message to decide what 
service to perform. In the classical model, a message identifies an object and zero or 
more actual parameters. As in most classical object models, a distinguished first 
parameter is required, which identifies the operation to be performed; the interpretation 
of the message by the object involves selecting a method based on the specified 
operation. Operationally, of course, method selection could be performed either by the 
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity 
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts 
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, 
encapsulated entity that provides one or more services that can be requested by a 
client.

1.2.2 Requests

Clients request services by issuing requests. A request is an event, i.e. something that 
occurs at a particular time. The information associated with a request consists of an 
operation, a target object, zero or more (actual) parameters, and an optional request 
context.

A request form is a description or pattern that can be evaluated or performed multiple 
times to cause the issuing of requests. As described in the OMG IDL Syntax and 
Semantics chapter, request forms are defined by particular language bindings. An 
alternative request form consists of calls to the dynamic invocation interface to create 
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an invocation structure, add arguments to the invocation structure, and to issue the 
invocation (refer to the C Language Mapping chapter and the Dynamic Invocation 
Interface chapter for descriptions of these request forms). 

A value is anything that may be a legitimate (actual) parameter in a request. A value 
may identify an object, for the purpose of performing the request. A value that 
identifies an object is called an object name. More particularly, a value is an instance 
of an OMG IDL data type.

An object reference is an object name that reliably denotes a particular object. 
Specifically, an object reference will identify the same object each time the reference is 
used in a request (subject to certain pragmatic limits of space and time). An object may 
be denoted by multiple, distinct object references. 

A request may have parameters that are used to pass data to the target object; it may 
also have a request context which provides additional information about the request. 

A request causes a service to be performed on behalf of the client. One outcome of 
performing a service is returning to the client the results, if any, defined for the 
request. 

If an abnormal condition occurs during the performance of a request, an exception is 
returned. The exception may carry additional return parameters particular to that 
exception.

The request parameters are identified by position. A parameter may be an input 
parameter, an output parameter, or an input-output parameter. A request may also 
return a single result value, as well as any output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guaranteed to 
be preserved

• The order in which aliased output parameters are written is not guaranteed

• Any output parameters are undefined if an exception is returned

• The values that can be returned in an input-output parameter may be constrained by 
the value that was input

Descriptions of the values and exceptions that are permitted, see Types on page 1-4 and 
Exceptions on page 1-6. 

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special 
mechanism for creating or destroying an object. Objects are created and destroyed as 
an outcome of issuing requests. The outcome of object creation is revealed to the client 
in the form of an object reference that denotes the new object.
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1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument 
mathematical function with a boolean result) defined over values. A value satisfies a 
type if the predicate is true for that value. A value that satisfies a type is called a 
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a 
possible result.

The extension of a type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify 
objects). In other words, an object type is satisfied only by (values that identify) 
objects.

Constraints on the data types in this model are shown in this section.

Basic types:

• 16-bit and 32-bit signed and unsigned 2’s complement integers

• 32-bit and 64-bit IEEE floating point numbers

• Characters, as defined in ISO Latin-1 (8859.1) 

• A boolean type taking the values TRUE and FALSE

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during 
transfer between systems

• Enumerated types consisting of ordered sequences of identifiers

• A string type which consists of a variable-length array of characters; the length of 
the string is available at run-time

• A type “any” which can represent any possible basic or constructed type

Constructed types:
• A record type (called struct), consisting of an ordered set of (name,value) pairs

• A discriminated union type, consisting of a discriminator followed by an instance 
of a type appropriate to the discriminator value

• A sequence type which consists of a variable-length array of a single type; the 
length of the sequence is available at run-time

• An array type which consists of a fixed-length array of a single type

• An interface type, which specifies the set of operations which an instance of that 
type must support

Values in a request are restricted to values that satisfy these type constraints. The legal 
values are shown in FIG. 1 on page 1-5. No particular representation for values is 
defined.
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FIG.  1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of 
an object. An object satisfies an interface if it can be specified as the target object in 
each potential request described by the interface.

An interface type is a type that is satisfied by any object (literally, any value that 
identifies an object) that satisfies a particular interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition 
mechanism for permitting an object to support multiple interfaces. The principal 
interface is simply the most-specific interface that the object supports, and consists of 
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value. 

An operation has a signature that describes the legitimate values of request parameters 
and returned results. In particular, a signature consists of:

•  A specification of the parameters required in requests for that operation

• A specification of the result of the operation

• A specification of the exceptions that may be raised by a request for the operation 
and the types of the parameters accompanying them

• A specification of additional contextual information that may affect the request

• An indication of the execution semantics the client should expect from a request 
for the operation

Value

Object Reference Constructed Value

Basic Value Struct Sequence Union Array

Short Long UShort ULong Float Double Char String Boolean Octet Enum Any
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Operations are (potentially) generic, meaning that a single operation can be uniformly 
requested on objects with different implementations, possibly resulting in observably 
different behavior. Genericity is achieved in this model via interface inheritance in IDL 
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected 
of requests for this operation; the default semantics are exactly-once if the 
operation successfully returns results or at-most-once if an exception is returned

• The <op_type_spec> is the type of the return result

• The <identifier> provides a name for the operation in the interface 

• The operation parameters needed for the operation; they are flagged with the 
modifiers in, out, or inout to indicate the direction in which the information 
flows (with respect to the object performing the request)

• The optional raises expression indicates which user-defined exceptions can be 
signaled to terminate a request for this operation; if such an expression is not 
provided, no user-defined exceptions will be signaled

• The optional context expression indicates which request context information 
will be available to the object implementation; no other contextual information is 
required to be transported with the request

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the 
value should be passed from client to server (in), from server to client (out), or both 
(inout). The parameter’s type constrains the possible value which may be passed in 
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully. 
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a 
record, it may consist of any of the types described in Section 1.2.4.

All signatures implicitly include the standard exceptions described in Section 3.15, 
“Standard Exceptions,” on page 3-33.
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Contexts

A request context provides additional, operation-specific information that may affect 
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed 
exactly once; if it returns an exception indication, it was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return 
any results and the requester never synchronizes with the completion, if any, of 
the request.

The execution semantics to be expected is associated with an operation. This prevents 
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or 
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair 
of accessor functions: one to retrieve the value of the attribute and one to set the value 
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is 
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the 
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed 
to effect the behavior of requested services. These activities may include computing 
the result of the request and updating the system state. In the process, additional 
requests may be issued.

The implementation model consists of two parts: the execution model and the 
construction model. The execution model describes how services are performed. The 
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that 
operates upon some data. The data represents a component of the state of the 
computational system. The code performs the requested service, which may change the 
state of the system.
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Code that is executed to perform a service is called a method. A method is an 
immutable description of a computation that can be interpreted by an execution engine. 
A method has an immutable attribute called a method format that defines the set of 
execution engines that can interpret the method. An execution engine is an abstract 
machine (not a program) that can interpret methods of certain formats, causing the 
described computations to be performed. An execution engine defines a dynamic 
context for the execution of a method. The execution of a method is called a method 
activation.

When a client issues a request, a method of the target object is called. The input 
parameters passed by the requestor are passed to the method and the output parameters 
and return value (or exception and its parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an 
object’s persistent state. If the persistent form of the method or state is not accessible 
to the execution engine, it may be necessary to first copy the method or state into an 
execution context. This process is called activation; the reverse process is called 
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of 
requests. These mechanisms include definitions of object state, definitions of methods, 
and definitions of how the object infrastructure is to select the methods to execute and 
to select the relevant portions of object state to be made accessible to the methods. 
Mechanisms must also be provided to describe the concrete actions associated with 
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides 
the information needed to create an object and to allow the object to participate in 
providing an appropriate set of services. An implementation typically includes, among 
other things, definitions of the methods that operate upon the state of an object. It also 
typically includes information about the intended type of the object.
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CORBA Overview 2
The Common Object Request Broker Architecture (CORBA) is structured to allow inte-
gration of a wide variety of object systems. The motivation for some of the features may 
not be apparent at first, but as we discuss the range of implementations, policies, optimiza-
tions, and usages we expect to encompass, the value of the flexibility becomes more clear.

FIG.  2 A Request Being Sent Through the Object Request Broker 

2.1 Structure of an Object Request Broker
FIG. 2 on page 2-1 shows a request being sent by a client to an object implementation.The 
Client is the entity that wishes to perform an operation on the object and the Object Imple-

Client Object Implementation

ORB

Request
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mentation is the code and data that actually implements the object. The ORB is responsi-
ble for all of the mechanisms required to find the object implementation for the request, to 
prepare the object implementation to receive the request, and to communicate the data 
making up the ‘request. The interface the client sees is completely independent of where 
the object is located, what programming language it is implemented in, or any other aspect 
which is not reflected in the object’s interface.

FIG.  3 The Structure of Object Request Broker Interfaces 

FIG. 3 on page 2-2 shows the structure of an individual Object Request Broker (ORB). 
The interfaces to the ORB are shown by striped boxes, and the arrows indicate whether the 
ORB is called or performs an up-call across the interface.

To make a request, the Client can use the Dynamic Invocation interface (the same inter-
face independent of the target object’s interface) or an OMG IDL stub (the specific stub 
depending on the interface of the target object). The Client can also directly interact with 
the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG IDL 
generated skeleton or through a dynamic skeleton. The Object Implementation may call 
the Object Adapter and the ORB while processing a request or at other times.

Client Object Implementation

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
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Definitions of the interfaces to objects can be defined in two ways. Interfaces can be 
defined statically in an interface definition language, called the OMG Interface Definition 
Language (OMG IDL). This language defines the types of objects according to the opera-
tions that may be performed on them and the parameters to those operations. Alternatively, 
or in addition, interfaces can be added to an Interface Repository service; this service rep-
resents the components of an interface as objects, permitting run-time access to these com-
ponents. In any ORB implementation, the Interface Definition Language (which may be 
extended beyond its definition in this document) and the Interface Repository have equiv-
alent expressive power. 

FIG.  4 A Client using the Stub or Dynamic Invocation Interface 

The client performs a request by having access to an Object Reference for an object and 
knowing the type of the object and the desired operation to be performed. The client ini-
tiates the request by calling stub routines that are specific to the object or by constructing 
the request dynamically (see FIG. 4 on page 2-3).

The dynamic and stub interface for invoking a request satisfy the same request semantics, 
and the receiver of the message cannot tell how the request was invoked.
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FIG.  5 An Object Implementation Receiving a Request 

The ORB locates the appropriate implementation code, transmits parameters and transfers 
control to the Object Implementation through an IDL skeleton or a dynamic skeleton (see 
FIG. 5 on page 2-4). Skeletons are specific to the interface and the object adapter. In per-
forming the request, the object implementation may obtain some services from the ORB 
through the Object Adapter. When the request is complete, control and output values are 
returned to the client.

The Object Implementation may choose which Object Adapter to use. This decision is 
based on what kind of services the Object Implementation requires.

Object Implementation
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FIG.  6 Interface and Implementation Repositories 

FIG. 6 on page 2-5 shows how interface and implementation information is made avail-
able to clients and object implementations. The interface is defined in OMG IDL and/or in 
the Interface Repository; the definition is used to generate the client Stubs and the object 
implementation Skeletons. 

The object implementation information is provided at installation time and is stored in the 
Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but 
rather it is defined by its interfaces. Any ORB implementation that provides the appropri-
ate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations

2. Operations that are specific to particular types of objects

3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with the 
IDL compilers, repositories, and various Object Adapters, provide a set of services to cli-
ents and implementations of objects that have different properties and qualities.

Client Object Implementation

IDL
Definitions

Interface
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Stubs Skeletons

Implementation
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There may be multiple ORB implementations (also described as multiple ORBs) which 
have different representations for object references and different means of performing 
invocations. It may be possible for a client to simultaneously have access to two object 
references managed by different ORB implementations. When two ORBs are intended to 
work together, those ORBs must be able to distinguish their object references. It is not the 
responsibility of the client to do so. 

The ORB Core is that part of the ORB that provides the basic representation of objects and 
communication of requests. CORBA is designed to support different object mechanisms, 
and it does so by structuring the ORB with components above the ORB Core, which pro-
vide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes opera-
tions on the object. A client knows only the logical structure of the object according to its 
interface and experiences the behavior of the object through invocations. Although we 
will generally consider a client to be a program or process initiating requests on an object, 
it is important to recognize that something is a client relative to a particular object. For 
example, the implementation of one object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language 
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally 
portable and should be able to work without source changes on any ORB that supports the 
desired language mapping with any object instance that implements the desired interface. 
Clients have no knowledge of the implementation of the object, which object adapter is 
used by the implementation, or which ORB is used to access it. Object Implementations

An object implementation provides the semantics of the object, usually by defining data 
for the object instance and code for the object’s methods. Often the implementation will 
use other objects or additional software to implement the behavior of the object. In some 
cases, the primary function of the object is to have side-effects on other things that are not 
objects.

A variety of object implementations can be supported, including separate servers, librar-
ies, a program per method, an encapsulated application, an object-oriented database, etc. 
Through the use of additional object adapters, it is possible to support virtually any style 
of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes 
the object. Object implementations may select interfaces to ORB-dependent services by 
the choice of Object Adapter. 

2.1.3 Object References

An Object Reference is the information needed to specify an object within an ORB. Both 
clients and object implementations have an opaque notion of object references according 
to the language mapping, and thus are insulated from the actual representation of them. 
Two ORB implementations may differ in their choice of Object Reference representations.
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The representation of an object reference handed to a client is only valid for the lifetime of 
that client. 

All ORBs must provide the same language mapping to an object reference (usually 
referred to as an Object) for a particular programming language. This permits a program 
written in a particular language to access object references independent of the particular 
ORB. The language mapping may also provide additional ways to access object references 
in a typed way for the convenience of the programmer. 

There is a distinguished object reference, guaranteed to be different from all object refer-
ences, that denotes no object.

2.1.4 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by 
specifying their interfaces. An interface consists of a set of named operations and the 
parameters to those operations. Note that although IDL provides the conceptual frame-
work for describing the objects manipulated by the ORB, it is not necessary for there to be 
IDL source code available for the ORB to work. As long as the equivalent information is 
available in the form of stub routines or a run-time interface repository, a particular ORB 
may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients 
what operations are available and how they should be invoked. From the IDL definitions, 
it is possible to map CORBA objects into particular programming languages or object sys-
tems.

2.1.5 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to 
access CORBA objects in different ways. For object-oriented languages, it may be desir-
able to see CORBA objects as programming language objects. Even for non-object-ori-
ented languages, it is a good idea to hide the exact ORB representation of the object 
reference, method names, etc. A particular mapping of OMG IDL to a programming lan-
guage should be the same for all ORB implementations. Language mapping includes defi-
nition of the language-specific data types and procedure interfaces to access objects 
through the ORB. It includes the structure of the client stub interface (not required for 
object-oriented languages), the dynamic invocation interface, the implementation skele-
ton, the object adapters, and the direct ORB interface. 

A language mapping also defines the interaction between object invocations and the 
threads of control in the client or implementation. The most common mappings provide 
synchronous calls, in that the routine returns when the object operation completes. Addi-
tional mappings may be provided to allow a call to be initiated and control returned to the 
program. In such cases, additional language-specific routines must be provided to syn-
chronize the program’s threads of control with the object invocation.
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2.1.6 Client Stubs

For the mapping of a non–object–oriented language, there will be a programming inter-
face to the stubs for each interface type. Generally, the stubs will present access to the 
OMG IDL-defined operations on an object in a way that is easy for programmers to pre-
dict once they are familiar with OMG IDL and the language mapping for the particular 
programming language. The stubs make calls on the rest of the ORB using interfaces that 
are private to, and presumably optimized for, the particular ORB Core. If more than one 
ORB is available, there may be different stubs corresponding to the different ORBs. In this 
case, it is necessary for the ORB and language mapping to cooperate to associate the cor-
rect stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Small-time, do not require stub 
interfaces.

2.1.7 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, 
that is, rather than calling a stub routine that is specific to a particular operation on a par-
ticular object, a client may specify the object to be invoked, the operation to be performed, 
and the set of parameters for the operation through a call or sequence of calls. The client 
code must supply information about the operation to be performed and the types of the 
parameters being passed (perhaps obtaining it from an Interface Repository or other run-
time source). The nature of the dynamic invocation interface may vary substantially from 
one programming language mapping to another. 

2.1.8 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there 
will be an interface to the methods that implement each type of object. The interface will 
generally be an up-call interface, in that the object implementation writes routines that 
conform to the interface and the ORB calls them through the skeleton. 

The existence of a skeleton does not imply the existence of a corresponding client stub 
(clients can also make requests via the dynamic invocation interface). 

It is possible to write an object adapter that does not use skeletons to invoke implementa-
tion methods. For example, it may be possible to create implementations dynamically for 
languages such as Smalltalk.

2.1.9 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is, 
rather than being accessed through a skeleton that is specific to a particular operation, an 
object’s implementation is reached through an interface that provides access to the opera-
tion name and parameters in a manner analogous to the client side’s Dynamic Invocation 
Interface. Purely static knowledge of those parameters may be used, or dynamic knowl-
edge (perhaps determined through an Interface Repository) may be also used, to determine 
the parameters.
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The implementation code must provide descriptions of all the operation parameters to the 
ORB, and the ORB provides the values of any input parameters for use in performing the 
operation. The implementation code provides the values of any output parameters, or an 
exception, to the ORB after performing the operation. The nature of the dynamic skeleton 
interface may vary substantially from one programming language mapping or object 
adapter to another, but will typically be an up-call interface.

 Dynamic skeletons may be invoked both through client stubs and through the dynamic 
invocation interface; either style of client request construction interface provides identical 
results.

2.1.10 Object Adapters

An object adapter is the primary way that an object implementation accesses services pro-
vided by the ORB. There are expected to be a few object adapters that will be widely 
available, with interfaces that are appropriate for specific kinds of objects. Services pro-
vided by the ORB through an Object Adapter often include: generation and interpretation 
of object references, method invocation, security of interactions, object and implementa-
tion activation and deactivation, mapping object references to implementations, and regis-
tration of implementations. 

The wide range of object granularities, lifetimes, policies, implementation styles, and 
other properties make it difficult for the ORB Core to provide a single interface that is 
convenient and efficient for all objects. Thus, through Object Adapters, it is possible for 
the ORB to target particular groups of object implementations that have similar require-
ments with interfaces tailored to them.

2.1.11 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for all 
ORBs and does not depend on the object’s interface or object adapter. Because most of the 
functionality of the ORB is provided through the object adapter, stubs, skeleton, or 
dynamic invocation, there are only a few operations that are common across all objects. 
These operations are useful to both clients and implementations of objects.

2.1.12 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the 
IDL information in a form available at run-time. The Interface Repository information 
may be used by the ORB to perform requests. Moreover, using the information in the 
Interface Repository, it is possible for a program to encounter an object whose interface 
was not known when the program was compiled, yet, be able to determine what operations 
are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common 
place to store additional information associated with interfaces to ORB objects. For exam-
ple, debugging information, libraries of stubs or skeletons, routines that can format or 
browse particular kinds of objects, etc., might be associated with the Interface Repository.
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2.1.13 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and 
activate implementations of objects. Although most of the information in the Implementa-
tion Repository is specific to an ORB or operating environment, the Implementation 
Repository is the conventional place for recording such information. Ordinarily, installa-
tion of implementations and control of policies related to the activation and execution of 
object implementations is done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a 
common place to store additional information associated with implementations of ORB 
objects. For example, debugging information, administrative control, resource allocation, 
security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs
There are a wide variety of ORB implementations possible within the Common ORB 
Architecture. This section will illustrate some of the different options. Note that a particu-
lar ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in 
routines resident in the clients and implementations. The stubs in the client either use a 
location-transparent IPC mechanism or directly access a location service to establish com-
munication with the implementations. Code linked with the implementation is responsible 
for setting up appropriate databases for use by clients.

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communi-
cate with one or more servers whose job it is to route requests from clients to implementa-
tions. The ORB could be a normal program as far as the underlying operating system is 
concerned, and normal IPC could be used to communicate with the ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic 
service of the underlying operating system. Object references could be made unforgeable, 
reducing the expense of authentication on each request. Because the operating system 
could know the location and structure of clients and implementations, it would be possible 
for a variety of optimizations to be implemented, for example, avoiding marshalling when 
both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implemen-
tation might actually be in a library. In this case, the stubs could be the actual methods. 
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This assumes that it is possible for a client program to get access to the data for the objects 
and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client
A client of an object has an object reference that refers to that object. An object reference 
is a token that may be invoked or passed as a parameter to an invocation on a different 
object. Invocation of an object involves specifying the object to be invoked, the operation 
to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and 
back to the client. In the event that the ORB cannot complete the invocation, an exception 
response is provided. Ordinarily, a client calls a routine in its program that performs the 
invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see FIG. 7 on 
page 2-12). The client program thus sees routines callable in the normal way in its pro-
gramming language. All implementations will provide a language-specific data type to use 
to refer to objects, often an opaque pointer. The client then passes that object reference to 
the stub routines to initiate an invocation. The stubs have access to the object reference 
representation and interact with the ORB to perform the invocation. (See Chapter 14 for 
additional, general information on language mapping of object references.) 
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FIG.  7 The Structure of a Typical Client 

An alternative set of library code is available to perform invocations on objects, for exam-
ple when the object was not defined at compile time. In that case, the client program pro-
vides additional information to name the type of the object and the method being invoked, 
and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters 
from invocations on other objects for which they have references. When a client is also an 
implementation, it receives object references as input parameters on invocations to objects 
it implements. An object reference can also be converted to a string that can be stored in 
files or preserved or communicated by different means and subsequently turned back into 
an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation
An object implementation provides the actual state and behavior of an object. The object 
implementation can be structured in a variety of ways. Besides defining the methods for 
the operations themselves, an implementation will usually define procedures for activating 
and deactivating objects and will use other objects or non-object facilities to make the 
object state persistent, to control access to the object, as well as to implement the methods.
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The object implementation (see FIG. 8 on page 2-13) interacts with the ORB in a variety 
of ways to establish its identity, to create new objects, and to obtain ORB-dependent ser-
vices. It primarily does this via access to an Object Adapter, which provides an interface to 
ORB services that is convenient for a particular style of object implementation.

FIG.  8 The Structure of a Typical Object Implementation 

Because of the range of possible object implementations, it is difficult to be definitive 
about how in general an object implementation is structured. See the Basic Object Adapter 
chapter for the structure of object implementations that use the Basic Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call 
is made to the appropriate method of the implementation. A parameter to that method 
specifies the object being invoked, which the method can use to locate the data for the 
object. Additional parameters are supplied according to the skeleton definition. When the 
method is complete, it returns, causing output parameters or exception results to be trans-
mitted back to the client.

When a new object is created, the ORB may be notified so that the it knows where to find 
the implementation for that object. Usually, the implementation also registers itself as 
implementing objects of a particular interface, and specifies how to start up the implemen-
tation if it is not already running.
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Most object implementations provide their behavior using facilities in addition to the ORB 
and object adapter. For example, although the Basic Object Adapter provides some persis-
tent data associated with an object, that relatively small amount of data is typically used as 
an identifier for the actual object data stored in a storage service of the object implementa-
tion’s choosing. With this structure, it is not only possible for different object implementa-
tions to use the same storage service, it is also possible for objects to choose the service 
that is most appropriate for them.

2.5 Structure of an Object Adapter
An object adapter (see FIG. 9 on page 2-15) is the primary means for an object implemen-
tation to access ORB services such as object reference generation. An object adapter 
exports a public interface to the object implementation, and a private interface to the skel-
eton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• registration of implementations

These functions are performed using the ORB Core and any additional components neces-
sary. Often, an object adapter will maintain its own state to accomplish its tasks. It may be 
possible for a particular object adapter to delegate one or more of its responsibilities to the 
Core upon which it is constructed. 

As shown in FIG. 9 on page 2-15, the Object Adapter is implicitly involved in invocation 
of the methods, although the direct interface is through the skeletons. For example, the 
Object Adapter may be involved in activating the implementation or authenticating the 
request.
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FIG.  9 The Structure of a Typical Object Adapter 

The Object Adapter defines most of the services from the ORB that the Object Implemen-
tation can depend on. Different ORBs will provide different levels of service and different 
operating environments may provide some properties implicitly and require others to be 
added by the Object Adapter. For example, it is common for Object Implementations to 
want to store certain values in the object reference for easy identification of the object on 
an invocation. If the Object Adapter allows the implementation to specify such values 
when a new object is created, it may be able to store them in the object reference for those 
ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter 
would record the value in its own storage and provide it to the implementation on an invo-
cation. With Object Adapters, it is possible for an Object Implementation to have access to 
a service whether or not it is implemented in the ORB Core—if the ORB Core provides it, 
the adapter simply provides an interface to it; if not, the adapter must implement it on top 
of the ORB Core. Every instance of a particular adapter must provide the same interface 
and service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functional-
ity. Some Object Implementations have special requirements, for example, an object-ori-
ented database system may wish to implicitly register its many thousands of objects 
without doing individual calls to the Object Adapter. In such a case, it would be impracti-
cal and unnecessary for the object adapter to maintain any per-object state. By using an 
object adapter interface that is tuned towards such object implementations, it is possible to 
take advantage of particular ORB Core details to provide the most effective access to the 
ORB.
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2.6 Example Object Adapters
There are a variety of possible object adapters. However, since the object adapter interface 
is something that object implementations depend on, it is desirable that there be as few as 
practical. Most object adapters are designed to cover a range of object implementations, so 
only when an implementation requires radically different services or interfaces should a 
new object adapter be considered. In this section, we describe three object adapters that 
might be useful.

2.6.1 Basic Object Adapter

This specification defines an object adapter that can be used for most ORB objects with 
conventional implementations. (See the Basic Object Adapter chapter for more informa-
tion.) For this object adapter, implementations are generally separate programs. It allows 
there to be a program started per method, a separate program for each object, or a shared 
program for all instances of the object type. It provides a small amount of persistent stor-
age for each object, which can be used as a name or identifier for other storage, for access 
control lists, or other object properties. If the implementation is not active when an invo-
cation is performed, the BOA will start one.

2.6.2 Library Object Adapter

This object adapter is primarily used for objects that have library implementations. It 
accesses persistent storage in files, and does not support activation or authentication, since 
the objects are assumed to be in the clients program.

2.6.3 Object-Oriented Database Adapter

This adapter uses a connection to an object-oriented database to provide access to the 
objects stored in it. Since the OODB provides the methods and persistent storage, objects 
may be registered implicitly and no state is required in the object adapter.

2.7 The Integration of Foreign Object Systems
The Common ORB Architecture is designed to allow interoperation with a wide range of 
object systems (see FIG. 10 on page 2-17). Because there are many existing object sys-
tems, a common desire will be to allow the objects in those systems to be accessible via 
the ORB. For those object systems that are ORBs themselves, they may be connected to 
other ORBs through the mechanisms described in chapters 9, 10, 11, 12, and 13 in this 
manual.
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FIG.  10 Different Ways to Integrate Foreign Object Systems 

For object systems that simply want to map their objects into ORB objects and receive 
invocations through the ORB, one approach is to have those object systems appear to be 
implementations of the corresponding ORB objects. The object system would register its 
objects with the ORB and handle incoming requests, and could act like a client and per-
form outgoing requests.

In some cases, it will be impractical for another object system to act like a BOA object 
implementation. An object adapter could be designed for objects that are created in con-
junction with the ORB and that are primarily invoked through the ORB. Another object 
system may wish to create objects without consulting the ORB, and might expect most 
invocations to occur within itself rather than through the ORB. In such a case, a more 
appropriate object adapter might allow objects to be implicitly registered when they are 
passed through the ORB.
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OMG IDL Syntax and Semantics 3
The OMG Interface Definition Language is the language used to describe the 
interfaces that client objects call and object implementations provide. An interface 
definition written in OMG IDL completely defines the interface and fully specifies 
each operation’s parameters. An OMG IDL interface provides the information needed 
to develop clients that use the interface’s operations. Clients are not written in OMG 
IDL, which is purely a descriptive language, but in languages for which mappings 
from OMG IDL concepts have been defined. The mapping of an OMG IDL concept to 
a client language construct will depend on the facilities available in the client 
language. For example, an OMG IDL exception might be mapped to a structure in a 
language that has no notion of exception, or to an exception in a language that does. 
The binding of OMG IDL concepts to the C, C++, and Smalltalk languages are 
described in this manual. Bindings from OMG IDL to additional programming 
languages will be added to future versions of COBRA. 

OMG IDL obeys the same lexical rules as C++1, although new keywords are 
introduced to support distribution concepts. It also provides full support for standard 
C++ preprocessing features. The OMG IDL specification is expected to track relevant 
changes to C++ introduced by the ANSI standardization effort. 

3.1 About This Chapter

The description of OMG IDL’s lexical conventions is presented in “Lexical 
Conventions” on page 3-2. A description of OMG IDL preprocessing is presented in 
“Preprocessing” on page 3-8. The scope rules for identifiers in an OMG IDL 
specification are described in “CORBA Module” on page 3-31.

1.Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1
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The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with 
additional constructs to support the operation invocation mechanism. OMG IDL is a 
declarative language. It supports C++ syntax for constant, type, and operation 
declarations; it does not include any algorithmic structures or variables. The grammar 
is presented in “OMG IDL Grammar” on page 3-9.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a 
specification; the textual location of these pragmas may be semantically constrained by 
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an 
“.idl” extension. The file orb.idl, which contains OMG IDL type definitions and is 
available on every ORB implementation, is described in Appendix A. 

This chapter describes OMG IDL semantics and gives the syntax for OMG IDL 
grammatical constructs. The description of OMG IDL grammar uses a syntax notation 
that is similar to Extended Backus-Naur format (EBNF); Figure 1 on page 3-2 lists the 
symbols used in this format and their meaning.

3.2 Lexical Conventions

This section2 presents the lexical conventions of OMG IDL. It defines tokens in an 
OMG IDL specification and describes comments, identifiers, keywords, and 
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is 
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. 
Preprocessing is controlled by directives introduced by lines having # as the first 
character other than white space. The result of preprocessing is a sequence of tokens. 
Such a sequence of tokens, that is, a file after preprocessing, is called a translation 
unit.

2.This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in 
the list of legal keywords and punctuation.

TABLE 1. IDL EBNF Format  

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time
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OMG IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided 
into alphabetic characters (letters), digits, graphic characters, the space (blank) 
character and formatting characters. Figure 2 on page 3-3 shows the OMG IDL 
alphabetic characters; upper- and lower-case equivalencies are paired. 

TABLE 2. The 114 Alphabetic Characters (Letters)  

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Upper/Lower-case Icelandic eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with tilde

Ss Upper/Lower-case S Òò Upper/Lower-case O with grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with acute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with oblique stroke

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with acute accent

Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

Upper/Lower-case Y with acute accent

Upper/Lower-case Icelandic thorn

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis
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Figure 3 on page 3-4 lists the decimal digit characters. 

Figure 4 on page 3-4 shows the graphic characters. 

TABLE 3. Decimal Digits
0 1 2 3 4 5 6 7 8 9

TABLE 4. The 65 Graphic Characters  

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

# number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

( left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ˚ ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[ left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign 
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The formatting characters are shown in Figure 5 on page 3-5. 

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other 
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments 
(collective, “white space”), as described below, are ignored except as they serve to 
separate tokens. Some white space is required to separate otherwise adjacent 
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token 
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These 
comments do not nest. The characters // start a comment, which terminates at the end 
of the line on which they occur. The comment characters //, /*, and */ have no special 
meaning within a // comment and are treated just like other characters. Similarly, the 
comment characters // and /* have no special meaning within a /* comment. Comments 
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed and 
newline characters. 

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore (“_”) 
characters. The first character must be an alphabetic character. All characters are 
significant. 

Identifiers that differ only in case collide and yield a compilation error. An identifier 
for a definition must be spelled consistently (with respect to case) throughout a 
specification. 

When comparing two identifiers to see if they collide: 

• Upper- and lower-case letters are treated as the same letter. Figure 2 on page 3-3 
defines the equivalence mapping of upper- and lower-case letters.

TABLE 5. The Formatting Characters 

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
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• The comparison does not take into account equivalences between digraphs and 
pairs of letters (e.g., “æ” and “ae” are not considered equivalent) or equivalences 
between accented and non-accented letters (e.g., “Á” and “A” are not considered 
equivalent).

• All characters are significant.

There is only one namespace for OMG IDL identifiers. Using the same identifier for a 
constant and an interface, for example, produces a compilation error. 

3.2.4 Keywords

The identifiers listed in Figure 6 on page 3-6 are reserved for use as keywords, and 
may not be used otherwise. 

Keywords obey the rules for identifiers (see  Section 3.2.3) and must be written exactly 
as shown in the above list. For example, “boolean” is correct; “Boolean” produces 
a compilation error. 

OMG IDL specifications use the characters shown in Figure 7 on page 3-6 as 
punctuation. 

In addition, the tokens listed in Figure 8 on page 3-6 are used by the preprocessor. 

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

TABLE 6. Keywords
any default inout out switch

attribute double interface raises TRUE

boolean enum long readonly typedef

case exception module sequence unsigned

char FALSE Object short union

const float octet string void

context in oneway struct

TABLE 7. Punctuation Characters
; { } : , = + - ( ) < > [ ]

' " \ | ^ & * / % ~

TABLE 8. Preprocessor Tokens
# ## ! || &&
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Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) 
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be 
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of 
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The 
hexadecimal digits include a or A through f or F with decimal values ten through 
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in’x’. 
Character literals have type char. 

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). 
The value of a space, alphabetic, digit or graphic character literal is the numerical 
value of the character as defined in the ISO Latin-1 (8859.1) character set standard 
(See Figure 2 on page 3-3, Figure 3 on page 3-4, and Figure 4 on page 3-4). The value 
of a null is 0. The value of a formatting character literal is the numerical value of the 
character as defined in the ISO 646 standard (See Figure 5 on page 3-5). The meaning 
of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in 
Figure 9 on page 3-7. Note that escape sequences must be used to represent single 
quote and backslash characters in character literals. 

If the character following a backslash is not one of those specified, the behavior is 
undefined. An escape sequence specifies a single character.

TABLE 9. Escape Sequences  

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal 
number

\xhh
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The escape \ooo consists of the backslash followed by one, two, or three octal digits 
that are taken to specify the value of the desired character. The escape \xhh consists of 
the backslash followed by x followed by one or two hexadecimal digits that are taken 
to specify the value of the desired character. A sequence of octal or hexadecimal digits 
is terminated by the first character that is not an octal digit or a hexadecimal digit, 
respectively. The value of a character constant is implementation dependent if it 
exceeds that of the largest char.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e 
or E, and an optionally signed integer exponent. The integer and fraction parts both 
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction 
part (but not both) may be missing; either the decimal point or the letter e (or E) and 
the exponent (but not both) may be missing. 

String Literals

A string literal is a sequence of characters (as defined in “Character Literals” on page 
3-7) surrounded by double quotes, as in "...". 

Adjacent string literals are concatenated. Characters in concatenated strings are kept 
distinct. For example,

                              "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single 
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quotes, 
after concatenation. The size of the literal is associated with the literal. Within a string, 
the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro 
substitution, conditional compilation, and source file inclusion. In addition, directives 
are provided to control line numbering in diagnostics and for symbolic debugging, to 
generate a diagnostic message with a given token sequence, and to perform 
implementation-dependent actions (the #pragma directive). Certain predefined 
names are available. These facilities are conceptually handled by a preprocessor, which 
may or may not actually be implemented as a separate process.
3-8                                  CORBA V2.0                                  July 1995



3

Lines beginning with # (also called “directives”) communicate with this preprocessor. 
White space may appear before the #. These lines have syntax independent of the rest 
of OMG IDL; they may appear anywhere and have effects that last (independent of the 
OMG IDL scoping rules) until the end of the translation unit. The textual location of 
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source 
file by placing a backslash character (“\”), immediately before the newline at the end 
of the line to be continued. The preprocessor effects the continuation by deleting the 
backslash and the newline before the input sequence is divided into tokens. A 
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token ( Section 3.2.1), a file name as in a 
#include directive, or any single character, other than white space, that does not 
match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other 
OMG IDL specifications. Text in files included with a #include directive is treated as 
if it appeared in the including file. A complete description of the preprocessing 
facilities may be found in The Annotated C++ Reference Manual, Chapter 16. The 
#pragma directive that is used to include RepositoryIds is described in Section 6.6, 
“RepositoryIds,” on page 6-30.

3.4 OMG IDL Grammar
(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

(3) <module> ::= “module” <identifier> “{“ <definition>+ “}”

(4) <interface> ::= <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”

(6) <forward_dcl> ::= “interface” <identifier>

(7) <interface_header>::= “interface” <identifier> [ <inheritance_spec> ]

(8) <interface_body> ::= <export>*

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10) <inheritance_spec>::= “:” <scoped_name> { “,” <scoped_name> }∗
CORBA V2.0         OMG IDL Grammar      July 1995 3-9



3

(11) <scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

(12) <const_dcl> ::= “const” <const_type> <identifier> “=” <const_exp>

(13) <const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

(14) <const_exp> ::= <or_expr>

(15) <or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

(16) <xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

(17) <and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

(18) <shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(19) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(20) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(21) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(22) <unary_operator> ::= “-”
| “+”
| “~”

(23) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(24) <literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

(25) <boolean_literal> ::= “TRUE”
| “FALSE”

(26) <positive_int_const>::=<const_exp>
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(27) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

(28) <type_declarator> ::= <type_spec> <declarators>

(29) <type_spec> ::= <simple_type_spec>
| <constr_type_spec>

(30) <simple_type_spec>::=<base_type_spec>
| <template_type_spec>
| <scoped_name>

(31) <base_type_spec>::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <any_type>

(32) <template_type_spec>::=<sequence_type>
| <string_type>

(33) <constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

(34) <declarators> ::= <declarator> { “,” <declarator> }∗

(35) <declarator> ::= <simple_declarator>
| <complex_declarator>

(36) <simple_declarator>::=<identifier>

(37) <complex_declarator>::=<array_declarator>

(38) <floating_pt_type>::= “float”
| “double”

(39) <integer_type> ::= <signed_int>
| <unsigned_int>

(40) <signed_int> ::= <signed_long_int>
| <signed_short_int>

(41) <signed_long_int> ::= “long”

(42) <signed_short_int>::= “short”

(43) <unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>

(44) <unsigned_long_int>::=“unsigned” “long”

(45) <unsigned_short_int>::=“unsigned” “short”

(46) <char_type> ::= “char”

(47) <boolean_type> ::= “boolean”
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(48) <octet_type> ::= “octet”

(49) <any_type> ::= “any”

(50) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”

(51) <member_list> ::= <member>+

(52) <member> ::= <type_spec> <declarators> “;”

(53) <union_type> ::= “union” <identifier> “switch” “(” <switch_type_spec> “)”
“{” <switch_body> “}”

(54) <switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(55) <switch_body> ::= <case>+

(56) <case> ::= <case_label>+ <element_spec> “;”

(57) <case_label> ::= “case” <const_exp> “:”
| “default” “:”

(58) <element_spec> ::= <type_spec> <declarator>

(59) <enum_type> ::= “enum” <identifier> “{” <enumerator> { “,” <enumerator> }∗  “}”

(60) <enumerator> ::= <identifier>

(61) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”<positive_int_const>“>”
| “sequence” “<” <simple_type_spec> “>”

(62) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(63) <array_declarator>::= <identifier> <fixed_array_size>+

(64) <fixed_array_size>::= “[” <positive_int_const> “]”

(65) <attr_dcl> ::= [ “readonly” ] “attribute” <param_type_spec>
 <simple_declarator> { “,” <simple_declarator> }*

(66) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”

(67) <op_dcl> ::= [ <op_attribute> ] <op_type_spec> <identifier> 
<parameter_dcls>

[ <raises_expr> ] [ <context_expr> ]

(68) <op_attribute> ::= “oneway”

(69) <op_type_spec> ::= <param_type_spec>
| “void”

(70) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> }∗  “)”
| “(” “)”

(71) <param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
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(72) <param_attribute> ::= “in”
| “out”
| “inout”

(73) <raises_expr> ::= “raises” “(” <scoped_name> { “,” <scoped_name> }∗  “)”

(74) <context_expr> ::= “context” “(” <string_literal> { “,” <string_literal> }∗  “)”

(75) <param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_name>

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant 
definitions, exception definitions, or module definitions. The syntax is:

<specification>::= <definition>+

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

See “Constant Declaration” on page 3-17, “Type Declaration” on page 3-19, and 
“Exception Declaration” on page 3-26, respectively, for specifications of 
<const_dcl>, <type_dcl>, and <except_dcl>.

3.5.1 Module Declaration

A module definition satisfies the following syntax:

<module> ::= “module” <identifier> “{“ <definition>+ “}”

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on 
page 3-31 for details. 

3.5.2 Interface Declaration

An interface definition satisfies the following syntax:

<interface> ::= <interface_dcl>
| <forward_dcl>

<interface_dcl>::= <interface_header> “{” <interface_body> “}”

<forward_dcl> ::= “interface” <identifier>

<interface_header>::=“interface” <identifier> [ <inheritance_spec> ]
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<interface_body>::=<export>*

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

Interface Header

The interface header consists of two elements:

• The interface name. The name must be preceded by the keyword interface, and 
consists of an identifier that names the interface.

• An optional inheritance specification. The inheritance specification is described 
in the next section.

The <identifier> that names an interface defines a legal type name. Such a type 
name may be used anywhere an <identifier> is legal in the grammar, subject to 
semantic constraints as described in the following sections. Since one can only hold 
references to an object, the meaning of a parameter or structure member which is an 
interface type is as a reference to an object supporting that interface. Each language 
binding describes how the programmer must represent such interface references.

Inheritance Specification

The syntax for inheritance is as follows: 

<inheritance_spec>::= “:” <scoped_name> {“,” <scoped_name>}*

<scoped_name>::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <inheritance_spec> must denote a previously 
defined interface. See “Inheritance” on page 3-15 for the description of inheritance. 

Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports; 
constant declaration syntax is described in “Constant Declaration” on page 3-17.

• Type declarations, which specify the type definitions that the interface exports; 
type declaration syntax is described in “Type Declaration” on page 3-19.

• Exception declarations, which specify the exception structures that the interface 
exports; exception declaration syntax is described in “Exception Declaration” on 
page 3-26.
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• Attribute declarations, which specify the associated attributes exported by the 
interface; attribute declaration syntax is described in “Attribute Declaration” on 
page 3-30.

• Operation declarations, which specify the operations that the interface exports and 
the format of each, including operation name, the type of data returned, the types 
of all parameters of an operation, legal exceptions which may be returned as a 
result of an invocation, and contextual information which may affect method 
dispatch; operation declaration syntax is described in “Operation Declaration” on 
page 3-27.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface 
body. 

Forward Declaration

A forward declaration declares the name of an interface without defining it. This 
permits the definition of interfaces that refer to each other. The syntax consists simply 
of the keyword interface followed by an <identifier> that names the interface. The 
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

3.6 Inheritance

An interface can be derived from another interface, which is then called a base 
interface of the derived interface. A derived interface, like all interfaces, may declare 
new elements (constants, types, attributes, exceptions, and operations). In addition, 
unless redefined in the derived interface, the elements of a base interface can be 
referred to as if they were elements of the derived interface. The name resolution 
operator (“::”) may be used to refer to a base element explicitly; this permits reference 
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names which 
have been inherited; the scope rules for such names are described in “CORBA 
Module” on page 3-31. 

An interface is called a direct base if it is mentioned in the <inheritance_spec> 
and an indirect base if it is not a direct base but is a base interface of one of the 
interfaces mentioned in the <inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more 
than one direct base interface is often called multiple inheritance. The order of 
derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more 
than once; it may be an indirect base interface more than once. Consider the following 
example:
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interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }

The relationships between these interfaces is shown in Figure 11 on page 3-16. This 
“diamond” shape is legal.

FIGURE 11. Legal Multiple Inheritance Example 

Reference to base interface elements must be unambiguous. Reference to a base 
interface element is ambiguous if the expression used refers to a constant, type, or 
exception in more than one base interface. (It is currently illegal to inherit from two 
interfaces with the same operation or attribute name, or to redefine an operation or 
attribute name in the derived interface.) Ambiguities can be resolved by qualifying a 
name with its interface name (that is, using a <scoped_name>).

References to constants, types, and exceptions are bound to an interface when it is 
defined i.e., replaced with the equivalent global <scoped_name>s. This guarantees 
that the syntax and semantics of an interface are not changed when the interface is a 
base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {
void f (in float s[L]); // s has 3 floats

};

interface B {
const long L = 4;

};

interface C: B, A {}// what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees 
that the signature of operation f in interface C is 

A

B C

D
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void f(in float s[3]);

which is identical to that in interface A. This rule also prevents redefinition of a 
constant, type, or exception in the derived interface from affecting the operations and 
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be 
imported into the current naming scope. A type name, constant name, enumeration 
value name, or exception name from an enclosing scope can be redefined in the current 
scope. An attempt to use an ambiguous name without qualification is a compilation 
error.

Operation names are used at run-time by both the stub and dynamic interfaces. As a 
result, all operations that might apply to a particular object must have unique names. 
This requirement prohibits redefining an operation name in a derived interface, as well 
as inheriting two operations with the same name. 

Note – It is anticipated that future revisions of the language may relax this rule in 
some way, perhaps allowing overloading or providing some means to distinguish 
operations with the same name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifier> “=” <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>
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<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator>::=“-”
| “+”
| “~”

<primary_expr>::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal>::=“TRUE”
| “FALSE”

<positive_int_const>::=<const_exp>

3.7.2 Semantics

The <scoped_name> in the <const_type> production must be a previously 
defined name of an <integer_type>, <char_type>, <boolean_type>, 

<floating_pt_type>, or <string_type> constant.

No infix operator can combine an integer and a float. Infix operators are not applicable 
to types other than integer and float.

An integer constant expression is evaluated as unsigned long unless it contains a 
negated integer literal or the name of an integer constant with a negative value. In the 
latter case, the constant expression is evaluated as signed long. The computed value is 
coerced back to the target type in constant initializers. It is an error if the computed 
value exceeds the precision of the target type. It is an error if any intermediate value 
exceeds the range of the evaluated-as type (long or unsigned long). 
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All floating-point literals are double, all floating-point constants are coerced to double, 
and all floating-point expressions are computed as doubles. The computed double 
value is coerced back to the target type in constant initializers. It is an error if this 
coercion fails or if any intermediate values (when evaluating the expression) exceed 
the range of double.

Unary (+   –) and binary (*   /   +   –) operators are applicable in floating-point expressions. 
Unary (+   –   ~) and binary (*   /   %   +   –   <<   >>   &   |   ^) operators are applicable in 
integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it 
is applied should be generated. For the purposes of such expressions, the values are 2’s 
complement numbers. As such, the complement can be generated as follows:

long –(value+1)

unsigned long    (2**32 – 1) – value

The “%” binary operator yields the remainder from the division of the first expression 
by the second. If the second operand of “%” is 0, the result is undefined; otherwise
                              (a/b)*b + a%b 

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if 
not, the sign of the remainder is implementation dependent. 

The “<<”binary operator indicates that the value of the left operand should be shifted 
left the number of bits specified by the right operand, with 0 fill for the vacated bits. 
The right operand must be in the range 0 <= right operand < 32.

The “>>” binary operator indicates that the value of the left operand should be shifted 
right the number of bits specified by the right operand, with 0 fill for the vacated bits. 
The right operand must be in the range 0 <= right operand < 32.

The “&” binary operator indicates that the logical, bitwise AND of the left and right 
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right 
operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left 
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL uses the typedef 
keyword to associate a name with a data type; a name is also associated with a data 
type via the struct, union, and enum declarations; the syntax is:
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<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

<type_declarator>::=<type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed 
values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec>::=<base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec>::=<floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>

<constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { “,” <declarator> }∗

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator>::=<identifier>

<complex_declarator>::=<array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined 
type.

As seen above, OMG IDL type specifiers consist of scalar data types and type 
constructors. OMG IDL type specifiers can be used in operation declarations to assign 
data types to operation parameters. The next sections describe basic and constructed 
type specifiers.

3.8.1 Basic Types

The syntax for the supported basic types is as follows:

<floating_pt_type>::=“float”
| “double”
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<integer_type>::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int>
| <signed_short_int>

<signed_long_int>::=“long”

<signed_short_int>::=“short”

<unsigned_int>::= <unsigned_long_int>
| <unsigned_short_int>

<unsigned_long_int>::=“unsigned” “long”

<unsigned_short_int>::=“unsigned” “short”

<char_type> ::= “char”

<boolean_type>::=“boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language 
mapping. Conversion errors between OMG IDL data types and the native types to 
which they are mapped can occur during the performance of an operation invocation. 
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) 
may signal an exception condition to the client if an attempt is made to convert an 
illegal value. The standard exceptions which are to be signalled in such situations are 
defined in “Standard Exceptions” on page 3-33. 

Integer Types

OMG IDL supports long and short signed and unsigned integer data types. long 

represents the range -231 .. 231 - 1 while unsigned long represents the range 0 .. 232 
- 1. short represents the range -215 .. 215 - 1, while unsigned short represents the 
range 0 .. 216 - 1.

Floating-Point Types

OMG IDL floating-point types are float and double. The float type represents 
IEEE single-precision floating point numbers; the double type represents IEEE 
double-precision floating point numbers.The IEEE floating point standard specification 
(IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985) 
should be consulted for more information on the precision afforded by these types.

Implementations that do not fully support the value set of the IEEE 754 floating-point 
standard must completely specify their deviance from the standard. 
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Char Type

OMG IDL defines a char data type consisting of 8-bit quantities. 

The ISO Latin-1 (8859.1) character set standard defines the meaning and 
representation of all possible graphic characters (i.e., the space, alphabetic, digit and 
graphic characters defined in Figure 2 on page 3-3, Figure 3 on page 3-4, and Figure 4 
on page 3-4). The meaning and representation of the null and formatting characters 
(see Figure 5 on page 3-5) is the numerical value of the character as defined in the 
ASCII (ISO 646) standard. The meaning of all other characters is implementation-
dependent.

During transmission, characters may be converted to other appropriate forms as 
required by a particular language binding. Such conversions may change the 
representation of a character but maintain the character’s meaning. For example, a 
character may be converted to and from the appropriate representation in international 
character sets.

Boolean Type

The boolean data type is used to denote a data item that can only take one of the 
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion 
when transmitted by the communication system.

Any Type

The any type permits the specification of values that can express any OMG IDL type. 

3.8.2 Constructed Types

The constructed types are:

<constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

Although it is syntactically possible to generate recursive type specifications in OMG 
IDL, such recursion is semantically constrained. The only permissible form of 
recursive type specification is through the use of the sequence template type. For 
example, the following is legal:
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struct foo {
long value;
sequence<foo> chain;

}

See “Sequences” on page 3-25 for details of the sequence template type. 

Structures

The structure syntax is:

<struct_type> ::= “struct” <identifier> “{” <member_list> “}”

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may 
also be named using a typedef declaration.

Name scoping rules require that the member declarators in a particular structure be 
unique. The value of a struct is the value of all of its members.

Discriminated Unions

The discriminated union syntax is:

<union_type> ::= “union” <identifier> “switch” “(” <switch_type_spec> “)”
“{” <switch_body> “}”

<switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body>::= <case>+

<case> ::= <case_label>+ <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec>::=<type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL 
unions must be discriminated; that is, the union header must specify a typed tag field 
that determines which union member to use for the current instance of a call. The 
<identifier> following the union keyword defines a new legal type. Union types 
may also be named using a typedef declaration. The <const_exp> in a 
<case_label> must be consistent with the <switch_type_spec>. A default 
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case can appear at most once. The <scoped_name> in the 
<switch_type_spec> production must be a previously defined integer, char, 

boolean or enum type.

Case labels must match or be automatically castable to the defined type of the 
discriminator. The complete set of matching rules are shown in Figure 10 on page 
3-24. 

Name scoping rules require that the element declarators in a particular union be 
unique. If the <switch_type_spec> is an <enum_type>, the identifier for the 
enumeration is in the scope of the union; as a result, it must be distinct from the 
element declarators. 

It is not required that all possible values of the union discriminator be listed in the 
<switch_body>. The value of a union is the value of the discriminator together 
with one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of 
the element associated with that case statement; 

• If a default case label was specified, the value of the element associated with the 
default case label;

• No additional value.

Access to the discriminator and the related element is language-mapping dependent.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier> “{” <enumerator> { “,” <enumerator> }∗  “}”

<enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the 
enumerated names must be mapped to a native data type capable of representing a 
maximally-sized enumeration. The order in which the identifiers are named in the 

TABLE 10. Case Label Matching  

Discriminator
 Type Matched By

long any integer value in the value range of long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long

unsigned short any integer value in the value range of unsigned short

char char

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type
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specification of an enumeration defines the relative order of the identifiers. Any 
language mapping which permits two enumerators to be compared or defines 
successor/predecessor functions on enumerators must conform to this ordering relation. 
The <identifier> following the enum keyword defines a new legal type. 
Enumerated types may also be named using a typedef declaration.

3.8.3 Template Types

The template types are:

<template_type_spec>:   :=<sequence_type>
| <string_type>

Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional 
array with two characteristics: a maximum size (which is fixed at compile time) and a 
length (which is determined at run time).

The syntax is:

<sequence_type>   ::=“sequence” “<” <simple_type_spec> “,” 
<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the 
sequence. If a positive integer constant is specified for the maximum size, the sequence 
is termed a bounded sequence. Prior to passing a bounded sequence as a function 
argument (or as a field in a structure or union), the length of the sequence must be set 
in a language-mapping dependent manner. After receiving a sequence result from an 
operation invocation, the length of the returned sequence will have been set; this value 
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior 
to passing such a sequence as a function argument (or as a field in a structure or 
union), the length of the sequence, the maximum size of the sequence, and the address 
of a buffer to hold the sequence must be set in a language-mapping dependent manner. 
After receiving such a sequence result from an operation invocation, the length of the 
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner. 

A sequence type may be used as the type parameter for another sequence type. For 
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”. 
Note that for nested sequence declarations, white space must be used to separate the 
two “>” tokens ending the declaration so they are not parsed as a single “>>” token.
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Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities 
except null. A string is similar to a sequence of char. As with sequences of any type, 
prior to passing a string as a function argument (or as a field in a structure or union), 
the length of the string must be set in a language-mapping dependent manner. The 
syntax is:

<string_type>:  :=“string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positive 
integer maximum size is specified, the string is termed a bounded string; if no 
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in 
functions or standard library functions for string manipulation. A separate string type 
may permit substantial optimization in the handling of strings compared to what can be 
done with sequences of general types.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes 
for each dimension.

The syntax for arrays is:

<array_declarator>   ::=<identifier> <fixed_array_size>+

<fixed_array_size>   ::=“[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as 
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array 
index as a parameter may yield incorrect results. 

3.9 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which may 
be returned to indicate that an exceptional condition has occurred during the 
performance of a request. The syntax is as follows:

<except_dcl> :  :=“exception” <identifier> “{“ <member>* “}”
3-26                                  CORBA V2.0                                  July 1995



3

Each exception is characterized by its OMG IDL identifier, an exception type 
identifier, and the type of the associated return value (as specified by the 
<member>s in its declaration. If an exception is returned as the outcome to a 
request, then the value of the exception identifier is accessible to the programmer for 
determining which particular exception was raised. 

If an exception is declared with members, a programmer will be able to access the 
values of those members when an exception is raised. If no members are specified, no 
additional information is accessible when an exception is raised. 

A set of standard exceptions is defined corresponding to standard run-time errors 
which may occur during the execution of a request. These standard exceptions are 
documented in “Standard Exceptions” on page 3-33.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax 
is:

<op_dcl> ::= [ <op_attribute> ] <op_type_spec> <identifier> 
<parameter_dcls>

[ <raises_expr> ] [ <context_expr> ]

<op_type_spec>::=<param_type_spec>
| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the 
communication system should provide when the operation is invoked. Operation 
attributes are described in “Operation Attribute” on page 3-28.

• The type of the operation’s return result; the type may be any type which can be 
defined in OMG IDL. Operations that do not return a result must specify the 
void type.

• An identifier that names the operation in the scope of the interface in which it is 
defined.

• A parameter list that specifies zero or more parameter declarations for the 
operation. Parameter declaration is described in “Parameter Declarations” on page 
3-28.

• An optional raises expression which indicates which exceptions may be raised as 
a result of an invocation of this operation. Raises expressions are described in 
Section “Raises Expressions” on page 3-29.

• An optional context expression which indicates which elements of the request 
context may be consulted by the method that implements the operation. Context 
expressions are described in “Context Expressions” on page 3-29.

Some implementations and/or language mappings may require operation-specific 
pragmas to immediately precede the affected operation declaration. 
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3.10.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication 
service must provide for invocations of a particular operation. An operation attribute is 
optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation 
semantics are best-effort, which does not guarantee delivery of the call; best-effort 
implies that the operation will be invoked at most once. An operation with the 
oneway attribute must not contain any output parameters and must specify a void 
return type. An operation defined with the oneway attribute may not include a raises 
expression; invocation of such an operation, however, may raise a standard exception. 

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an 
exception is raised; the semantics are exactly-once if the operation invocation returns 
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls>::=“(” <param_dcl> { “,” <param_dcl> }∗  “)”
| “(” “)”

<param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>

<param_attribute>::=“in”
| “out”
| “inout”

<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the 
communication service in both the client and the server of the direction in which the 
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The 
ability to even attempt to do so is language-mapping specific; the effect of such an 
action is undefined.
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If an exception is raised as a result of an invocation, the values of the return result and 
any out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the 
returned value cannot be longer than the input value. 

3.10.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an 
invocation of the operation. The syntax for its specification is as follows:

<raises_expr> ::= “raises” “(” <scoped_name> { “,” <scoped_name> }∗  “)”

The <scoped_name>’s in the raises expression must be previously defined 
exceptions.

In addition to any operation-specific exceptions specified in the raises expression, 
there are a standard set of exceptions that may be signalled by the ORB. These 
standard exceptions are described in “Standard Exceptions” on page 3-33. However, 
standard exceptions may not be listed in a raises expression. 

The absence of a raises expression on an operation implies that there are no 
operation-specific exceptions. Invocations of such an operation are still liable to 
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the 
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::= “context” “(” <string_literal> { “,” <string_literal> }∗  “)”

The run-time system guarantees to make the value (if any) associated with each 
<string_literal> in the client’s context available to the object implementation when 
the request is delivered. The ORB and/or object is free to use information in this 
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context 
associated with requests for this operation. 

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”), 
underscore (“_”), and asterisk (“*”) characters. The first character of the string must be 
an alphabetic character. An asterisk may only be used as the last character of the string. 
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is 
described in the Dynamic Invocation Interface chapter.
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3.11 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as 
part of an interface. An attribute definition is logically equivalent to declaring a pair of 
accessor functions; one to retrieve the value of the attribute and one to set the value of 
the attribute.

The syntax for attribute   declaration is:

<attr_dcl>      ::=[ “readonly” ] “attribute” <param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor 
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification 
fragment:

• • •
float _get_radius ();
void _set_radius (in float r);
material_t _get_material ();
void _set_material (in material_t m);
position_t _get_position ();
• • •

The actual accessor function names are language-mapping specific. The C, C++, and 
Smalltalk mappings are described in separate chapters. The attribute name is subject to 
OMG IDL’s name scoping rules; the accessor function names are guaranteed not to 
collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions. 

Attributes are inherited. An attribute name cannot be redefined to be a different type. 
See “CORBA Module” on page 3-31 for more information on redefinition constraints 
and the handling of ambiguity.
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3.12 CORBA Module

In order to prevent names defined in the CORBA specification from clashing with 
names in programming languages and other software systems, all names defined in 
CORBA are treated as if they were defined within a module named CORBA. In an 
OMG IDL specification, however, OMG IDL keywords such as Object must not 
be preceded by a “CORBA::” prefix. Other interface names such as TypeCode are 
not OMG IDL keywords,  so they must be referred to by their fully scoped names 
(e.g., CORBA::TypeCode) within an OMG IDL specification.

3.13 Names and Scoping

An entire OMG IDL file forms a naming scope. In addition, the following kinds of 
definitions form nested scopes:

• module

• interface

• structure

• union

• operation

• exception

Identifiers for the following kinds of definitions are scoped:

• types

• constants

• enumeration values

• exceptions

• interfaces

• attributes

• operations

An identifier can only be defined once in a scope. However, identifiers can be 
redefined in nested scopes. An identifier declaring a module is considered to be 
defined by its first occurrence in a scope. Subsequent occurrences of a module 
declaration within the same scope reopen the module allowing additional 
definitions to be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL 
identifiers are case insensitive; that is, two identifiers that differ only in the case of 
their characters are considered redefinitions of one another. However, all 
references to a definition must use the same case as the defining occurrence. (This 
allows natural mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. 
In particular, see “Constructed Types” on page 3-22 on cycles in type definitions. 
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A name can be used in an unqualified form within a particular scope; it will be 
resolved by successively searching farther out in enclosing scopes. Once an 
unqualified name is used in a scope, it cannot be redefined—i.e. if one has used a 
name defined in an enclosing scope in the current scope, one cannot then redefine a 
version of the name in the current scope. Such redefinitions yield a compilation error. 

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first 
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of 
<identifier> within S. The identifier must be directly defined in S or (if S is an 
interface) inherited into S. The <identifier> is not searched for in enclosing scopes. 

When a qualified name begins with “::”, the resolution process starts with the file 
scope and locates subsequent identifiers in the qualified name by the rule described in 
the previous paragraph. 

Every OMG IDL definition in a file has a global name within that file. The global 
name for a definition is constructed as follows. 

Prior to starting to scan a file containing an OMG IDL specification, the name of the 
current root is initially empty (“”) and the name of the current scope is initially empty 
(“”). Whenever a module keyword is encountered, the string “::” and the associated 
identifier are appended to the name of the current root; upon detection of the 
termination of the module, the trailing “::” and identifier are deleted from the name 
of the current root. Whenever an interface, struct, union, or exception keyword 
is encountered, the string “::” and the associated identifier are appended to the name of 
the current scope; upon detection of the termination of the interface, struct, union, 
or exception, the trailing “::” and identifier are deleted from the name of the current 
scope. Additionally, a new, unnamed, scope is entered when the parameters of an 
operation declaration are processed; this allows the parameter names to duplicate other 
identifiers; when parameter processing has completed, the unnamed scope is exited. 

The global name of an OMG IDL definition is the concatenation of the current root, 
the current scope, a “::”, and the <identifier>, which is the local name for that 
definition. 

Note that the global name in an OMG IDL files corresponds to an absolute 
ScopedName in the Interface Repository. (See “Supporting Type Definitions” on 
page 6-8.) 

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces 
names into the derived interface, but these names are considered to be semantically the 
same as the original definition. Two shadow copies of the same original (as results 
from the diamond shape in Figure 11 on page 3-16) introduce a single name into the 
derived interface and don’t conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers. 
Consider the following example:
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interface A {
exception E {
long L;
};
void f() raises(E);
};

interface B: A {
void g() raises(E);
};

In this example, the exception is known by the global names ::A::E and ::B::E.

 

Ambiguity can arise in specifications due to the nested naming scopes. For example:
interface A {
typedef string<128> string_t;
};

interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Title;/* AMBIGUOUS!!! */
};

The attribute declaration in C is ambiguous, since the compiler does not know which 
string_t is desired. Ambiguous declarations yield compilation errors. 

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat 
more restrictive. The current restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declaration.

• A parameter list consisting of the single token void is not permitted as a 
synonym for an empty parameter list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be declared 
explicitly as short or long.

• char cannot be qualified by signed or unsigned keywords.

3.15 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception 
identifiers may be returned as a result of any operation invocation, regardless of the 
interface specification. Standard exceptions may not be listed in raises expressions. 
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In order to bound the complexity in handling the standard exceptions, the set of 
standard exceptions should be kept to a tractable size. This constraint forces the 
definition of equivalence classes of exceptions rather than enumerating many similar 
exceptions. For example, an operation invocation can fail at many different points due 
to the inability to allocate dynamic memory. Rather than enumerate several different 
exceptions corresponding to the different ways that memory allocation failure causes 
the exception (during marshalling, unmarshalling, in the client, in the object 
implementation, allocating network packets, ...), a single exception corresponding to 
dynamic memory allocation failure is defined. Each standard exception includes a 
minor code to designate the subcategory of the exception; the assignment of values to 
the minor codes is left to each ORB implementation. 

Each standard exception also includes a completion_status code which takes one 
of the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. 
These have the following meanings: 

COMPLETED_YES The object implementation has completed processing prior to the 
exception being raised.

COMPLETED_NO The object implementation was never initiated prior to the excep-

tion being raised. 

COMPLETED_MAYBE The status of implementation completion is indeterminate.

3.15.1  Standard Exceptions Definitions

The standard exceptions are defined below. 
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#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO, 
COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION, 
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

// failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation
  // unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; // transient failure - reissue

// request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface

// repository
exception BAD_CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object

// adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object, delete

// reference

3.15.2 Object Non-Existence

This standard system exception is raised whenever an invocation on a deleted object 
was performed. It is an authoritative “hard” fault report. Anyone receiving it is allowed 
(even expected) to delete all copies of this object reference and to perform other 
appropriate “final recovery” style procedures.
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Bridges forward this exception to clients, also destroying any records they may hold 
(for example, proxy objects used in reference translation). The clients could in turn 
purge any of their own data structures.
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Dynamic Invocation Interface 4
4.1 Overview

The ORB Dynamic Invocation interface allows dynamic creation and invocation of 
requests to objects. A client using this interface to send a request to an object obtains 
the same semantics as a client using the operation stub generated from the type 
specification. 

A request consists of an object reference, an operation, and a list of parameters. The 
ORB applies the implementation-hiding (encapsulation) principle to requests. 

In the Dynamic Invocation interface, parameters in a request are supplied as elements 
of a list. Each element is an instance of a NamedValue (see “Common Data 
Structures” on page 4-1). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon 
request invocation. Parameters must be supplied in the same order as the parameters 
defined for the operation in the Interface Repository.

All types defined in this chapter are part of the CORBA module. When referenced in 
OMG IDL, the type names must be prefixed by “CORBA::”.

4.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used either 
as a parameter type directly or as a mechanism for describing arguments to a request. 
The type NVList is a pseudo-object useful for constructing parameter lists. The types 
are described in OMG IDL and C, respectively, as: 
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typedef unsigned long Flags;

struct NamedValue {
Identifier name; // argument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};

CORBA_NamedValue * CORBA_NVList; /* C */

NamedValue and Flags are defined in the CORBA module.

The NamedValue and NVList structures are used in the request operations to 
describe arguments and return values. They are also used in the context object routines 
to pass lists of property names and values. Despite the above declaration for NVList, 
the NVList structure is partially opaque and may only be created by using the ORB 
create_list operation.

A named value includes an argument name, argument value (as an any), length of the 
argument, and a set of argument mode flags. When named value structures are used to 
describe arguments to a request, the names are the argument identifiers specified in the 
OMG IDL definition for a specific operation.

As described in Section 14.7, “Mapping for Basic Data Types,” on page 14-8, an any 

consists of a TypeCode and a pointer to the data value. The TypeCode is a well-
known opaque type that can encode a description of any type specifiable in OMG IDL. 
A full description of TypeCodes is Section 14.7, “Mapping for Basic Data Types,” on 
page 14-8.

For most datatypes, len is the actual number of bytes that the value occupies. For 
object references, len is 1. TABLE 11. on page 4-2 shows the length of data values for 
the C language binding. The behavior of a NamedValue is undefined if the len value 
is inconsistent with the TypeCode.  

TABLE 11. C Type Lengths  

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long) 

unsigned long sizeof (CORBA_unsigned_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

char sizeof (CORBA_char)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */
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The arg_modes field is defined as a bitmask (long) and may contain the following 
flag values:

CORBA::ARG_IN the associated value is an input only argument

CORBA::ARG_OUT the associated value is an output only argument 

CORBA::ARG_INOUT the associated value is an in/out argument 

These flag values identify the parameter passing mode for arguments. Additional flag 
values have specific meanings for request and list routines, and are documented with 
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-
specific flags. 

4.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded 
sequences are returned as pointers to dynamically allocated memory are shown in 
Table 21. In order to facilitate the freeing of all “out-arg memory”, the request routines 
provide a mechanism for grouping, or keeping track of, this memory. If so specified, 
out-arg memory is associated with the argument list passed to the create request 
routine. When the list is deleted the associated out-arg memory will automatically be 
freed.

If the programmer chooses not to associate out-arg memory with an argument list, the 
programmer is responsible for freeing each out parameter using CORBA_free(), 
which is discussed in Section 14.17, “Argument Passing Considerations,” on
page 14-16.

4.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, many routines return a Status result, which is 
intended as a status code. Status is defined in the CORBA modules as:

typedef unsigned long Status;

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V    /* V is the actual, dynamic, number of elements */

TABLE 11. C Type Lengths  (Continued)

Data type: X Length (X)
CORBA V2.0         Overview      July 1995 4-3



4

Conforming CORBA implementations are not required to return this status code; 
instead, the definition 

typedef void Status;

is a conforming implementation (in which case no status code result is returned, except 
in the usual inout Environment argument). Implementations are required to 
specify which Status behavior is supported. 

4.2 Request Operations

The request operations are defined in terms of the Request pseudo-object. The Request 
routines use the NVList definition defined in the preceding section.

module CORBA {

interface Request { // PIDL

Status add_arg (
 in Identifier name, // argument name

 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument value
 in Flags arg_flags // argument flags
);
Status invoke (

 in Flags invoke_flags // invocation flags
);
Status delete ();
Status send (

in Flags invoke_flags// invocation flags 
);
Status get_response (

in Flags response_flags // response flags
);

};
};

4.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see 
“Object Reference Operations” on page 7-2 for the complete interface definition). The 
create_request operation is performed on the Object which is to be invoked. 
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Status create_request ( // PIDL
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);

This operation creates an ORB request. The actual invocation occurs by calling 
invoke or by using the send / get_response calls. 

The operation name specified on create_request is the same operation identifier that 
is specified in the OMG IDL definition for this operation. In the case of attributes, it is 
the name as constructed following the rules specified in the ServerRequest interface as 
described in the DSI in  Section 5.2

The arg_list, if specified, contains a list of arguments (input, output, and/or 
input/output) which become associated with the request. If arg_list is omitted 
(specified as NULL), the arguments (if any) must be specified using the add_arg call 
below.

Arguments may be associated with a request by passing in an argument list or by using 
repetitive calls to add_arg. One mechanism or the other may be used for supplying 
arguments to a given request; a mixture of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call 
has completed (or the request has been deleted), the ORB assumes that arg_list (and 
any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be 
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may also 
be specified; if so indicated, arguments are validated for datatype, order, name, and 
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow 
arguments to be specified out of order) by doing ordering based upon argument name. 

The context properties associated with the operation are passed to the object 
implementation. The object implementation may not modify the context information 
passed to it. 

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following 
flag values:

CORBA::OUT_LIST_MEMORYIndicates that any out-arg memory is associated with the 
argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for 
out-arg memory (output arguments, for which memory is dynamically allocated). If 
OUT_LIST_MEMORY is specified, an argument list must also have been specified on 
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the create_request call. When output arguments of this type are allocated, they are 
associated with the list structure. When the list structure is freed (see below), any 
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains 
available until the programmer explicitly frees it with procedures provided by the 
language mappings (See Section 14.17, “Argument Passing Considerations,” on page 
14-16; Section 17.6, “NVList,” on page 17-5; and Section 20.19, “Argument Passing 
Considerations,” on page 20-11.)

4.2.2 add_arg

Status add_arg ( // PIDL
 in Identifier name, // argument name
 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument value
 in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request. 

For each argument, minimally its value and len must be specified. An argument’s 
datatype, name, and usage flags (i.e in, out, inout) may also be specified. If so 
indicated, arguments are validated for datatype, order, name, and usage correctness 
against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow 
arguments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are 
assumed to be unchanged until the invoke has completed (or the request has been 
deleted).

Arguments may be associated with a request by specifying them on the 
create_request call or by adding them via calls to add_arg. Using both methods for 
specifying arguments, for the same request, is not currently supported.

In addition to the argument modes defined in  Section 4.1.1, arg_flags may also take 
the flag value:IN_COPY_VALUE. The argument passing flags defined in  Section 
4.1.1 may be used here to indicate the intended parameter passing mode of an 
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used 
instead. This flag is ignored for inout and out arguments.
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4.2.3 invoke

Status invoke ( // PIDL
 in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an 
appropriate method. If the method returns successfully, its result is placed in the result 
argument specified on create_request.

4.2.4 delete

Status delete ( ); // PIDL

This operation deletes the request. Any memory associated with the request (i.e. by 
using the IN_COPY_VALUE flag) is also freed.

4.3 Deferred Synchronous Operations

4.3.1 send

Status send ( // PIDL
in Flags invoke_flags // invocation flags 

);

send initiates an operation according to the information in the Request. Unlike 
invoke, send returns control to the caller without waiting for the operation to finish. 
To determine when the operation is done, the caller must use the get_response or 
get_next_response operations described below. The out parameters and return 
value must not be used until the operation is done. 

Although it is possible for some standard exceptions to be raised by the send 
operation, there is no guarantee that all possible errors will be detected. For example, 
if the object reference is not valid, send might detect it and raise an exception, or 
might return before the object reference is validated, in which case the exception will 
be raised when get_response is called. 

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, 
then get_response does not need to be called. In such cases, some errors might go 
unreported, since if they are not detected before send returns there is no way to inform 
the caller of the error. 

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE  Indicates that the invoker does not intend to wait for a 
response, nor does it expect any of the output arguments (in/out and out) to be updated. 
This option may be specified even if the operation has not been defined to be oneway.
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4.3.2 send_multiple_requests

/* C */

CORBA_Status CORBA_send_multiple_requests (
CORBA_Request reqs[], /* array of Requests */
CORBA_Environment *env,
CORBA_long count, /* number of Requests */
CORBA_Flags invoke_flags

);

// C++

class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;

...

Status send_multiple_requests_oneway(const RequestSeq &);
Status send_multiple_requests_deferred(const RequestSeq &);

};

The Smalltalk mapping of send multiple requests is as follows:

sendMultipleRequests: aCollection

sendMultipleRequestOneway: aCollection

send_multiple_requests initiates more than one request in parallel. Like 
send, send_multiple_requests returns to the caller without waiting for the 
operations to finish. To determine when each operation is done, the caller must use the 
get_response or get_next_response operations described below. 

The degree of parallelism in the initiation and execution of the requests is system 
dependent. There are no guarantees about the order in which the requests are initiated. 
If INV_TERM_ON_ERR is specified, and the ORB detects an error initiating one of 
the requests, it will not initiate any further requests from this list. If 
INV_NO_RESPONSE is specified, it applies to all of the requests in the list. 

The following invocation flags are currently defined for 
send_multiple_requests:

CORBA::INV_NO_RESPONSE indicates that at the invoker does not intend to wait for a 
response, nor does it expect any of the output arguments (inout and out) to be updated. 
This option may be specified even if the operation has not been defined to be oneway.

CORBA::INV_TERM_ON_ERR means that if one of the requests causes an error, the 
remaining requests are not sent. 
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4.3.3 get_response

Status get_response ( // PIDL
 in Flags response_flags // response flags

get_response determines whether a request has completed. If get_response indicates 
that the operation is done, the out parameters and return values defined in the Request 
are valid, and they may be treated as if the Request invoke operation had been used to 
perform the request. 

If the RESP_NO_WAIT flag is set, get_response returns immediately even if the 
request is still in progress. Otherwise, get_response waits until the request is done 
before returning. 

The following response flags are defined for get_response:

CORBA::RESP_NO_WAIT indicates that the caller does not want to wait for a response.

4.3.4 get_next_response

/* C */

CORBA_Status CORBA_get_next_response (
CORBA_Environment*env,
CORBA_Flags response_flags,
CORBA_Request *req

);

// C++

class ORB

{
public:

Boolean poll_next_response();
Status get_next_response(RequestSeq*&);

};

The Smalltalk mapping of get_next_response is as follows:

pollNextResponse
getNextResponse
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get_next_response returns the next request that completes. Despite the name, 
there is no guaranteed ordering among the completed requests, so the order in which 
they are returned from successive get_next_response calls is not necessarily 
related to the order in which they finished. 

If the RESP_NO_WAIT flag is set, and there are no completed requests pending, then 
get_next_response returns immediately. Otherwise, 
get_next_response waits until some request finishes. 

The following response flags are defined for get_next_response:

CORBA::RESP_NO_WAIT Indicates that the caller does not want to wait for a response.

4.4 List Operations

The list operations use the named-value structure defined above. 

The list operations that create NVList objects are defined in the ORB interface 
described in Chapter 7, but are described in this section. The NVList interface is 
shown below. 

interface NVList { // PIDL
Status add_item (

 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);
Status free ( );
Status free_memory ( );
Status get_count (

out long  count // number of entries in the list
);

};

Interface NVList is defined in the CORBA module. 

4.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and 
excerpted below. 

Status create_list ( //PIDL
in long count, // number of items to allocate for list 
out NVList new_list // newly created list 

);
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This operation allocates a list of the specified size, and clears it for initial use. List 
items may be added to the list using the add_item routine. Alternatively, they may be 
added by indexing directly into the list structure. A mixture of the two approaches for 
initializing a list, however, is not supported.

An NVList is a partially opaque structure. It may only be allocated via a call to 
create_list.

4.4.2 add_item

Status add_item ( // PIDL
 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the 
previously added item.

In addition to the argument modes defined in  Section 4.1.1, item_flags may also take 
the following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument 
passing flags defined in  Section 4.1.1 may be used here to indicate the intended 
parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used 
instead. 

If a list structure is added as an item (e.g. a “sublist”) the DEPENDENT_LIST flag 
may be specified to indicate that the sublist should be freed when the parent list is 
freed.

4.4.3 free

Status free ( ); // PIDL

This operation frees the list structure and any associated memory (an implicit call to 
the list free_memory operation is done). 

4.4.4 free_memory

Status free_memory ( ); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the 
list. The list structure itself is not freed.
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4.4.5 get_count

Status get_count ( // PIDL
out long  count // number of entries in the list

);

This operation returns the total number of items allocated for this list.

4.4.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list ( // PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

); 

This operation returns an NVList initialized with the argument descriptions for a 
given operation. The information is returned in a form that may be used in Dynamic 
Invocation requests. The arguments are returned in the same order as they were defined 
for the operation. 

The list free operation is used to free the returned information. 

4.5 Context Objects

A context object contains a list of properties, each consisting of a name and a string 
value associated with that name. By convention, context properties represent 
information about the client, environment, or circumstances of a request that are 
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environment 
that is meant be propagated to (and made implicitly part of) a server’s environment 
(for example, a window identifier, or user preference information). Once a server has 
been invoked (i.e., after the properties are propagated), the server may query its 
context object for these properties.

In addition, the context associated with a particular operation is passed as a 
distinguished parameter, allowing particular ORBs to take advantage of context 
properties, for example, using the values of certain properties to influence method 
binding behavior, server location, or activation policy. 

An operation definition may contain a clause specifying those context properties that 
may be of interest to a particular operation. These context properties comprise the 
minimum set of properties that will be propagated to the server’s environment 
(although a specified property may have no value associated with it). The ORB may 
choose to pass more properties than those specified in the operation declaration. 
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When a context clause is present on an operation declaration, an additional argument is 
added to the stub and skeleton interfaces. When an operation invocation occurs via 
either the stub or Dynamic Invocation interface, the ORB causes the properties which 
were named in the operation definition in IDL and which are present in the client’s 
context object, to be provided in the context object parameter to the invoked method.

Context property names (which are strings) typically have the form of an OMG IDL 
identifier, or a series of OMG IDL identifiers separated by periods. A context property 
name pattern is either a property name, or a property name followed by a single “*”. 
Property name patterns are used in the context clause of an operation definition, and 
in the get_values operation (described below). 

A property name pattern without a trailing “*” is said to match only itself. A property 
name pattern of the form “<name>*” matches any property name that starts with 
<name> and continues with zero or more additional characters. 

Context objects may be created and deleted, and individual context properties may be 
set and retrieved. There will often be context objects associated with particular 
processes, users, or other things depending on the operating system, and there may be 
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context 
objects, while other implementations may be transient. The creation and modification 
of persistent context objects, however, is not addressed in this specification.

Context objects may be “chained” together to achieve a particular defaulting behavior. 

Properties defined in a particular context object effectively override those properties in 
the next higher level. This searching behavior may be restricted by specifying the 
appropriate scope and the “restrict scope” option on the Context get_values call.

Context objects may be named for purposes of specifying a starting search scope.

4.6 Context Object Operations

When performing operations on a context object, properties are represented as named 
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see “Identifiers” on page 3-5 
for the valid set of characters that are allowed). Property names are stored preserving 
their case, however names cannot differ simply by their case.

The Context interface is shown below. 
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module CORBA {

interface Context { // PIDL
Status set_one_value (

 in Identifier prop_name, // property name to add
 in string value // property value to add

);
Status set_values (

 in NVList  values // property values to be changed
);
Status get_values (

 in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to retrieve
 out NVList values // requested property(s)

);
Status delete_values (

 in Identifier prop_name // name of property(s) to delete
);
Status create_child (

 in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object

);
Status delete (

 in Flags del_flags // flags controlling deletion
);

};
};

4.6.1 get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB interface 
(see  Section 7.1 for the complete ORB definition). 

Status get_default_context ( // PIDL
out Context ctx // context object

);

This operation returns a reference to the default process context object. The default 
context object may be chained into other context objects. For example, an ORB 
implementation may chain the default context object into its User, Group, and System 
context objects.
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4.6.2 set_one_value

Status set_one_value ( // PIDL
 in Identifier prop_name, // property name to add
 in string value // property value to add

);

This operation sets a single context object property.

Currently, only string values are supported by the context object.

4.6.3 set_values

Status set_values ( // PIDL
 in NVList  values // property values to be changed

);

This operation sets one or more property values in the context object. In the NVList, 
the flags field must be set to zero, and the TypeCode field associated with an attribute 
value must be TC_string. 

Currently, only string values are supported by the context object.

4.6.4 get_values

Status get_values ( // PIDL
 in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to retrieve
 out NVList values // requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a 
trailing wildcard character (“*”), then all matching properties and their values are 
returned. The values returned may be freed by a call to the list free operation.

If no properties are found an error is returned, and no property list is returned.

Scope indicates the context object level at which to initiate the search for the specified 
properties (e.g. “_USER”, “_SYSTEM”). If the property is not found at the indicated 
level, the search continues up the context object tree until a match is found or all 
context objects in the chain have been exhausted. 

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If the 
specified scope name is not found, an exception is returned.

The following operation flags may be specified:
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CORBA::CTX_RESTRICT_SCOPE Searching is limited to the specified search 
scope or context object.

4.6.5 delete_values

Status delete_values ( // PIDL
 in Identifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) values from the context object. If 
prop_name has a trailing wildcard character (“*”), then all property names that match 
will be deleted.

Search scope is always limited to the specified context object.

If no matching property is found, an exception is returned. 

4.6.6 create_child

Status create_child ( // PIDL
 in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object

);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on the 
child context object will look in the parent context (and so on, up the context tree), if 
necessary, for matching property names. 

Context object names follow the rules for OMG IDL identifiers (see “Identifiers” on 
page 3-5). 

4.6.7 delete

Status delete ( // PIDL
 in Flags del_flags // flags controlling deletion

);

This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTSDeletes the indicated context object and all of 
its descendent context objects, as well. 

An exception is returned if there are one or more child context objects and the 
CTX_DELETE_DESCENDENTS flag was not set.
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4.7 Native Data Manipulation

A future version of this specification will define routines to facilitate the conversion of 
data between the list layout found in NVList structures and the compiler native layout. 
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Dynamic Skeleton Interface 5
The Dynamic Skeleton interface (DSI) is a way to deliver requests from an ORB to an 
object implementation that does not have compile-time knowledge of the type of the 
object it is implementing. This contrasts with the type-specific, OMG IDL-based 
skeletons, but serves the same architectural role.

DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface 
(DII). Just as the implementation of an object cannot distinguish whether its client is 
using type-specific stubs or the DII, the client who invokes an object cannot determine 
whether the implementation is using a type-specific skeleton or the DSI to connect the 
implementation to the ORB.

Figure 5-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include 
interactive software development tools based on interpreters, debuggers and monitors 
that want to dynamically interpose on objects, and support for dynamically-typed 
languages such as LISP.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
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5.1 Overview 

The basic idea of the DSI is to implement all requests on a particular object by having 
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR). 
Since in any language binding all DIRs have the same signature, a single DIR could be 
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object 
that was invoked and the operation that was requested. The information is encoded in 
the request parameters. The DIR can use the invoked object, its object adapter, and the 
Interface Repository to learn more about the particular object and invocation. It can 
access and operate on individual parameters. It can make the same use of an object 
adapter as other object implementations.

The Dynamic Skeleton interface could be supported by any object adapter. Like type-
specific skeletons, the DSI might have object adapter-specific details. This chapter 
describes a DSI interface for the Basic Object Adapter (BOA) and shows how it is 
mapped to C and C++.

5.2 Explicit Request State: ServerRequest Pseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the 
DSI, analogous to the Request pseudo-object in the DII. The following shows how it 
provides access to the information:

module CORBA {
pseudo interface ServerRequest
{

Identifier op_name ();
Context ctx ();

 void params (inout NVList params);
 Any result ();
};
}

The target object of the invocation is provided by the language binding for the DIR. In 
the context of a bridge, it will typically be a proxy for an object in some other ORB.

The op_name operation returns the name of the operation being invoked; according 
to OMG IDL’s rules, these names must be unique among all operations supported by 
this object’s “most-derived” interface. Note that the operation names for getting and 
setting attributes are _get_<attribute_name> and _set_<attribute_name>, 
respectively.

When the operation is not an attribute access, ctx will return the context information 
defined in OMG IDL for operation (if any). Otherwise, this context is empty.
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Operation parameters will be retrieved with params. They appear in the NVList in 
the order in which they appear in the OMG IDL specification (left to right). This holds 
the “in”, “out” and “inout” values.

The result operation is used to find where to store any return value for the call. 
Reporting of exceptions (which preclude use of result and out/inout values in 
params) is a function of the language mapping.

See each language binding for a description of the memory management aspects of 
these parameters.

5.3 Dynamic Skeleton Interface: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it 
in the language mapping. This section provides general information about mapping the 
Dynamic Skeleton Interface to programming languages.

Section 14.24, “Mapping of the Dynamic Skeleton Interface to C,” on page 14-25 and 
Section 16.17, “Mapping of Dynamic Skeleton Interface to C++,” on page 16-43 
provide mappings of the Dynamic Skeleton Interface (supporting the BOA) to the C 
language and C++ languages. 

5.3.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general 
argument in OMG IDL operations, or listed in “orb.idl”.

The client side memory management rules normally applied to pseudo-objects do not 
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the 
memory associated with parameters follows the memory management rules applied to 
data passed from skeletons into statically typed implementation routines, and vice 
versa.

In some language mappings, exceptions need special treatment. This is because the 
normal mapping for exceptions may require static knowledge of exception types. An 
example is the use of C++ exceptions, which require special run time typing 
information that can only be generated by a C++ compiler. Accordingly, the DSI and 
DII need an exception-reporting method that requires minimal compile-time support: 
the DIR needs to be able to provide the TypeCode for an exception as it reports the 
exception.

Finally, note that these APIs have been specified to support a performance model 
whereby the ORB doesn’t implicitly consult an interface repository (i.e. perform any 
remote object invocations, potentially slowing down a bridge) in order to handle an 
invocation. All the typing information is provided to the ServerRequest pseudo-
object by an application. The ORB is allowed to verify that such information is correct, 
but such checking is not required.
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5.3.2 Registering Dynamic Implementation Routines

Although it is not portably specified by previous CORBA specifications, any ORB and 
its BOA implementation must have some way of connecting type-specific skeletons to 
the methods that implement the operations. The Dynamic Skeleton interface uses the 
same mechanism.

A typical ORB/BOA implementation defines an operation, perhaps used when the 
object is activated, which specifies the methods to be used for a particular 
implementation class, for example, in C:

BOA_setimpl (BOA, ImplementationDef, MethodList, 
skeleton);

The MethodList would be the DIR; the skeleton could be a Dynamic Skeleton, which 
would construct a ServerRequest object and invoke the DIR with it.

Whatever mechanism, whether at link time, run time, and so forth, is used to bind 
ordinary implementations to type-specific skeletons would also be used to bind 
dynamic implementations to dynamic skeletons. Such bindings could be maintained on 
a per-object, per-interface, per-class, or other basis.
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The Interface Repository 6
The Interface Repository is the component of the ORB that provides persistent storage 
of interface definitions—it manages and provides access to a collection of object 
definitions specified in OMG IDL.

6.1 Overview

An ORB provides distributed access to a collection of objects using the objects’ 
publicly defined interfaces specified in OMG IDL. The Interface Repository provides 
for the storage, distribution, and management of a collection of related objects’ 
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the 
objects it is handling. Object definitions can be made available to an ORB in one of 
two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that 
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e., as 
“interface objects” accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository 
to interpret and handle the values provided in a request:

• To provide type-checking of request signatures (whether the request was issued 
through the DII or through a stub).

• To assist in checking the correctness of interface inheritance graphs.

• To assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is 
public, the information maintained in the Repository can also be used by clients and 
services. For example, the Repository can be used:

• To manage the installation and distribution of interface definitions.
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• To provide components of a CASE environment (for example, an interface 
browser).

• To provide interface information to language bindings (such as a compiler).

• To provide components of end-user environments (for example, a menu bar 
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 6.8, 
“OMG IDL for Interface Repository,” on page 6-41. Fragments of the specification are 
used throughout this chapter as necessary. 

6.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that 
are accessible through a set of OMG IDL-specified interface definitions. An interface 
definition contains a description of the operations it supports, including the types of 
the parameters, exceptions it may raise, and context information it may use. 

In addition, the interface repository stores constant values, which might be used in 
other interface definitions or might simply be defined for programmer convenience. 
And it stores typecodes, which are values that describe a type in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navigate 
through those groups by name. Modules can contain constants, typedefs, exceptions, 
interface definitions, and other modules. Modules may, for example, correspond to the 
organization of OMG IDL definitions. They may also be used to represent 
organizations defined for administration or other purposes. 

The Interface Repository is a set of objects that represent the information in it. There 
are operations that operate on this apparent object structure. It is an implementation’s 
choice whether these objects exist persistently or are created when referenced in an 
operation on the repository. There are also operations that extract information in an 
efficient form, obtaining a block of information that describes a whole interface or a 
whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because 
two ORBs have different requirements for the implementation of the Interface 
Repository, because an object implementation (such as an OODB) prefers to provide 
its own type information, or because it is desired to have different additional 
information stored in different repositories. The use of typecodes and repository 
identifiers is intended to allow different repositories to keep their information 
consistent.

As shown in FIGURE 12.  on page 6-3, the same interface Doc is installed in two 
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at 
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for 
the Doc interface when it defines it. Customer might first install the interface in its 
repository in a module where it could be tested before exposing it for general use. 
Because it has the same repository id, even though the Doc interface is stored in a 
different repository and is nested in a different module, it is known to be the same.
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Meanwhile at SoftCo, someone working on a new Doc interface has given it a new 
repository id 456, which allows the ORBs to distinguish it from the current product 
Doc interface.

FIGURE 12. Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees 
cannot see the new release of the Doc interface. However, widely used interfaces will 
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information 
from the repository as well as creating definitions within it. There may be additional 
ways to insert information into the repository (for example, compiling OMG IDL 
definitions, copying objects from one repository to another, etc.).

A critical use of the interface repository information is for connecting ORBs together. 
When an object is passed in a request from one ORB to another, it may be necessary to 
create a new object to represent the passed object in the receiving ORB. This may 
require locating the interface information in an interface repository in the receiving 
ORB. By getting the repository id from a repository in the sending ORB, it is possible 
to look up the interface in a repository in the receiving ORB. To succeed, the interface 
for that object must be installed in both repositories with the same repository id.

6.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object 
store. Normally the kind of persistent object store used determines how interface 
definitions are distributed and/or replicated throughout a network domain. For 
example, if an Interface Repository is implemented using a filing system to provide 
object storage, there may be only a single copy of a set of interfaces maintained on a 
single machine. Alternatively, if an OODB is used to provide object storage, multiple 
copies of interface definitions may be maintained each of which is distributed across 
several machines to provide both high-availability and load-balancing. 

SoftCo, Inc., Repository

module softco {
interface Doc id 123 {

void print();
};

};

module newrelease {
interface Doc id 456 {

void print();
};

};

Customer, Inc., Repository

module testfirst {

module softco {
interface Doc id 123 {

void print();
};

};

};
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The kind of object store used may determine the scope of interface definitions 
provided by an implementation of the Interface Repository. For example, it may 
determine whether each user has a local copy of a set of interfaces or if there is one 
copy per community of users. The object store may also determine whether or not all 
clients of an interface set see exactly the same set at any given point in time or whether 
latency in distributing copies of the set gives different users different views of the set 
at any point in time.

An implementation of the Interface Repository is also dependent on the security 
mechanism in use. The security mechanism (usually operating in conjunction with the 
object store) determines the nature and granularity of access controls available to 
constrain access to objects in the repository. 

6.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to determine 
and manipulate the type information at run-time. Programs may attempt to access the 
interface repository at any time by using the get_interface operation on the object refer-
ence. Once information has been installed in the repository, programs, stubs, and objects 
may depend on it. Updates to the repository must be done with care to avoid disrupting the 
environment. A variety of techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of 
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate 
operation names or other name collisions, all parameters have known types, and so forth. 
As information is added to the repository, it is possible that it may pass through incoherent 
states. Media failures or communication errors might also cause it to appear incoherent. In 
general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared data-
base. It is likely that the same interface information will be stored in multiple repositories 
in a computing environment. Using repository IDs, the repositories can establish the iden-
tity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from devel-
opment activity. Developers might be permitted to make arbitrary updates to their reposi-
tories, but administrators may control updates to widely used repositories. Some 
repository implementations might permit sharing of information, for example, several 
developers’ repositories may refer to parts of a shared repository. Other repository imple-
mentations might instead copy the common information. In any case, the result should be 
a repository facility that creates the impression of a single, coherent repository.

The interface repository itself cannot make all repositories have coherent information, and 
it may be possible to enter information that does not make sense. The repository will 
report errors that it detects, e.g., defining two attributes with the same name, but might not 
report all errors, for example, adding an attribute to a base interface may or may not detect 
a name conflict with a derived interface. Despite these limitations, the expectation is that a 
combination of conventions, administrative controls, and tools that add information to the 
repository will work to create a coherent view of the repository information.
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Transactions and concurrency control mechanisms defined by the Object Services may be 
used by some repositories when updating the repository. Those services are designed so 
that they can be used without changing the operations that update the repository. For 
example, a repository that supports the Transaction Service would inherit the Repository 
interface, which contains the update operations, as well as the Transaction interface, which 
contains the transaction management operations. (For more information about Object Ser-
vices, including the Transaction and Concurrency Control Services, refer to CORBAser-
vices: Common Object Service Specifications.)

Often, rather than change the information, new versions will be created, allowing the old 
version to continue to be valid. The new versions will have distinct repository IDs and be 
completely different types as far as the repository and the ORBs are concerned. The IR 
provides storage for version identifiers for named types, but does not specify any addi-
tional versioning mechanism or semantics.

6.4 Basics of the Interface Repository Interface

This section introduces some basic ideas that are important to understanding the 
Interface Repository. Topics addressed in this section are:

• Names and IDs

• Types and TypeCodes

• Interface Objects

6.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are always 
relative to an explicit or implicit module. In this context, interface definitions are consid-
ered explicit modules.

Scoped names uniquely identify modules, interfaces, constant, typedefs, exceptions, 
attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs, excep-
tions, attributes, and operations. They can be used to synchronize definitions across multi-
ple ORBs and Repositories.

6.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data 
value called a TypeCode. From the TypeCode alone it is possible to determine the com-
plete structure of a type. See “TypeCodes” on page 6-33 for more information on the inter-
nal structure of TypeCodes.

6.4.3 Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of inter-
face objects: 
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1. Repository: the top-level module for the repository name space; it contains constants, 
typedefs, exceptions, interface definitions, and modules.

2. ModuleDef: a logical grouping of interfaces; it contains constants, typedefs, excep-
tions, interface definitions, and other modules.

3. InterfaceDef: an interface definition; it contains lists of constants, types, exceptions, 
operations, and attributes.

4. AttributeDef: the definition of an attribute of the interface.

5. OperationDef: the definition of an operation on the interface; it contains lists of 
parameters and exceptions raised by this operation.

6. TypedefDef: base interface for definitions of named types that are not interfaces.

7. ConstantDef: the definition of a named constant.

8. ExceptionDef: the definition of an exception that can be raised by an operation.

The interface specifications for each interface object lists the attributes maintained by that 
object (see “Interface Repository Interfaces” on page 6-7). Many of these attributes corre-
spond directly to OMG IDL statements. An implementation can choose to maintain addi-
tional attributes to facilitate managing the Repository or to record additional (proprietary) 
information about an interface. Implementations that extend the IR interfaces should do so 
by deriving new interfaces, not by modify the standard interfaces.

The CORBA specification defines a minimal set of operations for interface objects. Addi-
tional operations that an implementation of the Interface Repository may provide could 
include operations that provide for the versioning of interfaces and for the reverse compi-
lation of specifications (i.e., the generation of a file containing an object’s OMG IDL spec-
ification).

6.4.4 Structure and Navigation of Interface Objects

The definitions in the Interface Repository are structured as a set of objects. The objects 
are structured the same way definitions are structured—some objects (definitions) “con-
tain” other objects.

The containment relationships for the objects in the Interface Repository are shown in 
FIGURE 13.  on page 6-7. 
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FIGURE 13. Interface Repository Object Containment 

There are three ways to locate an interface in the Interface Repository:

1. By obtaining an InterfaceDef object directly from the ORB.

2. By navigating through the module name space using a sequence of names.

3. By locating the InterfaceDef object that corresponds to a particular repository 
identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered 
whose type was not known at compile time. By using the get_interface() operation on 
the object reference, it is possible to retrieve the Interface Repository information about 
the object. That information could then be used to perform operations on the object.

Navigating the module name space is useful when information about a particular named 
interface is desired. Starting at the root module of the repository, it is possible to obtain 
entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one 
repository that corresponds to another. A repository identifier must be globally unique. By 
using the same identifier in two repositories, it is possible to obtain the interface identifier 
for an interface in one repository, and then obtain information about that interface from 
another repository that may be closer or contain additional information about the interface.

6.5 Interface Repository Interfaces

Several abstract interfaces are used as base interfaces for other objects in the IR.

A common set of operations is used to locate objects within the Interface Repository. 
These operations are defined in the abstract interfaces IRObject, Container, and 
Contained described below. All IR objects inherit from the IRObject interface, which 

Repository

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

ModuleDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The repository object represents the constants, 
typedefs, exceptions, interfaces and modules 
that are defined outside the scope of a module. 

The module object represents the constants, 
typedefs, exceptions, interfaces, and other modules 
defined within the scope of the module.

An interface object represents constants, 
typedefs, exceptions, attributes, and operations 
defined within or inherited by the interface.

Operation objects reference 
exception objects.
CORBA V2.0         Interface Repository Interfaces      July 1995 6-7



6

provides an operation for identifying the actual type of the object. Objects that are contain-
ers inherit navigation operations from the Container interface. Objects that are con-
tained by other objects inherit navigation operations from the Contained interface. 

The IDLType interface is inherited by all IR objects that represent IDL types, including 
interfaces, typedefs, and anonymous types. The TypedefDef interface is inherited by all 
named non-interface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are 
not instantiable. 

6.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

};
};

Identifiers are the simple names that identify modules, interfaces, constants, typedefs, 
exceptions, attributes, and operations. They correspond exactly to OMG IDL identifiers. 
An Identifier is not necessarily unique within an entire Interface Repository; it is unique 
only within a particular Repository, ModuleDef, InterfaceDef, or Operation-
Def.

A ScopedName is a name made up of one or more Identifiers separated by the char-
acters “::”. They correspond to OMG IDL scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifies a 
definition in a Repository. An absolute ScopedName in a Repository corre-
sponds to a global name in an OMG IDL file (see  Section 3.12). A relative Scoped-
Name does not begin with “::” and must be resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module, inter-
face, constant, typedef, exception, attribute or operation. As RepositoryIds are defined 
as strings, they can be manipulated (e.g., copied and compared) using a language bind-
ing’s string manipulation routines.

A DefinitionKind identifies the type of an IR object.
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6.5.2 IRObject

The IRObject interface represents the most generic interface from which all other Inter-
face Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};
};

Read Interface

The def_kind attribute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container, 
destroy is applied to all its contents. If the object contains an IDLType attribute for an 
anonymous type, that IDLType is destroyed. If the object is currently contained in some 
other object, it is removed. Invoking destroy on a Repository or on a Primitive-
Def is an error. Implementations may very in their handling of references to an object the 
is being destroyed, but the Repository should not be left in an incoherent state.

6.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are con-
tained by other IR objects. All objects within the Interface Repository, except the root 
object (Repository) and definitions of anonymous (ArrayDef, StringDef, and 
SequenceDef), and primitive types are contained by other objects.
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module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value; 

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

};

Read Interface

An object that is contained by another object has an id attribute that identifies it globally, 
and a name attribute that identifies it uniquely within the enclosing Container object. 
It also has a version attribute that distinguishes it from other versioned objects with the 
same name. IRs are not required to support simultaneous containment of multiple ver-
sions of the same named object. Supporting multiple versions most likely requires mecha-
nism and policy not specified in this document.

Contained objects also have a defined_in attribute that identifies the Container 
within which they are defined. Objects can be contained either because they are defined 
within the containing object (for example, an interface is defined within a module) or 
because they are inherited by the containing object (for example, an operation may be con-
tained by an interface because the interface inherits the operation from another interface). 
If an object is contained through inheritance, the defined_in attribute identifies the 
InterfaceDef from which the object is inherited.
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The absolute_name attribute is an absolute ScopedName that identifies a Con-
tained object uniquely within its enclosing Repository. If this object’s defined_in 
attribute references a Repository, the absolute_name is formed by concatenating 
the string “::” and this object’s name attribute. Otherwise, the absolute_name is 
formed by concatenating the absolute_name attribute of the object referenced by this 
object’s defined_in attribute, the string “::”, and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually 
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interface. 
The description structure associated with each interface is provided below with the inter-
face’s definition. The kind of definition described by the structure returned is provided 
with the returned structure. For example, if the describe operation is invoked on an 
attribute object, the kind field contains dk_Attribute and the value field contains an 
any, which contains the AttributeDescription structure. 

Write Interface

Setting the id attribute changes the global identity of this definition. An error is returned if 
an object with the specified id attribute already exists within this object’s Repository. 

Setting the name attribute changes the identity of this definition within its Container. 
An error is returned if an object with the specified name attribute already exists within 
the this object’s Container. The absolute_name attribute is also updated, along 
with any other attributes that reflect the name of the object. If this object is a Container, 
the absolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its current Container, and 
adds it to the Container specified by new_container, which must:

• Be in the same Repository,
• Be capable of containing this object’s type (see FIGURE 13.  on page 6-7); and

• Not already contain an object with this object’s name (unless multiple versions 
are supported by the IR). 

The name attribute is changed to new_name, and the version attribute is changed to 
new_version.

The defined_in and absolute_name attributes are updated to reflect the new con-
tainer and name. If this object is also a Container, the absolute_name attributes 
of any objects it contains are also updated.

6.5.4 Container

The Container interface is used to form a containment hierarchy in the Interface Repos-
itory. A Container can contain any number of objects derived from the Contained 
interface. All Containers, except for Repository, are also derived from Con-
tained.
CORBA V2.0         Interface Repository Interfaces      July 1995 6-11



6

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name, 
in long levels_to_search, 
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object; 
DefinitionKind kind;
any value; 

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
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in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
};

};

Read Interface

The lookup operation locates a definition relative to this container given a scoped name 
using OMG IDL’s name scoping rules. An absolute scoped name (beginning with “::”) 
locates the definition relative to the enclosing Repository. If no object is found, a nil 
object reference is returned.

The contents operation returns the list of objects directly contained by or inherited into 
the object. The operation is used to navigate through the hierarchy of objects. Starting 
with the Repository object, a client uses this operation to list all of the objects contained 
by the Repository, all of the objects contained by the modules within the Repository, and 
then all of the interfaces within a specific module, and so on.
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limit_type If limit_type is set to dk_all, objects of all interface types are 
returned. For example, if this is an InterfaceDef, the attribute, oper-
ation, and exception objects are all returned. If limit_type is set to 
a specific interface, only objects of that interface type are returned. 
For example, only attribute objects are returned if limit_type is set 
to dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. 
If set to FALSE, all contained objects—whether contained due to 
inheritance or because they were defined within the object—are 
returned.

The lookup_name operation is used to locate an object by name within a particular 
object or within the objects contained by that object. 

search_name  Specifies which name is to be searched for. 

levels_to_search  Controls whether the lookup is constrained to the object the opera-
tion is invoked on or whether it should search through objects con-
tained by the object as well.

Setting levels_to_search to -1 searches the current object and all contained 
objects. Setting levels_to_search to 1 searches only the current object. 

limit_type If limit_type is set to dk_all, objects of all interface types are 
returned (e.g., attributes, operations, and exceptions are all 
returned). If limit_type is set to a specific interface, only objects of 
that interface type are returned. For example, only attribute objects 
are returned if limit_type is set to dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. 
If set to FALSE, all contained objects (whether contained due to 
inheritance or because they were defined within the object) are 
returned.

The describe_contents operation combines the contents operation and the 
describe operation. For each object returned by the contents operation, the descrip-
tion of the object is returned (i.e., the object’s describe operation is invoked and the 
results returned). 

max_returned_objs  Limits the number of objects that can be returned in an invocation 
of the call to the number provided. Setting the parameter to -1 
means return all contained objects.
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Write Interface

The Container interface provides operations to create ModuleDefs, Constant-
Defs, StructDefs, UnionDefs, EnumDefs, AliasDefs, and InterfaceDefs as 
contained objects. The defined_in attribute of a definition created with any of these 
operations is initialized to identify the Container on which the operation is invoked, 
and the containing_repository attribute is initialized to its Repository.

The create_<type> operations all take id and name parameters which are used to 
initialize the identity of the created definition. An error is returned if an object with the 
specified id already exists within this object’s Repository, or, assuming multiple ver-
sions are not supported, if an object with the specified name already exists within this 
Container.

The create_module operation returns a new empty ModuleDef. Definitions can be 
added using Container::create_<type> operations on the new module, or by using 
the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified 
type and value.

The create_struct operation returns a new StructDef with the specified mem-
bers. The type member of the StructMember structures is ignored, and should be 
set to TC_void. See “StructDef” on page 6-19 for more information.

The create_union operation returns a new UnionDef with the specified 
discriminator_type and members. The type member of the UnionMember 
structures is ignored, and should be set to TC_void. See “UnionDef” on page 6-19 for 
more information.

The create_enum operation returns a new EnumDef with the specified members. 
See “EnumDef” on page 6-20 for more information.

The create_alias operation returns a new AliasDef with the specified 
original_type.

The create_interface operation returns a new empty InterfaceDef with the speci-
fied base_interfaces. Type, exception, and constant definitions can be added using 
Container::create_<type> operations on the new InterfaceDef. Operation-
Defs can be added using InterfaceDef::create_operation and AttributeDefs 
can be added using Interface::create_attribute. Definitions can also be added using 
the Contained::move operation.

6.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that represent 
OMG IDL types. It provides access to the TypeCode describing the type, and is used in 
defining other interfaces wherever definitions of IDL types must be referenced.
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module CORBA {
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

};

The type attribute describes the type defined by an object derived from IDLType.

6.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The 
Repository object can contain constants, typedefs, exceptions, interfaces, and modules. 
As it inherits from Container, it can be used to look up any definition (whether globally 
defined or defined within a module or interface) either by name or by id.

There may be more than one Interface Repository in a particular ORB environment 
(although some ORBs might require that definitions they use be registered with a particu-
lar repository). Each ORB environment will provide a means for obtaining object refer-
ences to the Repositories available within the environment.

module CORBA {
interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);
};

};

Read Interface

The lookup_id operation is used to lookup an object in a Repository given its 
RepositoryId. If the Repository does not contain a definition for search_id, a nil 
object reference is returned.
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The get_primitive operation returns a reference to a PrimitiveDef with the specified 
kind attribute. All PrimitiveDefs are immutable and owned by the Repository.

Write Interface

The three create_<type> operations create new objects defining anonymous types. As 
these interfaces are not derived from Contained, it is the caller’s responsibility to 
invoke destroy on the returned object if it is not successfully used in creating a defini-
tion that is derived from Contained. Each anonymous type definition must be used in 
defining exactly one other object.

The create_string operation returns a new StringDef with the specified bound, 
which must be non-zero. The get_primitive operation is used for unbounded strings. 

The create_sequence operation returns a new SequenceDef with the specified 
bound and element_type.

The create_array operation returns a new ArrayDef with the specified length and 
element_type.

6.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces and other module 
objects. 

module CORBA {
interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in;
VersionSpec version;

};
};

The inherited describe operation for a ModuleDef object returns a ModuleDe-
scription.

6.5.8 ConstantDef Interface

A ConstantDef object defines a named constant. 
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module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 
any value; 

};
};

Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The 
type of a constant must be one of the simple types (long, short, float, char, string, octet, 
etc.). The type_def attribute identifies the definition of the type of the constant. 

The value attribute contains the value of the constant, not the computation of the value 
(e.g., the fact that it was defined as “1+2”). 

The describe operation for a ConstantDef object returns a ConstantDescrip-
tion.

Write Interface

Setting the type_def attribute also updates the type attribute. 

When setting the value attribute, the TypeCode of the supplied any must be equal to 
the type attribute of the ConstantDef.

6.5.9 TypedefDef Interface

TypedefDef is an abstract interface used as a base interface for all named non-object 
types (structures, unions, enumerations, and aliases). The TypedefDef interface is not 
inherited by the definition objects for primitive or anonymous types.
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module CORBA {
interface TypedefDef : Contained, IDLType {
};

struct TypeDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 

};
};

The inherited describe operation for interfaces derived from TypedefDef returns a 
TypeDescription.

6.5.10 StructDef

A StructDef represents an OMG IDL structure definition.

module CORBA {
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};
typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef {
attribute StructMemberSeq members;

};
};

Read Interface

The members attribute contains a description of each structure member. 

The inherited type attribute is a tk_struct TypeCode describing the structure.

Write Interface

Setting the members attribute also updates the type attribute. When setting the mem-
bers attribute, the type member of the StructMember structure is ignored and 
should be set to TC_void.

6.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.
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module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator_type;

attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

Read Interface

The discriminator_type and discriminator_type_def attributes describe and 
identify the union’s discriminator type. 

The members attribute contains a description of each union member. The label of 
each UnionMemberDescription is a distinct value of the discriminator_type. 
Adjacent members can have the same name. Members with the same name must also 
have the same type. A label with type octet and value 0 indicates the default union 
member.

The inherited type attribute is a tk_union TypeCode describing the union.

Write Interface

Setting the discriminator_type_def attribute also updates the 
discriminator_type attribute and setting the discriminator_type_def or mem-
bers attribute also updates the type attribute.

When setting the members attribute, the type member of the UnionMember struc-
ture is ignored and should be set to TC_void.

6.5.12 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};
};
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Read Interface

The members attribute contains a distinct name for each possible value of the enumera-
tion. 

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

Write Interface

Setting the members attribute also updates the type attribute.

6.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};

6.5.14 Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

Write Interface

Setting the original_type_def attribute also updates the type attribute.

6.5.15 PrimitiveDef

A PrimitiveDef represents one of the IDL primitive types. As primitive types are 
unnamed, this interface is not derived from TypedefDef or Contained.

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};
};
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The kind attribute indicates which primitive type the PrimitiveDef represents. There 
are no PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string 
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the 
IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using 
Repository::get_primitive.

6.5.16 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is repre-
sented as a PrimitiveDef. As string types are anonymous, this interface is not derived 
from TypedefDef or Contained.

module CORBA {
interface StringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of characters in the string, and must 
not be zero.

The inherited type attribute is a tk_string TypeCode describing the string.

6.5.17 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous, 
this interface is not derived from TypedefDef or Contained.

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;

attribute IDLType element_type_def;
};

};

Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A 
bound of zero indicates an unbounded sequence.

The type of the elements is described by element_type and identified by 
element_type_def.

The inherited type attribute is a tk_sequence TypeCode describing the sequence.
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Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this interface 
is not derived from TypedefDef or Contained.

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;

attribute IDLType element_type_def;
};

};

Read Interface

The length attribute specifies the number of elements in the array. 

The type of the elements is described by element_type and identified by 
element_type_def. Since an ArrayDef only represents a single dimension of an 
array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects, one 
per array dimension. The element_type_def attribute of the ArrayDef representing 
the leftmost index of the array, as defined in IDL, will refer to the ArrayDef representing 
the next index to the right, and so on. The innermost ArrayDef represents the rightmost 
index and the element type of the multi-dimensional OMG IDL array.

The inherited type attribute is a tk_array TypeCode describing the array.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.19 ExceptionDef

An ExceptionDef represents an exception definition.
CORBA V2.0         Interface Repository Interfaces      July 1995 6-23



6

module CORBA {
interface ExceptionDef : Contained {

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 

};
};

Read Interface

The type attribute is a tk_except TypeCode describing the exception.

The members attribute describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDe-
scription.

Write Interface

Setting the members attribute also updates the type attribute. When setting the mem-
bers attribute, the type member of the StructMember structure is ignored and 
should be set to TC_void.

6.5.20 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface. 
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module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type;
AttributeMode mode; 

};
};

Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The 
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

Write Interface

Setting the type_def attribute also updates the type attribute.

6.5.21 OperationDef

An OperationDef represents the information needed to define an operation of an inter-
face. 
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module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name; 
TypeCode type; 
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode; 
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode result; 
OperationMode mode; 
ContextIdSeq contexts; 
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};
};

Read Interface

The result attribute is a TypeCode describing the type of the value returned by the 
operation. The result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of 
ParameterDescription structures. The order of the ParameterDescriptions in 
the sequence is significant. The name member of each structure provides the parameter 
name. The type member is a TypeCode describing the type of the parameter. The 
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type_def member identifies the definition of the type of the parameter. The mode 
member indicates whether the parameter is an in, out, or inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal. 

The contexts attribute specifies the list of context identifiers that apply to the operation.

The exceptions attribute specifies the list of exception types that can be raised by the 
operation.

The inherited describe operation for an OperationDef object returns an Opera-
tionDescription.

The inherited describe_contents operation provides a complete description of this 
operation, including a description of each parameter defined for this operation.

Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if the result is TC_void and all 
elements of params have a mode of PARAM_IN.

6.5.22 InterfaceDef

An InterfaceDef object represents an interface definition. It can contain constants, 
typedefs, exceptions, operations, and attributes.
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module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode, 
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};
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struct InterfaceDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
RepositoryIdSeq base_interfaces;

};
};

Read Interface

The base_interfaces attribute lists all the interfaces from which this inter-
face inherits. The is_a operation returns TRUE if the interface on which it is invoked 
either is identical to or inherits, directly or indirectly, from the interface identified by its 
interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns a FullInterfaceDescription describ-
ing the interface, including its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDe-
scription.

The inherited contents operation returns the list of constants, typedefs, and exceptions 
defined in this InterfaceDef and the list of attributes and operations either defined or inher-
ited in this InterfaceDef. If the exclude_inherited parameter is set to TRUE, only 
attributes and operations defined within this interface are returned. If the 
exclude_inherited parameter is set to FALSE, all attributes and operations are 
returned.

Write Interface

Setting the base_interfaces attribute returns an error if the name attribute of any 
object contained by this InterfaceDef conflicts with the name attribute of any object 
contained by any of the specified base InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the Inter-
faceDef on which it is invoked. The id, name, version, type_def, and mode 
attributes are set as specified. The type attribute is also set. The defined_in attribute is 
initialized to identify the containing InterfaceDef. An error is returned if an object with 
the specified id already exists within this object’s Repository, or if an object with the 
specified name already exists within this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the 
InterfaceDef on which it is invoked. The id, name, version, result_def, mode, 
params, exceptions, and contexts attributes are set as specified. The result 
attribute is also set. The defined_in attribute is initialized to identify the containing 
InterfaceDef. An error is returned if an object with the specified id already exists 
within this object’s Repository, or if an object with the specified name already exists 
within this InterfaceDef.
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6.6 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information in 
the repository. A RepositoryId is represented as a string, allowing programs to store, 
copy, and compare them without regard to the structure of the value. It does not matter 
what format is used for any particular RepositoryId. However, conventions are used to 
manage the name space created by these IDs.

RepositoryIds may be associated with OMG IDL definitions in a variety of ways. 
Installation tools might generate them, they might be defined with pragmas in OMG IDL 
source, or they might be supplied with the package to be installed.

The format of the id is a short format name followed by a colon (“:”) followed by charac-
ters according to the format. This specification defines three formats: one derived from 
OMG IDL names, one that uses DCE UUIDs, and another intended for short-term use, 
such as in a development environment.

6.6.1 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to 
distinguish between definitions. It also includes an optional unique prefix, and major and 
minor version numbers. 

The RepositoryId consist of three components, separated by colons, (“:”)

The first component is the format name, “IDL”.

The second component is a list of identifiers, separated by “/” characters. These identifiers 
are arbitrarily long sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and 
period (“.”) characters. Typically, the first identifier is a unique prefix, and the rest are the 
OMG IDL Identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal format, 
separated by a “.”. When two interfaces have RepositoryIds differing only in minor 
version number it can be assumed that the definition with the higher version number is 
upwardly compatible with (i.e. can be treated as derived from) the one with the lower 
minor version number.

6.6.2 DCE UUID Format

DCE UUID format RepositoryIds start with the characters “DCE:” and are followed 
by the printable form of the UUID, a colon, and a decimal minor version number, for 
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1”.

6.6.3 LOCAL Format

Local format RepositoryIds start with the characters “LOCAL:” and are followed by 
an arbitrary string. Local format IDs are not intended for use outside a particular reposi-
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tory, and thus do not need to conform to any particular convention. Local IDs that are just 
consecutive integers might be used within a development environment to have a very 
cheap way to manufacture the IDs while avoiding conflicts with well-known interfaces.

6.6.4 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified accommodate arbitrary 
RepositoryId formats and still support the OMG IDL RepositoryId format with 
minimal annotation. The pragma directives can be used with the OMG IDL, DCE 
UUID, and LOCAL formats. An IDL compiler must either interpret these annotations 
as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific OMG IDL name. The 
<name> can be a fully or partially scoped name or a simple identifier, interpreted 
according to the usual OMG IDL name lookup rules relative to the scope within which 
the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format

#pragma prefix “<string>”

sets the current prefix used in generating OMG IDL format RepositoryIds. The 
specified prefix applies to RepositoryIds generated after the pragma until the end of 
the current scope is reached or another prefix pragma is encountered.

For example, the RepositoryId for the initial version of interface Printer defined on 
module Office by an organization known as “SoftCo” might be 
“IDL:SoftCo/Office/Printer:1.0”.

This format makes it convenient to generate and manage a set of IDs for a collection of 
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), and 
the IDL compiler or other tool can synthesize all the needed IDs. 

Because RepositoryIds may be used in many different computing environments and 
ORBs, as well as over a long period of time, care must be taken in choosing them. Prefixes 
that are distinct, such as trademarked names, domain names, UUIDs, and so forth, are 
preferable to generic names such as “document.” 

The Version Pragma

An OMG IDL pragma of the format
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#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format 
RepositoryId for a specific OMG IDL name. The <name> can be a fully or 
partially scoped name or a simple identifier, interpreted according to the usual OMG 
IDL name lookup rules relative to the scope within which the pragma is contained. The 
<major> and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID 
pragma is encountered for it. 

The ID string can be generated by starting with the string “IDL:”. Then, if any prefix 
pragma applies, it is appended, followed by a “/” character. Next, the components of 
the scoped name of the definition, relative to the scope in which any prefix that applies 
was encountered, are appended, separated by “/” characters. Finally, a “:” and the 
version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;

#pragma version T4 2.4
};

specifies types with the following scoped names and RepositoryIds:

::M1::T1 IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4
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For this scheme to provide reliable global identity, the prefixes used must be unique. 
Two non-colliding options are suggested: Internet domain names and DCE UUIDs. 

Furthermore, in a distributed world, where different entities independently evolve 
types, a convention must be followed to avoid the same RepositoryId being used for 
two different types. Only the entity that created the prefix has authority to create new 
IDs by simply incrementing the version number. Other entities must use a new prefix, 
even if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other 
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};

typedef long T4;
#pragma version T4 2.4

};

This OMG IDL declares types with the same global identities as those declared in 
module M2 above.

For More Information

Section 6.8, “OMG IDL for Interface Repository,” on page 6-41 shows the OMG IDL 
specification of the IR, including the #pragma directive; Section 3.3, “Preprocessing,” 
on page 3-8 contain additional, general information on the pragma directive. 

6.7 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. 
They can be obtained from the Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to 
indicate the types of the actual arguments. They are used by an Interface Repository to 
represent the type specifications that are part of many OMG IDL declarations. Finally, 
they are crucial to the semantics of the any type.

TypeCodes are themselves values that can be passed as invocation arguments. To allow 
different ORB implementations to hide extra information in TypeCodes, the representa-
tion of TypeCodes will be opaque (like object references). However, we will assume 
that the representation is such that TypeCode “literals” can be placed in C include files.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for 
that kind. For example, the TypeCode describing OMG IDL type long has kind 
tk_long and no parameters. The TypeCode describing OMG IDL type 
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sequence<boolean,10> has kind tk_sequence and two parameters: 10 and 
boolean.

6.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is
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module CORBA {
enum TCKind {

tk_null, tk_void, 
tk_short, tk_long, tk_ushort, tk_ulong, 
tk_float, tk_double, tk_boolean, tk_char, 
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref, 
tk_struct, tk_union, tk_enum, tk_string, 
tk_sequence, tk_array, tk_alias, tk_except

};

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// deprecated interface
long param_count (); 
any parameter (in long index) raises (Bounds); 

};
};

With the above operations, any TypeCode can be decomposed into its constituent parts. 
The BadKind exception is raised if an operation is not appropriate for the TypeCode 
kind is invoked.
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The equal operation can be invoked on any TypeCode. Equal TypeCodes are inter-
changeable, and give identical results when TypeCode operations are applied to them.

The kind operation can be invoked on any TypeCode. Its result determines what other 
operations can be invoked on the TypeCode.

The id operation can be invoked on object reference, structure, union, enumeration, alias, 
and exception TypeCodes. It returns the RepositoryId globally identifying the type. 
Object reference and exception TypeCodes always have a RepositoryId. Structure, 
union, enumeration, and alias TypeCodes obtained from the Interface Repository or the 
ORB::create_operation_list operation also always have a RepositoryId. Other-
wise, the id operation can return an empty string. 

The name operation can also be invoked on object reference, structure, union, enumera-
tion, alias, and exception TypeCodes. It returns the simple name identifying the type 
within its enclosing scope. Since names are local to a Repository, the name returned 
from a TypeCode may not match the name of the type in any particular Repository, 
and may even be an empty string.

The member_count and member_name operations can be invoked on structure, 
union, and enumeration TypeCodes. Member_count returns the number of mem-
bers constituting the type. Member_name returns the simple name of the member 
identified by index. Since names are local to a Repository, the name returned from a 
TypeCode may not match the name of the member in any particular Repository, and 
may even be an empty string.

The member_type operation can be invoked on structure and union TypeCodes. It 
returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can 
only be invoked on union TypeCodes. Member_label returns the label of the union 
member identified by index. For the default member, the label is the zero octet. The 
discriminator_type operation returns the type of all non-default member labels. The 
default_index operation returns the index of the default member, or -1 if there is no 
default member.

The member_name, member_type, and member_label operations raise 
Bounds if the index parameter is greater than or equal to the number of members consti-
tuting the type.

The length operation can be invoked on string, sequence, and array TypeCodes. For 
strings and sequences, it returns the bound, with zero indicating an unbounded string or 
sequence. For arrays, it returns number of elements in the array.

The content_type operation can be invoked on sequence, array, and alias Type-
Codes. For sequences and arrays, it returns the element type. For aliases, it returns the 
original type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesting TypeCodes, one per dimension. The out-
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ermost tk_array Typecode describes the leftmost array index of the array as defined 
in IDL. Its content_type describes the next index. The innermost nested tk_array 
TypeCode describes the rightmost index and the array element type.

The deprecated param_count and parameter operations provide access to those 
parameters that were present in previous versions of CORBA. Some information available 
via other TypeCode operations is not visible via the parameter operation. The mean-
ing of the indexed parameters for each TypeCode kind are listed in TABLE 12. on page 
6-37, along with the information that is not visible via the parameter operation. 

The tk_objref TypeCode represents an interface type. Its parameter is the Reposi-
toryId of that interface.

A structure with N members results in a tk_struct TypeCode with 2N+1 parameters: 
first, the simple name of the struct; the rest are member names alternating with the corre-
sponding member TypeCode. Member names are represented as strings.

TABLE 12. Legal TypeCode Kinds and Parameters  

KIND PARAMETER LIST NOT VISIBLE

tk_null *NONE* 

tk_void *NONE* 

tk_short *NONE* 

tk_long *NONE* 

tk_ushort *NONE* 

tk_ulong *NONE* 

tk_float *NONE* 

tk_double *NONE* 

tk_boolean *NONE* 

tk_char *NONE* 

tk_octet *NONE* 

tk_any *NONE* 

tk_TypeCode *NONE* 

tk_Principal *NONE*

tk_objref { interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId

tk_union { union-name, discriminator-TypeCode, label-value, member-
name, TypeCode, ... (repeat triples) }

RepositoryId

tk_enum { enum-name, enumerator-name, ... } RepositoryId

tk_string { maxlen-integer } 

tk_sequence { TypeCode, maxlen-integer } 

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId
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A union with N members results in a tk_union TypeCode with 3N+2 parameters: the 
simple name of the union, the discriminator TypeCode followed by a label value, mem-
ber name, and member TypeCode for each of the N members. The label values are all 
values of the data type designated by the discriminator TypeCode, with one exception. 
The default member (if present) is marked with a label value consisting of the 0 octet. 
Recall that the operation “parameter(tc,i)” returns an any, and that anys themselves carry 
a TypeCode that can distinguish an octet from any of the legal switch types.

The tk_enum TypeCode has the simple name of the enum followed by the enumera-
tor names as parameters. Enumerator names are represented as strings.

The tk_string TypeCode has 1 parameter: an integer giving the maximum string 
length. A maximum of 0 denotes unbounded.

The tk_sequence TypeCode has 2 parameters: a TypeCode for the sequence ele-
ments, and an integer giving the maximum sequence. Again, 0 denotes unbounded.

The tk_array TypeCode has 2 parameters: a TypeCode for the array elements, and 
an integer giving the array length. Arrays are never unbounded.

The tk_alias TypeCode has 2 parameters: the name of the alias followed by the 
TypeCode of the type being aliased.

The tk_except TypeCode has the same format as the tk_struct TypeCode, 
except that exceptions with no members are allowed.

6.7.2 TypeCode Constants

If “typedef ... FOO;” is an IDL type declaration, the IDL compiler will (if asked) pro-
duce a declaration of a TypeCode constant named TC_FOO for the C language map-
ping. In the case of an unnamed, bounded string type used directly in an operation or 
attribute declaration, a TypeCode constant named TC_string_n, where n is the bound of 
the string is produced. (For example, “string<4> op1();” produces the constant 
“TC_string_4”.) These constants can be used with the dynamic invocation interface, and 
any other routines that require TypeCodes. The predefined TypeCode constants, 
named according to the C language mapping, are:

TC_null
TC_void
TC_short
TC_long
TC_ushort
TC_ulong
TC_float
TC_double
TC_boolean
TC_char
TC_octet
TC_any
TC_TypeCode
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TC_Principal
TC_Object = tk_objref { Object }
TC_string= tk_string { 0 } // unbounded
TC_CORBA_NamedValue= tk_struct { ... }
TC_CORBA_InterfaceDescription= tk_struct { ... }
TC_CORBA_OperationDescription= tk_struct { ... }
TC_CORBA_AttributeDescription= tk_struct { ... }
TC_CORBA_ParameterDescription= tk_struct { ... }
TC_CORBA_ModuleDescription= tk_struct { ... }
TC_CORBA_ConstantDescription= tk_struct { ... }
TC_CORBA_ExceptionDescription= tk_struct { ... }
TC_CORBA_TypeDescription= tk_struct { ... }
TC_CORBA_InterfaceDef_FullInterfaceDescription= tk_struct { ... }

The exact form for TypeCode constants is language mapping, and possibly implemen-
tation, specific.

6.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in 
terms of object references, and the TypeCodes describing them are generated automati-
cally.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed 
outside of any Interface Repository. This can be done using operations on the ORB 
pseudo-object.
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module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
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in unsigned long offset
);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
};

};

Most of these operations are similar to corresponding IR operations for creating type defi-
nitions. TypeCodes are used here instead of IDLType object references to refer to 
other types. In the StructMember and UnionMember structures, only the type is 
used, and the type_def should be set to nil.

The create_recursive_sequence_tc operation is used to create TypeCodes 
describing recursive sequences (see See “Constructed Types” on page 22.) The result of 
this operation is used in constructing other types, with the offset parameter determining 
which enclosing TypeCode describes the elements of this sequence. For instance, to 
construct a TypeCode for the following OMG IDL structure, the offset used when cre-
ating its sequence TypeCode would be one:

struct foo {
long value;
sequence <foo> chain;

};

Operations to create primitive TypeCodes are not needed, since TypeCode constants 
for these are available.

6.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface 
Repository.
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#pragma prefix “omg.org”

module CORBA {
    typedef string Identifier;
    typedef string ScopedName;
    typedef string RepositoryId;

    enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

    };

    interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

    };

    typedef string VersionSpec;

    interface Contained;
    interface Repository;
    interface Container;

    interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
    DefinitionKind kind;
    any value; 
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}; 

Description describe ();

// write interface

void move (
    in Container new_container,
    in Identifier new_name,
    in VersionSpec new_version
    );

    };

    interface ModuleDef;
    interface ConstantDef;
    interface IDLType;
    interface StructDef;
    interface UnionDef;
    interface EnumDef;
    interface AliasDef;
    interface InterfaceDef;
    typedef sequence <InterfaceDef> InterfaceDefSeq;

    typedef sequence <Contained> ContainedSeq;

    struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

    };
    typedef sequence <StructMember> StructMemberSeq;

    struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

    };
    typedef sequence <UnionMember> UnionMemberSeq;

    typedef sequence <Identifier> EnumMemberSeq;

    interface Container : IRObject {
// read interface

Contained lookup ( in ScopedName search_name);

ContainedSeq contents (
    in DefinitionKind limit_type,
    in boolean exclude_inherited
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    );

ContainedSeq lookup_name (
    in Identifier search_name, 
    in long levels_to_search, 
    in DefinitionKind limit_type,
    in boolean exclude_inherited
    );

struct Description {
    Contained contained_object; 
    DefinitionKind kind;
    any value; 
};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
    in DefinitionKind limit_type,
    in boolean exclude_inherited,
    in long max_returned_objs
    );

// write interface
 

ModuleDef create_module (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version
    );

 
ConstantDef create_constant (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in IDLType type,
    in any value
    );

 
StructDef create_struct (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in StructMemberSeq members
    );

 
UnionDef create_union (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in IDLType discriminator_type,
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    in UnionMemberSeq members
    );

 
EnumDef create_enum (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in EnumMemberSeq members
    );

 
AliasDef create_alias (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in IDLType original_type
    );

 
InterfaceDef create_interface (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in InterfaceDefSeq base_interfaces
    );

    };

    interface IDLType : IRObject {
readonly attribute TypeCode type;

    };

    interface PrimitiveDef;
    interface StringDef;
    interface SequenceDef;
    interface ArrayDef;

    enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

    };

    interface Repository : Container {
// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);
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// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (
    in unsigned long bound,
    in IDLType element_type
    );

ArrayDef create_array (
    in unsigned long length,
    in IDLType element_type
    );

    };

    interface ModuleDef : Container, Contained {
    };

    struct ModuleDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in;
VersionSpec version;

    };

    interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

    };

    struct ConstantDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 
any value; 

    };

    interface TypedefDef : Contained, IDLType {
    };

    struct TypeDescription {
Identifier name; 
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RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 

    };

    interface StructDef : TypedefDef {
attribute StructMemberSeq members;

    };

    interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

    };

    interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

    };

    interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

    };

    interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

    };

    interface StringDef : IDLType {
attribute unsigned long bound;

    };

    interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

    };
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    interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

    };

    interface ExceptionDef : Contained {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

    };
    struct ExceptionDescription {

Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type; 

    };

    enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

    interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

    };

    struct AttributeDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode type;
AttributeMode mode; 

    };

    enum OperationMode {OP_NORMAL, OP_ONEWAY};

    enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
    struct ParameterDescription {

Identifier name; 
TypeCode type; 
IDLType type_def;
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ParameterMode mode;
    };
    typedef sequence <ParameterDescription> ParDescriptionSeq;

    typedef Identifier ContextIdentifier;
    typedef sequence <ContextIdentifier> ContextIdSeq;

    typedef sequence <ExceptionDef> ExceptionDefSeq;
    typedef sequence <ExceptionDescription> ExcDescriptionSeq;

    interface OperationDef : Contained { 
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode; 
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

    };

    struct OperationDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
TypeCode result; 
OperationMode mode; 
ContextIdSeq contexts; 
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

    };

    typedef sequence <RepositoryId> RepositoryIdSeq;
    typedef sequence <OperationDescription> OpDescriptionSeq;
    typedef sequence <AttributeDescription> AttrDescriptionSeq;

    interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
    Identifier name;
    RepositoryId id;
    RepositoryId defined_in;
    VersionSpec version;
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    OpDescriptionSeq operations;
    AttrDescriptionSeq attributes;
    RepositoryIdSeq base_interfaces;
    TypeCode type;
};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in IDLType type,
    in AttributeMode mode
    );

OperationDef create_operation (
    in RepositoryId id,
    in Identifier name,
    in VersionSpec version,
    in IDLType result,
    in OperationMode mode, 
    in ParDescriptionSeq params,
    in ExceptionDefSeq exceptions,
    in ContextIdSeq contexts
    );

    };

    struct InterfaceDescription {
Identifier name; 
RepositoryId id; 
RepositoryId defined_in; 
VersionSpec version;
RepositoryIdSeq base_interfaces;

    };

    enum TCKind { 
tk_null, tk_void, 
tk_short, tk_long, tk_ushort, tk_ulong, 
tk_float, tk_double, tk_boolean, tk_char, 
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref, 
tk_struct, tk_union, tk_enum, tk_string, 
tk_sequence, tk_array, tk_alias, tk_except

    };

    interface TypeCode { // PIDL
exception Bounds {};
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exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind); 

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// deprecated interface
long param_count (); 
any parameter (in long index) raises (Bounds); 

    };

    interface ORB {
// other operations ...

TypeCode create_struct_tc (
    in RepositoryId id,
    in Identifier name,
    in StructMemberSeq members
    );

TypeCode create_union_tc (
    in RepositoryId id,
    in Identifier name,
    in TypeCode discriminator_type,
    in UnionMemberSeq members
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    );

TypeCode create_enum_tc (
    in RepositoryId id,
    in Identifier name,
    in EnumMemberSeq members
    );

TypeCode create_alias_tc (
    in RepositoryId id,
    in Identifier name,
    in TypeCode original_type
    );

TypeCode create_exception_tc (
    in RepositoryId id,
    in Identifier name,
    in StructMemberSeq members
    );

TypeCode create_interface_tc (
    in RepositoryId id,
    in Identifier name
    );

TypeCode create_string_tc (
    in unsigned long bound
    );

TypeCode create_sequence_tc (
    in unsigned long bound,
    in TypeCode element_type
    );

TypeCode create_recursive_sequence_tc (
    in unsigned long bound,
    in unsigned long offset
    );

TypeCode create_array_tc (
    in unsigned long length,
    in TypeCode element_type
    );

    };
};
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The ORB interface is the interface to those ORB functions that do not depend on 
which object adapter is used. These operations are the same for all ORBs and all object 
implementations, and can be performed either by clients of the objects or 
implementations. Some of these operations appear to be on the ORB, others appear to 
be on the object reference. Because the operations in this section are implemented by 
the ORB itself, they are not in fact operations on objects, although they may be 
described that way and the language binding will, for consistency, make them appear 
that way. 

The ORB interface also defines operations for creating lists and determining the 
default context used in the Dynamic Invocation Interface. Those operations are 
described in Chapter 4. 

All types defined in this chapter are part of the CORBA module. When referenced in 
OMG IDL, the type names must be prefixed by “CORBA::”.

7.1 Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object 
reference itself is not a convenient value for storing references to objects in persistent 
storage or communicating references by means other than invocation. Two problems 
must be solved: allowing an object reference to be turned into a value that a client can 
store in some other medium, and ensuring that the value can subsequently be turned 
into the appropriate object reference.

An object reference may be translated into a string by the operation 
object_to_string. The value may be stored or communicated in whatever ways 
strings may be manipulated. Subsequently, the string_to_object operation will 
accept a string produced by object_to_string and return the corresponding object 
reference.
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module CORBA {

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count, 
out NVList new_list

);
Status  create_operation_list (
in OperationDef oper, 
out NVList new_list

);

Status get_default_context ( out  Context ctx);

};
};

To guarantee that an ORB will understand the string form of an object reference, that 
ORB’s object_to_string operation must be used to produce the string. Since in 
general a client does not know or care which ORB is used for a particular object 
reference, the client can choose whatever ORB is convenient.

For a description of the create_list and create_operation_list operations, see “List 
Operations” on page 4-10. The get_default_context operation is described in the 
section “get_default_context” on page 4-14. 

7.2 Object Reference Operations

There are some operations that can be done on any object. These are not operations in 
the normal sense, in that they are implemented directly by the ORB, not passed on to 
the object implementation. We will describe these as being operations on the object 
reference, although the interfaces actually depend on the language binding. As above, 
where we used interface Object to represent the object reference, we will define an 
interface for Object:
7-2                                  CORBA V2.0                                  July 1995



7

module CORBA {

interface Object { // PIDL

ImplementationDef get_implementation ();
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifieroperation,
in NVList arg_list,
inout NamedValueresult,
out Requestrequest,
in Flags req_flags
);
};
};

The create_request operation is part of the Object interface because it creates a 
pseudo-object (a Request) for an object. It is described with the other Request 
operations in the section “Request Operations” on page 4-4. 

7.2.1 Determining the Object Implementation and Interface

 An operation on the object reference, get_interface, returns an object in the Interface 
Repository, which provides type information that may be useful to a program. See 
Chapter 6 for a definition of operations on the Interface Repository. An operation on 
the Object called get_implementation will return an object in an implementation 
repository that describes the implementation of the object. See the Basic Object 
Adapter chapter for information about the Implementation Repository.

InterfaceDef get_interface (); // PIDL
ImplementationDef get_implementation ();

7.2.2 Duplicating and Releasing Copies of Object References

Because object references are opaque and ORB-dependent, it is not possible for clients 
or implementations to allocate storage for them. Therefore, there are operations 
defined to copy or release an object reference. 
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Object duplicate (); // PIDL
void release ();

If more than one copy of an object reference is needed, the client may create a 
duplicate. Note that the object implementation is not involved in creating the 
duplicate, and that the implementation cannot distinguish whether the original or a 
duplicate was used in a particular request. 

When an object reference is no longer needed by a program, its storage may be 
reclaimed by use of the release operation. Note that the object implementation is not 
involved, and that neither the object itself nor any other references to it are affected by 
the release operation.

7.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object 
reference can be tested for this value by the is_nil operation. The object 
implementation is not involved in the nil test. 

boolean is_nil (); // PIDL

7.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object references over 
the scope of an ORB.

boolean is_a(in string logical_type_id); // PIDL

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The 
operation returns true if the object is really an instance of that type, including if that 
type is an ancestor of the “most derived” type of that object.

This operation exposes to application programmers functionality that must already 
exist in ORBs which support “type safe narrow”, and allows programmers working in 
environments that do not have compile time type checking to explicitly maintain type 
safety.

7.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existent operation may be used to test whether an object (e.g. a proxy 
object) has been destroyed. It does this without invoking any application level 
operation on the object, and so will never affect the object itself. It returns true (rather 
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively 
that the object does not exist, and otherwise it returns false.
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Services that maintain state that includes object references, such as bridges, event 
channels, and base relationship services, might use this operation in their “idle time” to 
sift through object tables for objects that no longer exist, deleting them as they go, as 
a form of garbage collection. In the case of proxies, this kind of activity can cascade, 
such that cleaning up one table allows others then to be cleaned up.

7.2.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, 
services need to support a notion of object reference identity. Such services include not 
just bridges, but relationship services and other layered facilities.

unsigned long hash(in unsigned long maximum); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into disjoint 
groups of potentially equivalent references, and the other supports more expensive 
pairwise equivalence testing. Together, these operations support efficient maintenance 
and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are associated with ORB-internal identifiers which may indirectly be 
accessed by applications using the hash() operation. The value of this identifier does 
not change during the lifetime of the object reference, and so neither will any hash 
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object 
reference may return the same hash value. However, if two object references hash 
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash 
value returned by the ORB. The lower bound of that value is zero. Since a typical use 
of this feature is to construct and access a collision chained hash table of object 
references, the more randomly distributed the values are within that range, and the 
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could 
be many proxy objects representing a given “real” object. Those proxies would not 
necessarily hash to the same value.

Equivalence Testing

The is_equivalent() operation is used to determine if two object references are 
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object 
reference is known to be equivalent to the other object reference passed as its 
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object 
references which in fact refer to the same object are also equivalent.
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ORBs are allowed, but not required, to attempt determination of whether two distinct 
object references refer to the same object. In general, the existence of reference 
translation and encapsulation, in the absence of an omniscient topology service, can 
make such determination impractically expensive. This means that a FALSE return 
from is_equivalent() should be viewed as only indicating that the object references 
are distinct, and not necessarily an indication that the references indicate distinct 
objects.

A typical application use of this operation is be to match object references in a hash 
table. Bridges could use it to shorten the lengths of chains of proxy object references. 
Externalization services could use it to “flatten” graphs that represent cyclical 
relationships between objects. Some might do this as they construct the table, others 
during idle time.

7.3 Overview: ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and object adapter (BOA and OA) environments.

• Get references to ORB and OA (including BOA) pseudo-objects—and sometimes 
to other objects—for use in future ORB and OA operations. 

CORBA V2.0 provides operations, specified in PIDL, to initialize applications and 
obtain the appropriate object references. The following is provided:

• Operations providing access to the ORB. These operations reside in CORBA 
module, but not in the ORB interface and are described in Section 7.4, “ORB 
Initialization,” on page 7-6.

• Operations providing access to the Basic Object Adapter (BOA) and other object 
adapters (OAs) These operations reside in the ORB interface and are described in 
Section 7.5, “OA and BOA Initialization,” on page 7-8.

• Operations providing access to the Interface Repository, Naming Service, and 
other Object Services. These operations reside in the ORB interface and are 
described in Section 7.6, “Obtaining Initial Object References,” on page 7-10.

In addition, this manual provides a mapping of the PIDL initialization and object 
reference operations to the C and C++ programming languages. For mapping 
information, refer to Section 14.26, “ORB and OA/BOA Initialization Operations,” on 
page 14-31 and to Section 17.12, “ORB,” on page 17-11. 

7.4 ORB Initialization 

When an application requires a CORBA environment it needs a mechanism to get 
ORB and OA pseudo-object references. This serves two purposes. First, it initializes an 
application into the ORB and OA environments. Second, it returns the ORB and OA 
pseudo-object references to the application for use in future ORB and OA operations. 
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The ORB and BOA initialization operations must be ordered with ORB occurring 
before OA: an application cannot call OA initialization routines until ORB 
initialization routines have been called for the given ORB. 

The operation to initialize an application in the ORB and get its pseudo-object 
reference is not performed on an object. This is because applications do not initially 
have an object on which to invoke operations. The ORB initialization operation is an 
application’s bootstrap call into the CORBA world. The PIDL for the call (Figure 7-1) 
shows that the ORB_init call is part of the CORBA module but not part of the ORB 
interface. 

Applications can be initialized in one or more ORBs. When an ORB initialization is 
complete, its pseudo reference is returned and can be used to obtain OA references for 
that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init 
operation. The parameters to the call comprise an identifier for the ORB for which the 
pseudo-object reference is required, and an arg_list, which is used to allow 
environment-specific data to be passed into the call. PIDL for the ORB initialization is 
as follows:

// PIDL 
module CORBA {

 typedef string ORBid;
 typedef sequence <string> arg_list;
 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
 };

Figure 7-1

The identifier for the ORB will be a name of type ORBid (string). The allocation of 
ORBids is the responsibility of ORB administrators and is not intended to be managed 
by the OMG. Names are locally scoped and the ORB administrator is responsible for 
ensuring that the names are unambiguous. Examples of potential ORBids are “Internet 
ORB,” “BNR_private,” “BNR_interop_1_2.” If a NULL ORBid is used then arg_list 
arguments can be used to determine which ORB should be returned. This is achieved 
by searching the arg_list parameters for one tagged ORBid, for example, –ORBid 
“ORBid_example.” Other parameters of significance to the ORB can be identified, for 
example, “Hostname,” “SpawnedServer,” and so forth. To allow for other parameters 
to be specified without causing applications to be re-written, it is necessary to specify 
the format that ORB parameters may take. The format of those parameters will be 

–ORB<suffix> <value>.
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The ORB_init operation can be called any number of times and is expected to return 
the same pseudo-object reference for the same parameters. Calling the ORB_init 
function multiples times for the same ORB may be required where an ORB is 
implemented as a shared library, or where several threads of a multi-threaded 
application require to use the same ORB and all wish to call the ORB_init operation.

7.5 OA and BOA Initialization

An ORB may have zero or more object adaptors associated with it. Servers must have 
a reference to an OA pseudo-object in order to access its functionality. 

The only object adaptor defined in CORBA is the Basic Object Adaptor (BOA). 
However other adaptors such as the Library Object Adaptor (LOA) are also mentioned. 
Given an ORB reference, an application must be able to initialize itself in an OA 
environment and get the pseudo reference of the OA from the ORB.

Because OAs are pseudo-objects and therefore do not necessarily share a common 
interface, it is not possible to have a generic OA_init operation that returns an object 
type which is then explicitly narrowed or widened to the correct pseudo-object type. It 
is therefore necessary to provide an initialization function for each OA type separately. 
To achieve this a template is suggested for OA initialization, and the BOA 
initialization operation is generated from that template.

The operation to get the OA pseudo object reference is part of the ORB interface. The 
<OA>_init operation is therefore an operation on the ORB pseudo object. Figure 7-2 
shows the PIDL for the for the <OA>_init (specifically BOA_init) operation. 
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// PIDL
module CORBA {

  interface ORB 
{

typedef sequence <string> arg_list;
typedef string OAid;

 // Template for OA initialization operations
 // <OA> <OA>_init (inout arg_list argv, 
// in OAid oa_identifier);

BOA BOA_init (inout arg_list argv,
 in OAid boa_identifier); 

 };

 } 

Figure 7-2

The identifier for the OA will be a name of the type OAid (string). The allocation of 
OAids is the responsibility of ORB administrators and is not intended to be managed 
by the OMG. Names are locally scoped and the ORB administrator is responsible for 
ensuring that the names are unambiguous. Examples of potential OAids are “BOA,” 
“BNR_BOA,” “HP_LOA.”

If a NULL OAid is used then arg_list arguments can be used to determine which OA 
should be returned. This is achieved by searching the arg_list parameters for one 
tagged OAid, e.g. -OAid “OAid_example”. 

In order to allow for other OA parameters to be specified in the future without causing 
applications to be re-written it is necessary to specify the format parameters may take. 
The format of OA specific parameters will be - OA<suffix> <value>.

The BOA_init function may be called any number of times and is expected to return 
the same pseudo object reference for the same parameters. Calling the BOA_init 
operation multiples times for the same BOA may be required where several threads of 
a multi-threaded application require to use the same BOA and therefore need to the 
BOA_init operation. 

The BOA_init operation returns a BOA. Once the operation has returned the BOA is 
assumed to be initialized for the application object.
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7.6 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. 
References are required for the Interface Repository and Object Services. (The 
Interface Repository is described in Chapter 6 of this manual; Object Services are 
described in CORBAservices.) The functionality required by the application is similar 
to that provided by the Naming Service. However, the OMG does not want to mandate 
that the Naming Service be made available to all applications in order that they may be 
portably initialized. Consequently, the operations shown in this section provide a 
simplified, local version of the Naming Service that applications can use to obtain a 
small, defined set of object references which are essential to its operation. Because 
only a small well defined set of objects are expected with this mechanism, the naming 
context can be flattened to be a single-level name space. This simplification results in 
only two operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two new operations are 
added to the ORB pseudo-object interface, providing facilities to list and resolve initial 
object references. Figure 7-3 on page 7-10 shows the PIDL for these operations.

// PIDL interface for getting initial object references 
module CORBA { 

interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList; 

exception InvalidName {}; 

ObjectIdList list_initial_services (); 

Object resolve_initial_references (in ObjectId identifier)
     raises (InvalidName); 
   } 
 
} 

Figure 7-3

The resolve_initial_references operation is an operation on the ORB rather than the 
Naming Service’s NamingContext. The interface differs from the Naming Service’s 
resolve in that ObjectId (a string) replaces the more complex Naming Service 
construct (a sequence of structures containing string pairs for the components of the 
name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain 
the simplicity of the interface for obtaining initial references, only a limited set of 
objects are expected to have their references found via this route. Unlike the ORB and 
BOA identifiers, the ObjectId name space requires careful management. To achieve 
this. the OMG may, in the future, define which services are required by applications 
through this interface and specify names for those services. 
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Currently, reserved ObjectIds are InterfaceRepository and NameService.

To allow an application to determine which objects have references available via the 
initial references mechanism, the list_initial_services operation (also a call on the 
ORB) is provided. It returns an ObjectIdList, which is a sequence of ObjectIds. 
ObjectIds are typed as strings. Each object, which may need to be made available at 
initialization time, is allocated a string value to represent it. In addition to defining the 
id, the type of object being returned must be defined, i.e. "InterfaceRepository" returns 
a object of type Repository, and “NameService" returns a CosNamingContext 
object. 

The application is responsible for narrowing the object reference returned from 
resolve_initial_references to the type which was requested in the ObjectId. E.g. for 
InterfaceRepository the object returned would be narrowed to Repository type.

In the future, specifications for Object Services (in CORBAservices) will state whether 
it is expected that a service’s initial reference be made available via the 
resolve_initial_references operation or not, i.e. whether the service is necessary or 
desirable for bootstrap purposes.
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The Basic Object Adapter 8
An object adapter is the primary interface that an implementation uses to access ORB 
functions. The Basic Object Adapter (BOA) is an interface intended to be widely 
available and to support a wide variety of common object implementations. It includes 
convenient interfaces for generating object references, registering implementations that 
consist of one or more programs, activating implementations, and authenticating 
requests. It also provides a limited amount of persistent storage for objects that can be 
used for connecting to a larger or more general storage facility, for storing access 
control information, or other purposes.

Most of the Basic Object Adapter interface can be expressed in OMG IDL, since the 
interface is to the operations on the object adapter. Some of the operations to bind the 
implementation to the object adapter depend on the language mapping. Such 
dependencies are noted in this chapter, but OMG IDL will be used to describe the 
interface.

All types defined in this chapter are part of the CORBA module. When referenced in 
OMG IDL, the type names must be prefixed by “CORBA::”.

8.1 Role of the Basic Object Adapter

One object adapter, called the Basic Object Adapter, should be available in every ORB 
implementation; although the BOA will generally have an ORB-dependent 
implementation, object implementations that use it should be able to run on any ORB 
that supports the required language mapping, assuming they have been installed 
appropriately.

Other Object Adapters are likely to be created. Ordinarily, it is not necessary for a 
client of an object to be concerned about which Object Adapter is used by the 
implementation.
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The following functions are provided through the Basic Object Adapter:

• Generation and interpretation of object references

• Authentication of the principal making the call

• Activation and deactivation of the implementation

• Activation and deactivation of individual objects

• Method invocation through skeletons

The Basic Object Adapter supports object implementations that are constructed from 
one or more programs1. The BOA activates and communicates with these programs 
using operating system facilities that are not part of the ORB. Therefore the BOA 
requires some information that is inherently non-portable. Although not defining this 
information, the BOA does define the concept of an Implementation Repository which 
can hold this information, allowing each system to install and start implementations in 
the way that is appropriate for that system.

The mechanism for binding the program to the BOA and ORB is also not specified 
because it is inherently system and language-dependent. We assume that the BOA can 
connect the methods to the skeleton by some means, whether at the time the 
implementation is compiled, installed, or activated, etc. Subsequent to activation, the 
BOA can make calls on routines in the implementation and the implementation can 
make calls on the BOA.

Figure 14 on page 8-3 shows the structure of the Basic Object Adapter, and some of 
the interactions between the BOA and an Object Implementation. The Basic Object 
Adapter will start a program to provide the Object Implementation, in this example, a 
per-class server (1). The Object Implementation notifies the BOA that it has finished 
initializing and is prepared to handle requests (2). When the first request for a 
particular object arrives, the implementation is notified to activate the object (3). On 
subsequent requests, the BOA calls the appropriate method using the per-interface 
skeleton (4). At various times, the implementation may access BOA services such as 
object creation, deactivation, and so forth. (5).

1.The term “program” is meant to include a wide range of possible constructs, including scripts, 
loadable modules, etc., in addition to the traditional notions of an application or server.
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FIGURE 14. The Structure and Operation of the Basic Object Adapter 

The BOA exports operations that are accessed by the Object Implementation. The 
BOA also calls the Object Implementation under certain circumstances. The interface 
between a particular version of the BOA and the ORB Core it runs on is private, as is 
the interface between the BOA and the skeletons. Thus, the BOA can exploit features 
or overcome limitations of a specific ORB Core, and can cooperate with the ORB Core 
and skeletons to provide a set of portable interfaces for the object implementation.

8.2 Basic Object Adapter Interface

The BOA interface is specified in OMG IDL, so that the way it is accessed in any 
programming language is specified by the client side language mapping for that 
language. Some data structures used by the BOA are specific to a given language 
mapping, so most IDL compilers will not be able to accept this definition literally.

In practice, the BOA is most likely to be implemented partially as a separate 
component and partially as a library in the Object Implementation. The separate 
component is required to do activation when the implementation is not present. The 
library portion is needed to establish the linkage between the methods and the skeleton. 
The exact partitioning of functionality between these parts is implementation 
dependent. Generally, there will appear to be a BOA object in the object 
implementation. When it is invoked, some operations are satisfied in the library, some 
in an external server, and some in the ORB Core.

The following is the approximate interface definition for the BOA object. More details 
will be provided as the operations are discussed.

Object Implementation

1. 

Activate

Implementation
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Methods
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Basic Object Adapter
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module CORBA {

interface InterfaceDef; // from Interface Repository // PIDL
interface ImplementationDef; // from Implementation Repository
interface Object; // an object reference
interface Principal; // for the authentication service
typedef sequence <octet, 1024> ReferenceData;

interface BOA {
Object create (

in ReferenceData id, 
in InterfaceDef intf,
in ImplementationDef impl

);
void dispose (in Object obj);
ReferenceData get_id (in Object obj);

void change_implementation (
in Object obj,
in ImplementationDef impl

);

Principal get_principal (
in Object obj, 
in Environment ev

);

void set_exception (
in exception_type major, // NO, USER,

//or SYSTEM_EXCEPTION
in string userid, // exception type id
in void *param // pointer to associated data

);

void impl_is_ready (in ImplementationDef impl);
void deactivate_impl (in ImplementationDef impl);
void obj_is_ready (in Object obj, in ImplementationDef impl);
void deactivate_obj (in Object obj);

};

 };
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Requests by an implementation on the BOA are of the following kinds:

• Operations to create or destroy object references, or query or update the 
information the BOA maintains for an object reference.

• Operations associated with a particular request.

• Operations to maintain a registry of active objects and implementations.

Requests by the BOA to an implementation are made with skeletons or using an 
implementation’s run-time language mapping information, and are of these kinds:

• Activating an implementation.

• Activating an object.

• Performing an operation (through a skeleton method).

Each of the BOA operations is described in detail later in this section; the requests of 
the BOA to an implementation are described in the language mapping section.

8.2.1 Registration of Implementations

The Basic Object Adapter expects information describing the implementations to be 
stored in an Implementation Repository. The Implementation Repository ordinarily is 
updated at program installation time, but may be set up incrementally or otherwise. 
There are objects with an OMG IDL interface called ImplementationDef, which 
capture this information. The Implementation Repository may contain additional 
information for debugging, administration, etc. Note that the Implementation 
Repository is logically distinct from the Interface Repository, although they may in 
fact be implemented together.

The Interface Repository contains information about interfaces. There are objects with 
an OMG IDL interface called InterfaceDef, which capture this information. The 
Interface Repository may contain additional information for debugging, administration, 
browsing, etc. The ORB Core may or may not make use of the Interface Repository or 
the Implementation Repository, but the ORB and BOA use these objects to associate 
object references with their interfaces and implementations.

8.2.2 Activation and Deactivation of Implementations

There are two kinds of activation that a BOA needs to perform as part of operation 
invocation. The first, discussed in this section, is implementation activation, which 
occurs when no implementation for an object is currently available to handle the 
request. The second, discussed later, is object activation, which occurs when no 
instance of the object is available to handle the request. 

Implementation activation requires coordination between the BOA and the program(s) 
containing the implementation. This manual uses the term server as the separately 
executable entity that the BOA can start on a particular system. In a POSIX 
environment, a server would be a process. In most systems, a server corresponds to the 
notion of a program, but it can correspond to whatever the appropriate system facility 
is in a particular environment.
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The BOA initiates activity by the implementation by starting the appropriate server, 
probably in an operating system-dependent way. The implementation initializes itself, 
then notifies the BOA that it is prepared to handle requests by calling impl_is_ready 
or obj_is_ready2. 

Between the time that the program is started and it indicates it is ready, the BOA will 
prevent any other requests from being delivered to the server. After that point, the 
BOA, through the skeletons, will make calls on the methods of the implementation.

void impl_is_ready (in ImplementationDef impl); // PIDL
void obj_is_ready (

in Object obj, 
in ImplementationDef impl

 );

An activation policy describes the rules that a given implementation follows when 
there are multiple objects or implementations active. There are four policies that all 
BOA implementations support for implementation activation:

• A shared server policy, where multiple active objects of a given implementation 
share the same server.

• An unshared server policy, where only one object of a given implementation at a 
time can be active in one server.

• A server-per-method policy, where each invocation of a method is implemented 
by a separate server being started, with the server terminating when the method 
completes.

• Persistent server policy, where the server is activated by something outside the 
BOA. The server nonetheless must register with the BOA to receive invocations. 
A persistent server is assumed to be shared by multiple active objects.

These kinds of implementation activation are illustrated in Figure 15 on page 8-7. Case 
A is a shared server, where the BOA starts a process which then registers itself with 
the BOA. Case B is the case of a persistent server, which is very similar but just 
registers itself with the BOA, without the BOA having had to start a process. An 
unshared server is illustrated in case C, where the process started by the BOA can only 
hold one object; the server-per-method policy in case D causes each method invocation 
to be done by starting a process.

2.The latter is for per-object servers.
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FIGURE 15. Implementation Activation Policies

Shared Server Activation Policy

In a shared server, multiple objects may be implemented by the same program. This is 
likely to be the most common kind of server. The server is activated the first time a 
request is performed on any object implemented by that server. When the server has 
initialized itself, it notifies the BOA that it is ready by calling impl_is_ready. 
Subsequently, the BOA will deliver requests or object activations for any objects 
implemented by that server. The server remains active and will receive requests until it 
calls deactivate_impl. The BOA will not activate another server for that 
implementation if one is active.

Before the first request is delivered for a particular object, the object activate routine 
of the server is called. An object remains active as long as its server is active, unless 
the server calls deactivate_obj for that object.

Unshared Server Activation Policy

In an unshared server, each object is implemented in a different server. This kind of 
server is convenient if a object is intended to encapsulate an application or if the server 
requires exclusive access to a resource such as a printer. A new server is activated the 
first time a request is performed on the object. When the server has initialized itself, it 
notifies the BOA that it is ready by calling obj_is_ready. Subsequently, the BOA will 
deliver requests for that object. The server remains active and will receive requests 
until it calls deactivate_obj.
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A new server is started whenever a request is made for an object that is not yet active, 
even if a server for another object with the same implementation is active.

Server-per-Method Activation Policy

Under the server-per-method policy, a new server is always started each time a request 
is made. The server runs only for the duration of the particular method. Several servers 
for the same object or even the same method of the same object may be active 
simultaneously. Because a new server is started for each request, it is not necessary for 
the implementation to notify the BOA when an object is ready or deactivated.

The BOA activates an implementation for each request, whether or not another request 
for that operation, object, or implementation is active at the same time.

Persistent Server Activation Policy

Persistent servers are those servers which are activated by means outside the BOA. 
Such implementations notify the BOA that they are available using the 
impl_is_ready operation. Once the BOA knows about a persistent server, it treats the 
server as a shared server, sending it activations for individual objects and method calls. 
If no implementation is ready when a request arrives, an error is returned for that 
request.

8.2.3 Generation and Interpretation of Object References

Object references are generated by the BOA using the ORB Core when requested by 
an implementation. The BOA and the ORB Core work together to associate some 
information with a particular object reference. This information is later provided to the 
implementation upon the activation of an object. Note that this is the only information 
an implementation may use portably to distinguish different object references. The 
BOA operation used to create a new object reference is:

Object create ( // PIDL
in ReferenceData id, 
in InterfaceDef intf,
in ImplementationDef impl

);

The id is immutable identification information, chosen by the implementation at object 
creation time, and never changed during the lifetime of the object. The intf is the 
Interface Repository object that specifies the complete set of interfaces implemented 
by the object. The impl is the Implementation Repository object that specifies the 
implementation to be used for the object.

A typical implementation will use the id value to distinguish different objects, but it is 
free to use it in any way it chooses or to assign the same value to different object 
references. Two object references created with the same parameters are not the same 
object reference as far as the ORB is concerned, although the implementation may or 
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may not treat them as references to the same object. Note that the object reference 
itself is opaque and may be different for different ORBs, but the id value is available 
portably in all ORBs. Only the implementation can normally interpret the id value. 
The operation to get the id is a BOA operation:

ReferenceData get_id (in Object obj); // PIDL

It is possible for the implementation associated with an object reference to be changed. 
This will cause subsequent requests to be handled according to the information in the 
new implementation. The operation to set the implementation is a BOA operation:

void change_implementation ( // PIDL
in Object obj,
in ImplementationDef impl

);

Note – Care must be taken in order to change the implementation after the object has 
been created. There are issues of synchronization with activation, security, and whether 
or not the new implementation is prepared to handle requests for that object. The 
change_implementation operation affects all copies of that particular object 
reference.

If an object reference is copied, all copies have the same id, intf, and impl.

An implementation is allowed to dispose of an object it has created by asking the BOA 
to invalidate the object reference. The implementation is responsible for deallocating 
all other information about the object. After a dispose is done, the ORB Core and 
BOA act as if the object had never been created, and attempts to issue requests on any 
existing object references for that object will fail.

void dispose (in Object obj); // PIDL

Note that all of the operations on object references in this section may be done whether 
or not the object is active.

8.2.4 Authentication and Access Control

The BOA does not enforce any specific style of security management. It guarantees 
that for every method invocation (or object activation) it will identify the principal on 
whose behalf the request is performed. The object implementation can obtain this 
principal by the operation:

Principal get_principal ( // PIDL
in Object obj, 
in Environment ev

);
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The obj parameter is the object reference passed to the method. If another object is 
used the result is undefined. The ev parameter is the language-mapping-specific 
request environment passed to the method.

The meaning of the principal depends on the security environment that the 
implementation is running in. The decision of whether or not to permit a particular 
operation is left up to the implementation. Typically, an implementation will associate 
access rights with particular objects and principals, and will examine those access 
rights to determine if the principal making the request has the privileges required by 
the particular method. An implementation could store a reference to the access control 
information for an object in the id for the object.

8.2.5 Persistent Storage

Objects (or, more precisely, object references) are made persistent by the BOA and the 
ORB Core, in that a client that has an object reference can use it at any time without 
warning, even if the implementation has been deactivated or the system has been 
restarted. Although the ORB Core and BOA maintain the persistence of object 
references, the implementation must participate in keeping any data outside the ORB 
Core and BOA persistent.

Toward this end, the BOA provides a small amount of storage for an object in the id 
value. In most cases, this storage is insufficient and inconvenient for the complete state 
of the object. Instead, the implementation provides and manages that storage, using the 
id value to locate the actual storage. For example, the id value might contain the name 
of a file, or a key for a database system that holds the persistent state.
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The OMG IDL types listed in this appendix are available in all ORB implementations. IDL specifications that 
incorporate these types are therefore portable across ORB implementations.

TBL. 14 on page A-2 lists the ORB pseudo-objects that should be available in any language mapping; in the C 
mapping, these definitions are contained in the file orb.h. Pseudo-objects cannot be invoked with the dynamic 
interface, and do not have object references. Those pseudo-objects that cannot be used as general arguments 
(passed as arguments in requests on real objects) are identified in the table. The definitions of pseudo-objects that 

TBL. 13 Types Defined by IDL  
Type Described In

short “Integer Types” on page 3-21

long “Integer Types” on page 3-21

unsigned short “Integer Types” on page 3-21

unsigned long “Integer Types” on page 3-21

float “Floating-Point Types” on page 3-21

double “Floating-Point Types” on page 3-21

char “Char Type” on page 3-22

boolean “Boolean Type” on page 3-22

octet “Octet Type” on page 3-22

struct “Structures” on page 3-23

union “Discriminated Unions” on page 3-23

enum “Enumerations” on page 3-24

sequence “Sequences” on page 3-25

string “String Literals” on page 3-8

array “Arrays” on page 3-26

any “Any Type” on page 3-22

Object “Object Reference Operations” on page 7-2
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can be used as general arguments are contained in the file orb.idl, and can be #included into IDL specifica-
tions. 

Types used with the Interface Repository are shown in TBL. 14 on page A-2. They are contained in orb.idl.  

TBL. 14 Pseudo-objects  

Name General Argument? In orb.idl? Described In

Environment No No [insert new c map ref]

Request No No  Section 4.2 on page 4-4

Context No No  Section 4.5 on page 4-12

ORB No No  Section 7.1 on page 7-1

BOA No No  Section 8.2 on page 8-3

TypeCode Yes Yes  Section 6.4.2 on page 6-5

Principal Yes Yes  Section 8.2.4 on page 8-9

NVList No No  Section 4.1.1 on page 4-1

TBL. 15 Interface Repository Types  

Name Type Described In

Identifier string  Section 6.6 on page 6-30

RepositoryId string  Section 6.6 on page 6-30

OperationMode enum  Section 6.5.21 on page 6-25

ParameterMode enum  Section 6.5.21 on page 6-25

AttributeMode enum  Section 6.5.20 on page 6-24

InterfaceDescription struct  Section 6.5.22 on page 6-27

OperationDescription struct  Section 6.5.21 on page 6-25

AttributeDescription struct  Section 6.5.20 on page 6-24

ParameterDescription struct  Section 6.5.21 on page 6-25

RepositoryDescription struct  Section 6.5.6 on page 6-16

ModuleDescription struct  Section 6.5.7 on page 6-17

ConstDescription struct  Section 6.5.8 on page 6-17

ExceptionDescription struct  Section 6.5.19 on page 6-23

TypeDescription struct  Section 6.5.6 on page 6-16

FullInterfaceDescription struct  Section 6.5.22 on page 6-27

InterfaceDef interface  Section 6.5.22 on page 6-27

OperationDef interface  Section 6.5.21 on page 6-25

AttributeDef interface  Section 6.5.20 on page 6-24

ParameterDef interface  Section 6.7 on page 6-33

RepositoryDef interface  Section 6.5.6 on page 6-16

ModuleDef interface  Section 6.5.7 on page 6-17

TypeDef interface  Section 6.5.6 on page 6-16

ConstDef interface  Section 6.5.8 on page 6-17
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The any type can be used to represent a variety of types of values. All ORB implementations must support all 
data types expressible in OMG IDL as any values.

ExceptionDef interface  Section 6.5.19 on page 6-23

ImplementationDef interface  Section 8.2.1 on page 8-5

TBL. 15 Interface Repository Types  (Continued)

Name Type Described In
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Interoperability Overview 9
ORB interoperability specifies a comprehensive, flexible approach to supporting 
networks of objects that are distributed across and managed by multiple, heterogeneous 
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its 
elements can be combined in many ways to satisfy a very broad range of needs. 

9.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB 
protocols (ESIOPs) that are optimized for particular environments such as DCE.

9.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining 
the elements of interoperability and for identifying its compliance points. It also 
characterizes new mechanisms and specifies conventions necessary to achieve 
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated 
bridging of ORB domains. The Internet inter-ORB Protocol (IIOP) forms the common 
basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to 
implement both immediate bridges and to build “half-bridges” to mediated bridge 
domains.
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By use of bridging techniques, ORBs can interoperate without knowing any details of 
that ORB’s implementation, such as what particular IPC or protocols (such as ESIOPs) 
are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridges” 
which communicate using the IIOP. This approach works both for stand-alone ORBs, 
and for networked ones which use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired. 
Since ORBs are not required to use the IIOP internally, the goal of not requiring prior 
knowledge of each others’ implementation is fully satisfied.

9.1.2 Inter-ORB Bridge Support 

The interoperability architecture clearly identifies the role of different kinds of 
domains for ORB-specific information. Such domains can include object reference 
domains, type domains, security domains (e.g. the scope of a Principal identifier), a 
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many 
cases, this is the preferable approach. This is not always true, however, since 
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse 
a bridge. The role of a bridge is to ensure that content and semantics are mapped from 
the form appropriate to one ORB to that of another, so that users of any given ORB 
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable 
the easy construction of interoperability bridges between ORB domains. Such bridge 
products could be developed by ORB vendors, Sieves, system integrators or other 
third-parties. 

Because the extensions required to support Inter-ORB Bridges are largely general in 
nature, do not impact other ORB operation, and can be used for many other purposes 
besides building bridges, they are appropriate for all ORBs to support. Other 
applications include debugging, interposing of objects, implementing objects with 
interpreters and scripting languages and dynamically generating implementations. 

The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of 
doing this will depend on the extent that those systems conform to the CORBA Object 
Model.

9.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax 
(low-level data representation) and a set of message formats for communications 
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is 
designed to work directly over any connection-oriented transport protocol that meets a 
minimal set of assumptions. It does not require or rely on the use of higher level RPC 
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mechanisms. The protocol is simple (as simple as possible, but not simpler), scalable 
and relatively easy to implement. It is designed to allow portable implementations with 
small memory footprints and reasonable performance, with minimal dependencies on 
supporting software other than the underlying transport layer. 

While versions of the GIOP running on different transports would not be directly 
interoperable, their commonality would allow easy and efficient bridging between such 
networking domains.

9.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages are 
exchanged using TCP/IP connections. The IIOP specifies a standardized 
interoperability protocol for the Internet, providing “out of the box” interoperation 
with other compatible ORBs based on the most popular product- and vendor-neutral 
transport layer. It can also be used as the protocol between half-bridges (see below). 

The protocol is designed to be suitable and appropriate for use by any ORB to 
interoperate in Internet Protocol domains unless an alternative protocol is necessitated 
by the specific design center or intended operating environment of the ORB. In that 
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most 
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping 
to OMG IDL; the GIOP may be mapped onto a number of different transports, and 
specifies the protocol elements that are common to all such mappings. The GIOP by 
itself, however, does not provide complete interoperability, just as IDL cannot be used 
to built complete programs. The IIOP, and other similar mappings to different 
transports, are concrete realizations of the abstract GIOP definitions, as shown in 
Figure 2-1.

Figure 9-1 Inter-ORB Protocol Relationships.

GIOP

IIOP

CORBA/IDL
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9.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open ended set of Environment-Specific 
Inter-ORB Protocols (ESIOPs) Such protocols would be used for “out of the box” 
interoperation at user sites where a particular networking or distributing computing 
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific 
environment, ESIOPs might support specialized capabilities such as those relating to 
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications 
will be expected to conform to the general ORB interoperability architecture 
conventions to enable easy bridging. The inter-ORB bridge support enables bridges to 
be built between ORB domains that use the IIOP and ORB domains that use a 
particular ESIOP.

9.2 Relationship to Previous Versions of CORBA 

The ORB Interoperability Architecture builds on Common Object Request Broker 
Architecture by adding the notion of ORB Services, and their domains. (ORB Services 
are described in Section 10.2, ORBS and ORB Services. The architecture defines the 
problem of ORB interoperability in terms of bridging between those domains, and 
defines several ways in which those bridges can be constructed: the bridges can be 
internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions to 
previous versions of CORBA to support request level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building 
request level bridges; it is the server side analogue of the Dynamic Invocation 
Interface, and in the same way it has general applicability beyond bridging. For 
information about the Dynamic Skeleton Interface, refer to Chapter 5. 

• APIs for managing object references have been defined, building on the support 
identified for the Relationship Service. The APIs are defined in “Object Reference 
Operations” on page 7-2. The Relationship Service is described in CORBAservices: 
Common Object Service Specifications; refer to Section 9.3.6, “The 
CosObjectIdentity Module.

9.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB 
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of 
ways to satisfy particular product and customer needs. This section provides some 
examples. 
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9.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide 
“out of the box” interoperability with compatible ORBs from other vendors. In 
addition it allows for bridges to be built between it and other ORBs that use 
environment-specific or proprietary protocols. To accomplish this, ORB A uses the 
IIOP and provides inter-ORB bridge support.

9.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support for 
objects located on a single machine; for example, to support thousands of Fresco GUI 
objects operated on at near function-call speeds. In addition, some of the objects will 
need to be accessible from other machines and objects on other machines will need to 
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support 
the Internet IOP for communication with other “distributed” ORBs.

9.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a 
particular environment-specific protocol based on distributed computing services that 
are commonly available at the target customer sites. In addition, ORB C is expected to 
interoperate with arbitrary other ORBs from other vendors. To accomplish this, ORB C 
provides inter-ORB bridge support and a companion half-bridge product (supplied by 
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the IIOP to enable interoperability with other compatible ORBs.

9.3.4 Interoperability Compliance 

An ORB is considered to be interoperability-compliant when it meets the following 
requirements:

• In the CORBA Core part of this specification, standard APIs are provided by an 
ORB to enable the construction of request level inter-ORB bridges. APIs are 
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and 
by the object identity operations, which are described in Chapter 7. 

• An Internet Inter-ORB Protocol (IIOP) (explained in Chapter 12) defines a transfer 
syntax and message formats (described independently as the General Inter-ORB 
Protocol), and defines how to transfer messages via TCP/IP connections. The IIOP 
can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in a 
interoperability-compliant system. However, any implementation that chooses to use 
the other protocols defined by the CORBA interoperability specifications (Chapters 9 - 
13) must adhere to those specifications to be compliant with CORBA interoperability. 

The illustration on page 9-7 shows examples of interoperable ORB domains that are 
CORBA-compliant.
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These compliance points support a range of interoperability solutions. For example, the 
standard APIs may be used to construct “half bridges” to the IIOP, relying on another 
“half bridge” to connect to another ORB. The standard APIs also support construction 
of “full bridges”, without using the Internet IOP to mediate between separated bridge 
components. ORBs may also use the Internet IOP internally. In addition, ORBs may 
use GIOP messages to communicate over other network protocol families (such as 
Novell or OSI), and provide transport-level bridges to the IIOP. 

The GIOP is described separately from the IIOP to allow future specifications to treat 
it as an independent compliance point. For additional information on CORBA 
compliance, refer to Definition of CORBA Compliance on page vii.
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9.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability 
specifications. 

9.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A 
large diversity of implementation techniques is evident. For example, the time for a 
request ranges over at least 5 orders of magnitude, from a few microseconds to several 
seconds. The scope ranges from a single application to enterprise networks. Some 
ORBs have high levels of security, others are more open. Some ORBs are layered on a 
particular widely used protocols, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object 
systems are able to be applied to more kinds computing. From application integration 
to process control, from loosely coupled operating systems to the information 
superhighway, CORBA-based object systems can be the common infrastructure.

9.4.2 ORB Boundaries 

Even when it is not required by implementation differences, there are other reasons to 
partition an environment into different ORBs.

For security reasons, it may be important to know that it not generally possible to 
access objects in one domain from another. For example, an “internet ORB” may make 
public information widely available, but a “company ORB” will want to restrict what 
information can get out. Even if they used the same ORB implementation, these two 
ORBs would be separate, so that the company could allow access to public objects 
from inside the company without allowing access to private objects from outside. Even 
though individual objects should protect themselves, prudent system administrators 
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and 
upgrading the object system. It would be unwise to test new infrastructure without 
limiting the set of objects that might be damaged by bugs, and it may be impractical to 
replace “the ORB” everywhere simultaneously. A new ORB might be tested and 
deployed in the same environment, interoperating with the existing ORB until it either 
a complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are 
subdivided into domains to allow decentralized control of databases, configurations, 
resources, etc., management of the state in an ORB (object reference location and 
translation information, interface repositories, per-object data, etc.) might also be done 
by creating sub-ORBs.
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9.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are 
reasons why some of the objects an application might use would be in one ORB, and 
others in another ORB. Some objects and services are accessed over long distances, 
with more global visibility, longer delays, and less reliable communication. Other 
objects are nearby, are not accessed from elsewhere, and provide higher quality 
service. By deciding which ORB to use, an implementer sets expectations for the 
clients of the objects.

One ORB might be used to retain links to information that is expected to accumulate 
over decades, such as a library archives. Another ORB might be used to manage a 
distributed chess program in which the objects should all be destroyed when the game 
is over. Although while it is running, it makes sense for “chess ORB” objects to access 
the “archives ORB”, we would not expect the archives to try to keep a reference to the 
current board position.

9.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to 
interoperability are required. Options identified in previous versions of CORBA 
include:

• Protocol Translation, where a gateway residing somewhere in the system maps 
requests from the format used by one ORB to that used by another;

• Reference Embedding, where invocation using a native object reference delegates 
to a special object whose job it is to forward that invocation to another ORB;

• Alternative ORBs, where ORB implementations agree to coexist in the same 
address space so easily that a client or implementation can transparently use any 
of them, and pass object references created by one ORB to another ORB without 
losing functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no 
single means to interoperate between two different protocols. There are many 
environments in which multiple protocols exist, and there are ways to bridge between 
environments that share no protocols. 

This specification adopts a flexible architecture that allows a wide variety of ORB 
implementations to interoperate and that includes both bridging and common protocol 
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high performance, small footprint, 
lightweight interoperability solutions. 

• The design should scale, should be not unduly difficult to implement and should not 
unnecessarily restrict implementation choices.

• Interoperability solutions should be able to work with any vendors’ existing ORB 
implementations, with respect to their CORBA compliant core feature set; those 
implementations are diverse.
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• All operations implied by the CORBA object model (i.e. the stringify and 
destringify operations defined on the CORBA:ORB pseudo-object, and all the 
operations on CORBA:Object) as well as type management (e.g. narrowing, as 
needed by the C++ mapping) should be supported.

9.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services 
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ORB Interoperability Architecture 10
This chapter provides the architectural framework used in the interoperability 
specifications (Chapters 9–13).

10.1 Overview

The original Request for Proposal on Interoperability (OMG Document 93-9-15) 
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are 
independently developed. It further identifies general requirements including in 
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each 
other’s implementation.

• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB 
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be 
independent of whether they are on the same or different ORBs, and not to mandate 
fundamental modifications to existing ORB products.

10.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be 
supported within a single ORB environment, such as location transparency. Elements 
of ORB functionality often correspond directly to such transparencies. Interoperability 
can be viewed as extending transparencies to span multiple ORBs.
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In this architecture a domain is a distinct scope, within which certain common 
characteristics are exhibited and common rules are observed: over which a distribution 
transparency is preserved. Thus, interoperability is fundamentally involved with 
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not 
correspond to the boundaries of an ORB installation. Administrative domains include 
naming domains, trust groups, resource management domains and other `run-time’ 
characteristics of a system. Technology domains identify common protocols, syntaxes 
and similar `build-time’ characteristics. In many cases, the need for technology 
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB 
itself: common object references, network addresses, security mechanisms, and more. 
However, it is possible for there to be multiple domains of the same type supported by 
a given ORB: internal representation on different machine types, or security domains. 
Conversely, a domain may span several ORBs: similar network addresses may be used 
by different ORBs, type identifiers may be shared.

10.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation 
required when an object request traverses domain boundaries. Conceptually, a mapping 
or bridging mechanism resides at the boundary between the domains, transforming 
requests expressed in terms of one domain’s model into the model of the destination 
domain.

The concrete architecture identifies two approaches to inter-ORB bridging: 

• At application level, allowing flexibility and portability

• At ORB level, built into the ORB itself

10.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of 
objects and the communication of requests. The ORB Core therefore supports the 
minimum functionality to enable a client to invoke an operation on a server object, 
with (some of) the distribution transparencies required by CORBA 2.0. 

An object request may have implicit attributes which affect the way in which it is 
communicated - though not the way in which a client makes the request. These 
attributes include security, transactional capabilities, recovery and replication. These 
features are provided by “ORB Services”, which will in some ORBs be layered as 
internal services over the core, or in other cases incorporated directly into an ORB’s 
core. It is an aim of this specification to allow for new ORB Services to be defined in 
the future, without the need to modify or enhance this architecture.
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Within a single ORB, ORB services required to communicate a request will be 
implemented and (implicitly) invoked in a private manner. For interoperability between 
ORBs, the ORB services used in the ORBs, and the correspondence between them, 
must be identified.

10.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions. 
ORB Services range from fundamental mechanisms such as reference resolution and 
message encoding to advanced features such as support for security, transactions or 
replication. 

An ORB Service is often related to a particular transparency. For example, message 
encoding – the marshaling and unmarshaling of the components of a request into and 
out of message buffers – provides transparency of the representation of the request. 
Similarly, reference resolution supports location transparency. Some transparencies, 
such as security, are supported by a combination of ORB Services and Object Services 
while others, such as replication, may involve interactions between ORB Services 
themselves. 

ORB Services differ from Object Services in that they are positioned below the 
application and are invoked transparently to the application code. However, many ORB 
Services include components which correspond to conventional Object Services in that 
they are invoked explicitly by the application. 

Security is an example of service with both ORB Service and normal Object Service 
components, the ORB components being those associated with transparently 
authenticating messages and controlling access to objects while the necessary 
administration and management functions resemble conventional Object Services.

10.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and 
other request attributes to span multiple ORBs. This requires the establishment of 
relationships between supporting ORB Services in the different ORBs.

In order to discuss how the relationships between ORB Services are established, it is 
necessary to describe an abstract view of how an operation invocation is 
communicated from client to server object. 

• The client generates an operation request, using a reference to the server object, 
explicit parameters, and an implicit invocation context. 

• This is processed by certain ORB Services on the client path;

• On the server side, corresponding ORB Services process the incoming request, 
transforming it into a form directly suitable for invoking the operation on the server 
object.

• The server object performs the requested operation.

• Any result of the operation is returned to the client in a similar manner.
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The correspondence between client-side and server-side ORB Services need not be 
one-to-one and in some circumstances may be far more complex. For example, if a 
client application requests on operation on a replicated server, there may be multiple 
server-side ORB service instances, possibly interacting with each other. 

In other cases, such as security, client-side or server-side ORB Services may interact 
with Object Services such as authentication servers. 

10.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server is 
replicated;

• Dynamic attributes determined by a particular invocation context; for example, 
whether a request is transactional; 

• Administrative policies; for example, security.

Within a single ORB, private mechanisms (and optimizations) can be used to establish 
which ORB Services are required and how they are provided. Service selection might 
in general require negotiation to select protocols or protocol options. The same is true 
between different ORBs: it is necessary to agree which ORB Services are used, and 
how each transforms the request. Ultimately, these choices become manifest as one or 
more protocols between the ORBs, or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the 
others and, in appropriately constructed ORBs, services could be layered in any order 
or in any grouping. This potentially allows applications to specify selective 
transparencies according to their requirements, although at this time CORBA provides 
no ways to penetrate its transparencies. 

A client ORB must be able to determine which ORB Services must be used in order to 
invoke operations on a server object. Correspondingly, where a client requires dynamic 
attributes to be associated with specific invocations, or administrative policies dictate, 
it must be possible to cause the appropriate ORB Services to be used on client and 
server sides of the invocation path. Where this is not possible - because, for example, 
one ORB does not support the full set of services required - either the interaction 
cannot proceed or it can only do so with reduced facilities or transparencies.

10.3 Domains

From a computational viewpoint, the OMG Object Model identifies various 
distribution transparencies which ensure that client and server objects are presented 
with a uniform view of a heterogeneous distributed system. From an engineering 
viewpoint, however, the system is not wholly uniform. There may be distinctions of 
location and possibly many others such as processor architecture, networking 
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mechanisms and data representations. Even when a single ORB implementation is used 
throughout the system, local instances may represent distinct, possibly optimized 
scopes for some aspects of ORB functionality.

Figure 10-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the 
scopes associated with each ORB. To describe both the requirements for 
interoperability and some of the solutions, this architecture introduces the concept of 
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by 
common rules. It is a powerful modelling concept which can simplify the analysis and 
description of complex systems. There may be many types of domains, for example, 
management domains, naming domains, language domains, technology domains.

10.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have 
some characteristic in common. In this architecture a domain is a scope in which a 
collection of objects, said to be members of the domain, is associated with some 
common characteristic; any object for which the association does not exist, or is 
undefined, is not a member of the domain. A domain can be modelled as an object and 
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them 
which characterize a domain.This information is disjoint between domains. However, 
an object may be a member of several domains, of similar kinds as well as of different 
kinds, and so the sets of members of domains may overlap. 

The concept of a domain boundary is defined as the limit of the scope in which a 
particular characteristic is valid or meaningful. When a characteristic in one domain is 
translated to an equivalent in another domain, it is convenient to consider it as 
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of 
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protocol

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

Representation Representation

Reference Reference

Security

Networking
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• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within 
another domain, and federation, where two domains are joined in a manner agreed and 
set up by their administrators. 

10.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping 
between the behaviors of the domains being joined. Conceptually, a mapping 
mechanism or bridge resides at the boundary between the domains, transforming 
requests expressed in terms of one domain’s model into the model of the destination 
domain. Note that the use of the term “bridge” in this context is conceptual and refers 
only to the functionality which performs the required mappings between distinct 
domains. There are several implementation options for such bridges and these are 
discussed elsewhere. 

For full interoperability, it is essential that all the concepts used in one domain are 
transformable into concepts in other domains with which interoperability is required, 
or that if the bridge mechanism filters such a concept out, nothing is lost as far as the 
supported objects are concerned. In other words, one domain may support a superior 
service to others, but such a superior functionality will not be available to an 
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to 
be compatible. This specification assumes that both domains are strictly compliant 
with the CORBA Object Model and the CORBA V2.0 Core specifications. This 
includes the use of OMG IDL when defining interfaces, the use of the CORBA Core 
Interface Repository, and other modifications that were made to CORBA V1.2. 
Variances from this model could easily compromise some aspects of interoperability.

10.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and receive 
requests and responses. In so doing, the ORB provides interoperability between 
applications on different machines in heterogeneous distributed environments...” ORB 
interoperability extends this definition to cases in which client and server objects on 
different ORBs “transparently make and receive requests...” 

Note that a direct consequence of this transparency requirement is that bridging must 
be bidirectional: that is, it must work as effectively for object references passed as 
parameters as for the target of an object invocation. Were bridging unidirectional (e.g. 
if one ORB could only be a client to another) then transparency would not have been 
provided, because object references passed as parameters would not work correctly: 
ones passed as “callback objects”, for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one 
direction. This is purely to simplify discussions, and does not imply that unidirectional 
connectivity satisfies basic interoperability requirements.
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10.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be 
considered independently and associated with different domain types. The architecture 
does not, however, prescribe any particular decomposition of ORB functionality and 
interoperability into ORB Services and corresponding domain types. There is a range 
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one 
ORB (or, alternatively, all ORBs of a given type) as comprising one domain. 
Interoperability between any pair of different domains (or domain types) is then 
achieved by a specific all-encompassing bridge between the domains. (This is all 
CORBA V2.0 implies.)

2. More detailed decompositions would identify particular domain types - such as 
referencing, representation, security and networking. A core set of domain types 
would be pre-determined and allowance made for additional domain types to be 
defined as future requirements dictate (e.g. for new ORB Services).

10.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which 
can arise with a single type of ORB (e.g. a product). For example:

• Two installations of the ORB may be installed in different security domains, with 
different Principal identifiers. Requests crossing those security domain boundaries 
will need to establish locally meaningful Principals for the caller identity, and for 
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types, 
and so requests crossing type domain boundaries would need to establish locally 
meaningful type identifiers (and perhaps more).

Conversely, not all of these problems need to appear when connecting two ORBs of a 
different type (e.g. two different products). Examples include:

• They could be administered to share user visible naming domains, so that naming 
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could be 
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may 
support different concepts or models, between which there are no direct or natural 
mappings. CORBA only specifies the application level view of object interactions, and 
requires that distribution transparencies conceal a whole range of lower level issues. It 
follows that within any particular ORB, the mechanisms for supporting transparencies 
are not visible at the application level and are entirely a matter of implementation 
choice. So there is no guarantee that any two ORBs support similar internal models or 
that there is necessarily a straightforward mapping between those models.
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These observations suggest that the concept of an ORB (instance) is too coarse or 
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed, 
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be 
characterized as the intersection or coincidence of ORB Service domains.

10.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, or 
bridge, is required to transform relevant elements of the interaction as they traverse the 
boundary. There are essentially two approaches to achieving this: mediated bridging 
and immediate bridging. These approaches are described in the following subsections.

Figure 10-2 Two bridging techniques, different uses of an intermediate form agreed on between 
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are 
transformed, at the boundary of each domain, between the internal form of that domain 
and an agreed, common form. 

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreement 
between two particular ORB/domain implementations to a universal standard;

• There can be more than one common form, each oriented or optimized for a 
different purpose; 

• If there is more than one possible common form, then selection of which is used can 
be static (e.g. administrative policy agreed between ORB vendors, or between 
system administrators) or dynamic (e.g. established separately for each object, or on 
each invocation);

• Engineering of this approach can range from in-line specifically compiled (compare 
to stubs) or generic library code (such as encryption routines) code, to intermediate 
bridges to the common form.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop
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Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are 
transformed, at the boundary of each domain, directly between the internal form of one 
domain and the internal form of the other. 

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not mediated 
via a third party, and can be specifically engineered for each pair of domains) but 
sacrifices flexibility and generality of interoperability to achieve this;

• This approach is often applicable when crossing domain boundaries which are 
purely administrative (i.e. there is no change of technology). For example, when 
crossing security administration domains between similar ORBs, it is not necessary 
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable 
when private mechanisms are used between ORB/domain implementations. 

Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the 
mediated or immediate bridging approach is used. However, domains can span ORB 
boundaries and ORBs can span machine and system boundaries; conversely, a machine 
may support, or a process may have access to more than one ORB (or domain of a 
given type). From an engineering viewpoint, this means that the components of an 
inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems. 
It also means that the distinction between an ORB and a bridge can be a matter of 
perspective: there is a duality between viewing inter-system messaging as belonging to 
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain 
bridge could be implemented wholly within the ORB and thus be invisible as far as 
ORB interoperability is concerned. A similar situation arises when a bridge between 
two ORBs or domains is implemented wholly within a process or system which has 
access to both. In such cases, the engineering issues of inter-domain bridging are 
confined, possibly to a single system or process. If it were practical to implement all 
bridging in this way, then interactions between systems or processes would be solely 
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an 
ORB and as layers above it. These are called respectively “in-line” and “request-level” 
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton 
Interface, to receive and issue requests. However, there is an emerging class of 
“implicit context” which may be associated with some invocations, holding ORB 
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Service information such as transaction and security context information, which is not 
at this time exposed through general purpose public APIs. (Those APIs expose only 
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent set 
with the Transaction Service is that special purpose APIs are defined to allow bridging 
of each kind of context. This means that request level bridges must be built to 
specifically understand the implications of bridging such ORB Service domains, and to 
make the appropriate API calls.

10.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain 
boundaries should be transparent to requests: that the goal of interoperability is to hide 
such boundaries. However, if this were always the goal, then there would be no real 
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing 
differences in organizational policies or goals. Bridging the domains will in such cases 
require policy mediation. That is, inter-domain traffic will need to be constrained, 
controlled, or monitored; fully transparent bridging may be highly undesirable. 
Resource management policies may even need to be applied, restricting some kinds of 
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to 
audit external access, or to provide domain-based access control. Only a very few 
objects, types of objects, or classifications of data might be externally accessible 
through a “firewall”.

Such policy-mediated bridging requires a bridge that knows something about the traffic 
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-specific, 
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of 
policy mediation components, without loss of access to any other system infrastructure 
that may be needed to identify or enforce the appropriate policies.

10.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be 
more frequently bridged to than others, and so will begin to serve the role of 
“backbone ORBs”. (This is a role that the IIOP is specifically expected to serve.) This 
use of “backbone topology” is true both on a large scale and a small scale. While a 
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large scale public data network provider could define its own backbone ORB, on a 
smaller scale, any given institution will probably designate one commercially available 
ORB as its backbone.

Figure 10-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for 
managing networks. It has the consequence of minimizing the number of bridges 
needed, while at the same time making the ORB topology match typical network 
organizations. (That is, it allows the number of bridges to be proportional to the 
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t 
even add any new “hops” to network routes, because the bridges naturally fit in 
locations where connectivity was already indirect, and augment or supplant the 
existing network firewalls.

10.5 Object Addressing

The Object Model, in “Requests” on page 1-2, defines an object reference as an object 
name that reliably denotes a particular object. An object reference identifies the same 
object each time the reference is used in a request, and an object may be denoted by 
multiple, distinct references.

The fundamental ORB interoperability requirement is to allow clients to use such 
object names to invoke operations on objects in other ORBs. Clients do not need to 
distinguish between references to objects in a local ORB or in a remote one. Providing 
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple 
domains, and transformations of such names as they cross the domain boundaries. That 
is, it presents transformations of object reference information as it passes through 

Backbone ORB

ORB A

ORB CORB D

ORB B
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networks of inter-ORB bridges. It uses the word “ORB” as synonymous with 
referencing domain; this is purely to simplify the discussion. In other contexts, “ORB” 
can usefully denote other kinds of domain.

10.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other 
ORBs, when discussing object references from multiple ORBs one must always 
associate the object reference’s domain (ORB) with the object reference. We use the 
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an 
object reference. This is called “domain-relative” referencing (or addressing), and need 
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only 
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the 
bridge knows from which ORB each request (or response) came, including any object 
references embedded in it.

10.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form 
understood by that ORB: the object reference must be in the recipient ORB’s native 
format. Also, in cases where that object originated from some other ORB, the bridge 
must associate each newly created “proxy” object reference with (what it sees as) the 
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in 
some circumstances; all can be used, and in arbitrary combination with each other, 
since CORBA object references are opaque to applications. The ramifications of each 
scheme merits attention, with respect to scaling and administration. The schemes 
include:

1. Object Reference Translation Reference Embedding): The bridge can store the 
original object reference itself, and pass an entirely different proxy reference into 
the new domain. The bridge must then manage state on behalf of each bridged 
object reference, map these references from one ORB’s format to the other’s, and 
vice versa.
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2. Reference Encapsulation: The bridge can avoid holding any state at all by 
conceptually concatenating a domain identifier to the object name. Thus if a 
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be 
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn 
relative to Dn+1.

Figure 10-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds 
some state in the bridge. However, it supports sharing that state between multiple 
object references by adding a domain-based route identifier to the proxy (which still 
holds the original reference, as in the reference encapsulation scheme).

It achieves this by providing encoded domain route information each time a domain 
boundary is traversed; thus if a reference D0.R, originating in domain D0, traversed 
domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, 
and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair 
(dn-1, xn-1).

Figure 10-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation, 
except that the proxy uses a “well known” (e.g. global) domain identifier rather 
than an encoded path. Thus a reference R, originating in domain D0 would be 
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

• Naive application of reference encapsulation could lead to arbitrarily large 
references. A “topology service” could optimize cycles within any given 
encapsulated reference, and eliminate the appearance of references to local objects 
as alien references.

• A topology service could also optimize the chains of routes used in the domain 
reference translation scheme. Since the links in such chains are re-used by any path 
traversing the same sequence of domains, such optimization has particularly high 
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
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• With the general purpose APIs defined in CORBA 2.0, object reference translation 
can be supported even by ORBs not specifically intended to support efficient 
bridging, but this approach involves the most state in intermediate bridges. As with 
reference encapsulation, a topology service could optimize individual object 
references. (APIs are defined by the Dynamic Skeleton Interface, Dynamic 
Invocation Interface, and by the object identity operations described in Chapter 7.) 

• The chain of addressing links established with both object and domain reference 
translation schemes must be represented as state within the network of bridges. 
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical name 
spaces such as those now in use on the Internet, and X.500 naming.

10.6 An Information Model for Object References

This section provides a simple, powerful information model for the information found 
in an object reference. That model is intended to be used directly by developers of 
bridging technology, and is used in that role by the IIOP, described in “Object 
References” on page 12-15.

10.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as 
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted, and never support operation 
invocation.

• What type is it? Many ORBs require knowledge of an object’s type in order to 
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in 
multiple referencing domains, to allow clients the choice of the most efficient 
communications facilities available.

• What ORB Services are available? As noted in Section 10.2.3, Selection of ORB 
Services, several different ORB Services might be involved in an invocation, and 
providing information about those services in a standardized way could in many 
cases reduce or eliminate negotiation overhead in selecting them.

10.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference”, or IOR, data 
structure has been provided. This data structure need not be used internally to any 
given ORB, and is not intended to be visible to application-level ORB programmers. It 
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configurations, 
while not penalizing multiprotocol ones.
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module IOP{ // IDL
//
// Standard Protocol Profile tag values 
// 
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {
ProfileId tag;
sequence <octet> profile_data;

};

//
// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.
//
struct IOR {

string type_id;
sequence <TaggedProfile> profiles;

};

//
// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.
//
typedef unsigned long ComponentId;
struct TaggedComponent {

ComponentId tag;
sequence <octet> component_data;

};
typedef sequence <TaggedComponent> MultipleComponentProfile;

};

Object references have at least one tagged profile per protocol supported. Those 
profiles encapsulate all the basic information that protocol needs to identify an object. 
Any single profile holds enough information to drive a complete invocation using that 
protocol; the content and structure of those profile entries are wholly specified by that 
protocol. A bridge between two domains may need to know the detailed content of the 
profile for those domains’ profiles, depending on the technique it uses to bridge the 
domains1.

Each profile has a unique numeric tag, assigned by OMG. The ones defined here are 
for the IIOP (see Chapter 12, “General Inter-ORB Protocol”) and for use in “multi 
component protocol profiles.” 

1.Based on topology and policy information available to it, a bridge may find it prudent to add 
or remove some profiles as it forwards an object reference. For example, a bridge acting as 
a firewall might remove all profiles except ones that make such profiles, letting clients that 
understand the profiles make routing choices.
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The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of 
type MultipleComponentProfile. In this case, the profile consists of a list of 
protocol components, indicating ORB services accessible using that protocol. ORB 
services are assigned component identifiers in a name space that is distinct from the 
profile identifiers. Note that protocols may use the MultipleComponentProfile 
data structure to hold profile components even without using 
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile, 
and need not use a MultipleComponentProfile to hold sets of profile 
components.

Null object references are indicated by an empty set of profiles, and by a Null type ID 
(a string which contains only a single terminating character). Type IDs may only be 
Null when the object reference is Null.The type ID is provided to allow ORBs to 
preserve strong typing; it is further explained in the description in the Interface 
Repository chapter. This identifier is agreed on within the bridge and, for reasons 
outside the scope of this interoperability specification, needs to have a much broader 
scope to address various problems in system evolution and maintenance. Type IDs 
support detection of type equivalence, and in conjunction with an Interface Repository, 
allow processes to reason about the relationship of the type of the object referred to 
and any other type.

The type ID is provided by the server and indicates the most derived type at the time 
the reference is generated.

10.6.3 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not 
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single 
profile, possibly with some information (e.g. components) shared between the 
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles 
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple 
components with the same component tag may be part of a given profile within an 
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared 
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS 
profile must specify which components it uses, and how it uses them.
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8. Profile and component definitions can be either public or private. Public definitions 
are those whose tag and data format is specified in OMG documents. For private 
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by 
protocols other than the one(s) for which they were originally defined, and 
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags. 
Neither allocation nor registration indicates any “standard” status, only that the tag will 
not be confused with other tags. Requests to allocate tags should be sent to 
tag_request@omg.org

10.6.4 IOR Creation and Scope

IORs are created from object references when required to cross some kind of 
referencing domain boundary. ORBs will implement object references in whatever 
form they find appropriate, including possibly using the IOR structure. Bridges will 
normally use IORs to mediate transfers where that standard is appropriate.

10.6.5 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the 
ORB::object_to_string operation, and then “destringified” (turned back into a 
programming environment’s object reference representation) using the 
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not 
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than the 
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse 
stringified IORs, so that in some cases an object reference stringified by one ORB 
could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different 
ORB, a stringified IOR representation is specified. This representation instead 
establishes that ORBs could parse stringified object references using that format. This 
helps address the problem of bootstrapping, allowing programs to obtain and use 
object references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

<oref> ::= <prefix> <hex_Octets>

<prefix> ::= “IOR:”

<hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
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<hex_Octet> ::= <hexDigit> <hexDigit>

<hexDigit> ::= <digit> | <a> | <b> | <c> | <d> | <e> | <f>

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

 “6” | “7” | “8” | “9”

<a> ::= “a” | “A”

<b> ::= “b” | “B”

<c> ::= “c” | “C”

<d> ::= “d” | “D”

<e> ::= “e” | “E”

<f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an IOR, 
and then encapsulating the IOR using the encoding rules of CDR. (See “CDR Transfer 
Syntax” on page 12-4 for more information.) The content of the encapsulated IOR is 
then turned into hexadecimal digit pairs, starting with the first octet in the 
encapsulation and going until the end. The high four bits of each octet are encoded as 
a hexadecimal digit, then the low four bits.

10.6.6 Object Service Context

Emerging specifications for Object Services occasionally require service-specific 
context information to be passed implicitly with requests and replies. (Specifications 
for OMG’s Object Services are contained in CORBAservices: Common Object Service 
Specifications.) The Interoperability specifications define a mechanism for identifying 
and passing this service-specific context information as “hidden” parameters. The 
specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely 
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume context 
information at appropriate points in the process of sending and receiving requests 
and replies. 

• It is an ORB’s responsibility to determine when to send service-specific context 
information, and what to do with such information in incoming messages. It may be 
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless 
still be able to successfully reply to the message. 

As shown in the following OMG IDL specification, the IOP module provides the 
mechanism for passing Object Service–specific information. It does not describe any 
service-specific information. It only describes a mechanism for transmitting it in the 
most general way possible. The mechanism is currently used by the DCE ESIOP and 
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB 
Protocol (GIOP). 
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Each Object Service requiring implicit service-specific context to be passed through 
GIOP will be allocated a unique service context ID value by OMG. Service context ID 
values are of type unsigned long. Object service specifications are responsible for 
describing their context information as single OMG IDL data types, one data type 
associated with each service context ID. 

The marshaling of Object Service data is described by the following OMG IDL: 

module IOP { // IDL

typedef unsigned long ServiceID;

struct ServiceContext {
 ServiceID context_id;
 sequence <octet>context_data;
 };

typedef sequence <ServiceContext>ServiceContextList;

const ServiceID TransactionService = 0;
};

The context data for a particular service will be encoded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulated in 
the context_data member of IOP::ServiceContext. (See Section 12.3.3, 
Encapsulation.) The context_id member contains the service ID value identifying 
the service and data format. Context data is encapsulated in octet sequences to permit 
ORBs to handle context data without unmarshaling, and to handle unknown context 
data types.

During request and reply marshaling, ORBs will collect all service context data 
associated with the Request or Reply in a ServiceContextList, and include it in the 
generated messages. No ordering is specified for service context data within the list. 
The list is placed at the beginning of those messages to support security policies that 
may need to apply to the majority of the data in a request (including the message 
headers).

Note – The only ServiceID currently defined is TransactionService, for a CDR 
encapsulation of the CosTSInteroperation::PropogationContext defined in 
CORBAservices, Section 10.5.2, “ORB/TS Implementation Considerations,” on 
page 10-56.
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Building Inter-ORB Bridges 11
This chapter provides an implementation-oriented conceptual framework for the 
construction of bridges to provide interoperability between ORBs. It focuses on the 
layered request level bridges that the CORBA Core specifications facilitate, although 
ORBs may always be internally modified to support bridges. Specifications for the 
CORBA Core are contained in Chapters 1 - 8 in this manual. 

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another 

• Provides support for managing tables keyed by object references

The OMG IDL specification for interoperable object references, which are important to 
inter-ORB bridging, is shown in Section 10.6.2, “Interoperable Object References: 
IORs,” on page 10-14.

11.1 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in 
another domain can be mediated through a standardized mechanism, or done 
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whether the 
bridging uses a standardized mechanism. There are two possible options for where the 
bridge components are located:

• Code inside the ORB may perform the necessary translation or mappings; this is 
termed in-line bridging.

• Application style code outside the ORB can perform the translation or mappings; 
this is termed request level bridging.
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Request level bridges which mediate through a common protocol (using networking, 
shared memory, or some other IPC provided by the host operating system) between 
distinct execution environments will involve components, one in each ORB, known as 
“half bridges”.

When that mediation is purely internal to one execution environment, using a shared 
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined data 
types, this is known as a “full bridge”1. From outside the execution environment this 
will appear identical to some kinds of in-line bridging, since only that environment 
knows the construction techniques used. However, full bridges more easily support 
portable policy mediation components, because of their use of only standard CORBA 
programming interfaces.

Network protocols may be used immediately “in-line”, or to mediate between request-
level half bridges. The Chapter 12, “General Inter-ORB Protocol” can be used in either 
manner. In addition, this specification provides for Environment Specific Inter-ORB 
Protocols (ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request level half-bridges can be built by anyone who as access to 
an ORB, without needing information about the internal construction of that ORB. 
Immediate-mode request level half-bridges (i.e., ones using nonstandard mediation 
mechanisms) can similarly be built without needing information about ORB internals. 
Only in-line bridges (using either standard or nonstandard mediation mechanisms) 
need potentially proprietary information about ORB internals.

11.1.1 In-line Bridging

Figure 11-1 In-Line bridges are built using ORB internal APIs.

In this approach, the required bridging functionality can be provided by a combination 
of software components at various levels:

1.Special initialization supporting object referencing domains (e.g. two protocols) to 
be exposed to application programmers to support construction of this style bridge.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
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• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

In-line bridging is in general the most direct method of bridging between ORBs. It is 
structurally similar to the engineering commonly used to bridge between systems 
within a single ORB (e.g. mediating using some common inter-process 
communications scheme, such as a network protocol). This means that implementing 
in-line bridges involves as fundamental a set of changes to an ORB as adding a new 
inter-process communications scheme. (Some ORBs may be designed to facilitate such 
modifications, though.)

11.1.2 Request-level Bridging

Figure 11-2 Request-Level bridges are built using public ORB APIs.

The general principle of request-level bridging is as follows:

1. the original request is passed to a proxy object in the client ORB;

2. the proxy object translates the request contents (including the target object 
reference) to a form that will be understood by the server ORB;

3. the proxy invokes the required operation on the apparent server object;

4. any operation result is passed back to the client via a complementary route.

The request translation involves performing object reference mapping for all object 
references involved in the request (the target, explicit parameters, and perhaps implicit 
ones such as transaction context). As elaborated later, this translation may also involve 
mappings for other domains: the security domain of CORBA::Principal parameters, 
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all 
dynamic typing APIs (e.g. Any, NamedValue) support such manipulation of 
parameters even when the bridge was not created with compile-time knowledge of the 
data types involved.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
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11.1.3 Collocated ORBs

In the case of immediate bridging (i.e. not via a standardized, external protocol) the 
means of communication between the client-side bridge component and that on the 
server-side is an entirely private matter. One possible engineering technique optimizes 
this communication by coalescing the two components into the same system or even 
the same address space. In the latter case, accommodations must be made by both 
ORBs to allow them to share the same execution environment.

Similar observations apply to request level bridges, which in the case of collocated 
ORBs use a common binary interface to all OMG IDL-defined data as their mediating 
data format.

Figure 11-3 When the two ORBs are collocated in a bridge execution environment, network 
communications will be purely intra-ORB. If the ORBs are not collocated, such 
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external messaging 
can be arranged to be intra-ORB, using whatever message passing mechanisms each 
ORB uses to achieve distribution within a single ORB, multiple machine system. That 
is, for bridges between networked ORBs such a bridge would add only a single “hop,” 
a cost analogous to normal routing.

11.2 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the 
(bidirectional) object reference mappings required. The key schemes for creating and 
managing proxies are reference translation and reference encapsulation, as discussed 
in “Handling of Referencing Between Domains” on page 10-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs. 
Proxies themselves can be created as normal objects using the Basic Object Adapter 
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for 
knowledge of more than one ORB. Some ORBs could provide other object adapters 
which support such encapsulation.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
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Note that from the perspective of clients, they only ever deal with local objects; clients 
do not need to distinguish between proxies and other objects. Accordingly, all CORBA 
operations supported by the local ORB are also supported through a bridge. The ORB 
used by the client might, however, be able to recognize that encapsulation is in use, 
depending on how the ORB is implemented.

Also, note that the CORBA::InterfaceDef used when creating proxies (e.g. the one 
passed to CORBA::BOA::create) could be either a proxy to one in the target ORB, 
or could be an equivalent local one. When the domains being bridged include a type 
domain, then the InterfaceDef objects cannot be proxies since type descriptions will 
not have the same information. When bridging CORBA V2.0 compliant ORBs, type 
domains by definition do not need to be bridged.

11.3 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built 
using IDL-compiler generated stub and skeleton interfaces;

• Generic: capable of bridging requests to server objects of arbitrary IDL interfaces, 
using the interface repository and other dynamic invocation support (DII and DSI).

Interface-specific bridges may be more efficient in some cases (a generic bridge could 
conceivably create the same stubs and skeletons using the interface repository), but the 
requirement for prior compilation means that this approach offers less flexibility than 
use of generic bridges.

11.4 Building Generic Request-Level Bridges 

The CORBA Core specifications (Chapters 1 - 8) define the following interfaces. 
These interfaces are of particular significance when building a generic request-level 
bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on 
object references whose types may not have been known when the bridge was 
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy 
object references which it implements, even when their types may not have been 
known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information used 
to drive DII and DSI, such as the type codes for operation parameters, return values, 
and exceptions.

• Object Adapters (such as the Basic Object Adapter) are used to create proxy object 
references both when bootstrapping the bridge and when mapping object references 
which are dynamically passed from one ORB to the other.

• CORBA Object References support operations to fully describe their interfaces and 
to create tables mapping object references to their proxies (and vice versa).
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Interface repositories accessed on either side of a half bridge need not have the same 
information, though of course the information associated with any given repository ID 
(e.g. an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism such as 
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used by 
some mediating protocol such as IIOP (see Chapter 12, “General Inter-ORB 
Protocol”).

• Translate requests made using such a mediating protocol into DII requests on 
objects in the ORB.

As noted in “In-Line and Request-Level Bridging” on page 11-1, translating requests 
and responses (including exceptional responses) involves mapping object references 
(and other explicit and implicit parameter data) from the form used by the ORB to the 
form used by the mediating protocol, and vice versa. Explicit parameters, which are 
defined by an operation’s OMG-IDL definition, are presented through DII or DSI and 
are listed in the Interface Repository entry for any particular operation.

Operations on object references such as hash() and is_equivalent() may be used to 
maintain tables that support such mappings. When such a mapping does not exist, an 
object adapter is used to create a ORB-specific proxy object references, and bridge-
internal interfaces are used to create the analogous data structure for the mediating 
protocol.

11.5 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defined 
data, and bridges only object reference domains. In this case, a proxy object in the 
client ORB acts as a representative of the target object and is, in almost any practical 
sense, indistinguishable from the target server object - indeed, even the client ORB 
will not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultaneous 
bridging. The transformation and encapsulation schemes described above may not 
apply in the same way to Principal or type identifiers. Request level bridges may need 
to translate such identifiers, in addition to object references, as they are passed as 
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs may 
need to convey with any particular request, such as transaction and security context 
information. Such parameters are not defined as part of an operation’s OMG-IDL 
signature, hence are “implicit” in the invocation context. Bridging the domains of such 
implicit parameters could involve additional kinds of work, needing to mediate more 
policies, than bridging the object reference, Principal, and type domains directly 
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and 
dynamic invocations) to expose such implicit context information. 
11-6                                  CORBA V2.0                                  July 1995



11
11.6 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for two 
Naming Service naming contexts (one in each ORB) and then install those proxies as 
naming contexts in the other ORB’s naming service. (The Naming Service is described 
in CORBAservices.) This will allow clients in either ORB to transparently perform 
naming context lookup operations on the other ORB, retrieving (proxy) object 
references for other objects in that ORB. In this way, users can access facilities that 
have been selectively exported from another ORB, through a naming context, with no 
administrative action beyond exporting those initial contexts. (See “Obtaining Initial 
Object References” on page 7-10 for additional information).

This same approach may be taken with other discovery services, such as a trading 
service or any kind of object that could provide object references as operation results 
(and in “out” parameters). While bridges can be established which only pass a 
predefined set of object references, this kind of minimal connectivity policy is not 
always desirable.
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General Inter-ORB Protocol 12
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability, 
which can be mapped onto any connection-oriented transport protocol that meets a minimal 
set of assumptions. This chapter also defines a specific mapping of the GIOP which runs 
directly over TCP/IP connections, called the Internet Inter-ORB Protocol (IIOP). The IIOP 
must be supported by conforming networked ORB products regardless of other aspects of 
their implementation. Such support does not require using it internally; conforming ORBs 
may also provide bridges to this protocol.

12.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost 
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability The GIOP and IIOP are based on the most widely-used 
and flexible communications transport mechanism available (TCP/IP), and defines 
the minimum additional protocol layers necessary to transfer CORBA requests 
between ORBs.

• Simplicity The GIOP is intended to be as simple as possible, while meeting other 
design goals. Simplicity is deemed the best approach to ensure a variety of 
independent, compatible implementations.

• Scalability The GIOP/IIOP protocol should support ORBs, and networks of bridged 
ORBs, to the size of today’s Internet, and beyond.

• Low cost Adding support for GIOP/IIOP to an existing or new ORB design should 
require small engineering investment. Moreover, the run-time costs required to 
support IIOP in deployed ORBs should be minimal.

• Generality While the IIOP is initially defined for TCP/IP, GIOP message formats 
are designed to be used with any transport layer that meets a minimal set of 
assumptions; specifically, the GIOP is designed to be implemented on other 
connection-oriented transport protocols.
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• Architectural neutrality The GIOP specification makes minimal assumptions about 
the architecture of agents that will support it. The GIOP specification treats ORBs 
as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is 
undefined. For example, an ORB could choose to use the IIOP as its internal protocol, 
it could choose to externalize IIOP as much as possible by implementing it in a half-
bridge, or it could choose a strategy between these two extremes. All that is required of 
a conforming ORB is that some entity or entities in or associated with the ORB be able 
to send and receive IIOP messages.

12.2 General Inter-ORB Protocol Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax 
mapping OMG IDL data types into a bicanonical low-level representation for “on-
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate 
object requests, locate object implementations, and manage communication 
channels.

• GIOP Transport Assumptions. The GIOP specification describes general 
assumptions made concerning any network transport layer that may be used to 
transfer GIOP messages. The specification also describes how connections may be 
managed, and constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open 
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP 
to a specific transport (TCP/IP). The GIOP specification (without the transport-specific 
IIOP element) may be considered as a separate conformance point for future mappings 
to other transport layers. 

The complete OMG IDL specifications for the GIOP and IOP are shown in 
Section 12.8, “OMG IDL for the GIOP and IIOP Specifications,” on page 12-29. 
Fragments of the specification are used throughout this chapter as necessary. 

12.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a 
bicanonical, low-level representation for transfer between agents. CDR has the 
following features:

• Variable byte ordering. Machines with a common byte order may exchange 
messages without byte swapping. When communicating machines have different 
byte order, the message originator determines the message byte order, and the 
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receiver is responsible for swapping bytes to match its native ordering. Each GIOP 
message (and CDR encapsulation) contains a flag that indicates the appropriate byte 
order.

• Aligned primitive types. Primitive OMG IDL data types are aligned on their natural 
boundaries within GIOP messages, permitting data to be handled efficiently by 
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping. CDR describes representations for all OMG IDL 
data types, including transferable pseudo-objects such as TypeCodes. Where 
necessary, CDR defines representations for data types whose representations are 
undefined or implementation-dependent in the CORBA Core specifications.

12.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter- operating 
ORBs. GIOP message formats have the following features:

• Few, simple messages. With only seven message formats, the GIOP supports full 
CORBA functionality between ORBs, with extended capabilities supporting object 
location services, dynamic migration, and efficient management of communication 
resources. GIOP semantics require no format or binding negotiations. In most cases, 
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object 
implementation to be activated at different locations during its lifetime, and may 
allow objects to migrate dynamically. GIOP messages provide support for object 
location and migration, without requiring ORBs to implement such mechanisms 
when unnecessary or inappropriate to an ORB’s architecture.

• Full CORBA support. GIOP messages directly support all functions and behaviors 
required by CORBA, including exception reporting, passing operation context, and 
remote object reference operations (such as CORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction context 
defined by the Transaction Service (the Transaction Service is described in 
CORBAservices). This mechanism is designed to support any service that requires 
service related context to be implicitly passed with requests.

12.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transport 
protocol that meets a minimal set of assumptions (described in “GIOP Message 
Transport” on page 12-23). GIOP uses underlying transport connections in the 
following ways:

• Asymmetrical connection usage. The GIOP defines two distinct roles with respect 
to connections, client and server. The client side of a connection originates the 
connection, and sends object requests over the connection. The server side receives 
requests and sends replies. The server side of a connection may not send object 
requests. This restriction allows the GIOP specification to be much simpler and 
avoids certain race conditions.
CORBA V2.0         General Inter-ORB Protocol Overview      July 1995 12-3



12
• Request multiplexing. If desirable, multiple clients within an ORB may share a 
connection to send requests to a particular ORB or server. Each request uniquely 
identifies its target object. Multiple independent requests for different objects, or a 
single object, may be sent on the same connection.

• Overlapping requests. In general, GIOP message ordering constraints are minimal. 
GIOP is designed to allow overlapping asynchronous requests; it does not dictate 
the relative ordering of requests or replies. Unique request/reply identifiers provide 
proper correlation of related messages. Implementations are free to impose any 
internal message ordering constraints required by their ORB architectures.

• Connection management. GIOP defines messages for request cancellation and 
orderly connection shutdown. These features allow ORBs to reclaim and reuse idle 
connection resources.

12.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the 
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that 
is to be sent to another process or machine over some IPC mechanism or network 
transport. For the purposes of this discussion, an octet stream is an arbitrarily long (but 
finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets 
in the stream are numbered from 0 to n-1, where n is the size of the stream. The 
numeric position of an octet in the stream is called its index. Octet indices are used to 
calculate alignment boundaries, as described in “Alignment” on page 12-5.

GIOP defines two distinct kinds of octet streams, messages and encapsulations. 
Messages are the basic units of information exchange in GIOP, described in detail in 
“GIOP Message Formats” on page 12-15.

Encapsulations are octet streams into which OMG IDL data structures may be 
marshaled independently, apart from any particular message context. Once a data 
structure has been encapsulated, the octet stream can be represented as the OMG IDL 
opaque data type sequence<octet>, which can subsequently marshaled into a 
message or another encapsulation. Encapsulations allow complex constants (such as 
TypeCodes) to be pre-marshaled; they also allow certain message components to be 
handled without requiring full unmarshaling. Whenever encapsulations are used in 
CDR or the GIOP, they are clearly noted.

12.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The 
message formats (see “GIOP Message Formats” on page 12-15) include tags in 
message headers that indicate the byte ordering in the message. Encapsulations include 
an initial flag that indicates the byte ordering within the encapsulation, described in 
“Encapsulation” on page 12-9. The byte ordering of any encapsulation may be 
different from the message or encapsulation within which it is nested. It is the 
responsibility of the message recipient to translate byte ordering if necessary.
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Primitive data types are encoded in multiples of octets. An octet is an 8-bit value.

Alignment 

In order to allow primitive data to be moved into and out of octet streams with 
instructions specifically designed for those primitive data types, in CDR all primitive 
data types must be aligned on their natural boundaries; i.e., the alignment boundary of 
a primitive datum is equal to the size of the datum in octets. Any primitive of size n 
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1, 
2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive datum. 
The value of octets in alignment gaps is undefined. A gap must be the minimum size 
necessary to align the following primitive. Table 12-1 gives alignment boundaries for 
CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The 
first octet of the stream is octet index zero (0); any data type may be stored starting at 
this index. Such octet streams begin at the start of an GIOP message header (see 
“GIOP Message Header” on page 12-15) and at the beginning of an encapsulation, 
even if the encapsulation itself is nested in another encapsulation. (See 
“Encapsulation” on page 12-9).

Integer Data Types

Figure 12-1 illustrates the representations for OMG IDL integer data types, including 
the following data types:

• short 

Table 12-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

float 4

double 8

boolean 1

enum 4
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• unsigned short

• long 

• unsigned long

The figure illustrates bit ordering and size. Signed types (short and long) are 
represented as two’s complement numbers; unsigned versions of these types are 
represented as unsigned binary numbers.

Figure 12-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL 
integer data types, both signed and unsigned.

Floating Point Data Types

Figure 12-2 on page 7 illustrates the representation of floating point numbers. These 
exactly follow the IEEE standard formats for floating point numbers1, selected parts of 
which are abstracted here for explanatory purposes. The diagram shows three different 
components for floating points numbers, the sign bit (s), the exponent (e) and the 
fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing 
positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in 
the figure, where the 7 bits in e1 are most significant. The exponent is represented as 
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.0, f1 
being most significant and f3 being least significant. The value of a normalized 
number is described by:

1.“IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Standard 754-1985, Institute 
of Electrical and Electronics Engineers, August 1985.
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For double-precision values the exponent is 11 bits long, comprising e1 and e2 in the 
figure, where the 7 bits in e1 are most significant. The exponent is represented as 
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m < 
2.0, f1 being most significant and f7 being least significant. The value of a normalized 
number is described by:

Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo any 
conversion during transmission. For the purposes of describing possible octet values in 
this specification, octets may be considered as unsigned 8-bit integer values.

Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE 
as 0.

Character Types

OMG IDL characters are represented single octets, encoded as defined by ISO Latin-1 (8859.1).

Figure 12-2 Sizes and bit ordering in big-endian and little-endian representations of OMG IDL 
single and double precision floating point numbers. 
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12.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the 
OMG IDL language.

Alignment

Constructed type have no alignment restrictions beyond those of their primitive 
components; the alignment of those primitive types is not intended to support use of 
marshaling buffers as equivalent to the implementation of constructed data types 
within any particular language environment. GIOP assumes that agents will usually 
construct structured data types by copying primitive data between the marshaled buffer 
and the appropriate in-memory data structure layout for the language mapping 
implementation involved.

Struct

The components of a structure are encoded in their order of their declaration in the 
structure. Each component is encoded as defined for its data type. 

Union 

Unions are encoded as the discriminant tag of the type specified in the union 
declaration, followed by the representation of any selected member, encoded as its type 
indicates. 

Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no 
length values are encoded. Each element is encoded as defined for the type of the 
array. In multidimensional arrays, the elements are ordered so the index of the first 
dimension varies most slowly, and the index of the last dimension varies most quickly.

Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the 
sequence. The initial unsigned long contains the number of elements in the sequence. 
The elements of the sequence are encoded as specified for their type.

String

Strings are encoded as an unsigned long containing the length of the string, followed 
by the individual characters in the string, encoded in ISO Latin-1 (8859.1). The length 
(initial unsigned long) and string representation include a terminating null character, so 
that conventional C-string handling library routines (e.g., strcpy) may be used in the 
encoded message buffer.
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Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum 
identifiers are determined by the order in which the identifiers appear in the enum 
declaration. The first enum identifier has the numeric value zero (0). Successive enum 
identifiers are take ascending numeric values, in order of declaration from left to right. 

12.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into 
encapsulation octet streams. The octet stream is represented as the OMG IDL type 
sequence<octet>, which may be subsequently included in a GIOP message or 
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see 
“TypeCode” on page 12-10), the IIOP protocol profile inside an IOR (see “Object 
References” on page 12-15), and in service-specific context (see “Object Service 
Context” on page 10-18). In addition, some ORBs may use choose to use an 
encapsulation to hold Principal identification information (see “Principal” on 
page 12-14), the object_key (see “IIOP IOR Profiles” on page 12-27), or in other 
places that a sequence<octet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0) 
contains a boolean value indicating the byte ordering of the encapsulated data. If the 
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE (1), 
the data is encoded in little-endian order, exactly like the byte order flag in GIOP 
message headers (see “GIOP Message Header” on page 12-15). This value is not part 
of the data being encapsulated, but is part of the octet stream holding the 
encapsulation. Following the byte order flag, the data to be encapsulated is marshaled 
into the buffer as defined by CDR encoding rules. Marshaled data are aligned relative 
to the beginning of the octet stream (the first octet of which is occupied by the byte 
order flag). 

When the encapsulation is encoded as type sequence<octet> for subsequent 
marshaling, an unsigned long value containing the sequence length is prefixed to the 
octet stream, as prescribed for sequences (see “Sequence” on page 12-8). The length 
value is not part of the encapsulation’s octet stream, and does not affect alignment of 
data within the encapsulation. Note that this guarantees a four octet alignment of the 
start of all encapsulated data within GIOP messages and nested encapsulations.2

12.3.4 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or 
floating point) nor constructed ones.

2.Accordingly, in cases where encapsulated data holds data with natural alignment of greater than 
four octets, some processors may need to copy the octet data before removing it from the encap-
sulation. The GIOP protocol itself does not require encapsulation of such data. 
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TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed 
by values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be 
expressed simply in OMG IDL, since their definitions are recursive. The basic 
TypeCode representations are given in Table 12-2. The enum value column this table 
gives the TCKind enum value corresponding to the given TypeCode, and lists the 
parameters associated with such a TypeCode. The rest of this section presents the 
details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum 
values, using four octets), followed by zero or more parameter values. The encodings 
of the parameter lists fall into three general categories, and differ in order to conserve 
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding 
TCKind enum value.

• Ones with simple parameter lists are encoded as the TCKind enum value 
followed by the parameter value(s), encoded as indicated in Table 12-2. A 
“simple” parameter list has a fixed number of fixed length entries, or a single 
parameter which is has its length encoded first. Currently, only the TCKind value 
tk_string has such a parameter list.

• All other typecodes have complex parameter lists, which are encoded as the 
TCKind enum value followed by a CDR encapsulation octet sequence (see 
“Encapsulation” on page 12-9) containing the encapsulated, marshaled 
parameters. The order of these parameters is shown in the fourth column of 
Table 12-2.

The third column of Table 12-2 shows whether each parameter list is empty, simple, or 
complex. Also, note that an internal indirection facility is needed to represent some 
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated 
TypeCodes” on page 12-13. This indirection does not need to be exposed to application 
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 12-2. The ordering 
and meaning of parameters is a superset of those given in the Interface Repository 
specification (Chapter 6); more information is needed by CDR’s representation in order 
to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the 
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union, 
tk_enum, tk_except) contain a counted sequence of tuples. 
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Such counted tuple sequences are written in the form count {parameters}, where 
count is the number of tuples in the encoded form, and the parameters enclosed in 
braces are available in each tuple instance. First the count, which is an unsigned 
long, and then each parameter in each tuple (using the noted type), is encoded in 
the CDR representation of the typecode. Each tuple is encoded, first parameter 
followed by second etc., before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, exception and enum members must be in the 
order defined in the OMG IDL definition text. Also, that the types of discriminant 
values in encoded tk_union TypeCodes are established by the second encoded 
parameter (discriminant type), and cannot be specified except with reference to a 
specific OMG IDL definition.3

3.This means that, for example, two OMG IDL unions that are textually equivalent, except that one 
uses a “char” discriminant, and the other uses a “long” one, would have different size encoded 
TypeCodes.

Table 12-2 TypeCode enum values, parameter list types, and parameters

TCKind
Integer 
Value Type Parameters 

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none – 

tk_double 7 empty – none – 

tk_boolean 8 empty – none – 

tk_char 9 empty – none – 

tk_octet 10 empty – none – 

tk_any 11 empty – none – 

tk_TypeCode 12 empty – none – 

tk_Principal 13 empty – none – 

tk_objref 14 complex string (repository ID), string(name)

tk_struct 15 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name), TypeCode (member type)} 
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Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum, 
tk_alias, and tk_except TypeCodes are Interface Repository RepositoryId 
values, whose format is described in the specification of the Interface Repository. 
RepositoryId values are required for tk_objref and tk_except TypeCodes; for other 
TypeCodes they are optional and are encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, 
tk_alias, and tk_except TypeCodes and the member name parameters in 
tk_struct, tk_union, tk_enum and tk_except TypeCodes are not specified by 
(or significant in) GIOP. Agents should not make assumptions about type equivalence 
based on these name values; only the structural information (including RepositoryId 
values, if provided) is significant. If provided, the strings should be the simple, 
unscoped names supplied in the OMG IDL definition text. If omitted, they are encoded 
as empty strings.

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. See “Indirection: Recursive and Repeated TypeCodes” on page 12-13.

tk_union 16 complex string (repository ID), string(name), TypeCode (discriminant 
type), long (default used), ulong (count) {discriminant type1 (label 
value), string (member name), TypeCode (member type)} 

tk_enum 17 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name)} 

tk_string 18 simple ulong (max length2) 

tk_sequence 19 complex TypeCode (element type), ulong (max length3) 

tk_array 20 complex TypeCode (element type), ulong (length) 

tk_alias 21 complex string (repository ID), string (name), TypeCode

tk_except 22 complex string (repository ID), string (name), ulong (count) {string (mem-
ber name), TypeCode (member type)} 

– none – 0xffffffff simple long (indirection4)

Table 12-2 TypeCode enum values, parameter list types, and parameters

TCKind
Integer 
Value Type Parameters 
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Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which 
tuple in the sequence describes the union’s default case. If this value is less than 
zero, then the union contains no default case. Otherwise, the value contains the zero 
based index of the default case in the sequence of tuples describing union members.

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes 
for multi-dimensional arrays are constructed by nesting tk_array TypeCodes within 
other tk_array TypeCodes, one per array dimension. The outermost (or top-level) 
tk_array TypeCode describes the leftmost array index of the array as defined in IDL; 
the innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain 
instances of themselves (e.g struct foo {sequence <foo> bar;}) must also 
contain an indirection. Such an indirection is also useful to reduce the size of 
encodings; for example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top level” 
TypeCode. Indirected TypeCodes are not “freestanding”, but only exist inside some 
other encoded TypeCode.

• Only the second (and subsequent) references to a given TypeCode in that scope may 
use the indirection facility. The first reference to that TypeCode must be encoded 
using the normal rules; in the case of a recursive TypeCode, this means that the first 
instance will not have been fully encoded before a second one must be completely 
encoded.

The indirection is a numeric octet offset within the scope of the “top level” TypeCode 
and points to the TCKind value for the typecode. (Note that the byte order of the 
TCKind value can be determined by its encoded value.) This indirection may well 
cross encapsulation boundaries, but this is not problematic because of first constraint 
identified above. Because of the second constraint, the value of the offset will always 
be negative.

The encoding of such an indirection is as a TypeCode with an “TCKind value” that has 
the special value 232-1 (0xffffffff, all ones). Such typecodes have a single (simple) 
parameter, which is the long offset (in units of octets) from the simple parameter. (As 
an example, that this means offset of negative four (-4) is illegal, because it be self-
indirecting.)
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Any

Any values are encoded as a TypeCode (encoded as described above) followed by the 
encoded value.

Principal

Principal pseudo objects are encoded as sequence<octet>. In the absence of a 
Security service specification, Principal values have no standard format or 
interpretation, beyond (as described in the CORBA CORE) serving to identify callers 
(and potential callers). This specification does not define any inter-ORB security 
mechanisms, or prescribe any usage of Principal values.

By representing Principal values as sequence<octet>, GIOP guarantees that ORBs 
may use domain-specific principal identification schemes; such values undergo no 
translation or interpretation during transmission. This allows bridges to translate or 
interpret these identifiers as needed when forwarding requests between different 
security domains.

Context

Context pseudo objects are encoded as sequence<string>. The strings occur in 
pairs. The first string in each pair is the context property name, and the second string 
in each pair is the associated value.

Exception

Exceptions are encoded as a string followed by exception members, if any. The string 
contains the RepositoryId for the exception, as defined in the Interface Repository 
chapter. Exception members (if any) are encoded in the same manner as a struct.4

Note – A catalog of minor codes for CORBA’s System Exceptions will be provided, 
based on implementers’ agreements. Such an agreement is needed to support complete 
interoperability, since otherwise applications could distinguish ORBs based on the 
diagnostics they report, and could not reliably assign meanings to system exceptions 
reported to them.

4.Compiled stubs are guaranteed to know how to unmarshal all exceptions. As of this writing, there 
are recognized problems with the language mappings for the DII in that they can not provide the 
ORB core with the same amount of information that can be provided to it by compiled stubs, 
unless an implementation of the DII consults an Interface Repository. Those mappings are being 
revised to address this issue.
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12.3.5 Object References

Object references are encoded in OMG IDL as described in “Object Addressing” on 
page 10-11. IOR profiles contain transport-specific addressing information, so there is 
no general-purpose IOR profile format defined for GIOP. Instead, this specification 
describes the general information model for GIOP profiles and provides a specific 
format for the IIOP (see “IIOP IOR Profiles” on page 12-27). 

In general, GIOP profiles shall include at least these three elements: 

• The version number of the transport-specific protocol specification that the server 
supports, 

• The address of an endpoint for the transport protocol being used, and 

• An opaque datum (an object_key, in the form of an octet sequence) used 
exclusively by the agent at the specified endpoint address to identify the object.

12.4 GIOP Message Formats

In describing GIOP messages, it is necessary to define client and server roles. For the 
purpose of this discussion, a client is the agent that opens a connection (see more 
details in “Connection Management” on page 12-24) and originates requests. A server 
is an agent that accepts connections and receives requests.

GIOP message types are summarized in Table 12-3, which lists the message type 
names, whether the message is originated by client, server, or both, and the value used 
to identify the message type in GIOP message headers.

12.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

Table 12-3 GIOP Message Types and originators

Message Type Originator Value

Request Client 0

Reply Server 1

CancelRequest Client 2

LocateRequest Client 3

LocateReply Server 4

CloseConnection Server 5

MessageError Both 6
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module GIOP {
enum MsgType {
Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError
};

struct MessageHeader {
 char magic [4];

Version GIOP_version;
 boolean byte_order;
 octet message_type;
 unsigned long message_size;
 };
};

The message header clearly identifies GIOP messages, but is defined to be byte-
ordering independent, since the header itself defines the byte ordering of subsequent 
message elements. The members of the header are:

• magic identifies GIOP messages. The value of this member is always the four 
(upper case) characters “GIOP”, encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in 
the message. The version number applies to the transport-independent elements of 
this specification (i.e., the CDR and message formats) which constitute the GIOP. 
This is not equivalent to the IIOP version number as described in “Object 
References” on page 12-15, though it has the same structure. The major GIOP 
version number of this specification is one (1); the minor version is zero (0).

• byte_order indicates the byte ordering used in subsequent elements of the 
message (including message_size). A value of FALSE (0) indicates big-endian byte 
ordering, and TRUE (1) indicates little-endian byte ordering.

• message_type indicates the type of the message, according to Table 12-3; these 
correspond to enum values of type MsgType.

• message_size contains the length of the message following the message header, 
in octets. This count includes any alignment gaps. The use of a message size of 0 
with a Request, LocateRequest, Reply, or LocateReply message is reserved for 
future use.

Request Message

Request messages encode CORBA object invocations, including attribute accessor 
operations, and CORBA::Object operations get_interface and 
get_implementation. Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header
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• A Request Header

• The Request Body 

Request Header

The request header is specified as follows:

module GIOP { // IDL
struct RequestHeader {

 IOP::ServiceContextList service_context;
unsigned long  request_id;

 boolean response_expected;
 sequence <octet> object_key;
 string operation;
 Principal requesting_principal;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the client to the 
server, encoded as described in “Object Service Context” on page 10-18.

• request_id is used to associate reply messages with request messages (including 
LocateRequest messages). The client (requester) is responsible for generating 
values so that ambiguity is eliminated; specifically, a client must not re-use 
request_id values during a connection if: (a) the previous request containing that ID 
is still pending, or (b) if the previous request containing that ID was canceled and 
no reply was received. (See the semantics of the “CancelRequest Message” on 
page 12-20). 

• response_expected is set to TRUE if the request is expected to have an 
associated reply. The value is FALSE if the operation is defined as oneway, or if the 
operation is invoked with the DII and the invocation flags include the 
INV_NO_RESPONSE flag.

• object_key identifies the object which is the target of the invocation. It is the 
object_key field from the transport-specific GIOP profile, e.g. from the 
encapsulated IIOP profile of the IOR for the target object. This value is only 
meaningful to the server and is not interpreted or modified by the client.

• operation contains the name of the operation being invoked. In the case of 
attribute accessors, the names are _get_<attribute> and 
_set_<attribute>. The case of the operation or attribute name must match the 
case of the operation name specified in the OMG IDL source for the interface being 
used.

In the case of CORBA::Object operations that are defined in the CORBA Core 
(“Object Reference Operations” on page 7-2) and that correspond to GIOP request 
messages, the operation names are _interface, _implementation5, _is_a 
and _not_existent.
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• requesting_principal contains a value identifying the requesting principal. It is 
provided to support the BOA::get_principal operation.

Request Body

The request body includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the 
operation’s OMG IDL definition, from left to right. 

• An optional Context pseudo object, encoded as described in “Context” on 
page 12-14. This item is only included if the operation’s OMG IDL definition 
includes a context expression, and only includes context members as defined in that 
expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout Principal p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
Principal p; // ... to the rightmost
};

12.4.2 Reply Message

Reply messages are sent in response to Request messages. Replies include inout and 
out parameters, operation results, and may include exception values. In addition, Reply 
messages may provide object location information. Replies flow from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body 

Reply Header

The reply header is defined as follows:

5.Since CORBA::Object::get_implementation is a null interface, clients must narrow the object ref-
erence they get to some ORB-specific kind of ImplementationDef.
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module GIOP { // IDL
enum ReplyStatusType {

 NO_EXCEPTION,
 USER_EXCEPTION,
 SYSTEM_EXCEPTION,
 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the server to the 
client, encoded as described in “GIOP Message Transfer” on page 12-3.

• request_id is used to associate replies with requests. It contains the same 
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and also 
determines part of the reply body contents. If no exception occurred and the 
operation completed successfully, the value is NO_EXCEPTION and the body 
contains return values. Otherwise the body contains an exception, or else directs the 
client to reissue the request to an object at some other location.

Reply Body

The reply body format is controlled by the value of reply_status. There are three types 
of reply body:

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were 
a structure holding first any operation return value, then any inout and out 
parameters in the order in which they appear in the operation’s OMG IDL 
definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION, 
then the body contains the exception that was raised by the operation, encoded as 
described in “Exception” on page 12-14. (Only the user defined exceptions listed in 
the operation’s OMG IDL definition may be raised.)

• If the reply_status value is LOCATION_FORWARD, then the body contains an 
object reference (IOR) encoded as described in “Object References” on page 12-15. 
The client ORB is responsible for re-sending the original request to that (different) 
object. This resending is transparent to the client program making the request.

For example, the reply body for a successful response (the value of reply_status is 
NO_EXCEPTION) to the Request example shown on page 12-18 would be equivalent 
to the following structure:
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struct example_reply {
double return_value; // return value
string str; // leftmost inout or out parameter
Principal p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not 
absolute. Specifically, when a new object reference is received in a 
LOCATION_FORWARD Reply or in a LocateReply message, the object_key field 
embedded in the new object reference’s GIOP profile may not have the same value as 
the object_key in the GIOP profile of the original object reference. For details on 
location forwarding, see “Object Location” on page 12-25.

12.4.3 CancelRequest Message

CancelRequest messages may be sent from clients to servers. CancelRequest 
messages notify a server that the client is no longer expecting a reply for a specified 
pending Request or LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader 

Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

 unsigned long request_id;
 };
};

The request_id member identifies the Request or LocateRequest message to 
which the cancel applies. This value is the same as the request_id value specified in 
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only. 
The server is not required to acknowledge the cancellation, and may subsequently send 
the corresponding reply. The client should have no expectation about whether a reply 
(including an exceptional one) arrives.
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12.4.4 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the 
following regarding a specified object reference: (a) whether the object reference is 
valid, (b) whether the current server is capable of directly receiving requests for the 
object reference, and if not, (c) to what address requests for the object reference should 
be sent.

Note that this information is also provided through the Request message, but that 
some clients might prefer not to support retransmission of potentially large messages 
that might be implied by a LOCATION_FORWARD status in a Reply message. That 
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL
struct LocateRequestHeader {

 unsigned long request_id;
 sequence <octet> object_key;

};
};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones. 
The client (requester) is responsible for generating values; see “Request Message” 
on page 12-16 for the applicable rules.

• object_key identifies the object being located. In an IIOP context, this value is 
obtained from the object_key field from the encapsulated IIOP::ProfileBody 
in the IIOP profile of the IOR for the target object. When GIOP is mapped to other 
transports, their IOR profiles must also contain an appropriate corresponding value. 
This value is only meaningful to the server and is not interpreted or modified by the 
client. 

See “Object Location” on page 12-25 for details on the use of LocateRequest.

12.4.5 LocateReply Message

LocateReply messages are sent from servers to clients in response to 
LocateRequest messages.

A LocateReply message has three elements, encoded in this order:
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• A GIOP message header

• A LocateReplyHeader

• The locate reply body 

Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL
 enum LocateStatusType {
 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

The members have the following definitions:

• request_id is used to associate replies with requests. This member contains the 
same request_id value as the corresponding LocateRequest message.

• locate_status. The value of this member is used to determine whether a 
LocateReply body exists. Values are:

• UNKNOWN_OBJECT The object specified in the corresponding 
LocateRequest message is unknown to the server; no body exists.

• OBJECT_HERE This server (the originator of the LocateReply message) 
can directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD A LocateReply body exists.

LocateReply Body

The body is empty unless the LocateStatus value is OBJECT_FORWARD, in 
which case the body contains an object reference (IOR) that may be used as the target 
for requests to the object specified in the LocateRequest message.
12-22                                  CORBA V2.0                                  July 1995



12
12.4.6 CloseConnection Message

CloseConnection messages are sent only by servers. They inform clients that the 
server intends to close the connection and must not be expected to provide further 
responses. Moreover, clients know that any requests for which they awaiting replies 
will never be processed, and may safely be reissued (on another connection).

The CloseConnection message consists only of the GIOP message header, 
identifying the message type.

For details on the usage of CloseConnection messages, see “Connection 
Management” on page 12-24.

12.4.7 MessageError Message

The MessageError message is sent in response to any GIOP message whose 
version number or message type is unknown to the recipient, or any message is 
received whose header is not properly formed (e.g., has the wrong magic value). Error 
handling is context-specific.

The MessageError message consists only of the GIOP message header, identifying 
the message type. 

12.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The 
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the scope 
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are 
delivered in the order they are sent, at most once, and that some positive 
acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations, 
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection loss. 
If the peer process aborts, the peer host crashes, or network connectivity is lost, a 
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the general 
connection model of TCP/IP. Specifically, an agent (described herein as a server) 
publishes a known network address in an IOR, which is used by the client when 
initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to 
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows the 
address (called a client) can attempt to initiate connections by sending connect requests 
to the address. The listening server may accept the request, forming a new, unique 
connection with the client, or it may reject the request (e.g., due to lack of resources). 
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Once a connection is open, either side may close the connection. (However, see 
“Connection Management” on page 12-24 for semantic issues related to connection 
closure.) A candidate transport might not directly support this specific connection 
model; it is only necessary that the transport’s model can be mapped onto this view.

12.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information found in 
an object reference (IOR) for an object to which it intends to send requests. 

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any 
implications for ORB or application architectures.

Connections are not symmetrical. Only clients can send Request, LocateRequest, and 
CancelRequest messages over a connection. Only a server can send Reply, LocateReply 
and CloseConnection messages over a connection. Either client or server can send 
MessageError messages.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scope and 
lifetime of a connection. Request IDs may be re-used if there is no possibility that the 
previous request using the ID may still have a pending reply. Note that cancellation 
does not guarantee no reply will be sent. It is the responsibility of the client to generate 
and assign request IDs. Request IDs must be unique among both Request and 
LocateRequest messages.

Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect. 
Orderly shutdown is initiated by servers reliably sending a CloseConnection 
message, or by clients just closing down a connection. Orderly shutdown may be 
initiated by the client at any time. If there are pending requests when a client shuts 
down a connection, the server should consider all such requests canceled. A server 
may not initiate shutdown if it has begun processing any requests for which it has not 
either received a CancelRequest or sent a corresponding reply.

If a client receives an CloseConnection message from the server, it should assume 
that any outstanding messages (i.e., without replies) were received after the server sent 
the CloseConnection message, were not processed, and may be safely resent on a new 
connection.

After reliably issuing a CloseConnection message, the server may close the 
connection. Some transport protocols (not including TCP) do not provide an “orderly 
disconnect” capability, guaranteeing reliable delivery of the last message sent. When 
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GIOP is used with such protocols an additional handshake needs to be provided to 
guarantee that both ends of the connection understand the disposition of any 
outstanding GIOP requests.

If a client detects connection closure without receiving a CloseConnection 
message, it should assume an abortive disconnect has occurred, and treat the condition 
as an error. Specifically, it should report COMM_FAILURE exceptions for all pending 
requests on the connection, with completion_status values set to 
COMPLETED_MAYBE.

Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same 
connection, provided that the connection’s server side is capable of responding to 
requests for the objects. It is the responsibility of the client to optimize resource usage 
by re-using connections, if it wishes. If not, the client may open a new connection for 
each active object supported by the server, although this behavior should be avoided. 

12.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and 
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply from a 
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required 
to be in the same order as the corresponding Requests.

The ordering restrictions regarding connection closure mentioned in Connection 
Management, above, are also noted here. Servers may only issue CloseConnection 
messages when Reply messages have been sent in response to all received Request 
messages that require replies.

12.6 Object Location

The GIOP is defined to support object migration and location services without 
dictating the existence of specific ORB architectures or features. The protocol features 
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB 
architectural component (such as an object adapter, object server process, Inter-ORB 
bridge, and so forth). It merely implies the existence of some agent with which a 
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following 
roles with respect to a particular object reference:
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• The agent may be able to accept object requests directly for the object and return 
replies. The agent may or may not own the actual object implementation; it may be 
an Inter-ORB bridge that transforms the request and passes it on to another process 
or ORB. From GIOP’s perspective, it is only important that requests can be sent 
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead 
as a location service. Any Request messages sent to the agent would result in either 
exceptions or replies with LOCATION_FORWARD status, providing new addresses 
to which requests may be sent. Such agents would also respond to LocateRequest 
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide 
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in 
time, and provide a forwarding location at a later time (perhaps during the same 
connection). 

Agents are not required to implement location forwarding mechanisms. An agent can 
be implemented with the policy that a connection either supports direct access to an 
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return 
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT status, 
and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with 
LOCATION_FORWARD status, since any ORB may choose to implement a location 
service. Whether a client chooses to send LocationRequest messages is at the 
discretion of the client. For example, if the client routinely expected to see 
LOCATION_FORWARD replies when using the address in an object reference, it 
might always send LocateRequest messages to objects for which it has no recorded 
forwarding address. If a client sends LocateRequest messages, it should (obviously) be 
prepared to accept LocateReply messages.

A client should not make any assumptions about the longevity of object addresses 
returned by location forwarding mechanisms. Once a connection based on location 
forwarding information is closed, subsequent attempts to send requests to the same 
object should start with the original address specified in the initial object reference.

Even after performing successful invocations using an address, a client should be 
prepared to be forwarded. The only object address that a client should expect to 
continue working reliably is the one in the initial object reference. If an invocation 
using that address returns UNKNOWN_OBJECT, the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discretion 
of ORBs, available to be used for optimization and to support flexible object location 
and migration behaviors.
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12.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP6. Specific APIs for libraries 
supporting TCP/IP may vary, so this discussion is limited to an abstract view of 
TCP/IP and management of its connections. The mapping of GIOP message transfer to 
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

12.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects 
(i.e., servers) publish TCP/IP addresses in IORs, as described in “IIOP IOR Profiles” 
on page 12-27. A TCP/IP address consists of an IP host address, typically represented 
by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing a object’s services must initiate a connection with the address 
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers should 
accept connection requests if possible, but ORBs are free to establish any desired 
policy for connection acceptance (e.g., to enforce fairness or optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest, or 
CancelRequest messages by writing to the TCP/IP socket it owns for the 
connection. The server may send Reply, LocateReply, and CloseConnection 
messages by writing to its TCP/IP connection.

After sending (or receiving) a CloseConnection message, both client or server 
must close the TCP/IP connection.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations 
between clients and servers if both sides of a connection send large amounts of data on 
a connection (or two different connections between the same processes) and do not 
read incoming data. Both processes may block on write operations, and never resume. 
It is the responsibility of both clients and servers to avoid creating deadlock by reading 
incoming messages and avoiding blocking when writing messages, by providing 
separate threads for reading and writing, or any other workable approach. ORBs are 
free to adopt any desired implementation strategy, but should provide robust behavior.

12.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter_ORB 
Protocol, have the following form:

6.Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specification”, 
RFC-793, Information Sciences Institute, September 1981
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module IIOP { // IDL
struct Version {

 char major;
 char minor;
 };

struct ProfileBody {
 Version iiop_version;

string host;
 unsigned short port;
 sequence <octet>object_key;
 };
};

An instance of the IIOP::ProfileBody type is marshaled into an encapsulation octet 
stream. This encapsulation (a sequence<octet>) becomes the profile_data 
member of the IOR::TaggedProfile structure representing the IIOP profile in an 
IOR, and the tag has the value TAG_INTERNET_IOP (as defined earlier).

The members of IIOP::ProfileBody are defined as follows:

• iiop_version describes the version of IIOP that the agent at the specified address 
is prepared to receive. When an agent generates IIOP profiles specifying a 
particular version, it must be able to accept messages complying with the specified 
version or any previous minor version (i.e., any smaller version number). The major 
version number of this specification is one (1); the minor version is zero (0). Note 
that this value is not equivalent to the GIOP version number specified in GIOP 
message headers. Transport-specific elements of the IIOP specification may change 
independently from the GIOP specification.

• host identifies the Internet host to which GIOP messages for the specified object 
may be sent. In order to promote a very large (Internet-wide) scope for the object 
reference, this will typically be the fully qualified domain name of the host, rather 
than an unqualified (or partially qualified) name. However, per Internet standards, 
the host string may also contain a host address expressed in standard “dotted 
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target agent 
is listening for connection requests. The agent must be ready to process IIOP 
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This 
value will be used in request messages to identify the object to which the request is 
directed. An agent that generates an object key value must be able to map the value 
unambiguously onto the corresponding object when routing requests internally.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C 
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such 
addresses are reserved for use in future versions of IIOP.
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Also, note that at this time no “well known” port number has been allocated, so 
individual agents will need to assign previously unused ports as part of their 
installation procedures. IIOP supports multiple such agents per host.

12.8 OMG IDL for the GIOP and IIOP Specifications

This section contains the OMG IDL for the GIOP and IIOP modules.

12.8.1 GIOP Module

module GIOP { // IDL
enum MsgType {

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

};

struct MessageHeader {
char magic [4];
Version GIOP_version;

 boolean byte_order;
 octet message_type;
 unsigned long message_size;
 };

struct RequestHeader {
 IOP::ServiceContextList service_context;

unsigned long  request_id;
 boolean response_expected;

 sequence <octet> object_key;
 string operation;

 Principal requesting_principal;
 };
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enum ReplyStatusType {
 NO_EXCEPTION,

USER_EXCEPTION,
 SYSTEM_EXCEPTION,

 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };

struct CancelRequestHeader {
 unsigned long request_id;
 };

struct LocateRequestHeader {
 unsigned long request_id;
 sequence <octet> object_key;

};

enum LocateStatusType {
 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};
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12.8.2 IIOP Module

module IIOP { \\ IDL
struct Version {

 char major;
 char minor;
 };

struct ProfileBody {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 };

};
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The DCE ESIOP 13
This chapter specifies an Environment Specific Inter-ORB Protocol (ESIOP) for the 
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

13.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

DCE CIOP achieves these goals by using DCE-RPC to provide message transport, 
while leaving the ORB responsible for message formatting, data marshaling, and 
operation dispatch.

13.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet formats 
defined by DCE-RPC to enable independently implemented ORBs to communicate. It 
defines the message formats that are exchanged using DCE-RPC, and specifies how 
information in object references is used to establish communication between client and 
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 13.7, “OMG 
IDL for the DCE CIOP Module,” on page 13-24. Fragments are used throughout this 
chapter as necessary. 
                                 CORBA V2.0                                  July 1995 13-1
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13.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC which is interoperable with the DCE connection-oriented 
and/or connectionless protocols as specified in the X/Open CAE Specification C309 
and the OSF AES/Distributed Computing RPC Volume. Some of the features of the 
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the 
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the same 
connection.

• Supports fragmentation of messages. This provides for buffer management by 
ORBs of CORBA requests which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of two 
well-known DCE-RPC interfaces. Two DCE operations are provided in each interface:

• invoke - for invoking CORBA operation requests, and

• locate - for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request 
message being transmitted from the client to the server, followed by a response 
message being transmitted from the server to the client.

Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of 
uninterpreted bytes. By transmitting messages via DCE pipes, the following 
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message 
transmission.

• Encoding of messages and marshaling of data is completely under the control of the 
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

1. DCE maybe operation semantics cannot be used for CORBA oneway operations because they are idempotent as 
opposed to at-most-once.

2. The deferred synchronous DII API can be implemented on top of synchronous RPCs by using threads.
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Using the other DCE-RPC interface, the messages are transmitted as conformant arrays 
of uninterpreted bytes. This interface does not offer all the advantages of the pipe-
based interface, but is provided to enable interoperability with ORBs using DCE-RPC 
implementations that do not adequately support pipes.

13.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer syntax, 
which is defined in “CDR Transfer Syntax” on page 12-4. DCE-CIOP message headers 
and bodies are specified as OMG IDL types. These are encoded using CDR, and the 
resulting messages are passed between client and server processes via DCE-RPC pipes 
or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL. 
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs, 
represents the OMG IDL primitive types identically to the NDR representation of 
corresponding DCE IDL primitive types. The corresponding OMG IDL and DCE IDL 
primitive types are shown in table Table 13-1.

The CDR representation of OMG IDL constructed types and pseudo-object types does 
not correspond to the NDR representation of types describable in DCE IDL. 

As new data types are added to OMG IDL, NDR can be used as a model for their CDR 
representations.

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Values restricted to 0 and 1.

Table 13-1 Relationship between CDR and NDR primitive data types

OMG IDL type

DCE IDL type with NDR representation 
equivalent to CDR representation of OMG 
IDL type

char byte

octet byte

short short

unsigned short unsigned short

long long

unsigned long unsigned long

float float1

double double2

boolean byte3

enum unsigned long
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13.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clients and 
servers via the invoke and locate RPCs:

• Invoke Request identifies the target object and the operation and contains the 
principal, the operation context, a ServiceContext, and the in and inout 
parameter values.

• Invoke Response indicates whether the operation succeeded, failed, or needs to be 
reinvoked at another location, and returns a ServiceContext. If the operation 
succeeded, the result and the out and inout parameter values are returned. If it 
failed, an exception is returned. If the object is at another location, new RPC 
binding information is returned.

• Locate Request identifies the target object and the operation.

• Locate Response indicates whether the location is in the current process, is 
elsewhere, or is unknown. If the object is at another location, new RPC binding 
information is returned.

All message formats begin with a field that indicates the byte order used in the CDR 
encoding of the remainder of the message. The CDR byte order of a message is 
required to match the NDR byte order used by DCE-RPC to transmit the message.

13.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information necessary 
to reference an object via DCE-CIOP must be included in an IOR. This information 
can coexist with the information needed for other protocols such as IIOP. DCE-CIOP 
information is stored in an IOR as a set of components in a profile identified by 
TAG_MULTIPLE_COMPONENTS. Components are defined for the following 
purposes:

• To identify a server process via a DCE string binding, which can be either fully or 
partially bound. This process may be a server process implementing the object, or it 
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE 
nameservice. Again, this process may implement the object or may be an agent 
capable of locating it.

• To identify the target object when request messages are sent to the server.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an invoke 
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to 
reference the CORBA object. 
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13.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages between 
client ORBs and server ORBs. One interface uses pipes to convey the messages, while 
the other uses conformant arrays. 

The pipe-based interface is the preferred interface, since it allows messages to be 
transmitted without precomputing the message length. But not all DCE-RPC 
implementations adequately support pipes, so this interface is optional. All client and 
server ORBs implementing DCE-CIOP must support the array-based interface3.

While server ORBs may provide both interfaces or just the array-based interface, it is 
up to the client ORB to decide which to use for an invocation. If a client ORB tries to 
use the pipe-based interface and receives a rpc_s_unknown_if error, it should fall 
back to the array-based interface.

13.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown 
below:

[                       /* DCE IDL */

uuid(0e07f95c-37b0-11ce-90a7-0800090b5d3e),

version(1.0)

]

interface dce_ciop_pipe

{

    typedef pipe byte message_type;

    void invoke ([in] handle_t binding_handle,

                 [in] message_type *request_message,

                 [out] message_type *response_message);

    void locate ([in] handle_t binding_handle,

                 [in] message_type *request_message,

                 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_pipe interface by using DCE stubs generated 
from this IDL specification, or by using lower-level APIs provided by a particular 
DCE-RPC implementation.

3. A future DCE-CIOP revision may eliminate the array-based interface and require support of the pipe-based interface.
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The dce_ciop_pipe interface is identified by the UUID and version number shown. 
To provide maximal performance, all server ORBs and location agents implementing 
DCE-CIOP should listen for and handle requests made to this interface. To maximize 
the chances of interoperating with any DCE-CIOP client, servers should listen for 
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE 
RPCs on the dce_ciop_pipe interface.

The dce_ciop_pipe interface is made up of two DCE-RPC operations, invoke 
and locate. The first parameter of each of these RPCs is a DCE binding handle, 
which identifies the server process on which to perform the RPC. See “DCE-CIOP 
String Binding Component” on page 13-16, “DCE-CIOP Binding Name Component” 
on page 13-17, and “DCE-CIOP Object Location” on page 13-21 for discussion of how 
these binding handles are obtained. The remaining parameters of the 
dce_ciop_pipe RPCs are pipes of uninterpreted bytes. These pipes are used to 
convey messages encoded using CDR. The request_message input parameters 
send a request message from the client to the server, while the response_message 
output parameters return a response message from the server to the client.

Figure 13-1 below illustrates the layering of DCE-CIOP messages on the DCE-RPC 
protocol as NDR pipes:

Figure 13-1 Pipe-based interface protocol layering.
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The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authentication is 
performed4, are concatenated by the DCE-RPC run-time to form an NDR stream. This 
stream is then interpreted as the NDR representation of a DCE IDL pipe.

A pipe is made up of chunks, where each chunk consists of a chunk length and chunk 
data. The chunk length is an unsigned long indicating the number of pipe elements that 
make up the chunk data. The pipe elements are DCE IDL bytes, which are 
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe 
chunks are concatenated to form a DCE-CIOP message. 

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a 
CORBA operation in the server process identified by the binding_handle 
parameter. The request_message pipe transmits a DCE-CIOP invoke request 
message, encoded using CDR, from the client to the server. See “DCE_CIOP Invoke 
Request Message” on page 13-10 for a description of its format. The 
response_message pipe transmits a DCE-CIOP invoke response message, also 
encoded using CDR, from the server to the client. See “DCE-CIOP Invoke Response 
Message” on page 13-11 for a description of the response format.

Locate

The locate RPC is used by a DCE-CIOP client process to query the server process 
identified by the binding_handle parameter for the location of the server process 
where requests should be sent. The request_message and response_message 
parameters are used similarly to the parameters of the invoke RPC. See “DCE-CIOP 
Locate Request Message” on page 13-13 and “DCE-CIOP Locate Response Message” 
on page 13-14 for descriptions of their formats. Use of the locate RPC is described 
in detail in “DCE-CIOP Object Location” on page 13-21.

13.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown 
below:

[                       /* DCE IDL */

uuid(8108ae54-4cd9-11ce-acca-0800090b5d3e),

version(1.0)

]

interface dce_ciop_array

{

    typedef struct {

4. The use of authentication, or other DCE security services, has not yet been defined for DCE-CIOP.
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        unsigned long length;

        [size_is(length),ptr] byte *data;

    } message_type;

    void invoke ([in] handle_t binding_handle,

                 [in] message_type *request_message,

                 [out] message_type *response_message);

    void locate ([in] handle_t binding_handle,

                 [in] message_type *request_message,

                 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_array interface, identified by the UUID and 
version number shown, by using DCE stubs generated from this IDL specification, or 
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and 
handle requests made to the dce_ciop_array interface, and to maximize 
interoperability, should listen for requests arriving via all available DCE protocol 
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing 
locate and invoke RPCs on the dce_ciop_array interface.

As with the dce_ciop_pipe interface, the first parameter of each 
dce_ciop_array RPC is a DCE binding handle that identifies the server process on 
which to perform the RPC. The remaining parameters are structures containing CDR-
encoded messages. The request_message input parameters send a request message 
from the client to the server, while the response_message output parameters return 
a response message from the server to the client.

The message_type structure used to convey messages is made up of a length 
member and a data member:

• length - This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array 
containing the message.
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The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated in 
Figure 13-2 below:

Figure 13-2 Array-based interface protocol layering.
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Locate

The locate RPC is used by a DCE-CIOP client process to query the server process 
identified by the binding_handle parameter for the location of the server process 
where requests should be sent. The request_message and response_message 
parameters are used similarly to the parameters of the invoke RPC.

13.4 DCE-CIOP Message Formats

The section defines the message formats used by DCE-CIOP. These message formats 
are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE-
RPC as either pipes or arrays of bytes as described in “DCE-CIOP Message Transport” 
on page 13-5.

13.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including 
attribute accessor operations and CORBA::Object operations such as 
get_interface and get_implementation. Invoke requests are passed from 
client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The header 
has a fixed format, while the format of the body is determined by the operation’s IDL 
definition. 

Invoke Request Header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string endpoint_id;
string operation;
CORBA::Principal principal;
sequence <string> client_context;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the 
remainder of the message. A value of FALSE indicates big-endian byte ordering, 
and TRUE indicates little-endian byte ordering.
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• service_context contains any ORB service data that needs to be sent from the 
client to the server.

• object_key contains opaque data used to identify the object that is the target of 
the operation. See “Object Key Component” on page 13-19.

• endpoint_id contains an identifier for the endpoint at which the object is located, 
if this was included in the IOR profile. If not, an empty string is used. See 
“Endpoint ID Component” on page 13-19.

• operation contains the name of the CORBA operation being invoked. The case of 
the operation name must match the case of the operation name specified in the 
OMG IDL source for the interface being used.

Attribute accessors have names as follows: 

• Attribute selector: operation name is "_get_<attribute>"

• Attribute mutator: operation name is "_set_<attribute>"

CORBA::Object pseudo-operations have operation names as follows:

• get_interface - operation name is "_interface"

• get_implementation - operation name is "_implementation"

• is_a - operation name is "_is_a"

• non_existent - operation name is "_non_existent"

• Principal contains a value identifying the requesting principal. No particular 
meaning or semantics are associated with this value. It is provided to support the 
BOA::get_principal operation.

• client_context contains any context properties associated with the request. Each 
property is encoded as a pair of strings; the first naming the property and the second 
containing its value. 

Clients are not required to include all properties listed in the context expression of 
the operation’s OMG IDL definition. They are allowed to include properties not 
listed in the OMG IDL definition. 

Invoke Request Body

The invoke request body contains all in and inout parameters, in the order in which 
they are specified in the operation definition, from left to right.

13.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the 
response_message parameter of an invoke RPC.

Like invoke request messages, an invoke response message is made up of a header and 
a body. The header has a fixed format, while the format of the body depends on the 
operation’s OMG IDL definition and the outcome of the invocation.
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Invoke Response Header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an 
// IOP::MultipleComponentsProfile follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the 
remainder of the message. A value of FALSE indicates big-endian byte ordering, 
and TRUE indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the 
client to the server.

• status indicates the completion status of the associated request, and also 
determines the contents of the body.

Invoke Response Body

The contents of the invoke response body depends on the value of the status 
member of the invoke response header, as well as the OMG IDL definition of the 
operation being invoked. Its format is one of the following:
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• If the status value is INVOKE_NO_EXCEPTION, then the body contains the 
operation result value (if any), followed by all inout and out parameters, in the 
order in which they appear in the operation signature, from left to right.

• If the status value is INVOKE_USER_EXCEPTION or 
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encoded 
as in GIOP.

• If the status value is INVOKE_LOCATION_FORWARD, then the body contains 
a new MultipleComponentProfile structure containing components that can 
be used to communicate with the object specified in the invoke request message. 
This profile must provide at least one new DCE-CIOP binding component. The 
client ORB is responsible for re-sending the request to the server identified by the 
new profile. This operation should be transparent to the client program making the 
request. See “DCE-CIOP Object Location” on page 13-21 for more details.

• If the status value is INVOKE_TRY_AGAIN, then the body is empty and the 
client should reissue the invoke RPC, possibly after a short delay5.

13.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the 
request_message parameter of a locate RPC, to determine the following 
regarding a specified object reference:

• Whether the object reference is valid

• Whether the current server is capable of directly receiving requests for the object 
reference

• If not capable, to solicit an address to which requests for the object reference should 
be sent.

For details on the usage of the locate RPC, see “DCE-CIOP Object Location” on 
page 13-21.

Locate request messages contain a fixed-format header, but no body.

Locate Request Header

DCE-CIOP locate request headers have the following format:

5. An exponential back-off algorithm is recommended, but not required.
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module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string endpoint_id;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the 
remainder of the message. A value of FALSE indicates big-endian byte ordering, 
and TRUE indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target of 
the operation. See “Object Key Component” on page 13-19.

• endpoint_id member contains an identifier for the endpoint at which the object is 
located, if this was included in the IOR profile. If not, an empty string is used. See 
“Endpoint ID Component” on page 13-19.

• operation contains the name of the CORBA operation being invoked. It is 
encoded as in the invoke request header.

13.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the 
response_message parameter of a locate RPC. They consist of a fixed-format 
header, and a body whose format depends on information in the header.

Locate Response Header

DCE-CIOP locate response headers have the following format:
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module DCE_CIOP { // IDL
enum LocateResponseStatus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};

struct LocateResponseHeader {
boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::MultipleComponentProfile follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the 
remainder of the message. A value of FALSE indicates big-endian byte ordering, 
and TRUE indicates little-endian byte ordering.

• status indicates whether the object is valid and whether it is located in this server. 
It determines the contents of the body.

Locate Response Body

The contents of the locate response body depends on the value of the status member 
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specified 
in the corresponding locate request message is unknown to the server. The locate 
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originator 
of the locate response message) can directly receive requests for the specified 
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate 
response body contains a new MultipleComponentProfile structure containing 
components that can be used to communicate with the object specified in the locate 
request message. This profile must provide at least one new DCE-CIOP binding 
component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty and 
the client should reissue the locate RPC, possibly after a short delay6.

6. An exponential back-off algorithm is recommended, but not required.
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13.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is 
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS. The 
profile_data for this profile is a CDR encapsulation of the 
MultipleComponentProfile type, which is a sequence of TaggedComponent 
structures. These types are described in “An Information Model for Object References” 
on page 10-14.

DCE-CIOP defines a number of IOR components that can be included in a 
MultipleComponentProfile. Each is identified by a unique tag, and the encoding 
and semantics of the associated component_data are specified.

An IOR profile identified by TAG_MULTIPLE_COMPONENTS can contain 
components for other protocols in addition to DCE-CIOP, and can contain components 
used by other kinds of ORB services. For example, an ORB vendor can define its own 
private components within this profile to support the vendor’s native protocol. Several 
of the components defined for DCE-CIOP may be of use to other protocols as well. 
The following component descriptions will note whether the component is intended 
solely for DCE-CIOP or can be used by other protocols, whether the component is 
required or optional for DCE-CIOP, and whether more than one instance of the 
component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and 
recognize the components defined here. Unrecognized components should be 
preserved but ignored. Implementations should also be prepared to encounter profiles 
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.

13.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by 
TAG_DCE_STRING_BINDING, contains a fully or partially bound string binding. 
A string binding provides the information necessary for DCE-RPC to establish 
communication with a server process that can either service the client’s requests itself, 
or provide the location of another process that can. The DCE API routine 
rpc_binding_from_string_binding can be used to convert a string binding to 
the DCE binding handle required to communicate with a server as described in “DCE-
CIOP Message Transport” on page 13-5.

This component is intended to be used only by DCE-CIOP. At least one string binding 
or binding name component must be present for an IOR profile to support DCE-CIOP.

Multiple string binding components can be included in a profile to define endpoints for 
different DCE protocols, or to identify multiple servers or agents capable of servicing 
the request.

The string binding component is defined as follows:
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module DCE_CIOP { \\ IDL
const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComponent structure is built for the string binding component by 
setting the tag member to TAG_DCE_STRING_BINDING, and setting the 
component_data member to the value of a DCE string binding. The string is 
represented directly in the sequence of octets, including the terminating NUL, without 
further encoding. 

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed 
Computing RPC Volume. The DCE API function 
rpc_binding_from_string_binding converts a string binding into a binding 
handle that can be used by a client ORB as the first parameter to the invoke and 
locate RPCs.

A string binding contains:

• A protocol sequence

• A network address

• An optional endpoint

• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each 
support any number of CORBA objects. DCE object UUIDs do not necessarily 
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC 
run-time uses an endpoint mapper to complete a partial binding, and multiple ORB 
servers might be located on the same host, partially bound string bindings must contain 
object UUIDs to distinguish different endpoints at the same network address.

13.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by 
TAG_DCE_BINDING_NAME. It contains a name that can be used with a DCE 
nameservice such as CDS or GDS to obtain the binding handle needed to communicate 
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name 
components can be included to identify multiple servers or agents capable of handling 
a request. At least one binding name or string binding component must be present for 
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:
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module DCE_CIOP { // IDL
const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComponent structure is built for the binding name component by setting 
the tag member to TAG_DCE_BINDING_NAME, and setting the 
component_data member to a CDR encapsulation of a 
BindingNameComponent structure.

BindingNameComponent

The BindingNameComponent structure contains the information necessary to 
query a DCE nameservice such as CDS. A client ORB can use the 
entry_name_syntax, entry_name, and object_uuid members of the 
BindingName structure with the rpc_ns_binding_import_* or 
rpc_ns_binding_lookup_* families of DCE API routines to obtain binding 
handles to communicate with a server. If the object_uuid member is an empty 
string, a nil object UUID should be passed to these DCE API routines.

13.5.3 DCE-CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PIPES indicates to an ORB 
client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is 
only a hint, and can be safely ignored. As described in “DCE-CIOP Message 
Transport” on page 13-5, the client must fall back to the array-based interface if the 
pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::ComponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComponent structure with a tag member of TAG_DCE_NO_PIPES 
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not 
contain more than one component with this tag.
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13.5.4 Object Key Component

An ORB server must include a single object key component, identified by 
TAG_OBJECT_KEY, in a DCE-CIOP IOR profile to hold the data it uses to 
identify the object. Its component_data value is used as the object_key member 
in invoke and locate request message headers.

The object key component is available for use by all protocols that use the 
TAG_MULTIPLE_COMPONENTS profile. By sharing this component, protocols 
can avoid duplicating object identity information.

module IOP { \\ IDL
const ComponentId TAG_OBJECT_KEY = 10;

};

The component_data of this component is not interpreted by the client process. Its 
format only needs to be understood by the server process and any location agent that it 
uses.

13.5.5 Endpoint ID Component

An optional endpoint ID component can be included in IOR profiles to enable client 
ORBs to minimize resource utilization and to avoid redundant locate messages. It can 
be used by other protocols as well as by DCE-CIOP. No more than one endpoint ID 
component should be included in a profile.

module IOP { \\ IDL
const ComponentId TAG_ENDPOINT_ID = 11;

};

An endpoint ID component, identified by TAG_ENDPOINT_ID, provides an 
identifier for the endpoint at which operations on an object can be invoked. The 
component_data is a NUL-terminated globally unique string identifying the 
endpoint. The recommended format for the component_data is a stringified 
UUID. 

If multiple objects have the same endpoint ID, they can be messaged to at a single 
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients can 
use a single binding handle to invoke requests on all of the objects with a common 
endpoint ID. See “Use of the Location Policy and the Endpoint ID” on page 13-23.
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The endpoint ID component, if present in the IOR profile, is included in invoke and 
locate request message headers as the endpoint_id member. The server or agent can 
use the endpoint ID in conjunction with the object key to identify the object and its 
implementation. If no endpoint ID is included in the profile, an empty string is used as 
the endpoint_id member of the request messages.

13.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify 
when a DCE-CIOP client ORB should perform a locate RPC before attempting to 
perform an invoke RPC. No more than one location policy component should be 
included in a profile, and it can be used by other protocols that have location 
algorithms similar to DCE-CIOP.

module IOP { \\ IDL
const ComponentId TAG_LOCATION_POLICY = 12;

const octet LOCATE_NEVER = 0;
const octet LOCATE_OBJECT = 1;
const octet LOCATE_OPERATION = 2;
const octet LOCATE_ALWAYS = 3;

};

A TaggedComponent structure for a location policy component is built by setting 
the tag member to TAG_LOCATION_POLICY, and setting the 
component_data member to a sequence containing a single octet, whose value is 
LOCATE_NEVER, LOCATE_OBJECT, LOCATE_OPERATION, or 
LOCATE_ALWAYS.

If a location policy component is not present in a profile, the client should assume a 
location policy of LOCATE_OBJECT.

A client should interpret the location policy as follows: 

• LOCATE_NEVER Perform only the invoke RPC. No locate RPC is 
necessary.

• LOCATE_OBJECT Perform a locate RPC once per object. The operation 
member of the locate request message will be ignored.

• LOCATE_OPERATION Perform a separate locate RPC for each distinct 
operation on the object. This policy can be used when different methods of an 
object are located in different processes.

• LOCATE_ALWAYS Perform a separate locate RPC for each invocation on the 
object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs 
and to avoid invoke RPCs that return INVOKE_LOCATION_FORWARD status. 
It is not needed to provide correct semantics, and can be ignored. Even when this hint 
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is utilized, an invoke RPC might result in an 
INVOKE_LOCATION_FORWARD response. See “DCE-CIOP Object Location” 
on page 13-21 for more detail.

A client does not need to implement all location policies to make use of this hint. A 
location policy with a higher value can be substituted for one with a lower value. For 
instance, a client might treat LOCATE_OPERATION as LOCATE_ALWAYS to 
avoid having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of 
LOCATE_OBJECT indicates that the client should perform a locate RPC for the 
first object with a particular endpoint ID, and then just perform an invoke RPC for 
other objects with the same endpoint ID. When a location policy of 
LOCATE_NEVER is combined with an endpoint ID component, only invoke 
RPCs need be performed. The LOCATE_ALWAYS and LOCATE_OPERATION 
policies should not be combined with an endpoint ID component in a profile.

13.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that can 
perform operations on an object via the invoke RPC.

13.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without 
dictating the existence of specific ORB architectures or features. The protocol features 
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB 
architectural component (such as an object adapter, server process, ORB process, 
locator, etc.). It merely implies the existence of some agent to which requests may be 
sent.

The "agent" (receiver of an RPC) may have one of the following roles with respect to 
a particular object reference:

• The agent may be able to accept object requests directly for the object and return 
replies. The agent may or may not own the actual object implementation; it may be 
a gateway that transforms the request and passes it on to another process or ORB. 
From DCE-CIOP’s perspective, it is only important that invoke request messages 
can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead 
as a location service. Any invoke request messages sent to the agent would result in 
either exceptions or replies with INVOKE_LOCATION_FORWARD status, 
providing new addresses to which requests may be sent. Such agents would also 
respond to locate request messages with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and provide 
forwarding locations for other objects.
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• The agent may directly respond to requests for a particular object at one point in 
time, and provide a forwarding location at a later time.

Server ORBs are not required to implement location forwarding mechanisms. An ORB 
can be implemented with the policy that servers either support direct access to an 
object, or return exceptions. Such a server ORB would always return locate response 
messages with either LOCATE_OBJECT_HERE or 
LOCATE_UNKNOWN_OBJECT status, and never 
LOCATE_LOCATION_FORWARD status. It would also never return invoke 
response messages with INVOKE_LOCATION_FORWARD status.

Client ORBs must, however, be able to accept and process invoke response messages 
with INVOKE_LOCATION_FORWARD status, since any server ORB may 
choose to implement a location service. Whether a client ORB chooses to send locate 
request messages is at the discretion of the client.

Client ORBs that send locate request messages can use the location policy component 
found in DCE-CIOP IOR profiles to decide whether to send a locate request message 
before sending an invoke request message. See “Location Policy Component” on 
page 13-20. This hint can be safely ignored by a client ORB.

A client should not make any assumptions about the longevity of addresses returned by 
location forwarding mechanisms. If a binding handle based on location forwarding 
information is used successfully, but then fails, subsequent attempts to send requests to 
the same object should start with the original address specified in the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORBs, 
available to be used for optimization and to support flexible object location and 
migration behaviors.

13.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless an 
IOR refers to a transient object, the agent addressed by the IOR profile should either 
be permanently active, or should be activated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB server 
environments using rpcd, the agent addressed by an IOR must not only be capable of 
locating the object, it must also be able to activate it if necessary. A future DCE 
endpoint mapper may provide automatic activation, but client ORB implementations 
do not need to be aware of this distinction.

13.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handling 
the invoke RPC for a particular operation:
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1. Pick a profile with TAG_MULTIPLE_COMPONENTS from the IOR. Make 
the MultipleComponentProfile structure encoded in the profile_data of this 
the original profile and the current profile. If no profiles with 
TAG_MULTIPLE_COMPONENTS are available, operations cannot be 
invoked using DCE-CIOP with this IOR.

2. Get a binding handle to try from the current profile. See “DCE-CIOP String 
Binding Component” on page 13-16 and “DCE-CIOP Binding Name Component” 
on page 13-17. If no binding handles can be obtained, the server cannot be located 
using the current profile, so go to step 1.

3. Perform either a locate or invoke RPC using the TAG_OBJECT_KEY 
component and optional TAG_ENDPOINT_ID component from the original 
profile. 

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returns INVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN, try 
the same RPC again, possibly after a delay.

• If the RPC returns either INVOKE_LOCATION_FORWARD or 
LOCATE_LOCATION_FORWARD, make the new 
MultipleComponentProfile structure returned in the response message body 
the current profile and go to step 2.

• If the RPC returns LOCATE_UNKNOWN_OBJECT, the object no longer 
exists. 

• Otherwise, the server has been successfully located.

Any invoke RPC might return INVOKE_LOCATION_FORWARD, in which 
case the client ORB should make the returned MultipleComponentProfile 
structure the current profile, and re-enter the location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client ORB 
should start over at step 1.

Note that the TAG_OBJECT_KEY and TAG_ENDPOINT_ID components for all 
invoke and locate RPCs are taken from the original profile. These components 
should not be included in the MultipleComponentProfile structure returned in 
INVOKE_LOCATION_FORWARD and LOCATE_LOCATION_FORWARD 
response messages. Only the TAG_DCE_STRING_BINDING and 
TAG_DCE_BINDING_NAME components, and possibly the optional 
TAG_LOCATION_POLICY and TAG_DCE_NO_PIPES components are taken 
from the current profile.

13.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB, if 
possible, so that operations can be invoked using DCE-CIOP. But unnecessary 
locate RPCs may be performed, and invoke RPCs may be performed when 
locate RPCs would be more efficient. The optional location policy and endpoint ID 
components can be used by the client ORB, if present in the IOR profile, to optimize 
this algorithm.
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Current Location Policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in 
step 3 based on the location policy of the current IOR profile. If the current profile has 
a TAG_LOCATION_POLICY component with a value of LOCATE_NEVER, 
the client should perform an invoke RPC. Otherwise, it should perform a locate 
RPC.

Original Location Policy

The client ORB can use the location policy of the original IOR profile as follows to 
determine whether it is necessary to perform the location algorithm for a particular 
invocation:

• LOCATE_OBJECT or LOCATE_NEVER A binding handle previously used 
successfully to invoke an operation on an object can be reused for all operations on 
the same object. The client only needs to perform the location algorithm once per 
object.

• LOCATE_OPERATION A binding handle previously used successfully to invoke 
an operation on an object can be reused for that same operation on the same object. 
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS Binding handles should not be reused. The client needs to 
perform the location algorithm once per invocation.

Original Endpoint ID

If a component with TAG_ENDPOINT_ID is present in the original IOR profile, the 
client ORB can reuse a binding handle that was successfully used to perform an 
operation on another object with the same endpoint ID component_data value. The 
client only needs to perform the location algorithm once per endpoint.

An endpoint ID component should never be combined in the same profile with a 
location policy of LOCATE_OPERATION or LOCATE_ALWAYS.

13.7 OMG IDL for the DCE CIOP Module

This section shows the DCE_CIOP module.
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module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string endpoint_id;
string operation;
CORBA::Principal principal;
sequence <string> client_context;

// in and inout parameters follow
};

module DCE_CIOP {
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an 
// IOP::MultipleComponentsProfile follows

};

module DCE_CIOP {
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string endpoint_id;
string operation;

// no body follows
};
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module IOP {
const ComponentId TAG_OBJECT_KEY = 10;
const ComponentId TAG_ENDPOINT_ID = 11;
const ComponentId TAG_LOCATION_POLICY = 12;
const octet LOCATE_NEVER = 0;
const octet LOCATE_OBJECT = 1;
const octet LOCATE_OPERATION = 2;
const octet LOCATE_ALWAYS = 3;

};

13.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New 
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company 
Limited, Reading, UK
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Interworking Architecture 13A
The Interworking chapters describe a specification for communication between two 
similar but very distinct object management systems: Microsoft’s COM (including 
OLE) and the OMG’s CORBA. An optimal specification would allow objects from 
either system to make their key functionality visible to clients using the other system 
as transparently as possible. The architecture for Interworking is designed to meet this 
goal. 

13.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way 
communication between CORBA objects and COM objects. The goal is that objects 
from one object model should be able to be viewed as if they existed in the other 
object model. For example, a client working in a CORBA model should be able to 
view a COM object as if it were a CORBA object. Likewise, a client working in a 
COM object model should be able to view a CORBA object as if it were a COM 
object.

There are many similarities between the two systems. In particular, both are centered 
around the idea that an object is a discrete unit of functionality that presents its 
behavior through a set of fully-described interfaces. Each system hides the details of 
implementation from its clients. To a large extent COM and CORBA are semantically 
isomorphic. Much of the COM/CORBA Interworking specification simply involves a 
mapping of the syntax, structure and facilities of each to the other — a straightforward 
task.

There are, however, differences in the CORBA and COM object models. COM and 
CORBA each have a different way of describing what an object is, how it is typically 
used, and how the components of the object model are organized. Even among largely 
isomorphic elements, these differences raise a number of issues as to how to provide 
the most transparent mapping.
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13.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an application, 
which represents a point of exposure to other parts of the application, or to other 
applications. Many OLE objects are document-centric and are often (though certainly 
not exclusively) tied to some visual presentation metaphor. Historically, the typical 
domain of an COM object is a single-user, multitasking visual desktop such as a 
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to expedite 
collaboration- and information-sharing among applications using the same desktop, 
largely through user manipulation of visual elements (for example, drag-and-drop, cut-
and-paste).

From a CORBA point of view, an object is an independent component providing a 
related set of behaviors. An object is expected to be available transparently to any 
CORBA client regardless of the location (or implementation) of either the object or the 
client. Most CORBA objects focus on distributed control in a heterogeneous 
environment. Historically, the typical domain of a CORBA object is an arbitrarily 
scalable distributed network. In its current form, the main goal of CORBA is to allow 
these independent components to be shared among a wide variety of applications (and 
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be 
extended to work over a network. Also, both models are growing and evolving, and 
will probably overlap in functionally in the future. Therefore, a good interworking 
model must map the functionality of two systems to each other while preserving the 
flavor of each system as it is typically presented to a developer. 

The most obvious similarity between these two systems is that they are both based 
architecturally on objects. The Interworking Object Model describes the overlap 
between the features of the CORBA and COM object models, and how the common 
features map between the two models.

Figure 13-1 Interworking Object Model
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13.2 Interworking Object Model

13.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functionality 
that presents itself through a published interface described in terms of a well-known, 
fully-described set of interface semantics. An interface (and its underlying 
functionality) is accessed through at least one well-known, fully described form of 
request. Each request in turn targets a specific object—an object instance—based on a 
reference to its identity. That target object is then expected to service the request by 
invoking the expected behavior in its own particular implementation. Request 
parameters are object references or nonobject data values described in the object 
model’s data type system. Interfaces may be composed by combining other interfaces 
according to some well-defined composition rules. In each object system, interfaces 
are described in a specialized language or can be represented in some repository or 
library.

In CORBA, the Interworking Object Model is mapped to an architectural abstraction 
known as the Object Request Broker (ORB). Functionally, an ORB provides for the 
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Language 
(OMG IDL). 

• Instance identities, from which the ORB can then construct appropriate references 
to each object for interested clients.

A CORBA object may thereafter receive requests from interested clients that hold its 
object reference and have the necessary information to make a properly-formed request 
on the object’s interface. This request can be statically defined at compile time or 
dynamically created at run-time based upon type information available through an 
interface type repository. 

While CORBA specifies the existence of an implementation type description called 
ImplementationDef (and an Implementation Repository, which contains these type 
descriptions), CORBA does not specify the interface or characteristics of the 
Implementation Repository or the ImplementationDef. As such, implementation typing 
and descriptions vary from ORB to ORB and are not part of this specification.

13.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural 
abstraction known as the Component Object Model (COM). Functionally, COM allows 
an object to expose its interfaces in a well-defined binary form (that is, a virtual 
function table) so that clients with static compile-time knowledge of the interface’s 
structure, and with a reference to an instance offering that interface, can send it 
appropriate requests. Most COM interfaces are described in Microsoft Interface 
Definition Language (MIDL).
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COM supports an implementation typing mechanism centered around the concept of a 
COM class. A COM class has a well-defined identity and there is a repository (known 
as the system registry) that maps implementations (identified by class IDs) to specific 
executable code units that embody the corresponding implementation realizations.

COM also provides an extension called OLE Automation. Interfaces that are 
Automation-compatible can be described in Object Definition Language (ODL) and 
can optionally be registered in a binary Type Library. Automation interfaces can be 
invoked dynamically by a client having no compile-time interface knowledge through 
a special COM interface (IDispatch). Run-time type checking on invocations can be 
implemented when a Type Library is supplied. Automation interfaces have properties 
and methods, whereas COM interfaces have only methods. The data types that may be 
used for properties and as method parameters comprise a subset of the types supported 
in COM, with no support for user-defined constructed types. 

Thus, use of and interoperating with objects exposing OLE Automation interfaces is 
considerably different from other COM objects. Although Automation is implemented 
through COM, for the purposes of this document, OLE Automation and COM are 
considered to be distinct object models. Interworking between CORBA and OLE 
Automation will be described separately from interworking with the basic COM 
model.

13.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite 
similar. Roughly speaking, COM interfaces (including Automation interfaces) are 
equivalent to CORBA interfaces. In addition, COM interface pointers are very roughly 
equivalent to CORBA object references. Assuming that lower-level design details 
(calling conventions, data types, and so forth) are more or less semantically 
isomorphic, a reasonable level of interworking is probably possible between the two 
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking 
Model, shown in Figure 13-2. It shows how an object in Object System B can be 
mapped and represented to a client in Object System A. From now on, this will be 
called a B/A mapping. For example, mapping a CORBA object to be visible to a COM 
client is a CORBA/COM mapping. 
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Figure 13-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target object 
in system B, on the right. We refer to the entire conceptual entity that provides the 
mapping as a bridge. The goal is to map and deliver any request from the client 
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object 
in system A that presents the identity and interface of the target in system B mapped to 
the vernacular of system A, and is described as an A View of a B target. 

The View exposes an interface, called the View Interface, which is isomorphic to the 
target’s interface in system B. The methods of the View Interface convert requests 
from system A clients into requests on the target’s interface in system B. The View is 
a component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems. 
Conceptually, the bridge holds a reference in B for the target (although this is not 
physically required). The bridge must provide a point of rendezvous between A and B, 
and may be implemented using any mechanism that permits communication between 
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to 
preserve all relevant object semantics. 

The client treats the View as though it is the real object in system A, and makes the 
request in the vernacular request form of system A. The request is translated into the 
vernacular of object system B, and delivered to the target object. The net effect is that 
a request made on an interface in A is transparently delivered to the intended instance 
in B.
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The Interworking Model works in either direction. For example, if system A is COM, 
and system B is CORBA, then the View is called the COM View of the CORBA target. 
The COM View presents the target’s interface to the COM client. Similarly if system A 
is CORBA and system B is COM, then the View is called the CORBA View of the 
COM target. The CORBA View presents the target’s interface to the CORBA client.

Figure 13-3 shows the interworking mappings discussed in the Interworking chapters. 
They represent the following: 

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
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Figure 13-3 Interworking Mapping

Note that the division of the mapping process into these architectural components does 
not infer any particular design or implementation strategy. For example, a COM View 
and its encapsulated CORBA reference could be implemented in COM as a single 
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• Generic Mapping assumes that all interfaces can be mapped through a dynamic 
mechanism supplied at run-time by a single set of bridge components. This allows 
automatic access to new interfaces as soon as they are registered with the target 
system. This approach generally simplifies installation and change management, but 
may incur the run-time performance penalties normally associated with dynamic 
mapping.

• Interface-Specific Mapping assumes that separate bridge components are 
generated for each interface or for a limited set of related interfaces (for example, 
by a compiler). This approach generally improves performance by “precompiling” 
request mappings, but may create installation and change management problems.

13.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way 
(COM/CORBA and CORBA/COM) mapping in conformance with the previously 
described Interworking Model. However, despite many similarities, there are some 
significant differences between CORBA and COM that complicate achieving this goal. 
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distinct 
forms of interfaces, OLE Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped to 
COM single inheritance/aggregation. COM interface aggregation must be mapped 
to the CORBA multiple inheritance model.

• Identity Mapping. The explicit notion of an instance identity in CORBA must be 
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility. It may be desirable for the object model mappings to be 
invertible, but the Interworking specification does not guarantee invertibility in all 
situations.

13.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the requests 
that an object supports. OLE provides two distinct and somewhat disjointed interface 
models: COM and Automation. Each has its own respective request form, interface 
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
13A-8                                  CORBA V2.0                                  July 1996 



13A
We must also consider the bidirectional impact of a third, hybrid form of interface, the 
Dual Interface, which supports both an Automation and a COM-like interface. The 
succeeding sections summarize the main issues facing each of these mappings.

13.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for 
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map 
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interfaces.

This mapping is perhaps the most natural way to represent the interfaces of CORBA 
objects in the COM environment. In practice, however, many COM clients (for 
example, Visual Basic applications) can only bind to Automation Interfaces and cannot 
bind to the more general COM Interfaces. Therefore, providing only a mapping of 
CORBA to the COM Interfaces would not satisfy many COM/OLE clients.

13.4.2 CORBA/Automation

There is a limited fit between OLE Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, there 
are primitives in both systems (for example, the OLE CURRENCY type and the 
CORBA unsigned integral types) that must be mapped as special cases (possibly 
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation constructs. 
Since such constructed types cannot be passed as argument parameters in 
Automation interfaces, these must be simulated by providing specially constructed 
interfaces (for example, viewing a struct as an OLE object with its own interface).

• CORBA Interface Repositories can be mapped dynamically to Automation Type 
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to OLE Automation interfaces. 
All methods of the multiply-inherited interfaces could be expanded to a single 
Automation interface; however, this approach would require a total ordering over 
the methods if [dual] interfaces are to be supported. An alternative approach would 
be to map multiple inheritance to multiple Automation interfaces. This mapping, 
however, would require that an interface navigation mechanism be exposed to OLE 
Automation controllers. Currently OLE Automation does not provide a canonical 
way for clients (such as Visual Basic) to navigate between multiple interfaces.
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• CORBA attributes may be mapped to get and put properties in Automation 
interfaces. 

This form of interface mapping will place some restrictions on the types of argument 
passing that can be mapped, and/or the cost (in terms of run-time translations) incurred 
in those mappings. Nevertheless, it is likely to be the most popular form of CORBA-
to-COM interworking, since it will provide dynamic access to CORBA objects from 
Visual Basic and other OLE Automation client development environments.

13.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long long, 
and wide char) and constructed types (for example, wide string) are not currently 
supported by OMG IDL. (These data types may be added to OMG IDL in the 
future.)

• Some unions, pointer types and the SAFEARRAY type require special handling.

The COM/CORBA mapping is somewhat further complicated, by the following issues:

• Though it is less common, COM objects may be built directly in C and C++ 
(without exposing an interface specification) by providing custom marshaling 
implementations. If the interface can be expressed precisely in some COM 
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to such 
a form before any formal mapping can be constructed. If not, the interworking 
mechanism (such as the View, request transformation, and so forth) must be 
custom-built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not 
supported on certain Windows platforms; for example, MIDL is not available on 
Win16 platforms.

13.4.4 Automation/CORBA

The Automation interface model and type system are markedly constrained, bounding 
the size of the problem of mapping from OLE Automation interfaces to CORBA 
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to CORBA 
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain 
Automations types (for example, CURRENCY) do not have corresponding 
predefined CORBA types, but can easily be mapped onto isomorphic constructed 
types.

• Automation properties map to CORBA attributes.
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13.5 Interface Composition Mappings 

CORBA provides a multiple inheritance model for aggregating and extending object 
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in 
OMG IDL files or in the Interface Repository. Run-time interface evolution is possible 
by deriving new interfaces from existing ones. Any given CORBA object reference 
refers to a CORBA object that exposes, at any point in time, a single most-derived 
interface in which all ancestral interfaces are joined. The CORBA object model does 
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform 
mechanism for navigating among the interfaces that a single object supports (that is, 
the QueryInterface method). In addition, COM anticipates that the set of interfaces that 
an object supports will vary at run-time. The only way to know if an object supports an 
interface at a particular instant is to ask the object.

OLE Automation objects typically provide all Automation operations in a single 
“flattened” IDispatch interface. While an analogous mechanism to QueryInterface 
could be supported in OLE Automation as a standard method, it is not the current use 
model for OLE Automation services.2 

13.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty. 
Examination of object-oriented design practice indicates two common uses of interface 
inheritance, extending and mixing in. Inheritance may be used to extend an interface 
linearly, creating a specialization or new version of the inherited interface. Inheritance 
(particularly multiple inheritance) is also commonly used to mix in a new capability 
(such as the ability to be stored or displayed) that may be orthogonal to the object’s 
basic application function. 

Ideally, extension maps well into a single inheritance model, producing a single linear 
connection of interface elements. This usage of CORBA inheritance for specialization 
maps directly to COM; a unique CORBA interface inheritance path maps to a single 
COM interface vtable that includes all of the elements of the CORBA interfaces in the 
inheritance path.3 The use of inheritance to mix in an interface maps well into COM’s 
aggregation mechanism; each mixed-in inherited interface (or interface graph) maps to 
a separate COM interface, which can be acquired by invoking QueryInterface with the 
interface’s specific UUID.

Unfortunately, with CORBA multiple inheritance there is no syntactic way to 
determine whether a particular inherited interface is being extended or being mixed in 
(or used with some other possible design intent). Therefore it is not possible to make 

1. This is established in the CORBA 2.0 specification, Section 1.2.5, and in the Object Management Architec-
ture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-class. The “Dim 
A as new Z” statement in Visual Basic 4.0 can be used to invoke a QueryInterface for the Z interface. Many 
OLE Automation controllers, however, do not use the dual interface mechanism.
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ideal mappings mechanically from CORBA multiply-inherited interfaces to collections 
of COM interfaces without some additional annotation that describes the intended 
design. Since extending OMG IDL (and the CORBA object model) to support 
distinctions between different uses of inheritance is undesirable, alternative mappings 
require arbitrary decisions about which nodes in a CORBA inheritance graph map to 
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The 
mapping described in Section 13.5.2, Ordering Rules for the CORBA->MIDL 
Transformation, describes a compromise that balances the need to preserve linear 
interface extensions with the need to keep the number of resulting COM interfaces 
manageably small. It satisfies the primary requirement for interworking in that it 
describes a uniform, deterministic mapping from any CORBA inheritance graph to a 
composite set of COM interfaces.

COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA by 
providing a set of CORBA interfaces that can be used to manage a collection of 
multiple CORBA objects with different disjoint interfaces as a single composite unit. 
The mechanism described in OMG IDL in Section 13.2.10, Interface Mapping, is 
sufficiently isomorphic to allow composite COM interfaces to be uniformly mapped 
into composite OMG IDL interfaces with no loss of capability.

CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on 
ordering in a virtual function table. The target object implements the IDispatch 
interface as a mini interpreter and exposes what amounts to a flattened single interface 
for all operations exposed by the object. The object is not required to define an 
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are COM 
interfaces whose operations are restricted to the Automation data types. Since these are 
COM interfaces, the client can elect to call the operations directly by mapping the 
operation to a predetermined position in a function dispatch table. Since the interpreter 
is being bypassed, the same ordering problems discussed in the previous section apply 
for OLE Automation dual interfaces.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic mapping from 
the OMG IDL interface to a COM vtable. The current ordering is lexicographical by bytes in machine-col-
lating sequence.
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Automation/CORBA

OLE Automation interfaces are simple collections of operations, with no inheritance or 
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG IDL-
described interface.

13.5.2 Detailed Mapping Rules

Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL 
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to 
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to 
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for 
attributes.

• The resulting mapping of operations within an interface are ordered based upon the 
operation name. The ordering is lexicographic by bytes in machine-collating order.

• The resulting mapping of attributes within an interface are ordered based upon the 
attribute name. The ordering is lexicographic by bytes in machine-collating order. If 
the attribute is not read-only, the get_<attribute name> method immediately 
precedes the set_<attribute name> method.

Ordering Rules for the CORBA->OLE Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL 
interface deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped to 
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to 
an ODL interface which derives using single inheritance from the mapping for the 
first parent interface. The first parent interface is defined as the first interface when 
the immediate parent interfaces are sorted based upon interface repository id. The 
order of sorting is lexicographic by bytes in machine-collating order. 

• Within an interface, the mapping for operations precede the mapping for attributes.

• An OMG IDL interface’s operations are ordered in the resulting mapping based 
upon the operation name. The ordering is lexicographic by bytes in machine-
collating order.
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• An OMG IDL interface’s attributes are ordered in the resulting mapping based upon 
the attribute name. The ordering is lexicographic by bytes in machine-collating 
order. For non-read-only attributes, the [propget] method immediately precedes the 
[propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the operations 
introduced in the current interface are mapped first and ordered based on the above 
rules. After the interface’s operations are mapped, the operations are followed by 
the ordered operations from the mapping of the parent interfaces (excluding the first 
interface which was mapped using inheritance).

13.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 13-4. 

interface A {// OMG IDL
void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 13-4 OMG IDL Description with Multiple Inheritance
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Following the rules in Section 13.5.2, Ordering Rules for the CORBA->MIDL 
Transformation, the interface description would map to the Microsoft MIDL definition 
shown in Figure 13-5 and would map to the ODL definition shown in Figure 13-6.

[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{// Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB(); 

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 13-5 MIDL Description
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13.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interoperate 
across client/server boundaries (for example, a COM View created by product A can 
invoke a CORBA server created with product B, given that they both share the same 
IDL interface). To interoperate in this way, all COM Views mapped from a particular 
CORBA interface must share the same COM Interface IDs. This section describes a 
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29), 
oleautomation, dual]
interface DA : IDispatch { // 
Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571), 
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 13-6 Example: ODL Mapping for Multiple Inheritance 
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Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a 
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The 
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 128-
bit hash identifier. The least significant byte is byte 0 and the most significant byte is 
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)

10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be 
assigned to ensure that the autogenerated IIDs do not interfere with other UUID 
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01 generated COM IID
10 generated Automation IID
11 generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They are 
used only to avoid collisions in the name spaces when generating IIDs for multiple 
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (stored in 
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of a 
CORBA interface except when the repository ID is a DCE UUID and the IID being 
generated is for a COM interface (not Automation or dual). In this case, the DCE 
UUID will be used as the IID instead of the IID generated from the repository ID (this 
is done to allow CORBA server developers to implement existing COM interfaces).

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security, Inc., April 
1992.

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in the hash value and 
its popularity for creating unique keys for input text. The algorithm is designed such that on average, half of 
the output bits change for each bit change in the input. The original algorithm provides a key with uniform 
distribution in 128 bits. The modification used in this specification selects 118 bits. With a uniform distribu-
tion, the probability of drawing k distinct keys (using k distinct inputs) is n!/((n-k)!*nk), where n is the num-
ber of distinct key values (i.e., n=2118). If a million (i.e., k=106) distinct interface repository IDs are passed 
through the algorithm, the probability of a collision in any of the keys is less than 1 in 1023.
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This mechanism requires no change to IDL. However, there is an implicit assumption 
that repository IDs should be unique across ORBs for different interfaces and identical 
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across ORBs. 

Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor specific. However, 
the mapping should be the same as if the CORBA mapping of the COM interface were 
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DCE:f4f2f07c-3a95-11cf-affb-08000970dac7”
...
};

13.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 13-2 and Figure 13-3 maps a View in one 
object system to a reference in the other system. This relationship raises questions:

• How do the concepts of object identity and object life cycle in different object 
models correspond, and to the extent that they differ, how can they be appropriately 
mapped?

• How is a View in one system bound to an object reference (and its referent object) 
in the other system?

13.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impact of 
the differences between the two object models affects the transparency of presenting 
CORBA objects as COM objects or COM objects as CORBA objects. The following 
sections discuss the issues involved in mapping identities from one system to another. 
They also describe the architectural mechanics of identity mapping and binding.
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CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that explicitly 
embodies an abstraction characterized by the behavior of relevant requests. An object 
reference is defined as a name that reliably and consistently denotes a particular object. 
A useful description of a particular object in CORBA terms is an entity that exhibits a 
consistency of interface, behavior, and state over its lifetime. This description may fail 
in many boundary cases, but seems to be a reasonable statement of a common intuitive 
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is at 
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used to 
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted object’s 
state or location; if an object is passively stored when a client makes a request on a 
reference to the object, the ORB is responsible for transparently locating and 
activating the object.

• There is no notion of “connectedness” between object reference and object, nor is 
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere within 
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine whether 
both references identify the same object instance), although only a result of TRUE 
for the test is guaranteed to be reliable.

COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less clearly 
defined than under CORBA. In practice, this notion typically corresponds to an active 
instance of an implementation, but not a particular persistent state. A COM instance 
can be most precisely defined as “the entity whose interface (or rather, one of whose 
interfaces) is returned by an invocation of IClassFactory::CreateInstance.” 
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (e.g., a document 
or drawing with no contents), or they are initialized to arbitrary states; 
IClassFactory::CreateInstance has no parameters for describing initial 
state.

• The only inherently available identity or reference for a COM instance is its 
collection of interface pointers. Their usefulness for determining identity 
equivalence is limited to the scope and extent of the process they live in. There is 
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no canonical information model, visible or opaque, that defines the identity of a 
COM object. Individual COM class types may establish a strong notion of 
persistent identity, but this is not the responsibility of the COM model itself.

• There is no inherent mechanism to determine whether two interface pointers belong 
to the same COM class or not.

• The identity and management of state are generally independent of the identity and 
life cycle of COM class instances. Files that contain document state are persistent, 
and are identified within the file system’s name space. A single COM instance of a 
document type may load, manipulate, and store several different document files 
during its lifetime; a single document file may be loaded and used by multiple 
COM class instances, possibly of different types. Any relationship between a COM 
instance and a state vector is either an artifact of the particular class type, or the 
user’s imagination.

13.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in 
defining binding and life cycle management mechanisms in the Interworking models. 
Binding refers to the way in which an existing object in one system can be located by 
clients in the other system and associated with an appropriate View. Life cycle, in this 
context, refers to the way objects in one system are created and destroyed by clients in 
the other system.

Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the 
lifetimes of its clients. That is, in COM, when there are no more clients attached to an 
object, it is destroyed. If clients remain, the object cannot be removed from memory. 
Unfortunately, a reference counted lifecycle model such as COM’s has problems when 
applied to wide area networks, when network traffic is heavy, and when networks and 
routers are not fault tolerant (and thus not 100% reliable). For example, if the network 
connection between clients and the server object were down, the server would think 
that its clients had died, and would delete itself (if there were no local references to it). 
When the network connection was later restored, even just seconds later, the clients 
would then have invalid object references and would need to be restarted, or be 
prepared to handle invalid interface reference errors for the previously valid 
references. In addition, if clients exist for a server object but rarely use it, the server 
object is still required to be in memory. In large, long-running distributed systems, this 
type of memory consuming behavior is not typically acceptable.

In contrast, the CORBA Life Cycle model decouples the lifetime of the clients from 
the lifetime of the active (in-memory) representation of the persistent server object. 
The CORBA model allows clients to maintain references to CORBA server objects 
even when the clients are no longer running. Server objects can deactivate and remove 
themselves from memory whenever no clients are currently using them. This behavior 
avoids the problems and limitations introduced by distributed reference counting. 
Clients can be started and stopped without incurring expensive data reloads in the 
server. Servers can relinquish memory (but can later be restored) if they have not been 
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used recently or if the network connection is down. In addition, since the client and 
server lifetimes are decoupled, CORBA, unlike COM, has no requirement for the 
servers to constantly “ping” their clients -- a requirement of distributed reference 
counting which can become expensive across local networks and impractical across 
wide area networks.

Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing active 
objects. A single instance of a COM class can be registered in the active object 
registry. COM or Automation clients can obtain an IUnknown pointer for an active 
object with the COM GetActiveObject function or the Automation GetObject function. 
The most natural way for COM or Automation clients to access existing CORBA 
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object 
and place them in the active object registry, so that the View (and thus, the object) can 
be accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking 
solutions will not be able to map objects efficiently through the registry. This 
submission defines an interface, ICORBAFactory, which allows interworking solutions 
to provide their own name spaces through which CORBA objects can be made 
available to COM and Automation clients in a way that is similar to OLE’s native 
mechanism (GetObject). This interface is described fully in Section 13.7.3, 
ICORBAFactory Interface.

Binding COM Objects to CORBA Views

As described in Section 13.6.1, Object Identity Issues, COM class instances are 
inherently transient. Clients typically manage COM and Automation objects by 
creating new class instances and subsequently associating them with a desired stored 
state. Thus, COM objects are made available through factories. The SimpleFactory 
OMG IDL interface (described next in Section 13.7.1, SimpleFactory Interface) is 
designed to map onto COM class factories, allowing CORBA clients to create (and 
bind to) COM objects. A single CORBA SimpleFactory maps to a single COM class 
factory. The manner in which a particular interworking solution maps SimpleFactories 
to COM class factories is not specified. Moreover, the manner in which mapped 
SimpleFactory objects are presented to CORBA clients is not specified.

COM View of CORBA Life Cycle

The SimpleFactory interface in Section 13.7.1, SimpleFactory Interface, provides a 
create operation without parameters. CORBA SimpleFactory objects can be wrapped 
with COM IClassFactory interfaces and registered in the Windows registry. The 
process of building, defining, and registering the factory is implementation-specific.
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To allow COM and Automation developers to benefit from the robust CORBA 
lifecycle model, the following rules apply to COM and Automation Views of CORBA 
objects. When a COM or Automation View of a CORBA object is dereferenced and 
there are no longer any clients for the View, the View may delete itself. It should not, 
however, delete the CORBA object that it refers to. The client of the View may call the 
LifeCycleObject::remove operation (if the interface is supported) on the 
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is 
controlled by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM objects 
(equivalent to CORBA externalization). However, unlike CORBA, COM currently 
provides no general-purpose mechanism for clients to deal with server objects, such as 
databases, which are inherently persistent (i.e. they store their own state -- their state is 
not stored through an outside interface such as IPersistStorage). COM does provide 
monikers, which are conceptually equivalent to CORBA persistent object references. 
However, monikers are currently only used for OLE graphical linking. To enable COM 
developers to use CORBA objects to their fullest extent, the submission defines a 
mechanism that allows monikers to be used as persistent references to CORBA 
objects, and a new COM interface, IMonikerProvider, that allows clients to obtain an 
IMoniker interface pointer from COM and Automation Views. The resulting moniker 
encapsulates, stores, and loads the externalized string representation of the CORBA 
reference managed by the View from which the moniker was obtained. The 
IMonkierProvider interface and details of object reference monikers are described in 
Section 13.7.2, IMonikerProvider Interface and Moniker Use.

CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following 
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interfaces. 
These SimpleFactory Views of COM IClassFactories can then be installed in the 
naming service or used via factory finders. The mechanisms used to register or 
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject 
interface. In order to destroy a View for a COM or Automation object, the remove 
method of the LifeCycleObject interface must be called. Once a CORBA View is 
instantiated, it must remain active (in memory) for the lifetime of the View unless the 
COM or Automation objects supports the IMonikerProvider interface. If the COM or 
Automation object supports the IMonikerProvider interface, then the CORBA View 
can safely be deactivated and reactivated provided it stores the object’s moniker in 
persistent storage between activations. Interworking solutions are not required to 
support deactivation and activation of CORBA View objects, but are enabled to do so 
by the IMonikerProvider interface.
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13.7 Interworking Interfaces

13.7.1 SimpleFactory Interface

CORBA allows object factories to be arbitrarily defined. In contrast, COM 
IClassFactory is limited to having only one object constructor and the object 
constructor method (called CreateInstance) has no arguments for passing data during 
the construction of the instance. The SimpleFactory interface allows CORBA objects 
to be created under the rigid factory model of COM. The interface also supports 
CORBA Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with no 
initial state. In the future, CORBA objects, which can be created with no initial state, 
should provide factories, which implement the SimpleFactory interface.

13.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider 
interface. COM clients may use QueryInterface for this interface.

[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use without 
needing to keep the View in memory. The moniker returned by IMonikerProvider must 
support at least the IMoniker and IPersistStorage interfaces. To allow CORBA object 
reference monikers to be created with one COM/CORBA interworking solution and 
later restored using another, IPersist::GetClassID must return the following 
CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be four 0 
(null) bytes followed by the length in bytes of the stringified IOR (stored as a little 
endian 4-byte unsigned integer value) followed by the stringified IOR itself (without 
null terminator).
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13.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose 
the ICORBAFactory interface. This interface is designed to support general, simple 
mechanisms for creating new CORBA object instances and binding to existing 
CORBA object references by name.

interface ICORBAFactory: IUnknown 
{

HRESULT CreateObject( [in] LPTSTR factoryName, [out, 
retval] IUknown ** val);

HRESULT GetObject([in] LPTSTR objectName, [out, retval] 
IUknown ** val);
}

The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBAFactory must be registered in the Windows 
System Registry on the client machine using the following class id, class id tag, and 
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory, 
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53, 

0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object, i.e., subsequent 
calls to create the object may return the same interface pointer.

We define a similar interface, DICORBAFactory, that supports creating new CORBA 
object instances and binding to existing CORBA objects for OLE Automation clients. 
DICORBAFactory is an Automation Dual Interface. (For an explanation of 
Automation Dual interfaces, see Chapter 13C, Mapping: OLE Automation and 
CORBA.)

interface DICORBAFactory: IDispatch 
{

HRESULT CreateObject( [in] BSTR factoryName, [out,
retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for the DICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by calling 
on the client machine using the Program Id “CORBA.Factory.”
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The CreateObject and GetObject methods are intended to approximate the usage model 
and behavior of the Visual Basic CreateObject and GetObject functions.

The first method, CreateObject, causes the following actions:

• A COM View is created. The specific mechanism by which it is created is 
undefined. We note here that one possible (and likely) implementation is that the 
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryName, 
identifies the type of CORBA object to be created. Since the CreateObject method 
does not accept any parameters, the CORBA object must either be created by a null 
factory (a factory whose creation method requires no parameters), or the View must 
supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created, and 
thus implicitly identifies (directly or indirectly) the interface supported by the View. In 
general, the factoryName string takes the form of a sequence of identifiers separated 
by period characters (“.”), such as “personnel.record.person”. The intent of this name 
form is to provide a mechanism that is familiar and natural for COM and OLE 
Automation programmers by duplicating the form of OLE ProgIDs. The specific 
semantics of name resolution are determined by the implementation of the 
interworking solution. The following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameService-
based factory finder. The CORBA object would be created by invoking the factory 
create method. Internally, the interworking solution would map the factoryName 
onto the appropriate COM class ID for the View, create the View, and bind it to the 
CORBA object.

• The creation could be delegated directly to a COM class factory by interpreting the 
factoryName as a COM ProgID. The ProgID would map to a class factory for the 
COM View, and the View’s implementation would invoke the appropriate CORBA 
factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a CORBA 
object reference. The specific mechanism for associating names with references is 
not specified. In order to appear familiar to COM and Automation users, this 
parameter shall take the form of a sequence of identifiers separated by periods (.), 
in the same manner as the parameter to CreateObject. An implementation could, for 
example, choose to map the objectName parameter to a name in the OMG Naming 
Service implementation. Alternatively, an interworking solution could choose to put 
precreated COM Views bound to specific CORBA object references in the active 
object registry, and simply delegate GetObject calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and 
returned to the caller.
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Another name form that is specialized to CORBA is a single name with a preceding 
period, such as “.NameService”. When the name takes this form, the Interworking 
solution shall interpret the identifier (without the preceding period) as a name in the 
ORB Initialization interface. Specifically, the name shall be used as the parameter to an 
invocation of the CORBA::ORB::ResolveInitialReferences method on the 
ORB pseudo-object associated with the ICORBAFactory. The resulting object 
reference is bound to an appropriate COM or Automation View, which is returned to 
the caller.

13.7.4 IForeignObject Interface

As object references are passed back and forth between two different object models 
through a bridge, and the references are mapped through Views (as is the case in this 
specification), the potential exists for the creation of indefinitely long chains of Views 
that delegate to other Views, which in turn delegate to other Views, and so on. To 
avoid this, the Views of at least one object system must be able to expose the reference 
for the “foreign” object managed by the View. This exposure allows other Views to 
determine whether an incoming object reference parameter is itself a View and, if so, 
obtain the “foreign” reference that it manages. By passing the foreign reference 
directly into the foreign object system, the bridge can avoid creating View chains. 

This problem potentially exists for any View representing an object in a foreign object 
system. The IForeignObject interface is specified to provide bridges access to object 
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[ size_is(cbMaxSize), length_is(cbLengthUsed), unique ] 

long *pValue;
} objSystemIDs;
interface IForeignObject : IUnknown {

HRESULT GetForeignReference([in[ objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetRepositoryId([out] RepositoryId 
*repositoryId);

}

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to specific 
object systems. These values must be positive, unique, and publicly known. The OMG 
will manage the allocation of identifier values in this space to guarantee uniqueness. 
The value for the CORBA object system is the long value 1. The systemIDs array 
contains a list of IDs for object systems for which the caller is interested in obtaining 
a reference. The order of IDs in the list indicates the caller’s order of preference. If the 
View can produce a reference for at least one of the specified object systems, then the 
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second parameter (systemID) is the ID of the first object system in the incoming array 
that it can satisfy. The objRef out parameter will contain the object reference converted 
to a string form. Each object system is responsible for providing a mechanism to 
convert its references to strings, and back into references. For the CORBA object 
system, the string contains the IOR string form returned by 
CORBA::ORB::object_to_string, as defined in the CORBA 2.0 specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation of 
object references. Therefore, it is impossible to reliably map any given ORB’s 
object references onto a fixed OLE Automation parameter type.

• The object reference being returned from GetForeignObject may be from a different 
ORB than the caller. IORs in string form are the only externalized standard form of 
object reference supported by CORBA.

The purpose of the GetRepositoryID method is to support the ability of DICORBAAny 
(see Section 13.1.13, Mapping for anys) when it wraps an object reference, to produce 
a type code for the object when asked to do so via DICORBAAny’s readonly typeCode 
property.

It is not possible to provide a similar inverse interface exposing COM references to 
CORBA clients through CORBA Views, because of limitations imposed by COM’s 
View of object identity and use of interface pointer as references. 

13.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views, 
allowing COM clients to have access to operations on the CORBA object references, 
defined on the CORBA::Object pseudo-interface. The ICORBAObject interface 
can be obtained by COM clients through QueryInterface. ICORBAObject is defined as 
follows:

interface ICORBAObject: IUnknown 
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID, [out] boolean);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,[out] boolean * 

val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

}

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}
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Automation controllers gain access to operations on the CORBA object reference 
interface through the Dual Interface DIORBObject::GetCORBAObject method 
described next.

interface DICORBAObject: IDispatch 
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval] 

boolean);
HRESULT IsNil([out, retval] boolean *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

boolean * val);
HRESULT NonExistent([out,retval] boolean *val);
HRESULT Hash([out, retval] long *val);

}

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

13.7.6 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to the 
operations on the ORB pseudo-object.

The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[ size_is(cbMaxSize), length_is(cbLengthUsed), unique ]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj, [out] LPSTR
*val);
HRESULT StringToObject([in] LPTSTR ref, [out] IUnknown
*val);
HRESULT GetInitialReferences([out], CORBA_ORBObjectIdList
*val);
HRESULT ResolveInitialReference([in] LPTSTR name, [out]
IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}
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A reference to this interface is obtained by calling 
ICORBAFactory::GetObject(”CORBA.ORB.2”).

The methods of DIORBObject delegate their function to the similarly-named 
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface:

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj, [out,retval]
BSTR *val);
HRESULT StringToObject([in] BSTR ref, [out,retval] 
IDispatch * val);
HRESULT GetInitialReferences([out, retval] 
SAFEARRAY(IDispatch *) *val);
HRESULT ResolveInitialReference([in] BSTR name, [out,
retval] IDispatch ** val));
HRESULT GetCORBAObject([in] IDispatch* obj, [out, retval]
DICORBAObject * val);

}

The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling 
DICORBAFactory::GetObject(”CORBA.ORB.2”).

This interface is very similar to IORBObject, except for the additional method 
GetCORBAObject. This method returns an IDispatch pointer to the DICORBAObject 
interface associated with the parameter Object. This operation is primarily provided to 
allow Automation controllers (i.e. Automation clients) that cannot invoke 
QueryInterface on the View object to obtain the ICORBAObject interface.

13.7.7 Naming Conventions for View Components

Naming the COM View Interface Id

The default tag for the COM View’s Interface Id (IID) should be: 

IID_I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is 
“MyInterface” then the default IID tag should be:

IID_IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default 
tag should be:
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IID_I<module name>_<module name>_...<module name>_<interface 
name>

where the module names read from outermost on the left to innermost on the right. 
Extending our example, if module “MyModule” were nested within module 
“OuterModule,” then the default IID tag shall be:

IID_IOuterModule_MyModule_MyInterface

Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client 
programs written in Automation controller environments such as Visual Basic are not 
expected to explicitly use the UUID value.

Naming the COM View Interface

The default name of the COM View’s Interface should be: 

I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is 
“MyInterface,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default 
name should be:

I<module name>_<module name>_...<module name>_<interface 
name>

where the module names read from outermost on the left to innermost on the right. 
Extending our example, if module “MyModule” were nested within module 
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_MyInterface

Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be: 

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is 
“MyInterface,” then the default name should be:

DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default 
name should be:
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D<module name>_<module name>_...<module name>_<interface 
name>

where the module names read from outermost on the left to innermost on the right. 
Extending our example, if module “MyModule” were nested within module 
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be: 

DI<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is 
“MyInterface,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default 
name should be:

DI<module name>_<module name>_...<module name>_<interface 
name>

where the module names read from outermost on the left to innermost on the right. 
Extending our example, if module “MyModule” were nested within module 
“OuterModule,” then the default name shall be:

DIOuterModule_MyModule_MyInterface

Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Program 
Id for that class shall be:

<module name> “.” <module name> “.” ...<module name> “.” 
<interface name>

where the module names read from outermost on the left to innermost on the right. In 
our example, the default Program Id shall be:

“OuterModule.MyModule.MyInterface”

Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then the 
default tag for the COM Class Id (CLSID) for that class should be:
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CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the right. In 
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

13.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in its 
currently released form) does not include any mechanism for distribution. CORBA 
specifications define a distribution architecture, including a standard protocol (IIOP) 
for request messaging. Consequently, the CORBA architecture, specifications, and 
protocols shall be used for distribution.

13.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking 
mechanism delivered on a COM client node to interoperate correctly with any CORBA 
2.0-compliant components that use the same interface specifications. Compliant 
interworking solutions must appear, for all intents and purposes, to be CORBA object 
implementations and/or clients to other CORBA clients, objects, and services on an 
attached network. 

Figure 13-7 Bridge Locality

Figure 13-7 illustrates the required locality for interworking components. All of the 
transformations between CORBA interfaces and COM interfaces described in this 
submission will take place on the node executing the COM environment. Mapping 
agents (COM views, CORBA views, and bridging elements) will reside and execute on 
the COM client node. This requirement allows compliant interworking solutions to be 
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localized to a COM client node, and to interoperate with any CORBA V2.0-compliant 
networking ORB that shares the same view of interfaces with the interworking 
solution.

13.8.2 Distribution Architecture

External communications between COM client machines, and between COM client 
machines and machines executing CORBA environments and services, will follow 
specifications contained in CORBA V2.0.  Figure 13-7 illustrates the required 
distribution architecture. The following statements articulate the responsibilities of 
compliant solutions.

• All externalized CORBA object references will follow CORBA V2.0 specifications 
for Interoperable Object References (IORs). Any IORs generated by components 
performing mapping functions must include a valid IIOP profile. 

• The mechanisms for negotiating protocols and binding references to remote objects 
will follow the architectural model described in CORBA V2.0. 

• A product component acting as a CORBA client may bind to an object by using any 
profile contained in the object’s IOR. The client must, however, be capable of 
binding with an IIOP profile. 

• Any components that implement CORBA interfaces for remote use must support 
the IIOP.

13.9 Interworking Targets

This specification is targeted specifically at interworking between the following 
systems and versions:

• CORBA as described in CORBA V2.0: Common Object Request Broker 
Architecture and Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries. 

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB 
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL 
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage model for 
Automation Views follows the Automation controller behavior established by Visual 
Basic 4.0.

13.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the 
Interworking specification, and provides compliance points. For general information 
about compliance to CORBA specifications, refer to Section 0.6, Definition of 
CORBA Compliance.
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13.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide 
range of products. This specification is not intended to cover all possible products that 
facilitate or use COM and CORBA mechanisms together. This Interworking 
specification defines three distinct categories of software products, each of which are 
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

Interworking Solutions

Products that facilitate the development of software that will bidirectionally transform 
COM and/or Automation invocations into isomorphic CORBA invocations (and vice 
versa) in a generic way are Interworking Solutions. An example of this kind of 
software would be a language processor that parses OMG IDL specifications and 
automatically generates code for libraries that map the OMG IDL interfaces into OLE 
Automation interfaces and which also parses OLE Automation ODL and automatically 
generates code for libraries that map the OLE Automation interfaces into CORBA 
interfaces. Another example would be a generic bridging component that, based on 
run-time interface descriptions, interpretively maps both COM and CORBA 
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped 
interfaces are transformed as described in this specification, and if the mapped 
interfaces support all of the features and interface components required by this 
specification.

A compliant Interworking Solution must designate whether it is a compliant 
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA 
Interworking Solution.

Mapping Solutions

Products that facilitate the development of software that will unidirectionally transform 
COM and/or Automation invocations into isomorphic CORBA invocations (and vice 
versa) in a generic way are described as Mapping Solutions. An example of this kind 
of software would be a language processor that parses OMG IDL specifications and 
automatically generates code for libraries that map the OMG IDL interfaces into OLE 
Automation interfaces. Another example would be a generic bridging component that 
interpretively maps OLE Automation invocations onto CORBA objects based on run-
time interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the 
resulting mapped interfaces are transformed as described in this specification, and if 
the mapped interfaces support all of the features and interface components required in 
this specification.
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A compliant Mapping Solution must designate whether it is a compliant COM to 
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution, a 
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to 
Automation Mapping Solution.

Mapped Components

Applications, components or libraries that expose a specific, fixed set of interfaces 
mapped from CORBA to COM or Automation (and/or vice versa) are described as 
Mapped Components. An example of this kind of product would be a set of business 
objects defined and implemented in CORBA that also expose isomorphic OLE 
Automation interfaces.

This type of product will be considered a compliant Mapped Component if the 
interfaces it exposes are mapped as described in this specification, and if the mapped 
interfaces support all of the features and interface components required in this 
specification.

13.10.2 Compliance Points 

The intent of this submission is to allow the construction of implementations that fit in 
the design space described in Section 13.2, Interworking Object Model, and yet 
guarantee interface uniformity among implementations with similar or overlapping 
design centers. This goal is achieved by the following compliance statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM 
and/or Automation interfaces, the mapping of COM and/or Automation interfaces 
onto isomorphic CORBA interfaces, or when a product offers the ability to 
automatically generate components that perform such mappings, then the product 
must use the interface mappings defined in this specification. Note that products 
may offer custom, nonisomorphic interfaces that delegate some or all of their 
behavior to CORBA, COM, or Automation objects. These interfaces are not in the 
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required to 
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject, 
defined in Section 13.7.5, ICORBAObject Interface, and Section 13.7.6, 
IORBObject Interface, respectively. 

• Interworking solutions that expose Automation Views of CORBA objects are 
required to expose the CORBA-specific Automation Dual interfaces 
DICORBAObject and DIORBObject, defined in Section 13.7.5, ICORBAObject 
Interface, and Section 13.7.6, IORBObject Interface, respectively. 

• OMG IDL interfaces exposed as COM or Automation Views are not required to 
provide type library and registration information in the COM client environment 
where the interface is to be used. If such information is provided, however, then it 
must be provided in the prescribed manner.
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• Each COM and Automation View must map onto one and only one CORBA object 
reference, and must also expose the IForeignObject interface, described in Section 
13.7.4, IForeignObject Interface. This constraint guarantees the ability to obtain an 
unambiguous CORBA object reference from any COM or Automation View via the 
IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall do 
so as specified in Section 13.7.2, IMonikerProvider Interface and Moniker Use.

• All COM interfaces specified in this submission have associated COM Interface 
IDs. Compliant interworking solutions must use the IIDs specified herein, to allow 
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the 
CORBA 2.0 Internet Inter-ORB Protocol (IIOP), and use the interoperability 
architecture described in CORBA 2.0 in the manner prescribed in Section 13.8, 
Distribution. Interworking solutions are free to use any additional proprietary or 
public protocols desired.

• Interworking solutions that expose COM Views of CORBA objects are required to 
provide the ICORBAFactory object as defined in Section 13.7.3, ICORBAFactory 
Interface.

• Interworking solutions that expose Automation Views of CORBA objects are 
required to provide the DICORBAFactory object as defined in Section 13.7.3, 
ICORBAFactory Interface.

• Interworking solutions that expose CORBA Views of COM or Automation objects 
are required to derive the CORBA View interfaces from 
CosLifeCycle::LifeCycleObject as described in CORBA View of 
COM/Automation Life Cycle, under Section 13.6.3.
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This chapter describes the data type and interface mapping between COM and 
CORBA. The mappings are described in the context of both Win16 and Win32 COM 
due to the differences between the versions of COM and between the automated tools 
available to COM developers under these environments. The mapping is designed to be 
able to be fully implemented by automated interworking tools.

13.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL (a 
derivative of DCE IDL). COM interfaces using “custom marshalling” must be hand-
coded and require special treatment to interoperate with CORBA using automated 
tools. This specification does not address interworking between CORBA and custom- 
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL since 
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The 
ODL data type model was chosen since it is the only standard, high-level 
representation available to COM object developers on Win16.

Note that although the MIDL and ODL data type models are used as the reference for 
the data model mapping, there is no requirement that either MIDL or ODL be used to 
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data types. 
However, in cases without exact mappings, run-time conversion errors may occur. 
Conversion errors will be discussed in Mapping for Exception Types under Section 
13.2.10.
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13.2 CORBA to COM Data Type Mapping

13.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types 
available in Microsoft IDL as shown in Table 13-1.

13.2.2 Mapping for Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost 
exactly the same. The following OMG IDL definitions for constants:

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

maps to the following the following Microsoft IDL and ODL definitions for constants:

Table 13-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1 character 
set

boolean boolean boolean 8-bit quantity which is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not undergo 
any conversion during transfer between systems.
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// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

Note that OMG IDL supports the definition of constants for the data types float and 
double, while COM does not. Because of this, any tool that generates Microsoft IDL 
or ODL from OMG IDL should raise an error when a float or double constant is 
encountered.

13.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL and 
ODL support enumerators that are explicitly tagged with values. The constraint is that 
any language mapping that permits two enumerators to be compared or defines 
successor or predecessor functions on enumerators must conform to the ordering of the 
enumerators as specified in the OMG IDL.

// OMG IDL
enum A_or_B_or_C {A, B, C};

CORBA enumerators are mapped to COM enumerations directly as per the CORBA C 
language binding. The Microsoft IDL keyword v1_enum is required in order for an 
enumeration to be transmitted as 32-bit values. Microsoft recommends that this 
keyword be used on 32-bit platforms, since it increases the efficiency of marshalling 
and unmarshalling data when such an enumerator is embedded in a structure or union.

// Microsoft IDL and ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C } 
A_or_B_or_C;

A maximum of 2ˆ32 identifiers may be specified in an enumeration in CORBA. 
Enumerators in Microsoft IDL and ODL will only support 2ˆ16 identifiers, and 
therefore, truncation may result.

13.2.4 Mapping for String Types

CORBA currently defines the data type string to represent strings that consist of 
8-bit quantities, which are NULL-terminated.
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Microsoft IDL and ODL define a number of different data types which are used to 
represent both 8-bit character strings and strings containing wide characters based on 
Unicode.

Table 13-2 illustrates how to map the string data types in OMG IDL to their 
corresponding data types in both Microsoft IDL and ODL.

If a BSTR containing embedded nulls is passed to a CORBA server, the COM client 
will receive an E_DATA_CONVERSION.

OMG IDL supports two different types of strings: bounded and unbounded. Bounded 
strings are defined as strings that have a maximum length specified, whereas 
unbounded string do not have a maximum length specified.

Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UNBOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the type 
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a 
one-dimensional null-terminated character array whose extent and number of valid 
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft 
IDL and ODL. The following OMG IDL definition for a bounded string:

Table 13-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG IDL Microsoft IDL Microsoft 
ODL

Description

string LPSTR, char * LPSTR Null terminated 8-bit character string

LPTSTR LPTSTR Null terminated 8-bit or Unicode 
string (depends upon compiler flags 
used)
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// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”  

// Microsoft IDL and ODL
  const long N = ... ;
  typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compile time, and the number 
of valid characters can vary at run-time.

13.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordered set 
of name-value pairs representing the member types and names. A structure defined in 
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each member 
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE

{
T0 m0;
T1 ml;
T2 m2;

       ...
Tn mN;

 };

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as 
follows.
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// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
...
typedef ... Tn;
typedef struct
 {
   T0 m0;
      Tl ml;

T2 m2;
       ...
      TN mN;
     } STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
sequence<A> v1;
};

is mapped as:

typedef struct A {
struct { // MIDL
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;
} v1;
} A;

13.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminator 
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The 
discriminator tag must be a previously defined long, short, unsigned long, 
unsigned short, char, boolean, or enum constant. The default case can appear 
at most once in the definition of a discriminated union, and case labels must match or 
be automatically castable to the defined type of the discriminator.
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The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR
     {

dChar,
dShort,
dLong,
dFloat,
dDouble
};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble

} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
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default: byte v[8];
}UNION_OF_CHAR_AND_ARITH

13.2.7 Mapping for Sequence Types

OMG IDL defines the keyword sequence to be a one-dimensional array with two 
characteristics: an optional maximum size which is fixed at compile time, and a length 
that is determined at run-time. Like the definition of strings, OMG IDL allows 
sequences to be defined in one of two ways: bounded and unbounded. A sequence is 
bounded if a maximum size is specified, else it is considered unbounded.

Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of type T

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct
    {

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microsoft 
IDL or ODL struct containing a unique pointer to a conformant array of type U, where 
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsoft 
IDL/ODL mapping is necessary to provide a scope in which extent and data bounds 
can be defined.

Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type T 
which can grow to be N size

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:
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// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
typedef struct

{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

13.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and 
ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL 
map bidirectionally to COM fixed length arrays. The type of the array elements is 
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type U 
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG IDL 
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of any 
integral type, and const means (as in OMG IDL) that the value of N is fixed and 
known at IDL compilation time. The generalization to multidimensional arrays follows 
the obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to 
be byte in Microsoft IDL or ODL. That is why the types of the array elements have 
different names in the two texts.

13.2.9 Mapping for the any Type

The CORBA any type permits the specification of values that can express any OMG 
IDL data type. There is no direct or simple mapping of this type into COM, thus we 
map it to the following interface definition:
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// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {

anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag 
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09) ]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val );
HRESULT _put_value([in] VARIANT   val );
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val );
HRESULT _put_CORBAAnyData([in] CORBAAnyData val );
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc );
}

However, the data types that can be included in a VARIANT are too restrictive to 
represent the data types that can be included in an any, such as structs and unions. In 
cases where the data types can be represented in a VARIANT, they will be; in other 
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cases, they will optionally be returned as an IStream pointer in the VARIANT. An 
implementation may choose not to represent these types as an IStream, in which case 
an SCODE value of E_DATA_CONVERSION is returned when the VARIANT is 
requested.

13.2.10 Interface Mapping

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces. 
These allow the client code to retrieve information about, or to inquire about other 
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique 
identifier for, among other things, an interface. COM identifies interfaces using a 
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32) 
known as an IID. As with CORBA, COM specifies that the textual names of interfaces 
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorithm 
for creating the mapping is detailed in Section 13.5.4, Mapping Interface Identity.

Mapping for Exception Types

The CORBA object model uses the concept of exceptions to report error information. 
Additional, exception-specification information may accompany the exception. The 
exception-specific information is a specialized form of a record. Because it is defined 
as a record, the additional information may consist of any of the basic data types or a 
complex data type constructed from one or more basic data types. Exceptions are 
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return result of 
type HRESULT. A COM HRESULT with a value of zero indicates success. The 
HRESULT then can be converted into an SCODE (the SCODE is explicitly specified 
as being the same as the HRESULT on Win32 platforms). The SCODE can then be 
examined to determine whether the call succeeded or failed. The error or success code, 
also contained within the SCODE, is composed of a “facility” major code (13 bits on 
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception data 
to the client. Also, there is no standard mechanism in COM to specify the completion 
status of an invocation. In addition, it is not possible to predetermine what set of errors 
a COM interface might return based on the definition of the interface as specified in 
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can be 
returned from a COM operation must be fixed when the operation is defined, there is 
currently no machine-readable way to discover the set of valid codes.
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Since the CORBA exception model is significantly richer than the COM exception 
model, mapping CORBA exceptions to COM requires an additional protocol to be 
defined for COM. However, this protocol does not violate backwards compatibility, 
nor does it require any changes to COM. To return the User Exception data to a COM 
client, an optional parameter is added to the end of a COM operation signature when 
mapping CORBA operations, which raise User Exceptions. System exception 
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORBA 
specification and are used by the Object Request Broker (ORB) and object adapters 
(OA). Standard exceptions may be returned as a result of any operation invocation, 
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is generating 
an appropriate HRESULT for the operation to return. The other aspect is conveying 
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM View 
when a CORBA System Exception is raised. Each of the CORBA System Exceptions 
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower 16 
bits) of the HRESULT. Because these errors are interface-specific, the COM facility 
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion status 
of the CORBA request. The bit value 00 indicates that the operation did not complete, 
a bit value of 01 indicates that the operation did complete, and a bit value of 02 
indicates that the operation may have completed. Table 13-3 lists the HRESULT 
constants and their values.

Table 13-3 Standard Exception to SCODE Mapping

HRESULT Constant HRESULT 
Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202

ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203
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HRESULT Constant HRESULT 
Value

ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

Table 13-3 Standard Exception to SCODE Mapping
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HRESULT Constant HRESULT 
Value

ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

Table 13-3 Standard Exception to SCODE Mapping
13B-14                                  CORBA V2.0                                  July 1996 



13B
It is not possible to map a System Exception’s minor code and RepositoryId into the 
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writing 
the exception information to an OLE Error Object is optional. However, if the Error 
Object is used for this purpose, it must be done according to the following 
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo 
such that the View can respond affirmatively to an inquiry from the client as to 
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo 
pointer parameter when the mapped CORBA operation is completed without an 
exception being raised. Calling SetErrorInfo in this fashion assures that the Error 
Object on that thread is thoroughly destroyed.

The properties of the OLE Error Object must be set according to Table 13-4.

Table 13-4 Error Object Usage for CORBA System Exceptions

HRESULT Constant HRESULT 
Value

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA 
interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code 
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of 
the CORBA system exception. <completion status> is “YES,” “NO,” 
or “MAYBE” based upon the value of the system exception’s CORBA 
completion status. Spaces and square brackets are literals and must 
be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface

Table 13-3 Standard Exception to SCODE Mapping
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A COM View supporting error objects would have code, which approximates the 
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error 
object
try 
{

// Call the CORBA operation
}
catch(...) 
{

...
       

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...); 
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

 ->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

       
...

}

A client to a COM View would access the OLE Error Object with code approximating 
the following.
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// After obtaining a pointer to an interface on
// the COM View, the 
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
                                        &pISupportErrorInfo);  
    
hr = pISupportErrorInfo

->InterfaceSupportsErrorInfo(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...
 
if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR 

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

          
// Has repository id & minor code. hrOperation (above)
// has the completion status encoded into it.
pIErrorInfo->GetDescription(...); 

}
}

The COM client program could use C++ exception handling mechanisms to avoid 
doing this explicit check after every call to an operation on the COM View.

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in an 
object server to report operation-specific errors. The definition of a User Exception is 
identified in an OMG IDL file with the keyword exception. The body of a User 
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to describe 
various information about the exception — hereafter called an Exception structure. The 
structure contains members, which indicate the type of the CORBA exception, the 
identifier of the exception definition in a CORBA Interface Repository, and interface 
pointers to User Exceptions. The name of the structure is constructed from the name of 
the CORBA module in which the exception is defined (if specified), the name of the 
interface in which the exception is either defined or used, and the word “Exceptions.” 
A template illustrating this naming convention is as follows.
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// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION} 

ExceptionType;

typedef struct
{

ExceptionType    type;
LPTSTR      repositoryId;

<ModuleName><InterfaceName>UserException 
*....piUserException;

} <ModuleName><InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as the last 
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises a 
User Exception. The Exceptions structure is always passed by indirect reference. 
Because of the memory management rules of COM, passing the Exceptions structure 
as an output parameter by indirect reference allows the parameter to be treated as 
optional by the callee. The following example illustrates this point.

// Microsoft IDL
interface IAccount

{
    HRESULT Withdraw( [in] float fAmount,

[out] float pfNewBalance,
[out] BankExceptions  

** ppException);
  };

The caller can indicate that no exception information should be returned, if an 
exception occurs, by specifying NULL as the value for the Exceptions parameter of the 
operation. If the caller expects to receive exception information, it must pass the 
address of a pointer to the memory in which the exception information is to be placed. 
COM’s memory management rules state that it is the responsibility of the caller to 
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the callee is 
to return exception information, the callee is responsible for allocating any memory 
used to hold the exception information being returned. If no exception is to be 
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of the 
HRESULT to the callee, indicating the operation succeeded. The value of the 
HRESULT returned to the callee when a CORBA exception has been raised depends 
upon the type of exception being raised and whether an Exception structure was 
specified by the caller.
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The following OMG IDL statements show the definition of the format used to 
represent User Exceptions

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };

. ..
interface Account

     {
exception NotAuthorized { };
float Deposit( in  float  Amount )

raises( InvalidAmount );
float Withdraw( in  float  Amount )

raises( InvalidAmount, NotAuthorized );
};

};

and map to the following statements in Microsoft IDL and ODL.
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//  Microsoft IDL and ODL
struct BankInsufFunds

{
float balance;
};

struct BankInvalidAmount
{
float amount;
};

struct BankAccountNotAuthorized
{
};

interface IBankAccountUserExceptions : IUnknown
{
HRESULT get_InsufFunds( [out]  BankInsufFunds

* exceptionBody );
HRESULT get_InvalidAmount( [out]  BankInvalidAmount 

* exceptionBody );
HRESULT get_NotAuthorized( [out] 

BankAccountNotAuthorized 
* exceptionBody );

};

typedef struct
{
ExceptionType      type;
LPTSTR      repositoryId;
IBankAccountUserExceptions * piUserException;

}  BankAccountExceptions;

User exceptions are mapped to a COM interface and a structure which describes the 
body of information to be returned for the User Exception. A COM interface is defined 
for each CORBA interface containing an operation that raises a User Exception. The 
name of the interface defined for accessing User Exception information is constructed 
from the fully scoped name of the CORBA interface on which the exception is raised. 
A structure is defined for each User Exception, which contains the body of information 
to be returned as part of that exception. The name of the structure follows the naming 
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA interface 
is mapped into an operation on the Exception interface. The name of the operation is 
constructed by prefixing the name of the exception with the string “get_”. Each 
accessor operation defined takes one output parameter in which to return the body of 
information defined for the User Exception. The data type of the output parameter is a 
structure that is defined for the exception. The operation is defined to return an 
HRESULT value.
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If a CORBA User Exception is to be raised, the value of the HRESULT returned to the 
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, the 
callee must allocate the memory to hold the exception information and fill in the 
Exceptions structure as in Table 13-5.

When data conversion errors occur while mapping the data types between object 
models (during a call from a COM client to a CORBA server), an HRESULT with the 
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to 
the client.

Mapping User Exceptions: A Special Case

If a CORBA operation raises only one User Exception, and it is the COM_ERROR 
User Exception (defined under Section 13.3.10, Mapping for COM Errors), then the 
mapped COM operation should not have the additional parameter for exceptions. This 
proviso enables a CORBA implementation of a preexisting COM interface to be 
mapped back to COM without altering the COM operation’s original signature. 

COM_ERROR is defined as part of the CORBA to COM mapping. However, this 
special rule in effect means that a COM_ERROR raises clause can be added to an 
operation specifically to indicate that the operation was originally defined as a COM 
operation.

Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface 
definitions. The definition of an operation constitutes the operations signature. An 
operation signature consists of the operation’s name, parameters (if any), and return 
value. Optionally, OMG IDL allows the operation definition to indicate exceptions that 
can be raised, and the context to be passed to the object as implicit arguments, both of 
which are considered part of the operation.

OMG IDL parameter directional attributes in, out, inout map directly to Microsoft 
IDL and ODL parameter direction attributes [in], [out], [in,out]. Operation 
request parameters are represented as the values of in or inout parameters in OMG 

Table 13-5 User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that is 
being raised. Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the 
exception definition.

piUserException Points to an interface with which to obtain 
information about the User Exception raised.
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IDL, and operation response parameters are represented as the values of inout or 
out parameters. An operation return result can be any type that can be defined in 
OMG IDL, or void if a result is not returned.

The OMG IDL sample (next) shows the definition of two operations on the Bank 
interface. The names of the operations are bolded to make them stand out. Operations 
can return various types of data as results, including nothing at all. The operation 
Bank::Transfer is an example of an operation that does not return a value. The 
operation Bank::OpenAccount returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank "IDL:BANK/Bank:1.2"

interface Bank
{
Account OpenAccount( in float StartingBalance,

in AccountTypes AccountType);
void Transfer( in Account Account1,

in Account Account2,
in float         Amount)

raises(InSufFunds);
};

The operations defined in the preceding OMG IDL code is mapped to the following 
lines of Microsoft IDL code

// Microsoft IDL
[ object, uuid(682d22fb-78ac-0000-0c03-4d0000000000), 
pointer_default(unique) ]
interface IBank : IUnknown
    {
    HRESULT  OpenAccount( [in]   float    StartingBalance,

[in]   AccountTypes AccountType,
[out] IAccount   ** ppiNewAccount ); 

    HRESULT  Transfer( [in]IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,
   [out] IBankUserExceptions

** ppiUserException);
    };

and to the following statements in Microsoft ODL.
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// Microsoft ODL
[ uuid(682d22fb-78ac-0000-0c03-4d0000000000) ]
interface IBank: IUnknown
    {
    HRESULT OpenAccount([in] float      StartingBalance,

[in] AccountTypes     AccountType,
[out, retval] IAccount 

** ppiNewAccount );
    HRESULT Transfer( [in] IAccount * Account1,
 [in] IAccount  * Account2,
 [in] float   Amount,

[out]IBankUserExceptions 
** ppiUserException);

  };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is 
identical to the order in which parameters are specified in the text of the operation 
definition in OMG IDL. The COM mapping of all CORBA operations must obey the 
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is 
different from the signature of the same operation in Microsoft IDL or ODL. In 
particular, the result value returned by an operation defined in OMG IDL will be 
mapped as an output argument at the end of the signature when specified in Microsoft 
IDL or ODL. This allows the signature of the operation to be natural to the COM 
developer. When a result value is mapped as an output argument, the result value 
becomes an HRESULT. Without an HRESULT return value, there would be no way for 
COM to signal errors to clients when the client and server are not collocated. The 
value of the HRESULT is determined based on a mapping of the CORBA exception, if 
any, that was raised.

It is also important to note that if any user’s exception information is defined for the 
operation, an additional parameter is added as the last argument of the operation 
signature. The user exception parameter follows the return value parameter, if both 
exist. See Mapping for Exception Types under Section 13.2.10 for further details.

Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the 
communication service must provide for an operation. This indication is done through 
the use of an operation attribute. Currently, the only operation attribute defined by 
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which 
does not guarantee delivery of the request. Best-effort implies that the operation will 
be invoked, at most, once. Along with the invocation semantics, the use of the oneway 
operation attribute restricts an operation from having output parameters, must have no 
result value returned, and cannot raise any user-defined exceptions.
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It may seem that the Microsoft IDL maybe operation attribute provides a closer match 
since the caller of an operation does not expect any response. However, Microsoft RPC 
maybe does not guarantee at most once semantics, and therefore is not sufficient. 
Because of this, the mapping of an operation defined in OMG IDL with the oneway 
operation attribute maps the same as an operation that has no output arguments.

Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentially 
a short-hand for a pair of accessor functions to an object’s data; one to retrieve the 
value and possibly one to set the value of the attribute. The definition of an attribute 
must be contained within an interface definition and can indicate whether the value of 
the attribute can be modified or just read. In the example OMG IDL next, the attribute 
Profile is defined for the Customer interface and the read-only attribute is Balance 
defined for the Account interface. The keyword attribute is used by OMG IDL to 
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-defined 
exceptions. Because of this, the implementation of an attribute’s accessor function is 
limited to only raising system exceptions. The value of the HRESULT is determined 
based on a mapping of the CORBA exception, if any, that was raised.
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// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};

#pragma ID::BANK::Account "IDL:BANK/Account:3.1"

interface Account
        {
        readonly attribute float Balance;
       float Deposit(in float amount) raises(InvalidAmount);
        float Withdrawal(in float amount) raises(InsufFunds, InvalidAmount);
        float Close( );
        };

#pragma ID::BANK::Customer "IDL:BANK/Customer:1.2"

    interface Customer
        {
        attribute CustomerData  Profile;
        };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the name 
of the get accessor is the same as the name of the attribute prefixed with _get_ in 
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL. The 
name of the put accessor is the same as the name of the attribute prefixed with _put_ 
in Microsoft IDL and contains the operation attribute [propput] in Microsoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: one to 
retrieve the value and one to set the value of the attribute unless the keyword readonly 
precedes the attribute keyword. In the preceding example, the attribute Profile is 
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[ object, uuid(682d22fb-78ac-0000-0c03-4d0000000000), 
pointer_default(unique) ]
interface ICustomer : IUnknown
    {
    HRESULT  _get_Profile( [out]  CustomerData  * Profile );
    HRESULT  _put_Profile( [in]  CustomerData  * Profile );
    };

Profile is mapped to these statements in Microsoft ODL.
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// Microsoft ODL
[ uuid(682d22fb-78ac-0000-0c03-4d0000000000) ]
interface ICustomer : IUnknown
    {
    [propget]  HRESULT  Profile( [out]  CustomerData  

* Profile );
    [propput]  HRESULT  Profile( [in]  CustomerData  

* Profile );
    };

Note that the attribute is actually mapped as two different operations in both Microsoft 
IDL and ODL. The ICustomer::Get_Profile, in Microsoft IDL operations and the 
[propget] Profile, in Microsoft ODL operations are used to retrieve the value of the 
attribute. The ICustomer::Set_Profile operation is used to set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keyword readonly is interpreted as only 
supporting a single accessor function used to retrieve the value of the attribute. In the 
previous example, the mapping of the attribute Balance is mapped to the following 
statements in Microsoft IDL.

// Microsoft IDL
[ object, uuid(682d22fb-78ac-0000-0c03-4d0000000000) ]
interface IAccount: IUnknown
    {
    HRESULT _get_Balance([out] float Balance);
   };

and the following statements in Microsoft ODL.

// Microsoft ODL
[ uuid(682d22fb-78ac-0000-0c03-4d0000000000) ]
interface IAccount: IUnknown
    {
    [propget] HRESULT Balance([out] float Balance);
    };

Note that only a single operation was defined since the attribute was defined to be 
read-only.

13.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the 
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces. In 
language bindings supporting typed object references, widening and narrowing support 
convert object references as allowed by the true type of that object.
13B-26                                  CORBA V2.0                                  July 1996 



13B
However, there is no built-in mechanism in CORBA to access interfaces without an 
inheritance relationship. The run-time interfaces of an object, as defined in CORBA 2.0 
(for example, CORBA::Object::is_a, CORBA::Object::get_interface) 
use a description of the object’s principle type, which is defined in OMG IDL. CORBA 
allows many ways in which implementations of interfaces can be structured, including 
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to 
CORBA, there is a standard mechanism by which an object can have multiple 
interfaces (without an inheritance relationship between those interfaces) and by which 
clients can query for these at run-time. (It defines no common way to determine if two 
interface references refer to the same object, or to enumerate all the interfaces 
supported by an entity.)

An observation about COM is that some COM objects have a required minimum set of 
interfaces, which they must support. This type of statically defined interface relation is 
conceptually equivalent to multiple inheritance; however, discovering this relationship 
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++ 
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM 
interfaces into CORBA, since CORBA interfaces might be multiply inherited and 
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance of 
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknown. 
Note that the Object interface is not surfaced in COM. For single inheritance, although 
the most derived interface can be queried using IUnknown::QueryInterface, 
each individual interface in the inheritance hierarchy can also be queried separately.

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL 
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to 
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to 
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for 
attributes.

• The resulting mapping of operations within an interface are ordered based upon the 
operation name. The ordering is lexicographic by bytes in machine-collating order.

• The resulting mapping of attributes within an interface are ordered based upon the 
attribute name. The ordering is lexicographic by bytes in machine-collating order. If 
the attribute is not readonly, the get_<attribute name> method immediately precedes 
the set_<attribute name> method.

Figure 13-1 and the following OMG IDL and Microsoft MIDL illustrate this mapping.
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Figure 13-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping
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//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};
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Note that the co-class statement in Microsoft ODL allows the definition of an object 
class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its corresponding 
statements in Microsoft IDL, the name of the interface is proceeded by the letter I to 
indicate that the name represents the name of an interface. This also makes the 
mapping more natural to the COM programmer, since the naming conventions used 
follow those suggested by Microsoft.

13.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects differ 
from other objects in that they cannot be invoked with the Dynamic Invocation 
Interface (DII) and do not have object references. Most pseudo-objects cannot be used 
as general arguments. Currently, only the TypeCode and Principal pseudo-objects can 
be used as general arguments to a request in CORBA. 

The CORBA NamedValue and NVList are not mapped into COM as arguments to 
COM operation signatures.

Mapping for TypeCode Pseudo-Object

CORBA TypeCodes represent the types of arguments or attributes and are typically 
retrieved from the interface repository. The mapping of the CORBA TypeCode 
interface follows the same rules as mapping any other CORBA interface to COM. The 
result of this mapping is as follows.
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// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;
[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT get_Bounds( [out] TypeCodeBounds *ExceptionBody);
HRESULT get_BadKind( [out] TypeCodeBadKind  * pExceptionBody 
);
};

typedef struct
{
    ExceptionType       type;
    LPTSTR              repositoryId;
    long                minorCode;
    CompletionStatus    completionStatus;
    ICORBA_SystemException  * pSystemException;
    ICORBA_TypeCodeExceptions   * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR      RepositoryId;
typedef LPTSTR      Identifier;

typedef [v1_enum] 
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
    HRESULT equal( 
[in]  ICORBA_TypeCode * piTc,
[out] boolean  * pbRetVal,
[out] CORBATypeCodeExceptions** ppUserExceptions );
HRESULT kind( 
[out] TCKind  * pRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT id( 
[out] RepositoryId  * pszRetVal,
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[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT name( 
[out] Identifier  * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT member_count( 
[out] unsigned long  * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT member_name( 
[in]  unsigned long    ulIndex,
[out] Identifier  * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT member_type( 
[in]  unsigned long    ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT member_label( 
[in]  unsigned long    ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT discriminator_type( 
[out] ICORBA_TypeCode** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT default_index( 
[out] long  * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
    HRESULT length( 
[out] unsigned long        * pulRetVal,
[out] CORBATypeCodeExceptions   ** ppUserExceptions );
    HRESULT content_type( 
[out] ICORBA_TypeCode         ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT param_count( 
[out] long                      * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions );
    HRESULT parameter( 
[in]  long    lIndex, 
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions    ** ppUserExceptions );
}

Mapping for Context Pseudo-Object

This specification provides no mapping for CORBA’s Context pseudo-object into 
COM. Implementations that choose to provide support for Context could do so in the 
following way. Context pseudo-objects should be accessed through the ICORBA 
Context interface. This would allow clients (if they are aware that the object they are 
dealing with is a CORBA object) to set a single Context pseudo-object to be used for 
all subsequent invocations on the CORBA object from the client process space until 
such time as the ICORBA_Context interface is released.
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The ICORBA_Context interface has the following definition in Microsoft IDL and 
ODL:

// Microsoft IDL and ODL
typedef struct 
    {
    unsigned long cbMaxSize;
    unsigned long cbLengthUsed;
    [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
    } ContextPropertyValue;

[ object, uuid(74105F51-3C68-11cf-9588-AA0004004A09), 
pointer_default(unique) ]
interface ICORBA_Context: IUnknown
    {
    HRESULT GetProperty([in]LPTSTR Name,

[out] ContextPropertyValue 
** ppValues );

    HRESULT SetProperty([in] LPTSTR,
[in] ContextPropertyValue  

* pValues);
    };

If a COM client application knows it is using a CORBA object, the client application 
can use QueryInterface to obtain an interface pointer to the ICORBA_Context interface. 
Obtaining the interface pointer results in a CORBA context pseudo-object being 
created in the View, which is used with any CORBA request operation that requires a 
reference to a CORBA context object. The context pseudo-object should be destroyed 
when the reference count on the ICORBA_Context interface reaches zero.

This interface should only be generated for CORBA interfaces that have operations 
defined with the context clause.

Mapping for Principal Pseudo-Object

The CORBA Principal is not currently mapped into COM. As both the COM and 
CORBA security mechanisms solidify, security interworking will need to be defined 
between the two object models.

13.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to COM 
type libraries. However, the CORBA interface repository looks, to the client, to be one 
unified service. Type libraries, on the other hand, are each stored in a separate file. 
Clients do not have a unified, hierarchical interface to type libraries.
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Table 13-6 defines the mapping between equivalent CORBA and COM interface 
description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call 
Object::get_interface on CORBA object references to COM objects to 
retrieve an InterfaceDef. When CORBA objects are accessed from COM, 
implementations may provide the ability to retrieve the ITypeInfo for a CORBA object 
interface using the IProvideClassInfo COM interface.

13.3 COM to CORBA Data Type Mapping

13.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the corresponding 
data types available in OMG IDL as shown in Table 13-7.

Table 13-6 CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
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13.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exactly 
the same. The following Microsoft IDL definitions for constants

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

Table 13-7 Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

short short short Signed integer with a range of -215...215 -1

long long long Signed integer with a range of -231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 -1

float float float IEEE single -precision floating point 
number

double double double IEEE double-precision floating point 
number

char char char 8-bit quantity limited to the ISO Latin-1 
character set

boolean boolean boolean 8-bit quantity, which is limited to 1 and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to not 
undergo any conversion during transfer 
between systems
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// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

13.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When COM 
enumerations are mapped into CORBA, the enumerators are presented in CORBA, 
ordered according to their tagged values. This Microsoft IDL or ODL 

// Microsoft IDL or ODL
  typedef [v1_enum] enum tagA_or_B_orC  {  A = 0, B, C }  
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_or_C  {A, B, C};

Because COM allows enumerators to be defined with explicit tagged values, the 
enumerators are mapped to OMG IDL in the same order they appear in Microsoft IDL 
or ODL and it is the COM View’s responsibility to maintain the mapping based on 
names.

13.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded strings. 
Bounded strings are defined as strings that have a maximum length specified, whereas 
unbounded strings do not have a maximum length specified. COM also supports 
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions for 
bounded and unbounded strings differs from that specified in OMG IDL.
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Table 13-8 illustrates how to map the string data types in OMG IDL to their 
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client, a 
E_DATA_CONVERSION exception will be raised.

Mapping for Unbounded String Types

The definition of an unbounded string in Microsoft IDL and ODL denotes the 
unbounded string as a stringified unique pointer to a character. The following 
Microsoft IDL statement

// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a 
one-dimensional null-terminated character array whose extent and number of valid 
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft 
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconformant 
array.” The following Microsoft IDL and ODL definition for a bounded string

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

Table 13-8 Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

LPSTR, char * LPSTR, string Null terminated 8-bit character 
string

LPTSTR LPTSTR string Null terminated 8-bit character 
string 

BSTR on Win16 string Null-terminated 8-bit character 
string
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// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compile time, and the number 
of valid characters can vary at run-time.

Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no 
different from that used for ANSI string types. The following Microsoft IDL and ODL 
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPTSTR UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions 
between ANSI and Unicode formats when dealing with strings.

Mapping for Unicode Bound String Types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no 
different from that used for ANSI string types. The following Microsoft IDL and ODL 
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] TCHAR (* BOUNDED_UNICODE_STRING) 
[N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions 
between ANSI and Unicode formats when dealing with strings.

13.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL. 
Each structure members is mapped according to the mapping rules for that data type. 
The structure definition in Microsoft IDL or ODL is as follows.
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// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows.

// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct STRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

13.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any 
interfaces that use them. For this reason, this specification does not provide any 
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. The 
discriminator for a nonencapsulated MIDL union could, for example, be another 
argument to the operation. The discriminants for MIDL unions are not required to be 
constant expressions.

Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated unions 
having constant discriminators are mapped to OMG IDL unions as shown next.
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// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.

// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

Mapping for Nonencapsulated Unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions with 
nonconstant discriminators are mapped to an any in OMG IDL. The type of the any 
is determined at run-time during conversion of the Microsoft IDL union.
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// Microsoft IDL
typedef [switch_type( short )] union 
tagUNION_OF_CHAR_AND_ARITHMETIC
      {
      [case(0)] char c;
      [case(1)] short s;
      [case(2)] long l;
      [case(3)] float f;
      [case(4)] double d;
      [default] byte v[8];
      } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef any UNION_OF_CHAR_AND_ARITHMETIC;

13.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OMG 
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the array 
elements is mapped according to the data type mapping rules. The following 
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying array 
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10];   // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that the 
value of N is fixed and known at compilation time. The generalization to 
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

Mapping for Nonfixed Arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports varying 
arrays, and conformant varying arrays. These are arrays whose bounds and size can be 
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapped 
to sequence in OMG IDL, as shown in the following statements.
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// Microsoft IDL
typedef short BTYPE[];        // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef sequence<short> BTYPE;
typedef sequence<char> CTYPE;

Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension 
array. Both the number of dimensions and the bounds of the dimensions are determined 
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL is 
mapped to a CORBA sequence, as shown in the following statements.

// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence<element-type> SequenceName;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an 
E_DATA_CONVERSION exception will be raised.

13.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBA any. 
However, its allowable set of data types are currently limited to the data types 
supported by OLE Automation. VARTYPE is an enumeration type used in the 
VARIANT structure. The structure member vt is defined using the data type 
VARTYPE. Its value acts as the discriminator for the embedded union and governs the 
interpretation of the union. The list of valid values for the data type VARTYPE are 
listed in Table 13-9, along with a description of how to use them to represent the OMG 
IDL any data type.
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Table 13-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you should 
not return VT_EMPTY for the argument. Instead, you should 
return the VT_ERROR value: DISP_E_MEMBERNOTFOUND.

VT_EMPTY | 
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored in bVal.

VT_UI1 | 
VT_BYREF

A reference to an unsigned 1-byte character was passed; a 
pointer to the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.

VT_I2 | 
VT_BYREF

A reference to a 2-byte integer was passed; a pointer to the value 
is in piVal.

VT_I4 A 4-byte integer value is stored in lVal.

VT_I4 | 
VT_BYREF

A reference to a 4-byte integer was passed; a pointer to the value 
is in plVal.

VT_R4 An IEEE 4-byte real value is stored in fltVal.

VT_R4 | 
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer to the 
value is in pfltVal.

VT_R8 An 8-byte IEEE real value is stored in dblVal.

VT_R8 | 
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer to its 
value is in pdblVal.

VT_CY A currency value was specified. A currency number is stored as 
an 8-byte, two’s complement integer, scaled by 10,000 to give a 
fixed-point number with 15 digits to the left of the decimal point 
and 4 digits to the right. The value is in cyVal.

VT_CY | 
VT_BYREF

A reference to a currency value was passed; a pointer to the 
value is in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal. This pointer must be 
obtained and freed via the BSTR functions.

VT_BSTR | 
VT_BYREF

A reference to a string was passed. A BSTR*, which points to a 
BSTR, is in pbstrVal. The referenced pointer must be obtained or 
freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not be 
confused with the NULL pointer. The NULL value is used for 
tri-state logic as with SQL.

VT_NULL | 
VT_BYREF

Illegal.
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Value Description

VT_ERROR An SCODE was specified. The type of the error is specified in 
code. Generally, operations on error values should raise an 
exception or propagate the error to the return value, as 
appropriate.

VT_ERROR | 
VT_BYREF

A reference to an SCODE was passed. A pointer to the value is 
in pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of 0xFFFF 
(all bits one) indicates True; a value of 0 (all bits zero) indicates 
False. No other values are legal.

VT_BOOL | 
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean value 
is in pbool.

VT_DATE A value denoting a date and time was specified. Dates are 
represented as double-precision numbers, where midnight, 
January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on. The 
value is passed in date.

This is the same numbering system used by most spreadsheet 
programs, although some incorrectly believe that February 29, 
1900 existed, and thus set January 1, 1900 to 1.0. The date can 
be converted to and from an MS-DOS representation using 
VariantTimeToDosDateTime.

VT_DATE | 
VT_BYREF

A reference to a date was passed. A pointer to the value is in 
pdate.

VT_DISPATCH A pointer to an object was specified. The pointer is in pdispVal. 
This object is only known to implement IDispatch; the object 
can be queried as to whether it supports any other desired 
interface by calling QueryInterface on the object. Objects that do 
not implement IDispatch should be passed using 
VT_UNKNOWN.

VT_DISPATCH | 
VT_BYREF

A pointer to a pointer to an object was specified. The pointer to 
the object is stored in the location referred to by ppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT | 
VT_BYREF

A pointer to another VARIANTARG is passed in pvarVal. This 
referenced VARIANTARG will never have the VT_BYREF bit 
set in vt, so only one level of indirection can ever be present. 
This value can be used to support languages that allow functions 
to change the types of variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown interface is 
passed in punkVal.

VT_UNKNOWN 
| VT_BYREF

A pointer to a pointer to the IUnknown interface is passed in 
ppunkVal. The pointer to the interface is stored in the location 
referred to by ppunkVal.

Table 13-9 Valid OLE VARIANT Data Types
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A COM VARIANT is mapped to the CORBA any without loss. If at run-time a 
CORBA client passes an inconvertible any to a COM server, a DATA_CONVERSION 
exception is raised.

13.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot represent 
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot 
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used for 
data structures, which form cycles or have aliases.

A reference pointer is mapped to a CORBA sequence containing one element. Unique 
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequence 
containing zero or one elements. If at run-time a COM client passes a full pointer 
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is returned 
to the COM client. If a COM server attempts to return a full pointer containing aliases 
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

13.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Although 
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the following 
interface mappings between COM and CORBA will use Microsoft ODL as the 
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the 
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces.

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces. 
These allow the client code to retrieve information about, or to inquire about other 
interfaces of an object.

Value Description

VT_ARRAY | 
<anything>

An array of data type <anything> was passed. (VT_EMPTY and 
VT_NULL are illegal types to combine with VT_ARRAY.) The 
pointer in pByrefVal points to an array descriptor, which 
describes the dimensions, size, and in-memory location of the 
array. The array descriptor is never accessed directly, but instead 
is read and modified using functions.

Table 13-9 Valid OLE VARIANT Data Types
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COM identifies interfaces using a structure similar to the DCE UUID (in fact, identical 
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that the 
textual names of interfaces are only for convenience and need not be globally unique.

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the 
CORBA RepositoryId.

Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return result 
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT, if 
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as being 
the same as the HRESULT on Win32). The SCODE can then be examined to determine 
whether the call succeeded or failed. The error or success code, also contained within 
the SCODE, is composed of a “facility” major code (13 bits on Win32 and 4 bits on 
Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE values, or 
use the facility FACILITY_ITF and an interface specific minor code. SCODE values 
can indicate either success codes or error codes. A typical use is to overload the 
SCODE with a boolean value, using S_OK and S_FALSE success codes to indicate a 
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA 
exception will not be raised and the value of the SCODE will be mapped as the return 
value. This is because COM operations, which are defined to return an HRESULT, are 
mapped to CORBA as returning an HRESULT.

Unlike CORBA, COM provides no standard way to return user-defined exception data 
to the client. Also, there is no standard mechanism in COM to specify the completion 
status of an invocation. In addition, it is not possible to predetermine what set of errors 
a COM interface might return. Although the set of success codes that can be returned 
from a COM operation must be fixed when the operation is defined, there is currently 
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error 
codes are mapped to the CORBA standard exceptions. COM user-defined error codes 
are mapped to CORBA user exceptions.
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COM system error codes are defined with the FACILITY_NULL and FACILITY_RPC 
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to 
CORBA standard exceptions. Table 13-10 lists the mapping from COM 
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 13-10 Mapping from COM FACILITY_NULL Error Codes to CORBA Standard 
(System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM
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Table 13-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA standard 
exceptions. All FACILITY_RPC exceptions not listed in this table are mapped to the new 
CORBA standard exception COM.

COM SCODEs, other than those previously listed, are mapped into CORBA user 
exceptions and will require the use of the raises clause in OMG IDL. Since the 
OMG IDL mapping from the Microsoft IDL and ODL is likely to be generated, this is 
not a burden to the average programmer. The following OMG IDL illustrates such a 
user exception.

Table 13-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard (System) 
Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT
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// OMG IDL
exception COM_ERROR { long hresult; };

When data conversion errors occur while mapping the data types between object 
models (during a call from a CORBA client to a COM server), the system exception 
DATA_CONVERSION will be raised.

Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within 
interface definitions. The definition of an operation constitutes the operations 
signature. An operation signature consists of the operation’s name, parameters (if any), 
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the 
operation definition to indicate the error information that can be returned.

Microsoft IDL and ODL parameter directional attributes ([in], [out], [in, out]) map 
directly to OMG IDL (in, out, inout). Operation request parameters are 
represented as the values of [in] or [inout] parameters in Microsoft IDL, and 
operation response parameters are represented as the values of [inout] or [out] 
parameters. An operation return result can be any type that can be defined in Microsoft 
IDL/ODL, or void if a result is not returned. By convention, most operations are 
defined to return an HRESULT. This provides a consistent way to return operation 
status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the following 
transformations. First, if the last parameter is tagged with the Microsoft ODL keyword 
retval, that argument will be used as the return type of the operation. If the last 
parameter is not tagged with retval, then the signature is mapped directly to OMG IDL 
following the mapping rules for the data types of the arguments. Some example 
mappings from COM methods to OMG IDL operations are shown in the following 
code.

// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify ([in] VARIANT value,

 [out, retval] LPSTR * pszValue);

HRESULT permute( [inout] short   * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};
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In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Composite, CosLifeCycle::LifeCycleObject

{
string stringify(in any value) raises (COM_ERROR);

HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue) 
};

Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describing 
properties. Microsoft IDL does not support this capability. Any operations that can be 
determined to be either a put/set or get accessor are mapped to an attribute in OMG 
IDL. Because Microsoft IDL does not provide a means to indicate that something is a 
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to the 
attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, properties in COM 
are mapped in a similar fashion to that used to map attributes in OMG IDL to COM. 
For example, the following Microsoft ODL statements define the attribute Profile for 
the ICustomer interface and the read-only attribute Balance for the IAccount interface. 
The keywords [propput] and [propget] are used by Microsoft ODL to indicate that the 
statement is defining a property of an interface.

// Microsoft ODL
interface IAccount
    {
    [propget] HRESULT Balance([out, retval] float  

* pfBalance );
    ...
    };

interface ICustomer
    {
    [propget] HRESULT Profile([out] CustomerData  * Profile);
    [propput] HRESULT Profile([in] CustomerData  * Profile);
    };

The definition of attributes in OMG IDL are restricted from raising any user-defined 
exceptions. Because of this, the implementation of an attribute’s accessor function is 
limited to raising system exceptions. The value of the HRESULT is determined by a 
mapping of the CORBA exception, if any, that was raised.
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13.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as 
only supporting an accessor function, which is used to retrieve the value of the 
attribute. In the example above, the mapping of the attribute Balance is mapped to the 
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attribute float Balance;
...
};

13.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as 
only supporting an accessor function which is used to set the value of the attribute. In 
the previous example, the attribute Profile is mapped to the following statements in 
OMG IDL.

// OMG IDL
struct CustomerData

{
CustomerId  Id;
string  Name;
string  SurName;
};

interface Customer
{
attribute CustomerData  Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping must 
assume that a property that has the keyword [propput] is mapped to a single read-write 
attribute, even if there is no associated [propget] method defined.

Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the 
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in 
language bindings supporting typed object references, widening and narrowing support 
convert object references as allowed by the true type of that object.
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However, there is no built-in mechanism in CORBA to access interfaces without an 
inheritance relationship. The run-time interfaces of an object (for example, 
CORBA::Object::is_a, CORBA::Object::get_interface) use a 
description of the object’s principle type, which is defined in OMG IDL. In terms of 
implementation, CORBA allows many ways in which implementations of interfaces 
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to 
CORBA, there is a standard mechanism by which an object can have multiple 
interfaces (without an inheritance relationship between those interfaces) and by which 
clients can query for these at run-time. (It defines no common way to determine if two 
interface references refer to the same object, or to enumerate all the interfaces 
supported by an entity.)

An observation about COM is that some COM objects have a required minimum set of 
interfaces that they must support. This type of statically-defined interface relation is 
conceptually equivalent to multiple inheritance; however, discovering this relationship 
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++ 
style implementation inheritance is not possible.

When COM interfaces are mapped into CORBA, their inheritance hierarchy (which 
can only consist of single inheritance) is directly mapped into the equivalent OMG 
IDL inheritance hierarchy.1

Note that although it is possible, using Microsoft ODL to map multiple COM 
interfaces in a class to OMG IDL multiple inheritance, the necessary information is not 
available for interfaces defined in Microsoft IDL. As such, this specification does not 
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is 
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL, 
at which time the mapping can be extended to allow for multiple COM interfaces to be 
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard 
mechanism for accessing multiple interfaces from a client, even though those 
interfaces are not related by inheritance. Any existing ORB can support this interface, 
although in some cases a specialized implementation framework may be desired to 
take advantage of this interface.

1.This mapping fails in some cases, for example, if operation names are the same.
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module CORBA      // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

}; 
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multiply 
inherited from CORBA::Composable and 
CosLifeCycle::LifeCycleObject. Note that the IUnknown interface is not 
surfaced in OMG IDL. Any COM method parameters that require IUnknown interfaces 
as arguments are mapped, in OMG IDL, to object references of type 
CORBA::Object.

// Microsoft IDL or ODL
interface IFoo: IUnknown

{
HRESULT inquire([in] IUnknown *obj);
};

In OMG IDL, this becomes:

interface IFoo: CORBA::Composable, CosLifeCycle::LifeCycleObject
{
void inquire(in Object obj);
};

Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA 
interface repositories. However, the CORBA interface repository looks, to the client, to 
be one unified service. Type libraries, on the other hand, are each stored in a separate 
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM 
interface description concepts. Where there is no equivalent, the field is left blank.
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Using this mapping, implementations must provide the ability to call 
Object::get_interface on CORBA object references to COM objects to 
retrieve an InterfaceDef. When CORBA objects are accessed from COM, 
implementations may provide the ability to retrieve the ITypeInfo for CORBA object 
interface using the IProvideClassInfo COM interface.

Table 13-12 CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
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Mapping: OLE Automation and 
CORBA 13C
This chapter describes the bidirectional data type and interface mapping between OLE 
Automation and CORBA. 

Microsoft’s Object Description Language (ODL) is used to describe Automation object 
model constructs. However, many constructs supported by ODL are not supported by 
Automation. Therefore, this specification is confined to the Automation-compatible 
ODL constructs.

As described in Chapter 13A, Interworking Architecture, many implementation 
choices are open to the vendor in building these mappings. One valid approach is to 
generate and compile mapping code, an essentially static approach. Another is to map 
objects dynamically.

Although some features of the CORBA-Automation mappings address the issue of 
inverting a mapping back to its original platform, this specification does not assume 
the requirement for a totally invertible mapping between Automation and CORBA.

13.1 Mapping CORBA Objects to OLE Automation

13.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote 
CORBA object: the OLE Automation Controller; the COM Communication 
Infrastructure; the OLE system registry; the client-side Automation View; the 
operation’s type information; the Object Request Broker; and the CORBA object’s 
implementation. These are illustrated in Figure 13-1 (the call to the Automation View 
could be a call in the same process).
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Figure 13-1 CORBA Object Architectural Overview

The Automation View is an OLE Automation server with a dispatch interface that is 
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an 
Automation View Interface. The Automation server encapsulates a CORBA object 
reference and maps incoming OLE Automation invocations into CORBA invocations 
on the encapsulated reference. The creation and storage of the type information is not 
specified. 

There is a one-to-one correspondence between the methods of the Automation View 
Interface and operations in the CORBA interface. The Automation View Interface’s 
methods translate parameters bidirectionally between a CORBA reference and an OLE 
reference.
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Figure 13-2 Methods of the Automation View Interface delegate to the CORBA Stub

13.1.2 Main Features of the Mapping

• OMG IDL attributes and operations map to Automation properties and methods 
respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation where 
possible. Since Automation supports a limited set of data types, some OMG IDL 
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation 
interfaces with appropriate attributes and operations. User exceptions are mapped 
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, and 
overflow conditions are identified.

• OMG IDL sequences and arrays map to Automation Safearrays.
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13.1.3 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View 
Interface. For example, the following CORBA interface

module MyModule // OMG IDL
{

interface MyInterface
{

// Attributes and operations;
...

};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{

// Properties and methods;
...

};

The interface IMyModule_account is an OLE Automation Dual Interface. A Dual 
Interface is a COM vtable-based interface which derives from IDispatch, meaning that 
its methods can be late-bound via IDispatch::Invoke or early-bound through the 
vtable portion of the interface. Thus, IMyModule_account contains the methods of 
IDispatch as well as separate vtable-entries for its operations and property get/set 
methods.

Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG IDL 
attribute maps to an ODL property, which has one method to get and one to set the 
value of the property. An OMG IDL readonly attribute maps to an OLE property, 
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation interface 
follows the rules described in “Ordering Rules for the CORBA->OLE Automation 
Transformation” part of Section 13.5.2, Detailed Mapping Rules, in Chapter 13A, 
Interworking Architecture.

For example, given the following CORBA interface,

interface account // OMG IDL
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};
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the corresponding Automation View Interface is:

[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL

HRESULT makeLodgement ([in] float amount,
 [out] float * balance, 

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

}

OMG IDL in, out, and inout parameters map to ODL [in], [out], and 
[in,out] parameters, respectively. Section 13.14, Mapping for Basic Data Types, 
explains the mapping for basic data types. The mapping for CORBA oneway 
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument in 
the operation’s signature may be tagged [retval,out]. An argument tagged in this 
fashion is considered syntactically to be a return value. Automation controller macro 
languages map this special argument to a return value in their language syntax. Thus, a 
CORBA operation’s return value is mapped to the last argument in the corresponding 
operation of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optional out parameter of 
type VARIANT. The optional parameter returns explicit exception information in the 
context of each property set/get or method invocation. See Section 13.1.18, Mapping 
CORBA Exceptions to Automation Exceptions, for a detailed discussion of how this 
mechanism works.

If the CORBA operation has no return value, then the optional parameter is the last 
parameter in the corresponding Automation operation. If the CORBA operation does 
have a return value, then the optional parameter appears directly before the return 
value in the corresponding Automation operation, since the return value must always 
be the last parameter.

Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy of 
Automation View Interfaces.

For example, given the interface account and its derived interface 
checkingAccount defined as follows,
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module MyModule { // OMG IDL
interface account {

attribute float balance;
readonly attributestring owner;
void makeLodgement (in float amount, out float

balance);
void makeWithdrawal (in float amount, out float 

theBalance);
};
interface checkingAccount: account {

readonly attribute float overdraftLimit;
boolean orderChequeBook ();

};
};

the corresponding Automation View Interfaces are as follows.

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement ([in] float amount,
[out] float * balance, 
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
[propget] HRESULT balance ([retval,out] float *

[IT_retval];
[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ, 
[retval,out] short * IT_retval);

[propget] HRESULT overdraftLimit (
[retval,out] short * IT_retval);

};

Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance. Therefore, a direct mapping of a 
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapping 
splits such a hierarchy, at the points of multiple inheritance, into multiple singly- 
inherited strands. 

The mechanism for determining which interfaces appear on which strands is based on 
a left branch traversal of the inheritance tree. At points of multiple inheritance, the 
interface that is first in an ordering of the parent interfaces is included in what we call 
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the main strand, and other interfaces are assigned to other, secondary strands. (The 
ordering of parent interfaces is explained later in this section.) For example, consider 
the CORBA interface hierarchy, shown in Figure 13-3.

Figure 13-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows: 

• B and C derive from A 

• D derives from B and C 

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance 
hierarchies, shown in Figure 13-4.

Figure 13-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following the 
left strand B at this point, our main strand is A-B-D and our secondary strand is A-C. 
However, to access all of the object’s methods, a controller would have to navigate 
among these disjoint strands via QueryInterface. While such navigation is expected of 
COM clients and might be an acceptable requirement of C++ automation controllers, 
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate the 
operations of the secondary strands into the interface of the main strand. In our 
example, we add the operations of C to D (A’s operations are not added because they 
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already exist in the main strand). Thus, D has all the methods of the hierarchy and, 
more important, an Automation controller holding a reference to D can access all of 
the methods of the hierarchy without calling QueryInterface.

In order to have a reliable, deterministic, portable way to determine the inheritance 
chain at points of multiple inheritance, an explicit ordering model must be used. 
Furthermore, to achieve interoperability of virtual function tables for dual interfaces, a 
precise model for ordering operations and attributes within an interface must be 
specified.

Within an interface, attributes should appear before operations and both should be 
ordered lexicographically by bytes in machine-collating sequence. For non-readonly 
attributes, the [propget] method immediately precedes the [propput] method. 
This ordering determines the position of the vtable portion of a Dual Interface. At 
points of multiple inheritance, the base interfaces should be ordered from left to right 
lexicographically by bytes in machine-collating order. (In all cases, the ordering is 
based on ISO Latin-1.) Thus, the leftmost branch at a point of multiple inheritance is 
the one ordered first among the base classes, not necessarily the one listed first in the 
inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy 
conforming to Figure 13-3.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

};
interface B: A{

void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that the 
ordering of the base interfaces for D has been changed based on our ISO Latin-1 
alphabetic ordering model and that operations from C are added to interface D.
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// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);

}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed before D’s 
operations. The ordering of these operations obeys the rules for operations within C 
and is independent of the ordering within D.
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13.1.4 Mapping for Basic Data Types

Basic Automation Types

Table 13-1 lists the basic data types supported by OLE Automation. The table contains 
fewer data types than those allowed by ODL because not all types recognized by ODL 
can be handled by the marshaling of IDispatch interfaces and by the implementation of 
ITypeInfo::Invoke. Arguments and return values of operations and properties 
are restricted to these basic types.

Table 13-1 OLE Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as return type for a function, or in a function 
parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since December 
30, 1899.

SCODE Built-in error type. In Win16, does not include additional data 
contained in an HRESULT. In Win32, identical to HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the 
mapping, an IDispatch pointer parameter is an object reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be 
represented by its IUnknown interface.)
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The formal mapping of CORBA types to Automation types is shown in Table 13-2.

13.1.5 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translation 
of the Automation and CORBA parameters and return types. It must map from 
Automation to CORBA for in parameters and from CORBA to Automation for out 
parameters. The translation logic must handle the special conditions described in the 
following sections. 

Translating Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation should 
return the HRESULT DISP_E_OVERFLOW.

Translating CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an 
Automation long, then the View operation should return the HRESULT 
DISP_E_OVERFLOW.

Translating Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum value of 
a CORBA::UShort, then the View operation should return the HRESULT 
DISP_E_OVERFLOW.

Table 13-2 OMG CORBA to OLE Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean boolean

char short

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long
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Translating Automation boolean to CORBA boolean and CORBA 
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0). True 
and false values for Automation boolean are, respectively, negative one (-1) and zero 
(0). Therefore, true values need to be adjusted accordingly.

13.1.6 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLE BSTR. For example, 
given the OMG IDL definitions,

// OMG IDL
string  sortCode<20>;
string  name;

the corresponding ODL code is:

// ODL
BSTR sortCode;
BSTR name;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the only 
support for internationalization of strings defined at this time.

13.1.7 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA 
interface actually exists. Other equivalent expressions of CORBA interfaces, such as 
the contents of an Interface Repository, may be used. Moreover, there is no 
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface and 
ODL is the appropriate medium for describing an Automation View Interface. 
Therefore, the following OMG IDL code describes a CORBA interface that exercises 
all of the CORBA base data types in the roles of attribute, operation in parameter, 
operation out parameter, operation inout parameter, and return value. The OMG 
IDL code is followed by ODL code describing the Automation View Interface that 
would result from a conformant mapping.
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module MyModule // OMG IDL
{

interface TypesTest
{

attribute boolean boolTest;
attribute char charTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned short ushortTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (

in boolean boolTest,
in char charTest,
in double doubleTest,
in float floatTest,
in long longTest,
in octet octetTest,
in short shortTest,
in string stringTest,
in string<10> stringnTest,
in unsigned long ulongTest,
in unsigned short ushortTest);

// Gets all the attributes
boolean getAll (

out boolean boolTest,
out char charTest,
out double doubleTest,
out float floatTest,
out long longTest,
out octet octetTest,
out short shortTest,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongTest,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolTest,
inout char charTest,
inout double doubleTest,
inout float floatTest,
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inout long longTest,
inout octet octetTest,
inout short shortTest,
inout string stringTest,
inout string<10> stringnTest,
inout unsigned longulongTest,
inout unsigned shortushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string stringReturn();
string<10> stringnReturn();
unsigned long ulongReturn ();
unsigned shortushortReturn();

}; // End of Interface TypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.
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[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] short *IT_retval);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] short *IT_retval);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] double *IT_retval);

HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] float *IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] short *charTest, 
[out] double *doubleTest, 
[out] float *floatTest,
[out] long *longTest, 
[out] short *octetTest, 
[out] short *shortTest, 
[out] BSTR stringTest, 
[out] BSTR *stringnTest, 
[out] long *ulongTest, 
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ, 
[retval,out] short * IT_retval);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] long *IT_retval);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] short *IT_retval);

HRESULT setAll ([in] short boolTest, 
[in] short charTest,
[in] double doubleTest,
[in] float floatTest, 
[in] long longTest,
[in] short octetTest,
[in] short shortTest, 
[in] BSTR stringTest,
[in] BSTR stringnTest, 
[in] long ulongTest,
[in] long ushortTest, 
[optional,out] VARIANT * excep_OBJ, 
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest, 
[in,out] long *longTest, 
[in,out] short *octetTest,
[in,out] short *shortTest, 
[in,out] BSTR *stringTest, 
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest, 
[in,out] long *ushortTest, 
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[optional,out] VARIANT * excep_OBJ, 
[retval,out] short *IT_retval);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] short *IT_retval);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ, 
[retval,out] BSTR *IT_retval);

HRESULT stringnReturn ([optional,out] VARIANT *
exep_OBJ, 

[retval,out] BSTR *IT_retval);
HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ, 

[retval,out] long *IT_retval);
HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ, 

[retval,out] long *IT_retval);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *IT_retval);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short

*IT_retval);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *IT_retval);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long

*IT_retval);
[propput] HRESULT ushortTest([in] long ushortTest);

}
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13.1.8 Mapping for Object References

Type Mapping

The mapping of an object reference as a parameter or return value can be fully 
expressed by the following OMG IDL and ODL code. The OMG IDL code defines an 
interface Simple and another interface that references Simple as an in parameter, as an 
out parameter, as an inout parameter, and as a return value. The ODL code 
describes the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{

// A simple object we can use for testing object references
interface Simple
{

attribute short shortTest;
};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest, 

 out Simple outTest, 
 inout Simple inoutTest);

}; 

}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.
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[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *
IT_retval);

[propput] HRESULT shortTest([in] short shortTest);
}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest, 
[out] DIMyModule_Simple **outTest, 
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** IT_retval);

[propget] HRESULT simpleTest([retval, out] 
DIMyModule_Simple **
IT_retval);

[propput] HRESULT simpleTest([in] DIMyModule_Simple 
*simpleTest);

}

Object Reference Parameters and IForeignObject

As described in Chapter 13A, Interworking Architecture, Automation and COM Views 
must expose the IForeignObject interface in addition to the interface that is isomorphic 
to the mapped CORBA interface. IForeignObject provides a mechanism to extract a 
valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as an in parameter to an 
operation M in View A. Operation M must somehow convert View B to a valid 
CORBA object reference.

In Figure 13-5, Automation Views expose IForeignObject, as required of all Views.

Figure 13-5 Partial Picture of the Automation View

Automation View
Object

IDispatch 

IForeignObject

IUnknown

...
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The sequence of events involving IForeignObject::GetForeignReference 
is as follows:

• The client calls Automation-View-A::M, passing an IDispatch-derived pointer 
to Automation-View-B.

• Automation-View-A::M calls IDispatch::QueryInterface for 
IForeignObject.

• Automation-View-A::M calls IForeignObject::GetForeignReference 
to get the reference to the CORBA object of type B.

• Automation-View-A::M calls CORBA-Stub-A::M with the reference, narrowed to 
interface type B, as the object reference in parameter.

13.1.9 Mapping for Enumerated Types

CORBA enums map to Automation enums.

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {

void op1(in color col);
};

};

Consider the following example, which maps to the following ODL: 

// ODL
typedef enum {red, green, blue} MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out] 
VARIANT * excep_OBJ);

}

Internally, OLE Automation maps enum parameters to the platform’s integer type. (For 
Win32, the integer type is equivalent to a long.) If the number of elements in the 
CORBA enum exceeds the maximum value of an integer, the condition should be 
trapped at some point during static or dynamic construction of the Automation View 
Interface corresponding to the CORBA interface in which the enum type appears as a 
parameter. If the overflow is detected at run-time, the Automation View operation 
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View 
Interface exceeds the maximum value of the enum, the View operation should return 
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into the 
controller scripting language context, vendors may wish to generate a header file 
containing an appropriate enum declaration or a set of constant declarations for the 
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client language. Since the method for doing so is an implementation detail, it is not 
specified here. However, it should be noted that some languages type enums other than 
as longs, introducing the possibility of conversion errors or faults. If such problems 
arise, it is best to use a series of constant declarations rather than an enumerated type 
declaration in the client header file.

For example, the following enum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for 
interfaces. That is, the name should be fully scoped with the names of enclosing 
modules or interfaces. (See Section 13.7.7, Naming Conventions for View Components 
in Chapter 13A, Interworking Architecture.)

If the enum is declared at global OMG IDL scope, as in the previous example, then the 
name of the enum should also be included in the constant name.

13.1.10 Mapping for Arrays and Sequences

OLE Automation methods may have array parameters called Safearrays. Safearrays are 
one or multidimensional arrays whose elements are of any of the basic Automation 
types. The following ODL syntax describes an array parameter:

SAFEARRAY (elementtype) arrayname

A Safearray may be passed by reference, using the following syntax:

SAFEARRAY (elementtype) *arrayname

Safearrays have a header which describes certain characteristics of the array including 
bounding information, and are thus relatively safe for marshaling. Note that the ODL 
declaration of Safearrays does not include bound specifiers. OLE provides an API for 
allocating and manipulating Safearrays, which includes a procedure for resizing the 
array.

IDL arrays and sequences, both bounded and unbounded, are mapped to Safearrays. 
Bounded sequences are mapped to Safearrays with the same boundaries; they do not 
grow dynamically up to the bounded size but are statically allocated to the bounded 
size. Unbounded sequences are mapped to Safearrays with some default bound.   
Attempts to access past the boundary result in a resizing of the Safearray.
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Since ODL Safearray declarations contain no boundary specifiers, the bounding 
knowledge is contained in the Automation View. A method of the Automation View 
Interface, which has a Safearray as a parameter, has the intelligence to handle the 
parameter properly. When Safearrays are submitted as in parameters, the View 
method uses the Safearray API to dynamically repackage the Safearray as a CORBA 
array, bounded sequence, or unbounded sequence. When Safearrays are out 
parameters, the View method uses the Safearray API to dynamically repackage the 
CORBA array or sequence as a Safearray. When an unbounded sequence grows 
beyond the current boundary of the corresponding Safearray, the View’s method uses 
the Safearray API to increase the size of the array by one allocation unit. The size of 
an allocation unit is unspecified. If a Safearray is mapped from a bounded sequence 
and a client of the View attempts to write to the Safearray past the maximum element 
of the bounded sequence, the View operation considers this a run-time error and 
returns the HRESULT DISP_E_OVERFLOW.

Multidimensional OMG IDL arrays map to multidimensional Safearrays. The order of 
dimensions in the OMG IDL array from left to right corresponds to ascending order of 
dimensions in the Safearray.

13.1.11 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions and Exceptions—cannot be mapped 
directly to ODL constructed types, as Automation does not support them as valid 
parameter types. Instead, constructed types are mapped to Pseudo-Automation 
Interfaces. The objects that implement Pseudo-Automation Interfaces are called 
pseudo-objects. Pseudo-objects do not expose the IForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from 
IDispatch as do Automation View Interfaces. Instead, they derive from 
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch 
{

[propget] HRESULT INSTANCE_repositoryId([retval,out] 
BSTR *IT_retval);

HRESULT INSTANCE_clone([in] IDispatch *pDispatch, 
[retval, out] IDispatch **IT_retval);

}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}
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The purpose of the DIForeignComplexType::INSTANCE_clone method is to 
provide the client programmer a way to duplicate a complex type. INSTANCE_clone 
creates a new instance of the type with values identical to the input instance. 
Therefore, INSTANCE_clone does not simply duplicate a reference to a complex 
type.

The purpose of the INSTANCE_repositoryId readonly property is to support the 
ability of DICORBAAny (see Section 13.1.13, Mapping for anys), when it wraps an 
instance of a complex type, to produce a type code for the instance when asked to do 
so via DICORBAAny’s readonly typeCode property.

Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is an Pseudo-Automation 
Interface containing properties corresponding to the members of the struct. The names 
of a Pseudo-Struct’s properties are identical to the names of the corresponding CORBA 
struct members. 

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from 
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodless DICORBAStruct interface is to mark the interface as 
having its origin in the mapping of a CORBA struct. This information, which can be 
stored in a type library, is essential for the task of mapping the type back to CORBA in 
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interface 
derives from DICORBAStruct.
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// IDL
interface S
{

attribute long l;
attribute double d;
attribute float f;

};

Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-Union. 
A Pseudo-Union contains properties that correspond to the members of the union, with 
the addition of a discriminator property. The discriminator property’s name is 
UNION_d, and its type is the Automation type that corresponds to the OMG IDL 
union discriminant. 

If a union element is accessed from the Pseudo-Union, and the current value of the 
discriminant does not match the property being requested, then the operation of the 
Pseudo-Union returns DISP_E_TYPEMISMATCH. Whenever an element is set, the 
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interface DICORBAUnion which, in 
turn, derives from DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBAUnion and its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}
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An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long) 
{

case 1:  long l;
case 2:  float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped 
Automation Dual Interface derives from DICORBAUnion.

interface A; // IDL

interface U 
{

// Switch discriminant
readonly attribute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

13.1.12 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to the DICORBATypeCode interface. The 
DICORBATypeCode interface is defined as follows.
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// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet, 

tk_any, tk_typeCode, tk_principal, tk_objref, 
tk_struct, tk_union, tk_enum, tk_string,

tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * IT_retval);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *IT_retval); 
[propget] HRESULT name([retval,out] BSTR * IT_retval); 

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT member_count([retval,out] 

long * IT_retval);
HRESULT member_name([in] long index,[retval,out] 

BSTR * IT_retval);
HRESULT member_type([in] long index,

[retval,out] IDispatch ** IT_retval), 

// tk_union
HRESULT member_label([in] long index,[retval,out] 

VARIANT * IT_retval);
[propget] HRESULT discriminator_type([retval,out] 

IDispatch ** IT_retval); 
[propget] HRESULT default_index([retval,out] 

long * IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * IT_retval); 

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out] 

IDispatch ** IT_retval); 
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBATypeCode and its UUID is:

{E977F903-3B75-11cf-BBFC-444553540000}
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When generating Visual Basic constants corresponding to the values of the 
CORBATCKind enumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

Since DICORBATypeCode derives from DIForeignComplexType, objects which 
implement it are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA 
Complex Types, for a description of the DIForeignComplexType interface.

13.1.13 Mapping for anys

The OMG IDL any data type maps to the DICORBAAny interface, which is declared 
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType 
{

[propget] HRESULT value([retval,out] 
VARIANT * IT_retval);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out] 

DICORBATypeCode ** IT_retval);
}

The UUID for DICORBAAny is:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBAAny and its UUID is:

{E977F904-3B75-11cf-BBFC-444553540000}

Since DICORBAAny derives from DIForeignComplexType, objects that implement it 
are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA Complex 
Types, for a description of the DIForeignComplexType interface.

Note that the VARIANT value property of DICORBAAny can represent a Safearray or 
can represent a pointer to a DICORBAStruct or DICORBAUnion interface. Therefore, 
the mapping for any is valid for an any that represents a CORBA array, sequence, 
structure, or union.
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13.1.14 Mapping for Typedefs

The mapping of OMG IDL typedef definitions to OLE depends on the OMG IDL 
type for which the typedef is defined. No mapping is provided for typedef 
definitions for the basic types: float, double, long, short, unsigned long, 
unsigned short, char, boolean, and octet. Hence, a Visual Basic 
programmer cannot make use of these typedef definitions. 

// OMG IDL
module MyModule {

module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interfaces, 
the mapping creates an alias for the Automation View object. A conforming 
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

13.1.15 Mapping for Constants

The notion of a constant does not exist in OLE Automation. Therefore, no mapping is 
prescribed for a CORBA constant. 

As with the mapping for enums, some vendors may wish to generate a header file 
containing an appropriate constant declaration for the client language. For example, the 
following OMG IDL declaration

// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.
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13.1.16 Getting Initial CORBA Object References

The DICORBAFactory interface, described in Section 13.7.3, ICORBAFactory 
Interface in Chapter 13A, Interworking Architecture, provides a mechanism that is 
more suitable for the typical programmer in an Automation controller environment 
such as Visual Basic.

The implementation of the DICORBAFactory interface is not prescribed, but possible 
options include delegating to the OMG Naming Service and using the Windows 
System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library, 
the code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the rules 
for arguments to DICORBAFactory::GetObject described in Section 13.7.3, 
ICORBAFactory Interface in Chapter 13A, Interworking Architecture.

A special name space for names with a period in the first position can be used to 
resolve an initial reference to the OMG Object Services (for example, the Naming 
Service, the Life Cycle Service, and so forth). For example, a reference for the Naming 
Service can be found using:

Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally the GetObject method will be used to retrieve object references from the 
Registry/Naming Service. The CreateObject method is really just a shorthand 
notation for GetObject(“someName”).create. It is intended to be used for object 
references to objects supporting a CORBAServices Factory interface.

1. It is always permissible to directly register a CORBA/OLE Automation bridging object directly with the 
Windows Registry. The administration and assignment of ProgIds for direct registration should follow the 
naming rules described in Chapter 13A, Interworking Architecture.
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13.1.17 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces, 
creating an instance of a mapped CORBA complex type is not the same as creating an 
instance of a mapped CORBA interface. The main difference lies in the fact that the 
name space for CORBA complex types differs fundamentally from the CORBA object 
and factory name spaces. 

To support creation of instances of Automation objects exposing Pseudo-Automation 
Interfaces, we define a new interface, derived from DICORBAFactory (see Section 
13.7.3, ICORBAFactory Interface in Chapter 13A, Interworking Architecture, for a 
description of DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName, 

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The Automation object having the ProgId “CORBA.Factory” shown next actually 
exposes DICORBAFactoryEx.

The CreateType method creates an Automation object that has been mapped from a 
CORBA complex type. The parameters are used to determine the specific type of 
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface. The 
most derived interface type of the CORBA object bound to the View identifies the 
scope within which the second parameter, typeName, is interpreted. For example, 
assume the following CORBA interface exists:
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// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}
void op(in S s);

// ....
}

}
}

The following Visual Basic example illustrates the primary use of CreateType.

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject( “...” ) 

‘ creates Automation View of the CORBA object 
supporting interface ‘ A::B::C

Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType.

• The typeName parameter can contain a fully-scoped name (i.e., the name begins 
with a double colon “::”). If so, then the first parameter defines the type name space 
within which the fully scoped name will be resolved. 

• If the scopingObject parameter does not point to a valid Automation View Interface, 
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space 
associated with the scopingObject parameter, then CreateObject returns the 
HRESULT TYPE_E_UNDEFINEDTYPE.

The CreateTypeByID method accomplishes the same general goal of CreateType, the 
creation of Automation objects that are mapped from CORBA constructed types. The 
second parameter, repositoryID, is a string containing the CORBA Interface 
Repository ID of the CORBA type whose mapped Automation Object is to be created. 
The Interface Repository associated with the CORBA object identified by the 
scopingObject parameter defines the repository within which the ID will be resolved.

The following rules apply to CreateTypeById.

• If the scopingObject parameter does not point to a valid Automation View Interface, 
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.
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• If the repositoryID parameter does not identify a valid type in the Interface 
Repository associated with the scopingObject parameter, then CreateObject returns 
the HRESULT TYPE_E_UNDEFINEDTYPE.

ITypeFactory Interface

The DICORBAFactory interface delegates its CreateType and CreateTypeByID 
methods to an ITypeFactory interface on the scoping object. ITypeFactory is defined as 
a COM interface because it is not intended to be exposed to Automation controllers. 
Every Automation View object must support the ITypeFactory interface:

//MIDL
interface ITypeFactory: IUnknown 
{

HRESULT CreateType([in] LPSTR typeName, [out] VARIANT 
*IT_retval);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *IT_retval);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods on ITypeFactory provide the behaviors previously described for the 
corresponding DICORBAFactory methods.

13.1.18 Mapping CORBA Exceptions to Automation Exceptions

Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as 
defined in C++ and CORBA. Automation methods are invoked with a call to 
IDispatch::Invoke or to a vtable method on a Dual Interface. These methods 
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, which 
have the severity bit (bit 31 being the high bit) set, indicate that an error occurred 
during the call, and thus are considered to be error codes. (In Win16, an SCODE was 
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purposes 
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called the 
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual 
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility field 
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error 
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choose to 
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If a 
non-NULL pointer is passed, the callee can choose to handle an error condition by 
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO 
structure.
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OLE also provides Error Objects, which are task local objects containing similar 
information to that contained in the EXCEPINFO structure. Error objects provide a 
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically fired 
when an invocation returns an HRESULT with the severity bit set. If the HRESULT is 
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in the 
EXCEPINFO structure or in the Error Object can be extracted in the error handling 
routine.

CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error 
handling model. Therefore, all methods of Automation View Interfaces have an 
additional, optional out parameter of type VARIANT which is filled in by the View 
when a CORBA exception is detected. 

Both CORBA System exceptions and User exceptions map to Pseudo-Automation 
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from IForeignException 
which, in turn, derives from IForeignComplexType:

//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_repositoryID([retval,out] BSTR 
*IT_retval);

};

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attribute EX_majorCode defines the broad category of exception raised, and has 
one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2
13C-32                                  CORBA V2.0                                  July 1996



13C
These values may be specified as an enum in the typelibrary information:

typedef enum {NO_EXCEPTION, 
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attribute EX_repositoryID is a unique string that identifies the exception. It is 
the exception type’s repository ID from the CORBA Interface Repository.

CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whose 
properties correspond one-to-one with the attributes of the CORBA user exception, and 
which derives from the methodless interface DICORBAUserException:

//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as though it 
were defined as an interface. The declaration

// OMG IDL
exception reject 
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException 
{

[propget] HRESULT reason([retval,out] BSTR reason);
}
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Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception 
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseudo-
Automation Interface, and the operation on the Pseudo-Interface returns the HRESULT 
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from the 
operation prevents an active Visual Basic Error Trap from being fired, allowing the 
caller to retrieve the exception parameter in the context of the invoked method. The 
View fills in the VARIANT by setting its vt field to VT_DISPATCH and setting the 
pdispval field to point to the pseudo-exception. If no exception occurs, the optional 
parameter is filled with an IForeignException pointer on a pseudo-exception object 
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked via IDispatch::Invoke, then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.

• If the method was called via the vtable portion of a Dual Interface, then the OLE 
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement the 
standard OLE interface ISupportErrorInfo.

Table 13-3 EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA 
interface, which this Automation View is representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION
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CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception 
DICORBASystemException, which derives from DIForeignException:

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_completionStatus([retval,out] long
*IT_retval);

}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attribute EX_minorCode defines the type of system exception raised, while 
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE = 2

Table 13-4 ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA 
interface, which this Automation View is representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
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These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES, 
COMPLETION_NO,
COMPLETION_MAYBE } CORBA_ExceptionType;

Operations that Raise System Exceptions

As is the case for UserExceptions, system exceptions can be returned to the caller 
using the optional last parameter, which is present on all mapped methods. 

If the optional parameter is supplied and a system exception occurs, the optional 
parameter is filled in with an IForeignException pointer to the pseudo-exception, and 
the automation return value is S_FALSE. If no exception occurs, the optional 
parameter is filled with an IForeignException pointer whose EX_majorCode 
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the exception 
is looked up in Table 3-5. This table maps a subset of the CORBA system exceptions 
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exception 
is on the table, the equivalent HRESULT is returned. If the exception is not on the 
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESULT, 
then the exception is mapped to an HRESULT according to Table 13-3 in Chapter 13B, 
Mapping: COM and CORBA. This new HRESULT is used as follows.

• If the operation was invoked via IDispatch::Invoke:

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set to 
the new HRESULT value.

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT.

Table 13-5 CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW
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13.1.19 Conventions for Naming Components of the Automation View 

The conventions for naming components of the Automation View are detailed in 
Section 13.7.7, Naming Conventions for View Components in Chapter 13A, 
Interworking Architecture.

Table 13-6 EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA 
interface, which this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code 
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of 
the CORBA system exception. <completion status> is “YES,” “NO,” 
or “MAYBE” based upon the value of the system exceptions’s 
CORBA completion status. Spaces and square brackets are literals 
and must be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 13-3 in Chapter 13B.

Table 13-7 ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the CORBA 
interface, which this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>] minor code 
[<minor code>][<completion status>]
where the <exception repository id> and <minor code> are those of 
the CORBA system exception. <completion status> is “YES,” “NO,” 
or “MAYBE” based upon the value of the system exceptions’s 
CORBA completion status. Spaces and square brackets are literals 
and must be included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
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13.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo-
Exceptions

The formulas used to name components of the Automation View (see Section 13.7.7, 
Naming Conventions for View Components in Chapter 13A, Interworking 
Architecture) are also used to name components Pseudo-Structs, Pseudo-Unions, and 
Pseudo-Exceptions. The CORBA type name is used as input to the formulas, just as 
the CORBA interface name is used as input to the formulas when mapping interfaces. 

These formulas apply to the name and IID of the Pseudo-Automation Interface, and to 
the Program Id and Class Id of an object implementing the Pseudo-Automation 
Interface if it is registered in the Windows System Registry.

13.1.21 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an OLE Automation 
Dual Interface, it is also acceptable to map it as a generic Dispatch Interface.

In this case, the normal methods and attribute accessor/assign methods are not required 
to have HRESULT return values. Instead, an additional “dispinterface” is defined, 
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type> arg1, [out] <type> arg2,
[retval, out] <return type> IT_retval)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type> arg1, [out] <type> arg2)

Using the example from Section 13.1.3, Mapping for Interfaces:

interface account 
{ // OMG IDL

attribute float balance;
readonly attribute string owner;
void makeLodgement (in float amount, out float 
balance);
void makeWithdrawal (in float amount, out float 
balance);

};

the corresponding Iaccount interfaces are defined as follows.
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[odl, uuid(e268443e-43d9-3dab-1d7e-f303bbe9642f)]
interface Iaccount: IUnknown { // ODL

void makeLodgement ([in] float amount, 
[out] float balance,[out,optional] 

VARIANT *excep_OBJ);
void makeWithdrawal([in] float amount, 

[out] float balance,[out,optional] 
VARIANT *excep_OBJ);

[propget] float balance ([retval,out] *IT_retval);
[propput] void balance ([in] float balance)
[propget] BSTR owner ([retval,out] *IT_retval);

}
[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f)]
dispinterface Daccount {

interface Iaccount;
};

A separate “dispinterface” declaration is required because Iaccount derives from 
IUnknown. The dispatch interface is DIaccount. Thus, in the example used for 
mapping object references in Section 13.1.8, Mapping for Object References, the 
reference to the Simple interface in the OMG IDL would map to a reference to 
IMyModule_Simple rather than DIMyModule_Simple. The naming conventions 
for Dispatch Interfaces (and for their IIDs) exposed by the View are slightly different 
from Dual Interfaces. See Section 13.7.7, Naming Conventions for View Components 
in Chapter 13A, Interworking Architecture, for details.

The Automation View Interface must correctly respond to a QueryInterface for the 
specific Dispatch Interface Id (DIID) for that View. By conforming to this requirement, 
the Automation View can be strongly type-checked. For example, 
ITypeInfo::Invoke, when handling a parameter that is typed as a pointer to a 
specific DIID, calls QueryInterface on the object for that DIID to make sure the object 
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as structs, 
unions, exceptions and the other noninterface constructs mapped to dispatch interfaces 
can also be exposed as nondual dispatch interfaces.

13.1.22 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View objects 
must either be capable of being aggregated in the standard COM fashion or must 
follow COM rules to indicate their inability or unwillingness to be aggregated. 

The same rule applies to pseudo-objects.

13.1.23 DII, DSI, and BOA

OLE Automation interfaces are inherently self-describing and may be invoked 
dynamically. There is no utility in providing a mapping of the DII interfaces and 
related pseudo-objects into OLE Automation interfaces. 
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13.2 Mapping OLE Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. It is 
best to solve this problem in a manner similar to the approach for exposing CORBA 
objects as Automation objects.

13.2.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implements 
one or more dispatch interfaces and whose server application exposes a class factory 
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of the 
operations of each of those interfaces. The CORBA View object is in every way a legal 
CORBA object. It is not an Automation object. The skeleton is placed on the machine 
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View which, as previously 
explained, is used to represent a CORBA object as an Automation object. The 
Automation View has to reside on the client side because COM is not distributable. A 
copy of the Automation View needs to be available on every client machine. 

The CORBA View, however, can live in the real CORBA object’s space and can be 
represented on the client side by the CORBA system’s stub because CORBA is 
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the term CORBA View is distinct from CORBA stubs 
and skeletons, from COM proxies and stubs, and from Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA 
operations translate parameter types and delegate to the corresponding methods of the 
real Automation object. When a CORBA client wishes to instantiate the real 
Automation object, it instantiates the CORBA View. 

Thus, from the point of view of the client, it is interacting with a CORBA object which 
may be a remote object. CORBA handles all of the interprocess communication and 
marshaling. No COM proxies or stubs are created.
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Figure 13-6 The CORBA View: a CORBA Object, which is a Client of a COM Object

13.2.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operations, 
respectively.

• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where 
possible.

• Automation errors are mapped similarly to COM errors.

13.2.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA View 
Interfaces. These interfaces may be registered as normal CORBA objects on the remote 
machine.
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Real Automation Object

IUnknown

((MyInterface *)pObject)->Method(...

Network

CORBA View

MyInterface methods
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pIntface->Method(...
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13.2.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward. 
Each interface maps to an OMG IDL interface. In general, we map all methods and 
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interface IMyModule_account,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account 
{

readonly attribute float balance;
};

If the ODL interface does not have a parameter with the [retval,out] attributes, 
its return type is mapped to long. This allows COM SCODE values to be passed 
through to the CORBA client.

13.2.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORBA 
View Interfaces.

For example, given the interface “account” and its derived interface 
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance([in] float balance);
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret); 
HRESULT makeLodgement([in] float amount, 

[out] float * balance);
HRESULT makeWithdrawal([in] float amount, 

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out] 
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};
13C-42                                  CORBA V2.0                                  July 1996



13C
the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attribute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in float amount, out float

theBalance);
};
interface MyModule_checkingAccount: MyModule_account {

readonly attributeshort overdraftLimit;
short orderChequeBook ();

};

13.2.6 Mapping for ODL Properties and Methods

An ODL property which has either a get/set pair or just a set method is mapped to an 
OMG IDL attribute. An ODL property with just a get accessor is mapped to an OMG 
IDL readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance, 
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement ([in] float amount,

 [out] float * balance, 
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
}

the corresponding OMG IDL interface is:

// OMG IDL
interface account {

attribute float balance;
readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float balance);

};

ODL [in], [out], and [in,out] parameters map to OMG IDL in, out, and 
inout parameters, respectively. Section 13.1.4, Mapping for Basic Data Types, 
explains the mapping for basic types. 
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13.2.7 Mapping for Automation Basic Data Types

Basic Automation Types

The basic data types allowed by OLE Automation as parameters and return values are 
detailed in Section 13.1.4, Mapping for Basic Data Types.

The formal mapping of CORBA types to Automation types is shown in Table 13-8.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fixed 
point number with 15 digits left of the decimal point and 4 digits to the right. The 
COM::Currency type is thus defined as follows:

module COM
{

struct Currency
{

unsigned long lower;
long upper;

}
}

This mapping of the CURRENCY type is transitional and should be revised when the 
extended data types revisions to OMG IDL are adopted. These revisions are slated to 
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing the 
number of days since December 30, 1899.

Table 13-8 Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
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13.2.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of the 
Automation and CORBA parameters and return types. It must map from CORBA to 
Automation for in parameters and from Automation to CORBA for out parameters. 

When the CORBA View encounters an error condition while translating between 
CORBA and Automation data types, it raises the CORBA system exception 
DATA_CONVERSION.

13.2.9 Special Cases of Data Type Conversion

Translating COM::Currency to Automation CURRENCY

If the supplied COM::Currency value does not translate to a meaningful Automation 
CURRENCY value, then the CORBA View should raise the CORBA System 
Exception DATA_CONVERSION.

Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then the 
CORBA View should raise the CORBA System Exception DATA_CONVERSION.

Translating CORBA boolean to Automation boolean and 
Automation boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True and 
false values for Automation boolean are, respectively, negative one (-1) and zero. 
Therefore, true values need to be adjusted accordingly.

13.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the mapped 
Automation interface actually exist. Other equivalent expressions of Automation 
interfaces, such as the contents of a Type Library, may be used. Moreover, there is no 
requirement that OMG IDL code corresponding to the CORBA View Interface be 
generated.

However, ODL is the appropriate medium for describing an Automation interface, and 
OMG IDL is the appropriate medium for describing a CORBA View Interface. 
Therefore, we provide the following ODL code to describe an Automation interface, 
which exercises all of the Automation base data types in the roles of properties, 
method [in] parameter, method [out] parameter, method [inout] parameter, and 
return value. The ODL code is followed by OMG IDL code describing the CORBA 
View Interface, which would result from a conformant mapping.
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// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *IT_retval);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY

*IT_retval);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
HRESULT setAll ([in] short boolTest, 

[in] double doubleTest,
[in] float floatTest, 
[in] long longTest,
[in] short shortTest, 
[in] BSTR stringTest,
[in] DATE dateTest, 
[in] CURRENCY currencyTest,
[retval,out] short * IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] double *doubleTest, 
[out] float *floatTest,
[out] long *longTest, 
[out] short *shortTest, 
[out] BSTR stringTest, 
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] double *doubleTest,
[in,out] float *floatTest, 
[in,out] long *longTest, 
[in,out] short *shortTest, 
[in,out] BSTR *stringTest, 
[in,out] DATE * dateTest, 
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[in,out] CURRENCY * currencyTest, 
[retval,out] short *IT_retval);

HRESULT boolReturn ([retval,out] short *IT_retval);
HRESULT doubleReturn ([retval,out] double *IT_retval);
HRESULT floatReturn ([retval,out] float *IT_retval);
HRESULT longReturn ([retval,out] long *IT_retval);
HRESULT shortReturn ([retval,out] short *IT_retval);
HRESULT stringReturn ([retval,out] BSTR *IT_retval);
HRESULT octetReturn ([retval,out] DATE *IT_retval);
HRESULT currencyReturn ([retval,out] CURRENCY

*IT_retval);
}

The corresponding OMG IDL is as follows.
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// OMG IDL
interface MyModule_TypesTest 
{

attribute boolean boolTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateTest;
attribute COM::Currency currencyTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (in boolean boolTest,

in double doubleTest,
in float floatTest,
in long longTest,
in short shortTest,
in string stringTest,
in double dateTest,
in COM::Currency currencyTest);

// Gets all the attributes
boolean getAll (out boolean boolTest,

out double doubleTest,
out float floatTest,
out long longTest,
out short shortTest,
out string stringTest,
out double dateTest,
out COM::Currency currencyTest);

boolean setAndIncrement (
inout boolean boolTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortTest,
inout string stringTest,
inout double dateTest,
inout COM::Currency currencyTest);

boolean boolReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
short shortReturn ();
string stringReturn();
double dateReturn ();
13C-48                                  CORBA V2.0                                  July 1996



13C
COM::CurrencycurrencyReturn();

}; // End of Interface TypesTest

13.2.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully 
expressed by the following OMG IDL and ODL code. The ODL code defines an 
interface “Simple” and another interface that references Simple as an in parameter, an 
out parameter, an inout parameter, and as a return value. The OMG IDL code 
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] 
short * IT_retval);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** IT_retval);   

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);

HRESULT simpleOp([in] DIMyModule_Simple *inTest, 
[out] DIMyModule_Simple **outTest, 
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **IT_retval);

}

The OMG IDL code for the CORBA View Dispatch Interface is as follows.
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// OMG IDL
// A simple object we can use for testing object references
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest, 

 out MyModule_Simple outTest, 
 inout MyModule_Simple inoutTest);

}; 

13.2.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
module COM {

enum MyModule_color {red, green, blue};
interfacefoo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

13.2.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, will 
have the knowledge to handle the parameter properly. 

When SafeArrays are in parameters, the View method uses the Safearray API to 
dynamically repackage the SafeArray as a CORBA sequence. When arrays are out 
parameters, the View method uses the Safearray API to dynamically repackage the 
CORBA sequence as a SafeArray. 
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Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding 
information for each dimension, and indeed the number of dimensions, is not available 
in the static typelibrary information or ODL definition. It is only available at run-time.

For this reason, SafeArrays, which have more than one dimension, are mapped to an 
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follows:

• The number of elements in the linear sequence is the product of the dimensions.

• The position of each element is deterministic; for a SafeArray with dimensions d0, 
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of 5 * 8 * 9 = 360. This gives us 
valid offsets 0-359. In this example, the real offset to the element at location [4][5][1] 
is 4*8*9 + 5*9 + 1 = 334.

13.2.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is the 
case of an ODL enum, which is required to be a typedef. In this case the mapping is as 
per Section 13.1.9, Mapping for Enumerated Types.

13.2.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA any. If the VARIANT contains a DATE or 
CURRENCY element, these are mapped as per Section 13.2.7, Mapping for 
Automation Basic Data Types.

13.2.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by an 
Automation client such as the CORBA View. These ways differ based on the signature 
of the method and the behavior of the server. For example, for vtable invocations on 
dual interfaces, the HRESULT is the return value of the method. For 
IDispatch::Invoke invocations, the significant HRESULT may be the return 
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of the 
HRESULT is the exactly the same as for COM to CORBA (see Mapping for COM 
Errors under Section 13.3.10 in Chapter 13B, Mapping: COM and CORBA). The View 
raises either a standard CORBA system exception or the COM_HRESULT user 
exception.
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13C
CORBA Views must supply an EXCEPINFO parameter when making 
IDispatch::Invoke invocations to take advantage of servers using EXCEPINFO. 
Servers do not use the EXCEPINFO parameter if it is passed to Invoke as NULL.

An Automation method with an HRESULT return value and an argument marked as a 
[retval] maps to an IDL method whose return value is mapped from the 
[retval] argument. This situation is common in dual interfaces and means that 
there is no HRESULT available to the CORBA client. It would seem on the face of it 
that there is a problem mapping S_FALSE scodes in this case because the fact that no 
system exception was generated means that the HRESULT on the vtable method could 
have been either S_OK or S_FALSE. However, this should not truly be a problem. A 
method in a dual interface should never attach semantic meaning to the distinction 
between S_OK and S_FALSE because a Visual Basic program acting as a client would 
never be able to determine whether the return value from the actual method was S_OK 
or S_FALSE.

An Automation method with an HRESULT return value and no argument marked as 
[retval] maps to a CORBA interface with a long return value. The long HRESULT 
returned by the original Automation operation is passed back as the long return value 
from the CORBA operation.
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OMG IDL Tags B
This appendix lists the standardized profile, service, and component tags described in 
the Interoperability chapters. Implementor-defined tags can also be registered in this 
manual. Requests to register tags with the OMG should be sent to 
tag_request@omg.org.

 

TBL. 17Standard Service Tags

TBL. 16Standard Profile Tags

Tag Name Tag Value Described in

ProfileId
TAG_INTERNET_IOP = 0

Section 10.6.2, “Interoperable Object Refer-
ences: IORs,” on page 10-14  

ProfileId
TAG_MULTIPLE_COMPONENTS = 1

Section 10.6.2, “Interoperable Object Refer-
ences: IORs,” on page 10-14

Tag Name Tag Value Described in

ServiceId TransactionService = 0 Section 10.6.6, “Object Service Context,” on 
page 10-18
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TBL. 18Standard Component Tags

 

Tag Name Tag Value Described in

ComponentId TAG_DCE_STRING_BINDING = 100 Section 13.5.1, “DCE-CIOP String Binding 
Component,” on page 13-16

ComponentId TAG_DCE_BINDING = 101 Section 13.5.2, “DCE-CIOP Binding Name 
Component,” on page 13-17

ComponentId TAG_DCE_NO_PIPES = 102 Section 13.5.3, “DCE-CIOP No Pipes Com-
ponent,” on page 13-18

ComponentId TAG_OBJECT_KEY = 10 Section 13.5.4, “Object Key Component,” on 
page 13-19

ComponentId TAG_ENDPOINT_ID = 11 Section 13.5.5, “Endpoint ID Component,” 
on page 13-19

ComponentId TAG_LOCATION_POLICY = 12 Section 13.5.6, “Location Policy Compo-
nent,” on page 13-20 and Section 13.6.3, 
“Basic Location Algorithm,” on page 13-22
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Sample Solutions for Older OLE 
Automation Controllers C
This appendix provides some solutions that vendors might implement to support 
existing and older OLE Automation controllers. These solutions are suggestions; they 
are strictly optional. 

 C.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some OLE Automation controllers do not support the use of SAFEARRAYs. For this 
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no explicit 
ICollection type interface, OLE does specify guidelines on the properties and methods 
a collection interface should export.

// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index, 

[retval,out] VARIANT * retval);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,
 [in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(

[retval, out] IEnumVARIANT * newEnum);
}

The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in 
which case it is named DCollection and its UUID is:
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{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH 
language construct can automatically iterate over a collection object such as that 
previously described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that 
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access code 
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then the 
signatures for operations accepting SAFEARRAYs should be modified to accept a 
VARIANT instead. In addition, the implementation code for the View wrapper method 
should detect the kind of object being passed.
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Example Mappings D
D.1 Mapping the OMG Naming Service to OLE Automation

This section provides an example of how a standard OMG Object Service, the Naming 
Service, would be mapped according to the Interworking specification.

The Naming Service provides a standard service for CORBA applications to obtain 
object references. The reference for the Naming Service is found by using the 
resolve_initial_references() method provided on the ORB pseudo-
interface:

CORBA::ORB_ptr theORB = CORBA::ORB_init(argc, argv, 
CORBA::ORBid, ev)
CORBA::Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =

CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA::Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent OLE 
Automation interface using the mapping rules contained in the rest of this section. A 
direct mapping would result in code from VisualBasic that appears as follows.
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Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“Naming-
Service”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

D.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of 
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is 
mapped according to the rules provided in Section 13.3, COM to CORBA Data Type 
Mapping in Chapter 13B. The example chosen is the COM ConnectionPoint set of 
interfaces. The ConnectionPoint service is commonly used for supporting event 
notification in OLE custom controls (OCXs). The service is a more general version of 
the IDataObject/IAdviseSink interfaces.

The ConnectionPoint service is defined by four interfaces, described in Table D-1.

For purposes of this example, we describe these interfaces in Microsoft IDL. The 
IConnectionPointContainer interface is shown next.

Table D-1 Interfaces of the ConnectionPoint Service

IConnectionPointContainer Used by a client to acquire a reference to one or more 
of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint references

IEnumConnections Used to iterate over the connections currently 
associated with a ConnectionPoint
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// Microsoft IDL
interface IConnectionPoint; 
interface IEnumConnectionPoints;
typedef struct {
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown
{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out] 

IConnectionPoint **cp);
};
MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG IDL interface 
shown next.

// OMG IDL
interface IConnectionPoint; 
interface IEnumConnectionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composite, 
CosLifeCycle::LifeCycleObject

{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) raises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out 

IConnectionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B196B284-BAB4-

101A-B69C-00AA00241D07”;
};

Similarly, the forward declared ConnectionPoint interface shown next is remapped to 
the OMG IDL definition shown in the second following example.
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// Microsoft IDL 
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07), 
pointer_default(unique)]
interface IConnectionPoint: IUnknown
{

HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out] 

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD 

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);

};

// OMG IDL
interface IEnumConnections;
interface IConnectionPoint:: CORBA::Composite, 

CosLifeCycle::LifeCycleObject
{

HRESULT GetConnectionInterface(out IID pIID) 
raises (COM_HRESULT);

HRESULT GetConnectionPointContainer
(out IConnectionPointContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);

HRESULT EnumConnections(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B196B286-BAB4-101A-B69C-
00AA00241D07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum Connections 
interfaces are shown next.
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typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections, 
 [out] IConnectionPoint **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections, 
 [out] IConnectionData **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition for EnumConnectionPoints and 
EnumConnections is shown next.
CORBA V2.0               July 1996 D-5



struct CONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

};
interface IEnumConnectionPoints: CORBA::Composite, 
CosLifeCycle::LifeCycleObject
{

HRESULT Next(in unsigned long cConnections, 
out IConnectionPoint rcpcn,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D07”;

};

interface IEnumConnections: CORBA::Composite, 
CosLifeCycle::LifeCycleObject

{
HRESULT Next(in unsigned long cConnections,

 out IConnectData rgcd,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections = 

“DCE:B196B287-BAB4-101A-B69C-00AA00241D07”;
};

D.3 Mapping an OMG Object Service to OLE Automation

This section provides an example of mapping an OMG-defined interface to an 
equivalent OLE Automation interface. This example is based on the OMG Naming 
Service and follows the mapping rules from Chapter 13C, Mapping: OLE Automation 
and CORBA. The Naming Service is defined by two interfaces and some associated 
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types, which are scoped in the OMG IDL CosNaming module.

Microsoft ODL does not explicitly support the notions of modules or scoping domains. 
To avoid name conflicts, all types defined in the scoping space of CosNaming are 
expanded to global names.

The data type portion (interfaces excluded) of the CosNaming interface is shown next.

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...
}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is 
shown next.

Table D-2 Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space in 
which new associations between names and 
object references can be created, and to retrieve 
an object reference that has been associated with 
a given name.

CosNaming::BindingIterator Used by a client to walk a list of registered names 
that exist within a naming context.
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[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID 
association
 library CosNaming
 {
importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-
string(“struct NameComponent”),
oleautomation, dual]
interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring **val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring 

** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);
};
# define Name SAFEARRAY(CosNaming_NameComponent *) 

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)
[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),

helpstring(“struct Binding”),
oleautomation, dual]
interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]

CosNaming_IString ** val);
 [propput] HRESULT binding_name([in] 

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in] 

CosNaming_BindingType val);
};
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding)
interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...
};

The types scoped in an OMG IDL interface are also expanded using the notation 
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within the 
CosNaming::NamingContext interface (shown next) are expanded in Microsoft ODL as 
shown in the second following example.
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module CosNaming{
// ...

interface NamingContext
{

enum NotFoundReason { missing_node, not_context,
not_object };
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises( NotFound, CannotProceed, InvalidName, 
AlreadyBound );

void rebind(in Name n, in Object obj)
raises( NotFound, CannotProceed, InvalidName );

void bind_context(in Name n, in NamingContext nc)
raises( NotFound, CannotProceed, InvalidName, 
AlreadyBound );

void rebind_context(in Name n, in NamingContext nc)
raises( NotFound, CannotProceed, InvalidName );

Object resolve(in Name n)
raises( NotFound, CannotProceed, InvalidName );

void unbind(in Name n)
raises( NotFound, CannotProceed, InvalidName );

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises( NotFound, AlreadyBound, CannotProceed, InvalidName );
void destroy()

raises( NotEmpty );
void list(in unsigned long how_many,

out BindingList bl, out BindingIterator bi );
};

// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)] 
library CosNaming
 {// ...
interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]
 interface DICosNaming_NamingContext_NotFound: 

ICORBAException {
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[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval]

CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name 

* _val);
};
[uuid(d2fc8748-3650-cedd-1df6-026237b92940),

helpstring(“exception CannotProceed”),
oleautomation, dual]
interface DICosNaming_NamingContext_CannotProceed: 

DICORBAException{
[propget] HRESULT cxt([out, retval]

DICosNaming_NamingContext ** _val);
[propput] HRESULT cxt([in] DICosNaming_NamingContext 

* _val);
[propget] HRESULT rest_of_name([out, retval] 

CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);
};
[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69), 

helpstring(“exception InvalidName”),
oleautomation, dual]
interface DICosNaming_NamingContext_InvalidName: 

DICORBAException {};
[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),

helpstring(“exception AlreadyBound”),
oleautomation, dual]
interface DICosNaming_NamingContext_AlreadyBound: 

DICORBAException {};
[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),

helpstring(“exception NotEmpty”), 
oleautomation, dual]
interface CosNaming_NamingContext_NotEmpty: 

DICORBAException {};
typedef enum {[helpstring(“missing_node”)]

NamingContext_missing_node,
[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a), 

helpstring(“NamingContext”),
oleautomation,dual]
interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT rebind([in] CosNaming_Name * n, in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc, 
[out, optional] VARIANT * _user_exception);
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HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional ] VARIANT * _user_exception);
HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)
HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);
HRESULT new_context([out, retval] DICosNaming_NamingContext 
** pResult);
HRESULT bind_new_context([in] CosNaming_Name * n,

[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);
HRESULT destroy([out, optional] VARIANT* _user_exception);
HRESULT list([in] unsigned long how_many, [out] 
CosNaming_BindingList ** bl,

[out] DICosNaming_BindingIterator ** bi);
};
};

The BindingIterator interface is mapped in a similar manner, as shown in the next two 
examples. 

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] 
library CosNaming
 {// ...

[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),

 helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}
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C Language Mapping 14
CORBA is independent of the programming language used to construct clients or 
implementations. In order to use the ORB, it is necessary for programmers to know 
how to access ORB functionality from their programming languages. This chapter 
defines the mapping of OMG IDL constructs to the C programming language. 

 14.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the 
means of expressing in the language:

• All OMG IDL basic data types 

• All OMG IDL constructed data types 

• References to constants defined in OMG IDL 

• References to objects defined in OMG IDL 

• Invocations of operations, including passing parameters and receiving results 

• Exceptions, including what happens when an operation raises an exception and how 
the exception parameters are accessed 

• Access to attributes 

• Signatures for the operations defined by the ORB, such as the dynamic invocation 
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB 
functionality in a way that is convenient for the particular programming language. To 
support source portability, all ORB implementations must support the same mapping 
for a particular language.
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14
14.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types defined 
in Section 3.8.1, Basic Types. The ORB defines the range of values supported, but the 
language mapping defines how a programmer sees those values. For example, the C 
mapping might define TRUE as one, and FALSE as zero, whereas the LISP mapping 
might define TRUE as T and FALSE as NIL. The mapping must specify the means to 
construct and operate on these data types in the programming language.

14.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data types 
defined in Section 3.8.2, Constructed Types. The ORB defines aggregates of basic data 
types that are supported, but the language mapping defines how a programmer sees 
those aggregates. For example, the C mapping might define an OMG IDL struct as a C 
struct, whereas the LISP mapping might define an OMG IDL struct as a list. The 
mapping must specify the means to construct and operate on these data types in the 
programming language. 

14.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as parameters 
for certain operations. The language mapping should provide the means to access these 
constants by name.

14.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular language. 
The first specifies how an object is represented in the program and passed as a 
parameter to operations. The second is how an object is invoked. The representation of 
an object reference in a particular language is generally opaque, that is, some 
language-specific data type is used to represent the object reference, but the program 
does not interpret the values of that type. The language-specific representation is 
independent of the ORB representation of an object reference, so that programs are not 
ORB-dependent. In an object-oriented programming language, it may be convenient to 
represent an ORB object as a programming language object. Any correspondence 
between the programming language object types and the OMG IDL types including 
inheritance, operation names, etc., is up to the language mapping. 

There are only three uses that a program can make of an object reference: it may 
specify it as a parameter to an operation (including receiving it as an output 
parameter), it can invoke an operation on it, or it can perform an ORB operation 
(including object adapter operations) on it.
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14.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the 
operation to be performed, and the parameters to be supplied. There are a variety of 
possible mappings, depending to a large extent on the procedure mechanism in the 
particular language. Some possible choices for language mapping of invocation 
include: interface-specific stub routines, a single general-purpose routine, a set of calls 
to construct a parameter list and initiate the operation, or mapping ORB operations to 
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how the 
operation name is specified. It is also necessary to specify the effect of the call on the 
flow of control in the program, including when an operation completes normally and 
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the 
corresponding call in the particular language. However, this may not always be 
possible for languages where the type system or call mechanism is not powerful 
enough to handle ORB objects. In this case, multiple calls may be required. For 
example, in C, it is necessary to have a separate interface for dynamic construction of 
calls, since C does not permit discovery of new types at run-time. In LISP, however, it 
may be possible to make a language mapping that is the same for objects whether or 
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the 
storage allocation policy for parameters, for example, what happens to storage of input 
parameters, and how and where output parameters are allocated. It is also necessary to 
describe how a return value is handled, for operations that have one.

14.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. First is 
the means for handling an exception when it occurs, including deciding which 
exception occurred. If the programming language has a model of exceptions that can 
accommodate ORB exceptions, that would likely be the most convenient choice; if it 
does not, some other means must be used, for example, passing additional parameters 
to the operations that receive the exception status.

It is commonly the case that the programmer associates specific code to handle each 
kind of exception. It is desirable to make that association as convenient as possible.

Second, when an exception has been raised, it must be possible to access the 
parameters of the exception. If the language exception mechanism allows for 
parameters, that mechanism could be used. Otherwise, some other means of obtaining 
the exception values must be provided.
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14.1.7 Attributes

The ORB models attributes as a pair of operations, one to set and one to get the 
attribute value. The language mapping defines the means of expressing these 
operations. One reason for distinguishing attributes from pairs of operations is to allow 
the language mapping to define the most natural way for accessing them. Some 
possible choices include defining two operations for each attribute; defining two 
operations that can set or get, respectively, any attribute; defining operations that can 
set or get groups of attributes, and so forth.

14.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined objects 
and data are accessed. Programmers who use the ORB must also access some 
interfaces implemented directly by the ORB, for example, to convert an object 
reference to a string. A language mapping must also specify how these interfaces 
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allowing 
additional ORB-related operations on objects, or defining interfaces that are similar to 
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interface 
that can (with a few exceptions) be defined in OMG IDL, but is not necessarily 
implemented as an ORB object. Using stubs, a client of a pseudo-object writes calls to 
it in the same way as if it were an ordinary object. Pseudo-object operations cannot be 
invoked with the Dynamic Invocation Interface. However, the ORB may recognize 
such calls as special and handle them directly. One advantage of pseudo-objects is that 
the interface can be expressed in OMG IDL independent of the particular language 
mapping, and the programmer can understand how to write calls by knowing the 
language mapping for the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach. 
However, this document defines interfaces in subsequent chapters using OMG IDL 
wherever possible. A language mapping must define how these interfaces are accessed, 
either by defining them as pseudo-objects and supporting a mapping similar to 
ordinary objects, by defining language-specific interfaces for them, or in some other 
way.

 14.2 Scoped Names

The C programmer must always use the global name for a type, constant, exception, or 
operation. The C global name corresponding to an OMG IDL global name is derived 
by converting occurrences of “::” to “_” (an underscore) and eliminating the leading 
underscore.
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Consider the following example:

typedef string<256> filename_t;
interface example0 {

enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };
• • •

};

Code to use this interface would appear as follows:

#include "example0.h" /* C */

filename_t FN;
example0_color C = example0_red;
example0_bar myUnion;

switch (myUnion._d) {
case example0_bar_room: • • •
case example0_bar_bell: • • •
};

Note that the use of underscores to replace the “::” separators can lead to ambiguity if 
the OMG IDL specification contains identifiers with underscores in them. Consider the 
following example:

typedef long foo_bar;
interface foo {

typedef short bar; /* A legal OMG IDL statement, but
ambigous in C */
• • •

};

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores 
in identifiers.

 14.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for 
an interface declaration is as follows:

interface example1 {
long op1(in long arg1);

};

The preceding example generates the following C declarations1.

1. Section 14.15, Implicit Arguments to Operations, describes the additional argu-
ments added to an operation in the C mapping.
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typedef CORBA_Object example1 ; /* C */
extern CORBA_long example1_op1(

example1 o, 
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-known, 
opaque type CORBA_Object. The representation of CORBA_Object is a pointer. To 
permit the programmer to decorate a program with typed references, a type with the 
name of the interface is defined to be a CORBA_Object. The literal 
CORBA_OBJECT_NIL is legal wherever a CORBA_Object may be used; it is 
guaranteed to pass the is_nil operation defined in Section 7.2.3, Nil Object 
References. 

OMG IDL permits specifications in which arguments, return results, or components of 
constructed types may be interface references. Consider the following example:

#include "example1.idl"

interface example2 {
example1 op2();

};

This is equivalent to the following C declaration.

#include "example1.h" /* C */

typedef CORBA_Object example2;
extern example1 example2_op2(example2 o, CORBA_Environment 
*ev);

A C fragment for invoking such an operation is as follows.

#include "example2.h" /* C */

example1 ex1;
example2 ex2;
CORBA_Environment ev;

/* code for binding ex2 */

ex1 = example2_op2(ex2, &ev);

 14.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other 
interfaces. Consider the following example.
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interface example3 : example1 {
void op3(in long arg3, out long arg4);

};

This is equivalent to the following C declarations.

typedef CORBA_Object example3; /* C */
extern CORBA_long example3_op1(

example3 o, 
CORBA_long arg1,
CORBA_Environment *ev

);
extern void example3_op3(

example3 o, 
CORBA_long arg3, 
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can access op1 as if it was directly declared in 
example3. Of course, the programmer could also invoke example1_op1 on an 
Object of type example3; the virtual nature of operations in interface definitions 
will cause invocations of either function to cause the same method to be invoked.

 14.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the following 
specification:

interface foo {
struct position_t {
float x, y;

};

attribute float radius;
readonly attribute position_t position;

};

This is exactly equivalent to the following illegal OMG IDL specification:

interface foo {
struct position_t {
float x, y;

};

float _get_radius();
void _set_radius(in float r);
position_t _get_position();

};

This latter specification is illegal, since OMG IDL identifiers are not permitted to start 
with the underscore (_) character. 
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The language mapping for attributes then becomes the language mapping for these 
equivalent operations. More specifically, the function signatures generated for the 
above operations are as follows.

typedef struct foo_position_t { /* C */
CORBA_float x, y;

} foo_position_t;

extern CORBA_float foo__get_radius(foo o, CORBA_Environment 
*ev);
extern void foo__set_radius(

foo o, 
CORBA_float r,
CORBA_Environment *ev

);
extern foo_position_t foo__get_position(foo o, 
CORBA_Environment *ev);

Note that two underscore characters (__) separate the name of the interface from the 
words “get” or “set” in the names of the functions.

If the “set” accessor function fails to set the attribute value, the method should return 
one of the standard exceptions defined in Section 3.15, Standard Exceptions. 

 14.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a literal of 
that type is legal. In C, these constants are #defined.

The fact that constants are #defined may lead to ambiguities in code. All names 
mandated by the mappings for any of the structured types below start with an 
underscore. 

 14.7 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 14-1. Implementations are 
responsible for providing typedefs for CORBA_short, CORBA_long, and so forth, 
consistent with OMG IDL requirements for the corresponding data types. 

Table 14-1 Data Type Mappings  

OMG IDL C

short CORBA_short

long CORBA_long

unsigned short CORBA_unsigned_short

unsigned long CORBA_unsigned_long

float CORBA_float

double CORBA_double

char CORBA_char
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The C mapping of the OMG IDL boolean types is unsigned char with only the 
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavior. 
CORBA_boolean is provided for symmetry with the other basic data type mappings.

The C mapping of OMG IDL enum types is an unsigned integer type capable of 
representing 232 enumerations. Each enumerator in an enum is #defined with an 
appropriate unsigned integer value conforming to the ordering constraints described in 
Section 3.8.2, Enumerations.

TypeCodes are described in Section 6.7, TypeCodes. The _value member for an any 
is a pointer to the actual value of the datum.

The any type supports the notion of ownership of its _value member. By setting a 
release flag in the any when a value is installed, programmers can control ownership 
of the memory pointed to by _value. The location of this release flag is 
implementation-dependent, so the following two ORB-supplied functions allow for the 
setting and checking of the any release flag.

void CORBA_any_set_release(CORBA_any*, CORBA_boolean);/* C 
*/
CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set_release can be used to set the state of the release flag. If the 
flag is set to TRUE, the any effectively “owns” the storage pointed to by _value; if 
FALSE, the programmer is responsible for the storage. If, for example, an any is 
returned from an operation with its release flag set to FALSE, calling CORBA_free() 
on the returned any* will not deallocate the memory pointed to by _value. Before 
calling CORBA_free() on the _value member of an any directly, the programmer 
should check the release flag using CORBA_any_get_release. If it returns FALSE, 
the programmer should not invoke CORBA_free() on the _value member; doing 
so produces undefined behavior. Also, passing a null pointer to either 
CORBA_any_set_release or CORBA_any_get_release produces undefined 
behavior.

If CORBA_any_set_release is never called for a given instance of any, the 
default value of the release flag for that instance is FALSE.

boolean CORBA_boolean

octet CORBA_octet

enum CORBA_enum

any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }

 CORBA_any;

Table 14-1 Data Type Mappings  (Continued)

OMG IDL C
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 14.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences) 
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any

• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object2

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow 
more flexibility in the allocation of out parameters and return values from an 
operation. This flexibility allows a client-side stub for an operation that returns a 
sequence of strings, for example, to allocate all the string storage in one area that is 
deallocated in a single call.

The mapping of a variable-length type as an out parameter or operation return value 
is a pointer to the associated class or array, as shown in Table 14-2.

For types whose parameter passing modes require heap allocation, an ORB 
implementation will provide allocation functions. These types include variable-length 
struct, variable-length union, sequence, any, string, and array of a variable-
length type. The return value of these allocation functions must be freed using 
CORBA_free(). For one of these listed types T, the ORB implementation will 
provide the following type-specific allocation function:

T *T__alloc(); /* C */

The functions are defined at global scope using the fully-scoped name of T converted 
into a C language name (as described in Section 14.2, Scoped Names) followed by the 
suffix __alloc (note the double underscore). For any and string, the allocation 
functions are, respectively:

CORBA_any *CORBA_any_alloc();
char *CORBA_string_alloc();

 14.9 Mapping for Structure Types

OMG IDL structures map directly onto C structs. Note that all OMG IDL types that 
map to C structs may potentially include padding.

2.Transmissible pseudo-objects are listed as “general arguments” in Table 14 on page 
A-2.
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 14.10 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C structs. Consider the following 
OMG IDL declaration.

union Foo switch (long) {
case 1: long x;
case 2: float y;
default: char z;

};

This is equivalent to the following struct in C:

typedef struct { /* C */
CORBA_long _d;
union {
CORBA_long x;
CORBA_float y;
CORBA_char z;
} _u;

} Foo;

The discriminator in the struct is always referred to as _d; the union in the struct is 
always referred to as _u.

Reference to union elements is as in normal C:

Foo *v; /* C */

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use a C union to hold the OMG IDL union 
elements; a C struct may be used instead. In either case, the programmer accesses the 
union elements via the _u member.

 14.11 Mapping for Sequence Types

The OMG IDL data type sequence permits passing of unbounded arrays between 
objects. Consider the following OMG IDL declaration:

typedef sequence<long,10> vec10;
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In C, this is converted to:

typedef struct { /* C */
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} vec10;

An instance of this type is declared as follows:

vec10 x = {10L, 0L, (CORBA_long *)NULL); /* C */

Prior to passing &x as an in parameter, the programmer must set the _buffer 
member to point to a CORBA_long array of 10 elements, and must set the _length 
member to the actual number of elements to transmit.

Prior to passing the address of a vec10* as an out parameter (or receiving a vec10* 
as the function return), the programmer does nothing. The client stub will allocate 
storage for the returned sequence; for bounded sequences, it also allocates a buffer of 
the specified size, while for unbounded sequences, it also allocates a buffer big enough 
to hold what was returned by the object. Upon successful return from the invocation, 
the _maximum member will contain the size of the allocated array, the _buffer 
member will point at allocated storage, and the _length member will contain the 
number of values that were returned in the _buffer member. The client is 
responsible for freeing the allocated sequence using CORBA_free().

Prior to passing &x as an inout parameter, the programmer must set the _buffer 
member to point to a CORBA_long array of 10 elements. The _length member 
must be set to the actual number of elements to transmit. Upon successful return from 
the invocation, the _length member will contain the number of values that were 
copied into the buffer pointed to by the _buffer member. If more data must be 
returned than the original buffer can hold, the callee can deallocate the original 
_buffer member using CORBA_free() (honoring the release flag) and assign 
_buffer to point to new storage. 

For bounded sequences, it is an error to set the _length or _maximum member to a 
value larger than the specified bound.

Sequence types support the notion of ownership of their _buffer members. By 
setting a release flag in the sequence when a buffer is installed, programmers can 
control ownership of the memory pointed to by _buffer. The location of this release 
flag is implementation-dependent, so the following two ORB-supplied functions allow 
for the setting and checking of the sequence release flag:

void CORBA_sequence_set_release(void*, CORBA_boolean);/* C 
*/
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release can be used to set the state of the release flag. If 
the flag is set to TRUE, the sequence effectively “owns” the storage pointed to by 
_buffer; if FALSE, the programmer is responsible for the storage. If, for example, a 
sequence is returned from an operation with its release flag set to FALSE, calling 
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CORBA_free() on the returned sequence pointer will not deallocate the memory 
pointed to by _buffer. Before calling CORBA_free() on the _buffer member of 
a sequence directly, the programmer should check the release flag using 
CORBA_sequence_get_release. If it returns FALSE, the programmer should not 
invoke CORBA_free() on the _buffer member; doing so produces undefined 
behavior. Also, passing a null pointer or a pointer to something other than a sequence 
type to either CORBA_sequence_set_release or 
CORBA_sequence_get_release produces undefined behavior.

CORBA_sequence_set_release should only be used by the creator of a 
sequence. If it is not called for a given sequence instance, then the default value of the 
release flag for that instance is FALSE.

Two sequence types are the same type if their sequence element type and size arguments 
are identical. For example,

const long SIZE = 25;
typedef long seqtype;

typedef sequence<long, SIZE> s1;
typedef sequence<long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1, s2, s3, and s4 to be of the same type.

The OMG IDL type

sequence<type,size>

maps to

#ifndef _CORBA_sequence_type_defined /* C */
#define _CORBA_sequence_type_defined
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;

} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

The ifdefs are needed to prevent duplicate definition where the same type is used 
more than once. The type name used in the C mapping is the type name of the effective 
type, e.g. in

typedef CORBA_long FRED; /* C */
typedef sequence<FRED,10> FredSeq;
CORBA V2.0         Mapping for Sequence Types      July 1996 14-13



14
the sequence is mapped onto 

struct { ... } CORBA_sequence_long;

If the type in sequence<type,size> consists of more than one identifier (e.g. 
unsigned long), then the generated type name consists of the string 
CORBA_sequence_ concatenated to the string consisting of the concatenation of 
each identifier separated by underscores (e.g. unsigned_long). 

If the type is a string, the string “string” is used to generate the type name. If the 
type is a sequence, the string “sequence” is used to generate the type name, 
recursively. For example

sequence<sequence<long> >

generates a type of 

CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence type.

In addition to providing a type-specific allocation function for each sequence, an ORB 
implementation must provide a buffer allocation function for each sequence type. 
These functions allocate vectors of type T for sequence<T>. They are defined at 
global scope and are named similarly to sequences:

T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);/* C 
*/

Here, T refers to the type name. For the type

sequence<sequence<long> >

for example, the sequence buffer allocation function is named

T *CORBA_sequence_sequence_long_allocbuf(CORBA_unsigned_long 
len);

Buffers allocated using these allocation functions are freed using CORBA_free().

 14.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of 
the string is encoded in the character array itself through the placement of the 0-byte. 
Note that the storage for C strings is one byte longer than the stated OMG IDL bound. 
Consider the following OMG IDL declarations:

typedef string<10> sten;
typedef string sinf;
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In C, this is converted to:

typedef CORBA_char *sten; /* C */
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

sten s1 = NULL; /* C */
sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For example,

const long SIZE = 25; /* C */

typedef string<SIZE> sx;
typedef string<25> sy;

declares sx and sy to be of the same type.

Prior to passing s1 or s2 as an in parameter, the programmer must assign the address 
of a character buffer containing a 0-byte terminated string to the variable. The caller 
cannot pass a null pointer as the string argument.

Prior to passing &s1 or &s2 as an out parameter (or receiving an sten or sinf as 
the return result), the programmer does nothing. The client stub will allocate storage 
for the returned buffer; for bounded strings, it allocates a buffer of the specified size, 
while for unbounded strings, it allocates a buffer big enough to hold the returned 
string. Upon successful return from the invocation, the character pointer will contain 
the address of the allocated buffer. The client is responsible for freeing the allocated 
storage using CORBA_free().

Prior to passing &s1 or &s2 as an inout parameter, the programmer must assign the 
address of a character buffer containing a 0-byte terminated array to the variable. If the 
returned string is larger than the original buffer, the client stub will call 
CORBA_free() on the original string and allocate a new buffer for the new string. 
The client should therefore never pass an inout string parameter that was not 
allocated using CORBA_string_alloc. The client is responsible for freeing the 
allocated storage using CORBA_free(), regardless of whether or not a reallocation 
was necessary.

Strings are dynamically allocated using the following ORB-supplied function:

char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocates len+1 bytes, enough to hold the string and its terminating 
NULL character.

Strings allocated in this manner are freed using CORBA_free().
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 14.13 Mapping for Arrays

OMG IDL arrays map directly to C arrays. All array indices run from zero to 
<size-1>.

For each named array type in OMG IDL, the mapping provides a C typedef for pointer 
to the array’s slice. A slice of an array is another array with all the dimensions of the 
original except the first. For example, given the following OMG IDL definition:

typedef long LongArray[4][5];

The C mapping provides the following definitions:

typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending _slice to the 
original array name.

If the return result, or an out parameter for an array holding a variable-length type of 
an operation is an array, the array storage is dynamically allocated by the stub; a 
pointer to the array slice of the dynamically allocated array is returned as the value of 
the client stub function. When the data is no longer needed, it is the programmer’s 
responsibility to return the dynamically allocated storage by calling CORBA_free().

For an array, T of a variable-length type is dynamically allocated using the following 
ORB-supplied function:

T_slice *T__alloc(); /* C */

This function is identical to the allocation functions described in Section 14.8, 
Mapping Considerations for Constructed Types, except that the return type is pointer to 
array slice, not pointer to array.

 14.14 Mapping for Exception Types

Each defined exception type is defined as a struct tag and a typedef with the C global 
name for the exception. An identifier for the exception, in string literal form, is also 
#defined, as is a type-specific allocation function. For example:

exception foo {
long dummy;

};

yields the following C declarations:
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typedef struct foo { /* C */
CORBA_long dummy;
/* ...may contain additional
 * implementation-specific members...
 */

} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example, it 
could be the Interface Repository identifier for the exception (see Section 6.5.19, 
ExceptionDef).

The allocation function dynamically allocates an instance of the exception and returns 
a pointer to it. Each exception type has its own dynamic allocation function. 
Exceptions allocated using a dynamic allocation function are freed using 
CORBA_free().

 14.15 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interface 
have additional leading parameters preceding the operation-specific parameters:

• The first parameter to each operation is a CORBA_Object input parameter; this 
parameter designates the object to process the request.

• The last parameter to each operation is a (CORBA_Environment *) output 
parameter; this parameter permits the return of exception information. 

• If an operation in an OMG IDL specification has a context specification, then a 
CORBA_Context input parameter precedes the (CORBA_Environment *) 
parameter and follows any operation-specific arguments. 

As described above, the CORBA_Object type is an opaque type. The 
CORBA_Environment type is partially opaque; Section 14.20, Handling Exceptions, 
provides a description of the nonopaque portion of the exception structure and an 
example of how to handle exceptions in client code. The CORBA_Context type is 
opaque; see Chapter 4, Dynamic Invocation Interface, for more information on how to 
create and manipulate context objects.

 14.16 Interpretation of Functions with Empty Argument Lists

A function declared with an empty argument list is defined to take no operation-
specific arguments.
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 14.17 Argument Passing Considerations

For all OMG IDL types (except arrays), if the OMG IDL signature specifies that an 
argument is an out or inout parameter, then the caller must always pass the address 
of a variable of that type (or the value of a pointer to that type); the callee must 
dereference the parameter to get to the type. For arrays, the caller must pass the 
address of the first element of the array.

For in parameters, the value of the parameter must be passed for all of the basic types, 
enumeration types, and object references. For all arrays, the address of the first 
element of the array must be passed. For all other structured types, the address of a 
variable of that type must be passed, regardless of whether they are fixed- or variable-
length. For strings, a char* must be passed.

For inout parameters, the address of a variable of the correct type must be passed for 
all of the basic types, enumeration types, object references, and structured types. For 
strings, the address of a char* must be passed. For all arrays, the address of the first 
element of the array must be passed.

Consider the following OMG IDL specification:

interface foo {
typedef long Vector[25];

void bar(out Vector x, out long y);
};

Client code for invoking the bar operation would look like:

foo object; /* C */
foo_Vector_slice x;
CORBA_long y;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out parameters of type variable-length struct, variable-length union, 
string, sequence, an array holding a variable-length type, or any, the ORB will 
allocate storage for the output value using the appropriate type-specific allocation 
function. The client may use and retain that storage indefinitely, and must indicate 
when the value is no longer needed by calling the procedure CORBA_free, whose 
signature is:

extern void CORBA_free (void *storage); /* C */

The parameter to CORBA_free() is the pointer used to return the out parameter. 
CORBA_free() releases the ORB-allocated storage occupied by the out parameter, 
including storage indirectly referenced, such as in the case of a sequence of strings or 
array of object reference. If a client does not call CORBA_free() before reusing the 
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pointers that reference the out parameters, that storage might be wasted. Passing a 
null pointer to CORBA_free() is allowed; CORBA_free() simply ignores it and 
returns without error.

 14.18 Return Result Passing Considerations

When an operation is defined to return a nonvoid return result, the following rules 
hold:

• If the return result is one of the types float, double, long, short, unsigned 
long, unsigned short, char, boolean, octet, Object, or an 
enumeration, then the value is returned as the operation result.

• If the return result is one of the fixed-length types struct or union, then the 
value of the C struct representing that type is returned as the operation result. If the 
return result is one of the variable-length types struct, union, sequence, or 
any, then a pointer to a C struct representing that type is returned as the operation 
result.

• If the return result is of type string, then a pointer to the first character of the 
string is returned as the operation result. 

• If the return result is of type array, then a pointer to the slice of the array is 
returned as the operation result. 

Consider the following interface:

interface X {
struct y {

long a;
float b;

};

long op1();
y op2();

}

The following C declarations ensue from processing the specification:

typedef CORBA_Object X; /* C */
typedef struct X_y {

CORBA_long a;
CORBA_float b;

} X_y;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-length struct, variable-length union, 
string, sequence, array, or any, the ORB will allocate storage for the return 
value using the appropriate type-specific allocation function. The client may use and 
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retain that storage indefinitely, and must indicate when the value is no longer needed 
by calling the procedure CORBA_free() described in Section 14.17, Argument 
Passing Considerations. 

 14.19 Summary of Argument/Result Passing

Table 14-2 summarizes what a client passes as an argument to a stub and receives as a 
result. For brevity, the CORBA_ prefix is omitted from type names in the tables.

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

Table 14-2 Basic Argument and Result Passing 

Data Type In Inout Out Return

short short short* short* short

long long long* long* long

unsigned short unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned long unsigned_long unsigned_long* unsigned_long* unsigned_long

float float float* float* float

double double double* double* double

boolean boolean boolean* boolean* boolean

char char char* char* char

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr1 objref_ptr objref_ptr* objref_ptr* objref_ptr

struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

sequence sequence* sequence* sequence** sequence*

array, fixed array array array array slice*2

array, variable array array array slice**2 array slice*2

any any* any* any** any*
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A client is responsible for providing storage for all arguments passed as in arguments.

Table 14-3 Client Argument Storage Responsibilities 

Type
Inout 
Param

Out 
Param

Return 
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 14-4 Argument Passing Cases 

Case1

1 Caller allocates all necessary storage, except that which may be encapsulated and managed 
within the parameter itself. For inout parameters, the caller provides the initial value, and the 
callee may change that value. For out parameters, the caller allocates the storage but need not 
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an 
initial value; if the callee wants to reassign the inout parameter, it will first call 
CORBA_Object_release on the original input value. To continue to use an object reference 
passed in as an inout, the caller must first duplicate the reference. The client is responsible for 
the release of all out and return object references. Release of all object references embedded in 
other out and return structures is performed automatically as a result of calling CORBA_free.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The 
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. Following the completion of a 
request, the caller is not allowed to modify any values in the returned storage—to do so, the 
caller must first copy the returned instance into a new instance, then modify the new instance.
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 14.20 Handling Exceptions

The CORBA_Environment type is partially opaque; the C declaration contains at 
least the following:

typedef struct CORBA_Environment { /* C */
CORBA_exception_type _major;
...

} CORBA_Environment;

Upon return from an invocation, the _major field indicates whether the invocation 
terminated successfully; _major can have one of the values 
CORBA_NO_EXCEPTION, CORBA_USER_EXCEPTION, or 
CORBA_SYSTEM_EXCEPTION; if the value is one of the latter two, then any 
exception parameters signaled by the object can be accessed. 

Three functions are defined on an CORBA_Environment structure for accessing 
exception information; their signatures are:

extern CORBA_char *CORBA_exception_id(CORBA_Environment 
*ev); /* C */
extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);

CORBA_exception_id() returns a pointer to the character string identifying the 
exception. If invoked on an CORBA_Environment which identifies a nonexception 
(_major==CORBA_NO_EXCEPTION), a NULL is returned.

1. As listed in Table 21.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to 
it. The callee may deallocate the input string and reassign the char* to point to new storage to 
hold the output value. The size of the out string is therefore not limited by the size of the in 
string. The caller is responsible for freeing the storage for the out. The callee is not allowed to 
return a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause 
deallocation of owned storage before any reallocation occurs, depending upon the state of the 
boolean release in the sequence or any.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same 
dimensions of the original array except the first, and passes the pointer by reference to the 
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. Following the completion of a 
request, the caller is not allowed to modify any values in the returned storage—to do so, the 
caller must first copy the returned array instance into a new array instance, then modify the new 
instance.

Table 14-4 Argument Passing Cases (Continued)

Case1
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CORBA_exception_value() returns a pointer to the structure corresponding to 
this exception. If invoked on an CORBA_Environment which identifies a 
nonexception or an exception for which there is no associated information, a NULL is 
returned. 

CORBA_exception_free() returns any storage which was allocated in the 
construction of the CORBA_Environment. It is permissible to invoke 
CORBA_exception_free() regardless of the value of the _major field. 

Consider the following example:

interface exampleX {
exception BadCall {
string<80> reason;
};

void op() raises(BadCall);
};

This interface defines a single operation, which returns no results and can raise a 
BadCall exception. The following user code shows how to invoke the operation and 
recover from an exception.
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#include "exampleX.h" /* C */

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
*some code to initialize obj to a reference to an object
*supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/

/* process out and inout arguments */
break;

case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exampleX_BadCall,CORBA_exception_id(&ev))

== 0) {
bc = (exampleX_BadCall *)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",

bc->reason);
}
else { /* should never get here ... */

fprintf( stderr, 
"unknown user-defined exception -%s\n",
CORBA_exception_id(&ev));

}
break;

default:/* standard exception */
/* 

  * CORBA_exception_id() can be used to determine
 * which particular standard exception was
 * raised; the minor member of the struct

  * associated with the exception (as yielded by 
  * CORBA_exception_value()) may provide additional 

 * system-specific information about the exception 
  */

break;
}
/* free any storage associated with exception */
CORBA_exception_free(&ev);

 14.21 Method Routine Signatures

The signatures of the methods used to implement an object depend not only on the 
language binding, but also on the choice of object adapter. Different object adapters 
may provide additional parameters to access object adapter-specific features.
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Most object adapters are likely to provide method signatures similar in most respects to 
those of the client stubs. In particular, the mapping for the operation parameters 
expressed in OMG IDL should be the same as for the client side.

See Section 14.25, BOA: Mapping for Object Implementations, for the description of 
method signatures for implementations using the Basic Object Adapter.

 14.22 Include Files

Multiple interfaces may be defined in a single source file. By convention, each 
interface is stored in a separate source file. All OMG IDL compilers will, by default, 
generate a header file named Foo.h from Foo.idl. This file should be 
#included by clients and implementations of the interfaces defined in Foo.idl.

Inclusion of Foo.h is sufficient to define all global names associated with the 
interfaces in Foo.idl and any interfaces from which they are derived.

 14.23 Pseudo-Objects

In the C language mapping, there are several interfaces defined as pseudo-objects; 
Table 14 on page A-2 lists the pseudo-objects. A client makes calls on a pseudo-object 
in the same way as an ordinary ORB object. However, the ORB may implement the 
pseudo-object directly, and there are restrictions on what a client may do with a 
pseudo-object. 

The ORB itself is a pseudo-object with the following partial definition (see Chapter 7, 
ORB Interface, for the complete definition): 

interface ORB {
string object_to_string (in Object obj); 
Object string_to_object (in string str); 

};

This means that a C programmer may convert an object reference into its string form 
by calling:

CORBA_Environment ev; /* C */
CORBA_char *str = CORBA_ORB_object_to_string(orbobj, &ev, 
obj);

just as if the ORB were an ordinary object. The C library contains the routine 
CORBA_ORB_object_to_string, and it does not do a real invocation. The 
orbobj is an object reference that specifies which ORB is of interest, since it is 
possible to choose which ORB should be used to convert an object reference to a string 
(see Chapter 7, ORB Interface, for details on this specific operation).
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Although operations on pseudo-objects are invoked in the usual way defined by the C 
language mapping, there are restrictions on them. In general, a pseudo-object cannot be 
specified as a parameter to an operation on an ordinary object. Pseudo-objects are also 
not accessible using the dynamic invocation interface, and do not have definitions in 
the interface repository.

Operations on pseudo-objects may take parameters that are not permitted in operations on 
ordinary objects. For example, the set_exception operation on the Basic Object 
Adapter pseudo-object takes a C (void *) to specify the exception parameters (see Sec-
tion 14.25.2, Method Signatures, for details). Generally, these parameters will be lan-
guage-mapping specific.

Because the programmer uses pseudo-objects in the same way as ordinary objects, some 
ORB implementations may choose to implement some pseudo-objects as ordinary objects. 
For example, assuming it could be efficient enough, a context object might be imple-
mented as an ordinary object.

 14.24 Mapping of the Dynamic Skeleton Interface to C

For general information about mapping of the Dyanmic Skeleton Interface to 
programming languages, refer to Section 5.3, Dynamic Skeleton Interface: Language 
Mapping.

This section contains:

• A mapping of the Dynamic Skelton Interface’s ServerRequest to C

• A mapping of the Basic Object Adapter’s Dynamic Implementation Routine to C

14.24.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo-object in the CORBA module that 
supports the following operations:

CORBA_Identifier CORBA_ServerRequest_op_name (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the 
operation’s OMG IDL specification.

CORBA_ContextCORBA_ServerRequest_ctx (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the 
operation. Context will only be available to the extent defined in the operation’s OMG 
IDL definition; for example, attribute operations have none.
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voidCORBA_ServerRequest_params (
CORBA_ServerRequest req,
CORBA_NVList parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters from the ServerRequest, and to find the 
addresses used to pass pointers to result values to the ORB. It must always be called by 
each DIR, even when there are no parameters.

The caller passes ownership of the parameters NVList to the ORB. Before this 
routine is called, that NVList should be initialized with the TypeCodes for each of the 
parameters to the operation being implemented: in, out, and inout parameters inclusive. 
When the call returns, the parameters NVList is still usable by the DIR, and all in 
and inout parameters will have been unmarshaled. Pointers to those parameter values 
will at that point also be accessible through the parameters NVList.

The implementation routine will then process the call, producing any result values. If 
the DIR does not need to report an exception, it will replace pointers to inout values in 
parameters with the values to be returned, and assign pointers to out values in that 
NVList appropriately as well. When the DIR returns, all the parameter memory is 
freed as appropriate, and the NVList itself is freed by the ORB.

void CORBA_ServerRequest_result (
CORBA_ServerRequest req,
CORBA_Any value,
CORBA_Environment *env

);

This function is used to report any result value for an operation; if the operation has 
no result, it must not be called. It also must not be called before the parameters have 
been retrieved, or if an exception is being reported.

void CORBA_ServerRequest_exception (
CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_Any value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client who 
made the original invocation. The parameters are as follows:

• major indicates whether the exception is a user exception or system exception.

• value is the value of the exception, including an exceptionTypeCode.
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14.24.2 Mapping of BOA’s Dynamic Implementation Routine to C

In C, a DIR is a function with the following signature.

typedef void (*DynamicImplementationRoutine) (/* C */
CORBA_Object target,
CORBA_ServerRequest request,
CORBA_Environment *env

); 

Such a function will be invoked by the BOA when an invocation is received on an 
object reference whose implementation has registered a dynamic skeleton.

• target is the name object reference to which the invocation is directed.

• request is the ServerRequest used to access explicit parameters and report results 
(and exceptions).

• env may be passed to CORBA_BOA_get_principal if desired.

Unlike other BOA object implementations, the CORBA_BOA_set_exception API 
is not used. Instead, CORBA_ServerRequest_exception is used; this provides 
the TypeCode for the exception to the ORB, so it does not need to consult the Interface 
Repository (or rely on compiled stubs) to marshal the exception value.

 14.25 BOA: Mapping for Object Implementations

This section describes the details of the OMG IDL-to-C language mapping that apply 
specifically to the Basic Object Adapter, such as how the implementation methods are 
connected to the skeleton.

14.25.1 Operation-specific Details

This chapter defines most of the details of naming of parameter types and parameter 
passing conventions. Generally, for those parameters that are operation-specific, the 
method implementing the operation appears to receive the same values that would be 
passed to the stubs.

14.25.2 Method Signatures

With the BOA, implementation methods have signatures that are identical to the stubs. 
If the following interface is defined in OMG IDL:

interface example4 { // IDL
long op5(in long arg6);

};
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a method for the op5 routine must have the following function signature:

CORBA_long example4_op5( /* C */
example4 object, 
CORBA_Environment *ev, 
CORBA_long arg6

);

The object parameter is the object reference that was invoked. The method can 
identify which object was intended by using the get_id BOA operation. The ev 
parameter is used for authentication on the get_principal BOA operation, and is 
used for indicating exceptions.

The method terminates successfully by executing a return statement returning the 
declared operation value. Prior to returning the result of a successful invocation, the 
method code must assign legal values to all out and inout parameters.

The method terminates with an error by executing the set_exception BOA 
operation prior to executing a return statement. The set_exception operation 
has the following C language definition:

void CORBA_BOA_set_exception ( /* C */
CORBA_Object boa, 
CORBA_Environment *ev, 
CORBA_exception_type major, 
CORBA_char *exceptname, 
void *param

); 

The ev parameter is the environment parameter passed into the method. The caller 
must supply a value for the major parameter. The value of the major parameter 
constrains the other parameters in the call as follows: 

• If the major parameter has the value NO_EXCEPTION, then it specifies that this 
is a normal outcome to the operation. In this case, both exceptname and param 
must be NULL. Note that it is not necessary to invoke set_exception() to 
indicate a normal outcome; it is the default behavior if the method simply returns. 

• For any other value of major it specifies either a user-defined or standard 
exception. The exceptname parameter is a string representing the exception type 
identifier. If the exception is declared to take parameters, the param parameter 
must be the address of a struct containing the parameters according to the C 
language mapping, coerced to a void *; if the exception takes no parameters, 
param must be NULL. 

When raising an exception, the method code is not required to assign legal values to 
any out or inout parameters. Due to restrictions in C, it must return a legal function 
value. 
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14.25.3 Binding Methods to Skeletons

It is not specified as part of the language mapping how the skeletons are connected to 
the methods. Different means will be used in different environments. For example, the 
skeletons may make references to the methods that are resolved by the linker or there 
may be a system-dependent call done at program startup to specify the location of the 
methods.

14.25.4 BOA and ORB Operations

The operations on the BOA defined earlier in this chapter and the operations on the 
ORB defined in the ORB Interface chapter are used as if they had the OMG IDL 
definitions described in the document, and then mapped in the usual way with the C 
language mapping.

For example, the string_to_object ORB operation has the following signature:

CORBA_Object CORBA_ORB_string_to_object ( /* C */
CORBA_Object orb,
CORBA_Environment *ev,
CORBA_char *objectstring

);

The create BOA operation has the following signature:

CORBA_Object CORBA_BOA_create ( /* C */
CORBA_Object boa,
CORBA_Environment *ev,
CORBA_ReferenceData *id, 
CORBA_InterfaceDef intf,
CORBA_ImplementationDef impl

);

Although in each example we are using an “object” that is special (an ORB, an object 
adapter, or an object reference), the method name is generated as 
interface_operation in the same way as ordinary objects. Also, the signature 
contains a CORBA_Environment parameter for error indications.

In the first two cases, the signature calls for an object reference to represent the 
particular ORB or object adapter being manipulated. Programs may obtain these 
objects in a variety of ways, for example, in a global variable before program startup if 
there is only one ORB or BOA that makes sense, or by obtaining them from a name 
service if more than one is available. In the third case, the object reference being 
operated on is specified as the first parameter.

Following the same procedure, the C language binding for the remainder of the ORB, 
BOA, and object reference operations may be determined.
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 14.26 ORB and OA/BOA Initialization Operations 

14.26.1 ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part of 
the CORBA module (not the ORB interface) and is described in Section 7.4, ORB 
Initialization.

// PIDL 
module CORBA {

 typedef string ORBid;
 typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBid
orb_identifier);

};

The mapping of the preceding PIDL operations to C is as follows:

/* C language mapping */
typedef CORBA_string CORBA_ORBid;
extern CORBA_ORB CORBA_ORB_init (int *argc,

char **argv,
CORBA_ORBid orb_identifier,
CORBA_Environment *env);

The C mapping for ORB_init deviates from the PIDL in its handling of the 
arg_list parameter. This is intended to provide a meaningful PIDL definition of the 
initialization interface, which has a natural C (and C++) binding. To this end, the 
arg_list structure is replaced with argv and argc parameters. 

The argv parameter is defined as an unbound array of strings (char **) and the 
number of strings in the array is passed in the int* parameter.

If a NULL ORBid is used, then argv arguments can be used to determine which ORB 
should be returned. This is achieved by searching the argv parameters for one tagged 
ORBid, e.g. -ORBid “ORBid_example.” 

For C, the order of consumption of argv parameters may be significant to an 
application. In order to ensure that applications are not required to handle argv 
parameters, they do not recognize that the ORB initialization function must be called 
before the remainder of the parameters are consumed. Therefore, after the ORB_init 
call, the argv and argc parameters will have been modified to remove the ORB 
understood arguments. It is important to note that the ORB_init call can only reorder 
or remove references to parameters from the argv list, this restriction is made in order 
to avoid potential memory management problems caused by trying to free parts of the 
argv list or extending the argv list of parameters. This is why argv is passed as a 
char** and not a char***. 
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14.26.2 OA/BOA Initialization

The following PIDL specifies the operations (in the ORB interface) that allow 
applications to get pseudo object references; it is described in detail in Section 7.5, OA 
and BOA Initialization. 

// PIDL

module CORBA {

interface ORB 
{

typedef sequence <string> arg_list;
typedef string OAid;

 // Template for OA initialization operations
// <OA> <OA>_init (inout arg_list argv, 
// in OAid oa_identifier);

BOA BOA_init (inout arg_list argv,
 in OAid boa_identifier); 

 };

 } 

The mapping of the OAinit (BOA_init) operation (in the ORB interface) to the C 
programming language is as follows.
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/* C language mapping */ 

typedef CORBA_string CORBA_OAid;

/* Template C binding for <OA>_init */
/*
CORBA_<OA> CORBA_ORB_<OA>_init (CORBA_ORB orb,
  int *argc, 
  char **argv,
  CORBA_ORB_OAid boa_identifier,
 CORBA_Environment *env);
 */ 

CORBA_BOA CORBA_ORB_BOA_init (CORBA_ORB orb,
int *argc, 
char **argv,
CORBA_ORB_OAid boa_identifier,
CORBA_Environment *env); 

The arglist structure from the PIDL definition is replaced in the C mapping with 
argv and argc parameters. The argv parameters is an unbound array of strings 
(char**) and the number of strings in the array is passed in the argc (int*). 

If a NULL OAid is used, then argv arguments can be used to determine which OA 
should be returned. This is achieved by searching the argv parameters for one tagged 
OAid, e.g. -OAid “OAid_example.” 

For C, the order of consumption of argv parameters may be significant to an 
application. In order to ensure that applications are not required to handle argv 
parameters, they do not recognize the OA initialization function must be called before 
the remainder of the parameters are consumed by the application. Therefore, after the 
<OA>_init call, the argv and argc parameters will have been modified to remove 
the OA understood arguments. It is important to note that the OA_init call can only 
reorder or remove references to parameters from the argv list; this restriction is made 
in order to avoid potential memory management problems caused by trying to free 
parts of the argv list or extending the argv list of parameters. This is why argv is 
passed as a char** and not a char***. 

 14.27 Operations for Obtaining Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow 
applications to get pseudo-object references for the Interface Repository and Object 
Services. It is described in detail in Section 7.6, Obtaining Initial Object References.
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// PIDL interface for getting initial object references 

module CORBA { 
interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList; 

exception InvalidName {}; 

ObjectIdList list_initial_services (); 

Object resolve_initial_references (in ObjectId identifier)
raises (InvalidName); 
   } 
 
} 

The mapping of the preceding PIDL to C is as follows.

/* C Mapping */
typedef CORBA_string CORBA_ORB_ObjectId;
typedef CORBA_sequence_CORBA_ORB_ObjectId

CORBA_ORB_ObjectIdList;
typedef struct CORBA_ORB_InvalidName CORBA_ORB_InvalidName;

CORBA_ORB_ObjectIdList CORBA_ORB_list_initial_services ( 

CORBA_ORB orb,
CORBA_Environment *env);

CORBA_Object CORBA_ORB_resolve_initial_references (
CORBA_ORB orb,
CORBA_ORB_ObjectId identifier,
CORBA_Environment *env);
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This chapter explains how the C++ mapping was designed, and how it is organized in 
this manual.

15.1 Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including a 
design that achieves reasonable performance, portability, efficiency, and usability for 
OMG IDL-to-C++ implementations. Several other considerations are outlined in this 
section. 

For more information about the general requirements of a mapping from OMG IDL to 
any programming language, refer to Section 14.1, Requirements for a Language 
Mapping.

15.1.1 Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB 
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the 
syntax and semantics of using the construct from C++. A client or server program 
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as 
described in the C++ mapping chapters. An implementation conforms to this mapping 
if it correctly executes any conforming client or server program. A conforming client 
or server program is therefore portable across all conforming implementations. For 
more information about CORBA compliance, refer to Section 0.6, Definition of 
CORBA Compliance.

15.1.2 C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports all the 
features described in The Annotated C++ Reference Manual (ARM) by Ellis and 
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including 
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exception handling. In addition, it assumes that the C++ environment supports the 
namespace construct recently adopted into the language. Because C++ 
implementations vary widely in the quality of their support for templates, this mapping 
does not explicitly require their use, nor does it disallow their use as part of a CORBA-
compliant implementation.

15.1.3 C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work directly 
with the CORBA C mapping. This mapping makes every attempt to ensure 
compatibility between the C and C++ mappings, but it does not mandate such 
compatibility. In addition to providing better interoperability and portability, the C++ 
call style solves the memory management problems seen by C programmers who use 
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL. 
However, to provide continuity for earlier applications, an implementation might 
choose to support the C call style as an option. If an implementation supports both call 
styles, it is recommended that the C call style be phased out. 

Note that the mapping in Chapter 14, C Language Mapping, has been modified from 
CORBA V1.2 to achieve compatibility between the C and C++ mappings. 

15.1.4 No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that 
would constrain implementations, but still allows clients to be fully source compatible 
with any compliant implementation. Some examples show possible implementations, 
but these are not required implementations.

15.2 Organization of the C++ Mapping

In addition to this overview, the mapping of OMG IDL to the C++ programming 
language is divided into the following chapters: 

• Mapping of all OMG IDL constructs (as defined in Chapter 3, OMG IDL Syntax 
and Semantics) to C++ constructs

• Mapping of OMG IDL pseudo-objects to C++

• Server-side mapping, which refers to the portability constraints for an object 
implementation written in C++

Three appendices are also included at the end of the C++ chapters. One appendix 
contains C++ definitions for the CORBA module; another contains C++ keywords for 
the CORBA module; and another contains workarounds for C++ dialects that do not 
match the assumptions specified in Section 15.1.2, C++ Implementation Requirements. 
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Mapping of OMG IDL  to C++ 16
This chapter explains how OMG IDL constructs are mapped to the constructs of the 
C++ programming language.  It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, structure, struct, union, sequence, array, typedefs, any, exception)

• Operations and attributes

• Arguments

16.1 Preliminary Information

16.1.1 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ name spaces.

• OMG IDL interfaces are mapped to C++ classes (as described in Section 16.3, 
Mapping for Interfaces).

• All OMG IDL constructs scoped to an interface are accessed via C++ scoped 
names. For example, if a type mode were defined in interface printer, then the 
type would be referred to as printer::mode.

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be 
used to build scoped names. For instance:
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// IDL
module M 
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

and E can be referred outside of M as M::E. Alternatively, a C++ using statement 
for name space M can be used so that E can be referred to simply as E:

// C++
using namespace M;
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E:

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ key word as an 
identifier is mapped into the same name preceded by an underscore. The list of C++ 
key words from the 05/27/94 working draft of the ANSI/ISO C++ standardization 
committees (X3J16, WG21) can be found in Appendix C, C++ Definitions for 
CORBA.

16.1.2 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the sizeof(T) for 
anything except basic types (see Section 16.5, Mapping for Basic Data Types) and 
string (see Section 16.7, Mapping for String Types).
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16.1.3 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logically 
defined in a module named CORBA. The module is automatically accessible from a 
C++ compilation unit that includes a header file generated from an OMG IDL 
specification. In the examples presented in this document, CORBA definitions are 
referenced without explicit qualification for simplicity. In practice, fully scoped names 
or C++ using statements for the CORBA name space would be required in the 
application source. See Appendix A, Standard OMG IDL Types.

16.2 Mapping for Modules

A shown in Section 16.1.1, Scoped Names, a module defines a scope, and as such is 
mapped to a C++ namespace with the same name:

// IDL
module M
{

// definitions
};

// C++
namespace M
{

// definitions
}

Because name spaces were only recently added to the C++ language, few C++ 
compilers currently support them. Alternative mappings for OMG IDL modules that do 
not require C++ name spaces are in Appendix D, Alternative Mappings for C++ 
Dialects.

16.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types, 
constants, operations, and exceptions defined in the interface.

A CORBA-C++-compliant program cannot

• Create or hold an instance of an interface class.

• Use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For 
example, interface classes could not be implemented as abstract base classes if 
programs were allowed to create or hold instances of them. In a sense, the generated 
class is like a name space that one cannot enter via a using statement. This example 
shows the behavior of the mapping of an interface.
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// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);

16.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because of the 
different ways an object reference can be used and the different possible 
implementations in C++, an object reference maps to two C++ types. For an interface 
A, these types are named A_var and A_ptr. For historical reasons, the type ARef is 
defined as a synonym for A_ptr, but usage of the Ref names is deprecated. These 
types need not be distinct—A_var may be identical to A_ptr, for example—so a 
compliant program cannot overload operations using these types solely.

An operation can be performed on an object by using an arrow (“->”) on a reference 
to the object. For example, if an interface defines an operation op with no parameters 
and obj is a reference to the interface type, then a call would be written obj->op(). 
The arrow operator is used to invoke operations on both the _ptr and _var object 
reference types.

Client code frequently will use the object reference variable type (A_var) because a 
variable will automatically release its object reference when it is deallocated or when 
assigned a new object reference. The pointer type (A_ptr) provides a more primitive 
object reference, which has similar semantics to a C++ pointer. Indeed, an 
implementation may choose to define A_ptr as A*, but is not required to. Unlike C++ 
pointers, however, conversion to void*, arithmetic operations, and relational 
operations, including test for equality, are all noncompliant. A compliant 
implementation need not detect these incorrect uses because requiring detection is not 
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any 
explicit operations or casts. However, one needs to be careful in doing so because of 
the implicit release performed when the variable is deallocated. For example, the 
assignment statement in the following code will result in the object reference held by p 
to be released at the end of the block containing the declaration of a.
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// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

16.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes 
are related, though that is certainly one possible implementation. However, if interface 
B inherits from interface A, the following implicit widening operations for B must be 
supported by a compliant implementation:

• B_ptr to A_ptr

• B_ptr to Object_ptr

• B_var to A_ptr

• B_var to Object_ptr

Implicit widening from a B_var to A_var or Object_var need not be supported; 
instead, widening between _var types for object references requires a call to 
_duplicate (described in Section 16.3.3, Object Reference Operations).1 An 
attempt to implicitly widen from one _var type to another must cause a compile-time 
error.2 Assignment between two _var objects of the same type is supported, but 
widening assignments are not and must cause a compile-time error. Widening 
assignments may be done using _duplicate.

// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains 

ownership // of bp

obp = bv; // implicit widening, bv retains 
ownership // of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av and bv both refer to bp

1.When T_ptr is mapped to T*, it is impossible in C++ to provide implicit widening between 
T_var types while also providing the necessary duplication semantics for T_ptr types.

2.This can be achieved by deriving all T_var types for object references from a base _var class, 
then making the assignment operator for _var private within each T_var type.
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B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

16.3.3 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for all 
CORBA objects. Any object reference can therefore be widened to the type 
Object_ptr. As with other interfaces, the CORBA name space also defines the type 
Object_var.

CORBA defines three operations on any object reference: duplicate, release, 
and is_nil. Note that these are operations on the object reference, not the object 
implementation. Because the mapping does not require object references to be C++ 
objects themselves, the “->” syntax cannot be employed to express the usage of these 
operations. Also, for convenience these operations are allowed to be performed on a nil 
object reference.

The release and is_nil operations depend only on type Object, so they can be 
expressed as regular functions within the CORBA name space as follows:

// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the reference so 
that associated resources may be deallocated. If the given object reference is nil, 
release does nothing. The is_nil operation returns TRUE if the object reference 
contains the special value for a nil object reference as defined by the ORB. Neither the 
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as 
the given reference. The mapping for an interface therefore includes a static member 
function name _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{
  public:

static A_ptr _duplicate(A_ptr obj);
};

If the given object reference is nil, _duplicate will return a nil object reference. 
The _duplicate operation can throw CORBA system exceptions.
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16.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _narrow that 
returns a new object reference given an existing reference. Like _duplicate, the 
_narrow function returns a nil object reference if the given reference is nil. Unlike 
_duplicate, the parameter to _narrow is a reference of an object of any interface 
type (Object_ptr). If the actual (run-time) type of the parameter object can be 
widened to the requested interface’s type, then _narrow will return a valid object 
reference. Otherwise, _narrow will return a nil object reference. For example, 
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from 
B, which in turn inherits from A. If an object reference to a C object is widened to an 
A_ptr variable called ap, the

• A::_narrow(ap) returns a valid object reference;

• B::_narrow(ap) returns a valid object reference;

• C::_narrow(ap) returns a valid object reference;

• D::_narrow(ap) returns a nil object reference.

Narrowing to A, B, and C all succeed because the object supports all those interfaces. 
The D::_narrow returns a nil object reference because the object does not support 
the D interface.

If successful, the _narrow function creates a new object reference and does not 
consume the given object reference, so the caller is responsible for releasing both the 
original and new references.

For example, suppose A, B, C, and D are interface types. C inherits from B, and both 
B and D inherit from A. Now suppose that an object of type C is passed to a function 
as an A. If the function calls B::_narrow or C::_narrow, a new object reference 
will be returned. A call to D::_narrow will fail and return nil.

The _narrow operation can throw CORBA system exceptions.

16.3.5 Nil Object Reference

The mapping for an interface defines a static member function named  _nil that 
returns a nil object reference of that interface type. For each interface A, the following 
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from 
the _nil function.

As described in Section 16.3.1, Object Reference Types, object references may not be 
compared using operator==, so is_nil is the only compliant way an object 
reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.
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A compliant program cannot attempt to invoke an operation through a nil object 
reference, since a valid C++ implementation of a nil object reference is a null pointer.

16.3.6 Interface Mapping Example

The following example shows one possible mapping for an interface. Other mappings 
are also possible, but they must provide the same semantics and usage as this example.

// IDL
interface A
{

A op(in A param);
};

// C++
class A;
typedef A *A_ptr;
typedef A_ptr ARef;
class A : public virtual Object
{
  public:

static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr param) = 0;

  protected:
A();
virtual ~A();

  private:
A(const A&);
void operator=(const A&);

};

class A_var : public _var
{
  public:

A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a))) {}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
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A_ptr operator->() const { return ptr_; }

  protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

  private:
// hidden assignment operators for var types to
// fulfill the rules specified in Section 16.3.2
void operator=(const A_var &);
void operator=(const _var &);

};

16.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or may 
not define storage depending on the scope of the declaration. In the following example, 
a top-level OMG IDL constant maps to a file-scope C++ constant whereas a nested 
constant maps to a class-scope C++ constant. This inconsistency occurs because C++ 
file-scope constants may not require storage (or the storage may be replicated in each 
compilation unit), while class-scope constants always take storage. As a side effect, 
this difference means that the generated C++ header file might not contain values for 
constants defined in the OMG IDL file.

// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};

// C++
static const char *const name = "testing";

class A
{
  public:

static const Float pi;
};

In certain situations, use of a constant in OMG IDL must generate the constant’s value 
instead of the constant’s name.3 For example,

3.A recent change made to the C++ language by the ANSI/ISO C++ standardization committees 
allows static integer constants to be initialized within the class declaration, so for some C++ com-
pilers, the code generation issues described here may not be a problem.
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// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{
  public:

static const long n;
typedef long V[10];

};

16.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 16-1. Note that the mapping of 
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); other 
values produce undefined behavior. 

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is 
because some types, such as short and long, may have different representations on 
different platforms, and the CORBA definitions will reflect the appropriate 
representation. For example, on a 64-bit machine where a long integer is 64 bits, the 
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for the 
sizes of basic types are shown in Section 3.8.1, Basic Types.

Except for boolean, char, and octet, the mappings for basic types must be 
distinguishable from each other for the purposes of overloading. That is, one can safely 
write overloaded C++ functions on Short, UShort, Long, ULong, Float, and 
Double.

Programmers concerned with portability should use the CORBA types. However, some 
may feel that using these types with the CORBA qualification impairs readability. If 
the CORBA module is mapped to a name space, a C++ using statement may help this 

Table 16-1 Basic Data Type Mappings 

OMG IDL C++

short CORBA::Short

long CORBA::Long

unsigned short CORBA::UShort

unsigned long CORBA::ULong

float CORBA::Float

double CORBA::Double

char CORBA::Char

boolean CORBA::Boolean

octet CORBA::Octet
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problem. On platforms where the C++ data type is guaranteed to be identical to the 
OMG IDL data type, a compliant implementation therefore may generate the native 
C++ type.

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing 
FALSE) are defined; other values produce undefined behavior. Since many existing 
C++ software packages and libraries already provide their own preprocessor macro 
definitions of TRUE and FALSE, this mapping does not require that such definitions be 
provided by a compliant implementation. Requiring definitions for TRUE and FALSE 
could cause compilation problems for CORBA applications that make use of such 
packages and libraries. Instead, we recommend that compliant applications simply use 
the values 1 and 0 directly.4 Alternatively, for those C++ compilers that support the 
new bool type, the key words TRUE and FALSE may be used.

16.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The only 
difference is that the generated C++ type may need an additional constant that is large 
enough to force the C++ compiler to use exactly 32 bits for values declared to be of 
the enumerated type.

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

16.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded, is 
mapped to char* in C++. String data is null-terminated. In addition, the CORBA 
module defines a class String_var that contains a char* value and automatically 
frees the pointer when a String_var object is deallocated. When a String_var is 
constructed or assigned from a char*, the char* is consumed and thus the string 
data may no longer be accessed through it by the caller. Assignment or construction 
from a const char* or from another String_var causes a copy. The 
String_var class also provides operations to convert to and from char* values, as 
well as subscripting operations to access characters within the string. The full 
definition of the String_var interface is given in Section C.2, String_var Class.

Because its mapping is char*, the OMG IDL string type is the only nonbasic type for 
which this mapping makes size requirements.

4.Examples and descriptions in this document still use TRUE and FALSE for purposes of clarity.
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For dynamic allocation of strings, compliant programs must use the following 
functions from the CORBA name space:

// C++
namespace CORBA {

char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...

}

The string_alloc function dynamically allocates a string, or returns a null pointer 
if it cannot perform the allocation. It allocates len+1 characters so that the resulting 
string has enough space to hold a trailing NULL character. The string_dup function 
dynamically allocates enough space to hold a copy of its string argument, including the 
NULL character, copies its string argument into that memory, and returns a pointer to 
the new string. If allocation fails, a null pointer is returned. The string_free 
function deallocates a string that was allocated with string_alloc or 
string_dup. Passing a null pointer to string_free is acceptable and results in no 
action being performed. These functions allow ORB implementations to use special 
memory management mechanisms for strings if necessary, without forcing them to 
replace global operator new and operator new[].

The string_alloc, string_dup, and string_free functions may not throw 
CORBA exceptions.

Note that a static array of char in C++ decays to a char*, so care must be taken when 
assigning one to a String_var, since the String_var will assume the pointer 
points to data allocated via string_alloc, and thus will eventually attempt to 
string_free it:

// C++
// The following is an error, since the char* should point 
// to data allocated via string_alloc so it can be consumed
String_var s = “static string”;// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = “static string”;
s = sp;
s = (const char*)“static string too”;

16.8 Mapping for Structured Types

The mapping for  struct, union, and sequence (but not array) is a C++ struct 
or class with a default constructor, a copy constructor, an assignment operator, and a 
destructor. The default constructor initializes object reference members to 
appropriately-typed nil object references and string members to NULL; all other 
members are initialized via their default constructors. The copy constructor performs a 
deep-copy from the existing structure to create a new structure, including calling 
16-12                                  CORBA V2.0                                  July 1996



16
_duplicate on all object reference members and performing the necessary heap 
allocations for all string members. The assignment operator first releases all object 
reference members and frees all string members, and then performs a deep-copy to 
create a new structure. The destructor releases all object reference members and frees 
all string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences) 
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any

• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object5

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow 
more flexibility in the allocation of out parameters and return values from an 
operation. This flexibility allows a client-side stub for an operation that returns a 
sequence of strings, for example, to allocate all the string storage in one area that is 
deallocated in a single call.

The mapping of a variable-length type as an out parameter or operation return value 
is a pointer to the associated class or array. As a convenience for managing this 
pointer, the mapping also provides another class for each variable-length type. This 
type, which is named by adding the suffix _var to the original type’s name, 
automatically deletes the pointer when an instance is destroyed. An object of type 
T_var behaves similarly to the structured type T, except that members must be 
accessed indirectly. For a struct, this means using an arrow (“–>”) instead of a dot 
(“.”).

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

5.Transmissible pseudo-objects are listed as “general arguments” in Table 14, Pseudo-Objects, in 
Appendix A.
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16.8.1 T_var Types

The general form of the T_var types is shown next.

// C++
class T_var
{
  public:

T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T *operator-> const ();
// other conversion operators to support
// parameter passing

};

The default constructor creates a T_var containing a null T*. Compliant applications 
may not attempt to convert a T_var created with the default constructor into a T* nor 
use its overloaded operator-> without first assigning to it a valid T* or another 
valid T_var. Due to the difficulty of doing so, compliant implementations are not 
required to detect this error. Conversion of a null T_var to a T*& is allowed, however, 
so that a T_var can legally be passed as an out parameter.

The T* constructor creates a T_var that, when destroyed, will delete the storage 
pointed to by the T* parameter. The parameter to this constructor should never be a 
null pointer. Compliant implementations are not required to detect null pointers passed 
to this constructor.

The copy constructor deep-copies any data pointed to by the T_var constructor 
parameter. This copy will be destroyed when the T_var is destroyed or when a new 
value is assigned to it. Compliant implementations may, but are not required to, utilize 
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var, except 
for strings and array types, which are deallocated using the string_free and 
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by 
the T_var before assuming ownership of the T* parameter.

The normal assignment operator deep-copies any data pointed to by the T_var 
assignment parameter. This copy will be destroyed when the T_var is destroyed or 
when a new value is assigned to it.

The overloaded operator-> returns the T* held by the T_var, but retains 
ownership of it. Compliant applications may not call this function unless the T_var 
has been initialized with a valid T* or T_var.
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In addition to the member functions described above, the T_var types must support 
conversion functions that allow them to fully support the parameter passing modes 
shown in Table 16-2. The form of these conversion functions is not specified so as to 
allow different implementations, but the conversions must be automatic (i.e., they must 
require no explicit application code to invoke them).

The T_var types are also produced for fixed-length structured types for reasons of 
consistency. These types have the same semantics as T_var types for variable-length 
types. This allows applications to be coded in terms of T_var types regardless of 
whether the underlying types are fixed- or variable-length.

Each T_var type must be defined at the same level of nesting as its T type.

T_var types do not work with a pointer to constant T, since they provide no 
constructor nor operator= taking a const T* parameter. Since C++ does not 
allow delete to be called on a const T*, the T_var object would normally have 
to copy the const object; instead, the absence of the const T* constructor and 
assignment operators will result in a compile-time error if such an initialization or 
assignment is attempted. This allows the application developer to decide if a copy is 
really wanted or not. Explicit copying of const T* objects into T_var types can be 
achieved via the copy constructor for T:

// C++
const T *t = ...;
T_var tv = new T(*t);

16.9 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped 
to a corresponding member of the C++ struct. This mapping allows simple field access 
as well as aggregate initialization of most fixed-length structs. To facilitate such 
initialization, C++ structs must not have user-defined constructors, assignment 
operators, or destructors, and each struct member must be of self-managed type. With 
the exception of strings and object references, the type of a C++ struct member is the 
normal mapping of the OMG IDL member’s type.

For a string or object reference member, the name of the C++ member’s type is not 
specified by the mapping. Therefore, a compliant program cannot create an object of 
that type. The behavior6 of the type is the same as the normal mapping (char* for 
string, A_ptr for an interface A) except the type’s copy constructor copies the 
member’s storage, and its assignment operator releases the member’s old storage.

6.Those implementations concerned with data layout compatibility with the C mapping in this man-
ual will also want to ensure that the sizes of these members match those of their C mapping coun-
terparts.
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Assignment between a string or object reference member and a corresponding T_var 
type (String_var or A_var) always results in copying the data, while assignment 
with a pointer does not. The one exception to the rule for assignment is when a const 
char* is assigned to a member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s 
activation record), one can access the member directly as a pointer using the _ptr 
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct Fixed{ float x, y, z; };

// C++
Fixed x1 = {1.2, 2.4, 3.6};
Fixed_var x2 = new Fixed;
x2->y = x1.z;

The previous example shows usage of the T and T_var types for a fixed-length struct. 
When it goes out of scope, x2 will automatically free the heap-allocated Fixed object 
using delete.

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition.

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1; // str1.name is initially NULL
Variable_var str2 = new Variable;// str2->name is initially 
NULL
char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3; // 1: free old storage, copy
str2->name = const4; // 2: free old storage, copy

In the previous example, the name components of variables str1 and str2 both start 
out as null. On the line marked 1, const3 is assigned to the name component of 
str1; this results in the previous str1.name being freed, and since const3 points 
to const data, the contents of const3 being copied. In this case, str1.name started 
out as null, so no previous data needs to be freed before the copying of const3 takes 
place. Line 2 is similar to line 1, except that str2 is a T_var type.
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Continuing with the example:

// C++
non_const = str1.name; // 3: no free, no copy
const2 = str2->name; // 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const. Since non_const is 
a pointer type (char*), str1.name is not freed, nor are the data it points to copied. 
After the assignment, str1.name and non_const effectively point to the same 
storage, with str1.name retaining ownership of that storage. Line 4 is identical to 
line 3, even though const2 is a pointer to const char; str2->name is neither freed 
nor copied because const2 is a pointer type.

// C++
str1.name = non_const; // 5: free, no copy
str1.name = const2; // 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name, which results in the old 
str1.name being freed and the value of the non_const pointer, but not the data it 
points to, being copied. In other words, after the assignment, str1.name points to 
the same storage as non_const points to. Line 6 is the same as line 5 except that 
because const2 is a const char*, the data it points to are copied.

// C++
str2->name = str1.name; // 7: free old storage, copy
str1.name = string_var; // 8: free old storage, copy
string_var = str2->name;// 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the original 
value of the left-hand member is freed and the new value is copied. Similarly, lines 8 
and 9 involve assignment to or from a String_var, so in both cases the original 
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name;// 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place. 
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C 
mapping may overload operator new() and operator delete() for structs so 
that dynamic allocation uses the same mechanism as the C language dynamic 
allocation functions. Whether these operators are overloaded by the implementation or 
not, compliant programs use new to dynamically allocate structs and delete to free 
them.
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16.10 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and 
discriminant. The default union constructor performs no application-visible 
initialization of the union. It does not initialize the discriminator, nor does it initialize 
any union members to a state useful to an application.  (The implementation of the 
default constructor can do whatever type of initialization it wants to, but such 
initialization is implementation-dependent. No compliant application can count on a 
union ever being properly initialized by the default constructor alone.) 

It is therefore an error for an application to access the union before setting it, but ORB 
implementations are not required to detect this error due to the difficulty of doing so. 
The copy constructor and assignment operator both perform a deep-copy of their 
parameters, with the assignment operator releasing old storage if necessary. The 
destructor releases all storage owned by the union.

The union discriminant access functions have the name _d to both be brief and avoid 
name conflicts with the members. The _d discriminator modifier function can only be 
used to set the discriminant to a value within the same union member. In addition to 
the _d accessors, a union with an implicit default member provides a _default() 
member function that sets the discriminant to a legal default value. A union has an 
implicit default member if it does not have a default case and not all permissible values 
of the union discriminant are listed.

Setting the union value through an access function automatically sets the discriminant 
and may release the storage associated with the previous value. Attempting to get a 
value through an access function that does not match the current discriminant results in 
undefined behavior. If an access function for a union member with multiple legal 
discriminant values is used to set the value of the discriminant, the union 
implementation is free to set the discriminant to any one of the legal values for that 
member. The actual discriminant value chosen under these circumstances is 
implementation dependent.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
default: A obj;

};
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// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class U
{
  public:

U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*); // free old storage, no copy
void z(const char*);// free old storage, copy
void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &); // deep copy
const S &w() const; // read-only access
S &w(); // read-write access

void obj(A_ptr); // release old objref, duplicate
A_ptr obj() const; // no duplicate

};

Accessor and modifier functions for union members provide semantics similar to that 
of struct data members. Modifier functions perform the equivalent of a deep-copy of 
their parameters, and their parameters should be passed by value (for small types) or 
by reference to const (for larger types). Accessors that return a reference to a non-const 
object can be used for read-write access, but such accessors are only provided for the 
following types: struct, union, sequence, and any.

For an array union member, the accessor returns a pointer to the array slice, where the 
slice is an array with all dimensions of the original except the first (array slices are 
described in detail in Section 16.12, Mapping for Array Types). The array slice return 
type allows for read-write access for array members via regular subscript operators. 
For members of an anonymous array type, supporting typedefs for the array must be 
generated directly into the union. For example:
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// IDL
union U switch (long) {
  default: long array[20][20];
};

// C++
class U
{
  public:

// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...

};

The name of the supporting array slice typedef is created by prepending an underscore 
and appending _slice to the union member name. In the previous example, the array 
member named “array” results in an array slice typedef called _array_slice nested 
in the union class.

For string union members, the char* modifier results in the freeing of old storage 
before ownership of the pointer parameter is assumed, while the const char* 
modifier and the String_var modifier7 both result in the freeing of old storage 
before the parameter’s storage is copied. The accessor for a string member returns a 
const char* to allow examination, but not modification, of the string storage.8

For object reference union members, object reference parameters to modifier functions 
are duplicated after the old object reference is released. An object reference return 
value from an accessor function is not duplicated because the union retains ownership 
of the object reference.

The restrictions for using the _d discriminator modifier function are shown by the 
following examples, based on the definition of the union U, previously shown.

7.A separate modifier for String_var is needed because it can automatically convert to both a 
char* and a const char*; since unions provide modifiers for both of these types, an attempt 
to set a string member of a union from a String_var would otherwise result in an ambiguity 
error at compile time.

8.A return type of char* allowing read-write access could mistakenly be assigned to a 
String_var, resulting in the String_var and the union both assuming ownership for the 
string’s storage.
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// C++
S s = {10};
U u;
u.w(s); // member w selected
u._d(4); // OK, member w selected
u._d(5); // OK, member w selected
u._d(1); // error, different member selected
A_ptr a = ...;
u.obj(a); // member obj selected
u._d(7); // OK, member obj selected
u._d(1); // error, different member selected

As shown here, the _d modifier function cannot be used to implicitly switch between 
different union members. The following shows an example of how the _default() 
member function is used.

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d(); // disc == FALSE
U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the _default() member function causes the union’s value to be 
composed solely of the discriminator value of FALSE, since there is no explicit default 
member. For union U, calling _default() causes a compilation error because U has 
an explicitly declared default case and thus no _default() member function. A 
_default() member function is only generated for unions with implicit default 
members.

ORB implementations concerned with single-process interoperability with the C 
mapping may overload operator new() and operator delete() for unions so 
that dynamic allocation uses the same mechanism as the C language dynamic 
allocation functions. Whether these operators are overloaded by the implementation or 
not, compliant programs use new to dynamically allocate unions and delete to free 
them.

16.11 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current length 
and a maximum length. For a bounded sequence, the maximum length is implicit in the 
sequence’s type and cannot be explicitly controlled by the programmer. For an 
unbounded sequence, the initial value of the maximum length can be specified in the 
sequence constructor to allow control over the size of the initial buffer allocation. The 
programmer may always explicitly modify the current length of any sequence.
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For an unbounded sequence, setting the length to a larger value than the current length 
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a 
new sequence of the desired new length, copying the old sequence elements zero 
through length-1 into the new sequence, and then assigning the old sequence to be the 
same as the new sequence. Setting the length to a smaller value than the current length 
does not affect how the storage associated with the sequence is manipulated. Note, 
however, that the elements orphaned by this reduction are no longer accessible and that 
their values cannot be recovered by increasing the sequence length to its original value.

For a bounded sequence, attempting to set the current length to a value larger than the 
maximum length given in the OMG IDL specification produces undefined behavior. 

For each different named OMG IDL sequence type, a compliant implementation 
provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;

// C++
class LongSeq // unbounded sequence
{
  public:

LongSeq(); // default constructor
LongSeq(ULong max); // maximum constructor
LongSeq( // T *data constructor

ULong max,
ULong length,
Long *value,
Boolean release = FALSE

);
LongSeq(const LongSeq&);
~LongSeq();
...

};

class LongSeqSeq // bounded sequence
{
  public:

LongSeqSeq(); // default constructor
LongSeqSeq( // T *data constructor

ULong length,
LongSeq *value,
Boolean release = FALSE

);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...

};
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For both bounded and unbounded sequences, the default constructor (as shown in the 
previous example) sets the sequence length equal to zero. For bounded sequences, the 
maximum length is part of the type and cannot be set or modified, while for 
unbounded sequences, the default constructor also sets the maximum length to zero. 
The default constructor for a bounded sequence always allocates a contents vector, so 
it always sets the release flag to TRUE.

Unbounded sequences provide a constructor that allows only the initial value of the 
maximum length to be set (the “maximum constructor” shown in the previous 
example). This allows applications to control how much buffer space is initially 
allocated by the sequence. This constructor also sets the length to zero and the 
release flag to TRUE.

The “T *data” constructor (as shown in the previous example) allows the length and 
contents of a bounded or unbounded sequence to be set. For unbounded sequences, it 
also allows the initial value of the maximum length to be set. For this constructor, 
ownership of the contents vector is determined by the release parameter—FALSE 
means the caller owns the storage, while TRUE means that the sequence assumes 
ownership of the storage. If release is TRUE, the contents vector must have been 
allocated using the sequence allocbuf function, and the sequence will pass it to 
freebuf when finished with it. The allocbuf and freebuf functions are 
described in Section 16.11.3, Additional Memory Management Functions.

The copy constructor creates a new sequence with the same maximum and length as 
the given sequence, copies each of its current elements (items zero through length–1), 
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if necessary. 
It behaves as if the original sequence is destroyed via its destructor and then the source 
sequence copied using the copy constructor.

If release=TRUE, the destructor destroys each of the current elements (items zero 
through length–1).

For an unbounded sequence, if a reallocation is necessary due to a change in the length 
and the sequence was created using the release=TRUE parameter in its constructor, 
the sequence will deallocate the old storage. If release is FALSE under these 
circumstances, old storage will not be freed before the reallocation is performed. After 
reallocation, the release flag is always set to TRUE.

For an unbounded sequence, the maximum() accessor function returns the total 
amount of buffer space currently available. This allows applications to know how 
many items they can insert into an unbounded sequence without causing a reallocation 
to occur. For a bounded sequence, maximum() always returns the bound of the 
sequence as given in its OMG IDL type declaration.

The overloaded subscript operators (operator[]) return the item at the given index. 
The non-const version must return something that can serve as an lvalue (i.e., 
something that allows assignment into the item at the given index), while the const 
version must allow read-only access to the item at the given index.
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The overloaded subscript operators may not be used to access or modify any element 
beyond the current sequence length. Before either form of operator[] is used on a 
sequence, the length of the sequence must first be set using the length(ULong) 
modifier function, unless the sequence was constructed using the T *data 
constructor.

For strings and object references, operator[] for a sequence must return a type with 
the same semantics as the types used for string and object reference members of structs 
and arrays, so that assignment to the string or object reference sequence member via 
operator=() will release old storage when appropriate. Note that whatever these 
special return types are, they must honor the setting of the release parameter in the 
T *data constructor with respect to releasing old storage.

For the T *data sequence constructor, the type of T for strings and object references 
is char* and T_ptr, respectively. In other words, string buffers are passed as 
char** and object reference buffers are passed as T_ptr*.

16.11.1 Sequence Example

The next example shows full declarations for both a bounded and an unbounded 
sequence.

// IDL
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 2> V2; // bounded sequence

// C++
class V1 // unbounded sequence
{
  public:

V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,

Boolean release =FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

};

class V2 // bounded sequence
{
  public:
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V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

};

16.11.2 Using the “release” Constructor Parameter

Consider the following example:

// IDL
typedef sequence<string, 3> StringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2"; // no free, no copy
char *str = string_dup("2");
seq2[1] = str; // free old storage, no copy

In this example, both seq1 and seq2 are constructed using user-specified data, but 
only seq2 is told to assume management of the user memory (because of the 
release=TRUE parameter in its constructor). When assignment occurs into 
seq1[1], the right-hand side is not copied, nor is anything freed because the 
sequence does not manage the user memory. When assignment occurs into seq2[1], 
however, the old user data must be freed before ownership of the right-hand side can 
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it 
will call string_free for each of its elements and freebuf on the buffer given to 
it in its constructor.
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When the release flag is set to TRUE and the sequence element type is either a 
string or an object reference type, the sequence will individually release each element 
before releasing the contents buffer. It will release strings using string_free, and it 
will release object references using the release function from the CORBA name 
space.

In general, assignment should never take place in a sequence element via 
operator[] unless release=TRUE due to the possibility of memory management 
errors. In particular, a sequence constructed with release=FALSE should never be 
passed as an inout parameter because the callee has no way to determine the setting 
of the release flag, and thus must always assume that release is set to TRUE. 
Code that creates a sequence with release=FALSE and then knowingly and 
correctly manipulates it in that state as shown with seq1 in the previous example is 
compliant, but care should always be taken to avoid memory leaks under these 
circumstances.

As with other out and return values, out and return sequences must not be assigned 
to by the caller without first copying them. This is more fully explained in Section 
16.18, Argument Passing Considerations.

When a sequence is constructed with release=TRUE, a compliant application should 
make no assumptions about the continued lifetime of the data buffer passed to the 
constructor, since a compliant sequence implementation is free to copy the buffer and 
immediately free the original pointer.

16.11.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C 
mapping may overload operator new() and operator delete() for 
sequences so that dynamic allocation uses the same mechanism as the C language 
dynamic allocation functions. Whether these operators are overloaded by the 
implementation or not, compliant programs use new to dynamically allocate 
sequences, and delete to free them.

Sequences also provide additional memory management functions for their buffers. For 
a sequence of type T, the following static member functions are provided in the 
sequence class public interface.

// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to the T 
*data constructor. The length of the vector is given by the nelems function 
argument. The allocbuf function initializes each element using its default 
constructor except for strings, which are initialized to null pointers, and object 
references, which are initialized to suitably typed nil object references. A null pointer 
is returned if allocbuf for some reason cannot allocate the requested vector. Vectors 
allocated by allocbuf should be freed using the freebuf function. The freebuf 
function ensures that the destructor for each element is called before the buffer is 
16-26                                  CORBA V2.0                                  July 1996



16
destroyed except for string elements, which are freed using string_free(), and 
object reference elements, which are freed using release(). The freebuf function 
will ignore null pointers passed to it. Neither allocbuf nor freebuf may throw 
CORBA exceptions.

16.11.4 Sequence T_var Type

In addition to the regular operations defined for T_var types, the T_var for a 
sequence type also supports an overloaded operator[] that forwards requests to the 
operator[] of the underlying sequence.9 This subscript operator should have the 
same return type as that of the corresponding operator on the underlying sequence 
type.

16.12 Mapping for Array Types

Arrays are mapped to the corresponding C++ array definition, which allows the 
definition of statically initialized data using the array. If the array element is a string or 
an object reference, then the mapping uses the same type as for structure members. 
That is, assignment to an array element will release the storage associated with the old 
value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M[1][2][3];
void op(out F p1, out V p2, out M p3);

// C++
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;

f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1]; // free old storage, copy
m1[0][1][2] = m2[0][1][2];// free old storage, copy

In the previous example, the last two assignments result in the storage associated with 
the old value of the left-hand side being automatically released before the value from 
the right-hand side is copied.

9.Note that since T_var types do not handle const T*, there is no need to provide the const ver-
sion of operator[] for Sequence_var types.
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As shown in Table 16-2, out and return arrays are handled via pointer to array slice, 
where a slice is an array with all the dimensions of the original specified, except the 
first one. As a convenience for application declaration of slice types, the mapping also 
provides a typedef for each array slice type. The name of the slice typedef consists of 
the name of the array type followed by the suffix _slice. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

A T_var type for an array should overload operator[] instead of operator->. 
The use of array slices also means that a T_var type for an array should have a 
constructor and assignment operator that each take a pointer to array slice as a 
parameter, rather than T*. The T_var for the previous example would be:

// C++
class LongArray_var
{
  public:

LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;
// other conversion operators to support
// parameter passing

};

Because arrays are mapped into regular C++ arrays, they present special problems for 
the type-safe any mapping described in Section 16.14, Mapping for the any Type. To 
facilitate their use with the any mapping, a compliant implementation must also 
provide for each array type a distinct C++ type whose name consists of the array name 
followed by the suffix _forany. These types must be distinct so as to allow functions 
to be overloaded on them. Like Array_var types, Array_forany types allow 
access to the underlying array type, but unlike Array_var, the Array_forany type 
does not delete the storage of the underlying array upon its own destruction. This is 
because the any mapping retains storage ownership, as described in Section 16.14.3, 
Extraction from any.

The interface of the Array_forany type is identical to that of the Array_var type, 
but it may not be implemented as a typedef to the Array_var type by a compliant 
implementation since it must be distinguishable from other types for purposes of 
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function overloading. Also, the Array_forany constructor taking an 
Array_slice* parameter also takes a Boolean nocopy parameter, which defaults 
to FALSE.

// C++
class Array_forany
{
  public:

Array_forany(Array_slice*, Boolean nocopy = FALSE);
...

};

The nocopy flag allows for a noncopying insertion of an Array_slice* into an any.

Each Array_forany type must be defined at the same level of nesting as its Array 
type.

For dynamic allocation of arrays, compliant programs must use special functions 
defined at the same scope as the array type. For array T, the following functions will be 
available to a compliant program.

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_free(T_slice *);

The T_alloc function dynamically allocates an array, or returns a null pointer if it 
cannot perform the allocation. The T_dup function dynamically allocates a new array 
with the same size as its array argument, copies each element of the argument array 
into the new array, and returns a pointer to the new array. If allocation fails, a null 
pointer is returned. The T_free function deallocates an array that was allocated with 
T_alloc or T_dup. Passing a null pointer to T_free is acceptable and results in no 
action being performed. These functions allow ORB implementations to utilize special 
memory management mechanisms for array types if necessary, without forcing them to 
replace global operator new and operator new[].

The T_alloc, T_dup, and T_free functions may not throw CORBA exceptions.

16.13 Mapping for Typedefs

A typedef creates an alias for a type. If the original type maps to several types in C++, 
then the typedef creates the corresponding alias for each type. The following example 
illustrates the mapping.

// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence<long> S1;
typedef S1 S2;
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// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1Ref A2Ref;
typedef A1_var A2_var;

// ...definitions for S1...

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an OMG IDL type that maps to multiple C++ types such as arrays, the 
typedef maps to all of the same C++ types and functions that its base type requires. For 
example:

// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice* 
another_array_dup(another_array_slice *a) {

return array_dup(a);
}

inline void another_array_free(another_array_slice *a) {
array_free(a);

}

16.14 Mapping for the any Type

A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.
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The first item covers most normal usage of the any type—the conversion of typed 
values into and out of an any. The second item covers situations such as those 
involving the reception of a request or response containing an any that holds data of a 
type unknown to the receiver when it was created with a C++ compiler.

16.14.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value, 
the C++ function overloading facility is utilized. Specifically, for each distinct type in 
an OMG IDL specification, overloaded functions to insert and extract values of that 
type are provided by each ORB implementation. Overloaded operators are used for 
these functions so as to completely avoid any name space pollution. The nature of 
these functions, which are described in detail, is that the appropriate TypeCode is 
implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described next is based upon C++ function 
overloading, it requires C++ types generated from OMG IDL specifications to be 
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 16.5, Mapping for Basic Data Types, the boolean, octet, 
and char OMG IDL types are not required to map to distinct C++ types, which 
means that a separate means of distinguishing them from each other for the purpose 
of function overloading is necessary. The means of distinguishing these types from 
each other is described in Section 16.14.4, Distinguising boolean, octet, char, and 
Bounded String.

• Since all strings are mapped to char* regardless of whether they are bounded or 
unbounded, another means of creating or setting an any with a bounded string 
value is necessary. This is described in Section 16.14.4, Distinguishing boolean, 
octet, char, and Bounded String.

• In C++, arrays within a function argument list decay into pointers to their first 
elements. This means that function overloading cannot be used to distinguish 
between arrays of different sizes. The means for creating or setting an any when 
dealing with arrays is described next and in Section 16.12, Mapping for Array 
Types.

16.14.2 Insertion into any

To allow a value to be set in an any in a type-safe fashion, an ORB implementation 
must provide the following overloaded operator function for each separate OMG IDL 
type T.

// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short, UShort, Long, ULong, Float, Double

• Enumerations
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• Unbounded strings (char* passed by value)

• Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of 
the insertion function are provided.

// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the 
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as 
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able to 
set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<=, the lifetime of the value in the any is 
independent of the lifetime of the value passed to operator<<=. The 
implementation of the any may not store its value as a reference or pointer to the 
value passed to operator<<=.

• For the noncopying version of operator<<=, the inserted T* is consumed by the 
any. The caller may not use the T* to access the pointed-to data after insertion, 
since the any assumes ownership of it, and it may immediately copy the pointed-to 
data and destroy the original.

• With both the copying and noncopying versions of operator<<=, any previous 
value held by the any is properly deallocated. For example, if the 
Any(TypeCode_ptr,void*,TRUE) constructor (described in Section 16.14.6, 
Handling Untyped Values) was called to create the any, the any is responsible for 
deallocating the memory pointed to by the void* before copying the new value.

Copying insertion of a string type causes the following function to be invoked:

// C++
void operator<<=(Any&, const char*);

Since all string types are mapped to char*, this insertion function assumes that the 
value being inserted is an unbounded string. Section 16.14.4, Distinguishing boolean, 
octet, char, and Bounded String, describes how bounded strings may be correctly 
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inserted into an any. Noncopying insertion of both bounded and unbounded strings 
can be achieved using the Any::from_string helper type described in Section 
16.14.4, Distinguishing boolean, octet, char, and Bounded String.

Type-safe insertion of arrays uses the Array_forany types described in Section 
16.12, Mapping for Array Types. Compliant implementations must provide a version 
of operator<<= overloaded for each Array_forany type. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to 
const. The nocopy flag in the Array_forany constructor is used to control whether 
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE). 
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly 
recommended that portable code explicitly10 use the appropriate Array_forany type 
when inserting an array into an any:

// IDL
struct S {... };
typedef S SA[5];

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

10.A mapping implementor may use the new C++ key word “explicit” to prevent implicit conver-
sions through the Array_forany constructor, but this feature is not yet widely available in current 
C++ compilers.
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Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due 
to the decay of the SA array type into a pointer to its first element, rather than the 
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs 
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of 
the T_ptr type.

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed to by 
T_ptr*; therefore after insertion the caller may not access the object referred to by 
T_ptr since the any may have duplicated and then immediately released the original 
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<= is also supported on the Any_var type. Note 
that due to the conversion operators that convert Any_var to Any& for parameter 
passing, only those operator<<= functions defined as member functions of any 
need to be explicitly defined for Any_var.

16.14.3 Extraction from any

To allow type-safe retrieval of a value from an any, the mapping provides the 
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are normally passed by value. 
For values of type T that are too large to be passed by value efficiently, this function 
may be prototyped as follows:

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

• Boolean, Char, Octet, Short, UShort, Long, ULong, Float, Double

• Enumerations

• Unbounded strings (char* passed by reference, i.e., char*&)

• Object references (T_ptr)

For all other types, the second form of the function is used.
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All versions of operator>>= implemented as member functions of class any, such 
as those for primitive types, should be marked as const.

This “right-shift-assign” operator is used to extract a typed value from an any as 
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

In this case, the version of operator>>= for type Long must be able to determine 
whether the any truly does contain a value of type Long and, if so, copy its value into 
the reference variable provided by the caller and return TRUE. If the any does not 
contain a value of type Long, the value of the caller’s reference variable is not 
changed, and operator>>= returns FALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the 
following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {

// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by the 
any, and operator>>= will return TRUE. The caller must not try to delete or 
otherwise release this storage. The caller also should not use the storage after the 
contents of the any variable are replaced via assignment, insertion, or the replace 
function, or after the any variable is destroyed. Care must be taken to avoid using 
T_var types with these extraction operators, since they will try to assume 
responsibility for deleting the storage owned by the any.

If the extraction is not successful, the value of the caller’s pointer is set equal to the 
null pointer, and operator>>= returns FALSE.
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Correct extraction of array types relies on the Array_forany types described in 
Section 16.12, Mapping for Array Types.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&);// for type B

The Array_forany types are always passed to operator>>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the 
any to be sure that they do not overstep the bounds of the array or string object when 
using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the 
conversion operators that convert Any_var to const Any& for parameter passing, 
only those operator>>= functions defined as member functions of any need to be 
explicitly defined for Any_var.

16.14.4 Distinguishing boolean, octet, char, and Bounded String

Since the boolean, octet, and char OMG IDL types are not required to map to 
distinct C++ types, another means of distinguishing them from each other is necessary 
so that they can be used with the type-safe any interface. Similarly, since both 
bounded and unbounded strings map to char*, another means of distinguishing them 
must be provided. This is done by introducing several new helper types nested in the 
any class interface. For example, this can be accomplished as shown next.

// C++
class Any
{
  public:

// special helper types needed for boolean, octet, char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
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Octet val;
};
struct from_char {

from_char(Char c) : val(c) {}
Char val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
char *val;
ULong bound;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_octet);
void operator<<=(from_string);

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;

// other public Any details omitted
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private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and operator>>= 
functions for these special helper types. These helper types are used as shown next.

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an any, the nocopy 
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1);// any consumes p

Assuming that boolean, char, and octet all map the C++ type unsigned char, 
the private and unimplemented operator<<= and operator>>= functions for 
unsigned char will cause a compile-time error if straight insertion or extraction of 
any of the boolean, char, or octet types is attempted.

// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct);// but this one will
16-38                                  CORBA V2.0                                  July 1996



16
It is important to note that the previous example is only one possible implementation 
for these helpers, not a mandated one. Other compliant implementations are possible, 
such as providing them via in-lined static any member functions if boolean, char, 
and octet are in fact mapped to distinct C++ types. All compliant C++ mapping 
implementations must provide these helpers, however, for purposes of portability.

16.14.5 Widening to Object

Sometimes it is desirable to extract an object reference from an any as the base 
Object type. This can be accomplished using a helper type similar to those required 
for extracting boolean, char, and octet.

// C++
class Any
{
  public:

...
struct to_object {

to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

};
Boolean operator>>=(to_object) const;
...

};

The to_object helper type is used to extract an object reference from an any as the 
base Object type. If the any contains a value of an object reference type as indicated 
by its TypeCode, the extraction function operator>>=(to_object) explicitly 
widens its contained object reference to Object and returns TRUE, otherwise it 
returns FALSE. This is the only object reference extraction function that performs 
widening on the extracted object reference. As with regular object reference extraction, 
no duplication of the object reference is performed by the to_object extraction 
operator.

16.14.6 Handling Untyped Values

Under some circumstances the type-safe interface to any is not sufficient. An example 
is a situation in which data types are read from a file in binary form and used to create 
values of type any. For these cases, the any class provides a constructor with an 
explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the given TypeCode pseudo object 
reference. If the release parameter is TRUE, then the any object assumes ownership 
of the storage pointed to by the value parameter. A compliant application should 
make no assumptions about the continued lifetime of the value parameter once it has 
been handed to an any with release=TRUE, since a compliant any implementation 
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is allowed to copy the value parameter and immediately free the original pointer. If 
the release parameter is FALSE (the default case), then the any object assumes the 
caller will manage the memory pointed to by value.  The value parameter can be a 
null pointer.

The any class also defines three unsafe operations:

// C++
void replace(

TypeCode_ptr,
void *value,
Boolean release = FALSE

);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with the 
type-safe insertion interface, and so is similar to the constructor previously described. 
The existing TypeCode is released and value storage deallocated, if necessary. The 
TypeCode function parameter is duplicated. If the release parameter is TRUE, then 
the any object assumes ownership for the storage pointed to by the value parameter. 
A compliant application should make no assumptions about the continued lifetime of 
the value parameter once it has been handed to the Any::replace function with 
release=TRUE, since a compliant any implementation is allowed to copy the 
value parameter and immediately free the original pointer. If the release 
parameter is FALSE (the default case), then the any object assumes the caller will 
manage the memory occupied by the value.  The value parameter of the replace 
function can be a null pointer.

For C++ mapping implementations that use Environment parameters to pass 
exception information, the default release argument can be simulated by providing 
two overloaded replace functions, one that takes a nondefaulted release 
parameter and one that takes no release parameter. The second function simply 
invokes the first with the release parameter set to FALSE.

Note that neither the constructor shown above nor the replace function is type-safe. 
In particular, no guarantees are made by the compiler or run-time as to the consistency 
between the TypeCode and the actual type of the void* argument. The behavior of 
an ORB implementation when presented with an any that is constructed with a 
mismatched TypeCode and value is not defined.

The type function returns a TypeCode_ptr pseudo-object reference to the 
TypeCode associated with the any. Like all object reference return values, the caller 
must release the reference when it is no longer needed, or assign it to a 
TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the any. If the any has no 
associated value, the value function returns a null pointer. The type to which the 
void* returned by the value function may be cast depends on the ORB 
implementation; thus, use of the value function is not portable across ORB 
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implementations and its usage is therefore deprecated. Note that ORB implementations 
are allowed to make stronger guarantees about the void* returned from the value 
function, if so desired. 

16.14.7 any Constructors, Destructor, Assignment Operator

The default constructor creates an any with a TypeCode of type tk_null, and no 
value. The copy constructor calls _duplicate on the TypeCode_ptr of its any 
parameter and deep-copies the parameter’s value. The assignment operator releases its 
own TypeCode_ptr and deallocates storage for the current value if necessary, then 
duplicates the TypeCode_ptr of its any parameter and deep-copies the parameter’s 
value. The destructor calls release on the TypeCode_ptr and deallocates storage 
for the value, if necessary.

Other constructors are described in Section 16.14.6, Handling Untyped Values.

ORB implementations concerned with single-process interoperability with the C 
mapping may overload operator new() and operator delete() for anys so 
that dynamic allocation uses the same mechanism as the C language dynamic 
allocation functions. Whether these operators are overloaded by the implementation or 
not, compliant programs use new to dynamically allocate anys and delete to free 
them.

16.14.8 any Class

The full definition of the any class can be found in Section C.3, any Class.

16.14.9 Any_var Class

Since anys are returned via pointer as out and return parameters, there exists an 
Any_var class similar to the T_var classes for object references. Any_var obeys 
the rules for T_var classes described in Section 16.8, Mapping for Structured Types, 
calling delete on its Any* when it goes out of scope or is otherwise destroyed. The 
full interface of the Any_var class is shown in Section C.4, Any_var Class.

16.15 Mapping for Exception Types

An OMG IDL exception is mapped to a C++ class that derives from the standard 
UserException class defined in the CORBA module (see Section 16.1.3, CORBA 
Module). The generated class is like a variable-length struct, regardless of whether or 
not the exception holds any variable-length members. Just as for variable-length 
structs, each exception member must be self-managing with respect to its storage.

The copy constructor, assignment operator, and destructor automatically copy or free 
the storage associated with the exception. For convenience, the mapping also defines a 
constructor with one parameter for each exception member—this constructor initializes 
the exception members to the given values. For exception types that have a string 
member, this constructor should take a const char* parameter, since the 
constructor must copy the string argument. Similarly, constructors for exception types 
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that have an object reference member must call _duplicate on the corresponding 
object reference constructor parameter. The default constructor performs no explicit 
member initialization.

The UserException class is derived from a base Exception class, which is also 
defined in the CORBA module.

All standard exceptions are derived from a SystemException class, also defined in 
the CORBA module. Like UserException, SystemException is derived from the 
base Exception class. The SystemException class interface is shown next.

// C++
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};
class SystemException : public Exception
{
  public:

SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

};

The default constructor for SystemException causes minor() to return zero and 
completed() to return COMPLETED_NO.

Each specific system exception (described in Section 14.1.6, Exceptions) is derived 
from SystemException.

// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching the 
Exception type.
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// C++
try {

...
} catch (const Exception &exc) {

...
}

Alternatively, all user exceptions can be caught by catching the UserException 
type, and all system exceptions can be caught by catching the SystemException 
type.

// C++
try {

...
} catch (const UserException &ue) {

...
} catch (const SystemException &se) {

...
}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets 
the exception destructor release storage automatically.

C++ compilers that support official C++ Run-Time Type Information (RTTI) need not 
support narrowing for the Exception hierarchy. RTTI supports, among other things, 
determination of the run-time type of a C++ object. In particular, the 
dynamic_cast<T*> operator11 allows for narrowing from a base pointer to a more 
derived pointer if the object pointed to really is of the more derived type. This operator 
is not useful for narrowing object references, since it cannot determine the actual type 
of remote objects, but it can be used to narrow within the exception hierarchy. Since 
catch clauses can catch by type, this feature is mainly used for narrowing exceptions 
received via Environments from the DII.

For those C++ environments that do not support dynamic_cast<T*>, the exception 
hierarchy provides a narrowing mechanism. This is described in Section D.4, Without 
Run-Time Type Information (RTTI).

Request invocations made through the DII may result in user-defined exceptions that 
cannot be fully represented in the calling program because the specific exception type 
was not known at compile time. The mapping provides the 
UnknownUserException so that such exceptions can be represented in the calling 
process.

11.It is unlikely that a compiler would support RTTI without supporting exceptions, since much of a 
C++ exception handling implementation is based on RTTI mechanisms.
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// C++
class UnknownUserException : public UserException
{
  public:

Any &exception();
};

As shown here, UnknownUserException is derived from UserException. It 
provides the exception() accessor that returns an any holding the actual 
exception. Ownership of the returned any is maintained by the 
UnknownUserException—the any merely allows access to the exception data. 
Conforming applications should never explicitly throw exceptions of type 
UnknownUserException—it is intended for use with the DII.

16.16 Mapping for Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same name), 
one to set the attribute’s value and one to get the attribute’s value. The set function 
takes an in parameter with the same type as the attribute, while the get function takes 
no parameters and returns the same type as the attribute. An attribute marked 
readonly maps to only one C++ function, to get the attribute’s value. Parameters and 
return types for attribute functions obey the same parameter passing rules as for 
regular operations.

OMG IDL oneway operations are mapped the same as other operations; that is, there 
is no way to know by looking at the C++ whether an operation is oneway or not.

The mapping does not define whether exceptions specified for an OMG IDL operation 
are part of the generated operation’s type signature or not.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additional Environment 
parameter for passing exception information—real C++ exceptions are used for this 
purpose. See Section 16.15, Mapping for Exception Types, and Section D.3, Without 
Exception Handling, for more details.
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16.17 Implicit Arguments to Operations

If an operation in an OMG IDL specification has a context specification, then a 
Context_ptr input parameter (see Section 17.8.1, Context Interface) follows all 
operation-specific arguments. In an implementation that does not support real C++ 
exceptions, an output Environment parameter is the last argument following all 
operation-specific arguments, and following the context argument if present. The 
parameter passing mode for Environment is described in Section D.3, Without 
Exception Handling.

16.18 Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both 
efficiency and simplicity. For primitive types, enumerations, and object references, the 
modes are straightforward, passing the type P for primitives and enumerations and the 
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory 
is allocated and deallocated. Mapping in parameters is straightforward because the 
parameter storage is caller-allocated and read-only. The mapping for out and inout 
parameters is more problematic. For variable-length types, the callee must allocate 
some if not all of the storage. For fixed-length types, such as a Point type represented 
as a struct containing three floating point members, caller allocation is preferable (to 
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split 
allocation, and eliminate confusion with respect to when copying occurs, the mapping 
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach 
has the unfortunate consequence that usage for structs depends on whether the struct is 
fixed- or variable-length; however, the mapping is consistently T_var& if the caller 
uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for 
deallocating any previous variable-length data in the parameter when a T_var is 
passed. Even though their initial values are not sent to the operation, we include out 
parameters because the parameter could contain the result from a previous call. There 
are many ways to implement this support. The mapping does not require a specific 
implementation, but a compliant implementation must free the inaccessible storage 
associated with a parameter passed as a T_var managed type. The following examples 
demonstrate the compliant behavior.

// IDL
struct S { string name; float age; };
void f(out S p);
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// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters 
works only with T_var types, not with other types.

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)

q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller is 
not invoking string_free on the out result. There are two ways to fix this, as 
shown next.

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {

q(s);
string_free(s); // explicit deallocation
// OR:
q(svar); // implicit deallocation

}

Using a plain char* for the out parameter means that the caller must explicitly 
deallocate its memory before each reuse of the variable as an out parameter, while 
using a String_var means that any deallocation is performed implicitly upon each 
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For example, 
before assigning to an inout string parameter, the implementor of an operation may 
first delete the old character data. Similarly, an inout interface parameter should be 
released before being reassigned. One way to ensure that the parameter storage is 
released is to assign it to a local T_var variable with an automatic release, as in the 
following example.
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// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {

String_var s_tmp = s;
s = /* new data */;
A_var obj_tmp = obj;
obj = /* new reference */

}

To allow the callee the freedom to allocate a single contiguous area of storage for all 
the data associated with a parameter, we adopt the policy that the callee-allocated 
storage is not modifiable by the caller. However, trying to enforce this policy by 
returning a const type in C++ is problematic, since the caller is required to release 
the storage, and calling delete on a const object is an error12. A compliant 
mapping therefore is not required to detect this error.

For parameters that are passed or returned as a pointer (T*) or reference to pointer 
(T*&), a compliant program is not allowed to pass or return a null pointer; the result of 
doing so is undefined. In particular, a caller may not pass a null pointer under any of 
the following circumstances:

• in and inout string

• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters, 
however, since the callee does not examine the value but rather just overwrites it. A 
callee may not return a null pointer under any of the following circumstances:

• out and return variable-length struct

• out and return variable-length union

• out and return string

• out and return sequence

• out and return variable-length array, return fixed-length array

• out and return any

12.It is very likely that the upcoming ANSI/ISO C++ standard will allow delete on a const 
object, but many C++ compilers do not yet support this feature.
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Since OMG IDL has no concept of pointers in general or null pointers in particular, 
allowing the passage of null pointers to or from an operation would project C++ 
semantics onto OMG IDL operations.13 A compliant implementation is allowed but 
not required to raise a BAD_PARAM exception if it detects such an error.

Table 16-2 displays the mapping for the basic OMG IDL parameter passing modes and 
return type according to the type being passed or returned, while Table 16-3 displays 
the same information for T_var types. Table 16-2 is merely for informational 
purposes; it is expected that operation signatures will be written in terms of the 
parameter passing modes shown in Table 16-2, and that T_var types will support the 
necessary conversion operators to allow them to be passed directly.

In Table 16-2, fixed-length arrays are the only case where the type of an out 
parameter differs from a return value, which is necessary because C++ does not allow 
a function to return an array. The mapping returns a pointer to a slice of the array, 
where a slice is an array with all the dimensions of the original specified except the 
first one.

13.When real C++ exceptions are not available, however, it is important that null pointers are 
returned whenever an Environment containing an exception is returned; see Section D.3, With-
out Exception Handling, for more details.

Table 16-2 Basic Argument and Result Passing 

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

float Float Float& Float& Float

double Double Double& Double& Double

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1 objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*
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A caller is responsible for providing storage for all arguments passed as in arguments. 

Table 16-4 and Table 16-5 describe the caller’s responsibility for storage associated 
with inout and out parameters and for return results.

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

1. Including pseudo-object references.

Table 16-3 T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var1 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

Table 16-4 Caller Argument Storage Responsibilities 

Type
Inout 
Param

Out 
Param

Return 
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6
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1. As listed in Table 16-4.

array, variable 1 6 6

any 5 3 3

Table 16-5 Argument Passing Cases 

Case1

1 Caller allocates all necessary storage, except that which may be encapsulated and managed 
within the parameter itself. For inout parameters, the caller provides the initial value, and the 
callee may change that value. For out parameters, the caller allocates the storage but need not 
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an 
initial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release 
on the original input value. To continue to use an object reference passed in as an inout, the 
caller must first duplicate the reference. The caller is responsible for the release of all out and 
return object references. Release of all object references embedded in other structures is 
performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The 
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. To maintain local/remote 
transparency, the caller must always release the returned storage, regardless of whether the 
callee is located in the same address space as the caller or is located in a different address 
space. Following the completion of a request, the caller is not allowed to modify any values in 
the returned storage—to do so, the caller must first copy the returned instance into a new 
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to 
it. Since the callee may deallocate the input string and reassign the char* to point to new 
storage to hold the output value, the caller should allocate the input string using 
string_alloc(). The size of the out string is therefore not limited by the size of the in string. 
The caller is responsible for deleting the storage for the out using string_free(). The 
callee is not allowed to return a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause 
deallocation of owned storage before any reallocation occurs, depending upon the state of the 
boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same 
dimensions of the original array except the first, and passes the pointer by reference to the 
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. To maintain local/remote 
transparency, the caller must always release the returned storage, regardless of whether the 
callee is located in the same address space as the caller or is located in a different address 
space. Following completion of a request, the caller is not allowed to modify any values in the 
returned storage—to do so, the caller must first copy the returned array instance into a new 
array instance, then modify the new instance.

Table 16-4 Caller Argument Storage Responsibilities (Continued)

Type
Inout 
Param

Out 
Param

Return 
Result
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CORBA pseudo-objects may be implemented either as normal CORBA objects or as 
serverless objects. In the CORBA specification, the fundamental differences between 
these strategies are:

• Serverless object types do not inherit from CORBA::Object.

• Individual serverless objects are not registered with any ORB.

• Serverless objects do not necessarily follow the same memory management rules as 
for regular OMG IDL types.

References to serverless objects are not necessarily valid across computational 
contexts; for example, address spaces. Instead, references to serverless objects passed 
as parameters may result in the construction of independent, functionally identical 
copies of objects used by receivers of these references. To support this, the otherwise 
hidden representational properties (such as data layout) of serverless objects are made 
known to the ORB. Specifications for achieving this are not contained in this chapter: 
making serverless objects known to the ORB is an implementation detail. 

This chapter provides a standard mapping algorithm for all pseudo-object types. This 
avoids the need for piecemeal mappings for each of the nine CORBA pseudo-object 
types, and accommodates any pseudo-object types that may be proposed in future 
revisions of CORBA. It also avoids representation dependence in the C mapping while 
still allowing implementations that rely on C-compatible representations.

17.1 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to 
describe serverless object types. Interfaces for pseudo-object types follow the exact 
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo.
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• Their declarations may refer to other1 serverless object types not otherwise 
necessarily allowed in OMG IDL.

As explained in Section 14.23, Pseudo-Objects, the pseudo prefix means that the 
interface may be implemented in either a normal or serverless fashion. That is, apply 
either the rules described in the following sections or the normal mapping rules 
described in Chapter 16, Mapping of OMG IDL to C++.

17.2 Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the 
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object, 
and are not necessarily subclasses of any other C++ class. Thus, they do not 
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of the 
following functions are provided in the CORBA name space.

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users, 
although subclasses can be provided by implementations. Implementations are allowed 
to make assumptions about internal representations and transport formats that may not 
apply to subclasses.

The member functions of classes representing serverless object types do not 
necessarily obey the normal memory management rules. This is due to the fact that 
some serverless objects, such as CORBA::NVList, are essentially just containers for 
several levels of other serverless objects. Requiring callers to explicitly free the values 
returned from accessor functions for the contained serverless objects would be counter 
to their intended usage.

All other elements of the mapping are the same. In particular:

• The types of references to serverless objects, T_ptr, may or may not simply be a 
typedef of T*.

• Each mapped class supports the following static member functions.

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

1.In particular, exception used as a data type and a function name.
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Legal implementations of _duplicate include simply returning the argument or 
constructing references to a new instance. Individual implementations may provide 
stronger guarantees about behavior.

• The corresponding C++ classes may or may not be directly instantiable or have other 
instantiation constraints. For portability, users should invoke the appropriate 
constructive operations. When none are listed, users cannot depend on any portable 
means for constructing such objects, and should consult documentation for their 
implementations. 

• As with normal interfaces, assignment operators are not supported.

• Although they can transparently employ “copy-style” rather than “reference-style” 
mechanics, parameter passing signatures and rules as well as memory management 
rules are identical to those for normal objects, unless otherwise noted.

17.3 Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analogs 
in the C mapping. The mapped C++ classes can, but need not be, implemented using 
representations compatible to those chosen for the C mapping. Differences between the 
pseudo-object specifications for C-PIDL and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use of 
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo-objects in their interfaces, 
including a few cases of redesignated functionality as noted.

• In C++-PIDL, the release performs the role of the associated free and delete 
operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are 
provided in the following sections. Further details, including definitions of types 
referenced but not defined next, may be found in the relevant sections of this 
document.

17.4 Environment

Environment provides a vehicle for dealing with exceptions in those cases where 
true exception mechanics are unavailable or undesirable (for example in the DII). They 
may be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair 
of C++ functions used to set and get the exception. The semantics of the set and get 
functions, however, are somewhat different than those for normal OMG IDL attributes. 
The set C++ function assumes ownership of the Exception pointer passed to it. 
The Environment will eventually call delete on this pointer, so the Exception 
it points to must be dynamically allocated by the caller. The get function returns a 
pointer to the Exception, just as an attribute for a variable-length struct would, but 
the pointer refers to memory owned by the Environment. Once the Environment 
is destroyed, the pointer is no longer valid. The caller must not call delete on the 
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Exception pointer returned by the get function. The Environment is responsible 
for deallocating any Exception it holds when it is itself destroyed. If the 
Environment holds no exception, the get function returns a null pointer.

The clear() function causes the Environment to delete any Exception it is 
holding. It is not an error to call clear() on an Environment holding no 
exception. Passing a null pointer to the set exception function is equivalent to calling 
clear(). If an Environment contains exception information, the caller is 
responsible for calling clear() on it before passing it to an operation.

17.4.1 Environment Interface

// IDL
pseudo interface Environment
{

attribute exception exception;
void clear();

};

17.4.2 Environment C++ Class

// C++
class Environment
{
  public:

void exception(Exception*);
Exception *exception() const;
void clear();

};

17.4.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Supports an attribute allowing operations on exception values as a whole rather than 
on major numbers and/or identification strings.

• Supports a clear() function that is used to destroy any Exception the 
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception information.

17.4.4 Memory Management

Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the 
Exception* given to it.
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• Ownership of the return value of the Exception *exception() member 
function is maintained by the Environment; this return value must not be freed by 
the caller.

17.5 NamedValue

NamedValue is used only as an element of NVList, especially in the DII. 
NamedValue maintains an optional name, an any value, and labeling flags. Legal 
flag values are ARG_IN, ARG_OUT, and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.

17.5.1 NamedValue Interface

// IDL
pseudo interface NamedValue
{

readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};

17.5.2 NamedValue C++ Class

// C++
class NamedValue
{
  public:

const char *name() const;
Any *value() const;
Flags flags() const;

};

17.5.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Provides no analog of the len field.

17.5.4 Memory Management

NamedValue has the following special memory management rule:

• Ownership of the return values of the name() and value() functions is 
maintained by the NamedValue; these return values must not be freed by the caller.
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17.6 NVList

NVList is a list of NamedValues. A new NVList is constructed using the 
ORB::create_list operation (see Section 17.12, ORB). New NamedValues may be 
constructed as part of an NVList, in any of three ways:

• add—creates an unnamed value, initializing only the flags.

• add_item—initializes name and flags.

• add_value—initializes name, value, and flags.

• add_item_consume—initializes name and flags, taking over memory 
management responsibilities for the char* name parameter.

• add_value_consume—initializes name, value, and flags, taking over memory 
management responsibilities for both the char* name parameter and the Any* 
value parameter.

Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item, 
add_value, add_item_consume, and add_value_consume functions lengthen 
the NVList to hold the new element each time they are called. The item function can 
be used to access existing elements.

17.6.1 NVList Interface

// IDL
pseudo interface NVList
{

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, 
in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};
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17.6.2 NVList C++ Class

// C++
class NVList
{
  public:

ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(

const char*,
const Any&,
Flags

);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
Status remove(ULong);

};

17.6.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef.

• Provides different signatures for operations that add items in order to avoid 
representation dependencies.

• Provides indexed access methods.

17.6.4 Memory Management

NVList has the following special memory management rules:

• Ownership of the return values of the add, add_item, add_value, 
add_item_consume, and add_value_consume functions is maintained by the 
NVList; these return values must not be freed by the caller.

• The char* parameters to the add_item_consume and add_value_consume 
functions and the Any* parameter to the add_value_consume function are 
consumed by the NVList. The caller may not access these data after they have been 
passed to these functions, because the NVList may copy them and destroy the 
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originals immediately. The caller should use the NamedValue::value() 
operation in order to modify the value attribute of the underlying NamedValue, if 
desired.

• The remove function also calls CORBA::release on the removed NamedValue.

17.7 Request

Request provides the primary support for DII. A new request on a particular target 
object may be constructed using the short version of the request creation operation 
shown in Section 17.13, Object.

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding 
attributes in the Request interface. Results, output arguments, and exceptions are 
similarly obtained after invocation. The following C++ code illustrates usage.

// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {

*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor functions, the 
following example shows that it is much easier and preferable to use the equivalent 
argument manipulation helper functions.

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {

req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the creation 
operation shown in the Object interface in Section 17.13, Object.
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// C++
Status Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);

Usage is the same as for the short form except that all invocation parameters are 
established on construction. Note that the OUT_LIST_MEMORY and 
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they are 
meaningless and thus ignored because argument insertion and extraction are done via 
the any type.

Request also allows the application to supply all information necessary for it to be 
invoked without requiring the ORB to utilize the Interface Repository. In order to 
deliver a request and return the response, the ORB requires:

• A target object reference

• An operation name

• A list of arguments (optional)

• A place to put the result (optional)

• A place to put any returned exceptions

• A Context (optional)

• A list of the user-defined exceptions that can be thrown (optional)

• A list of Context strings that must be sent with the operation (optional)

Since the Object::create_request operation allows all of these except the last 
two to be specified, an ORB may have to utilize the Interface Repository in order to 
discover them. Some applications, however, may not want the ORB performing 
potentially expensive Interface Repository look-ups during a request invocation, so 
two new serverless objects have been added to allow the application to specify this 
information instead:

• ExceptionList: allows an application to provide a list of TypeCodes for all 
user-defined exceptions that may result when the Request is invoked.
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• ContextList: allows an application to provide a list of Context strings that 
must be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the 
context strings whose values are to be looked up and sent with the request invocation 
(if applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList, ContextList, and Request are 
shown next.

17.7.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attribute unsigned long count;
void add(in string ctxt);
string item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface Request
{

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute context ctx;

Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
boolean poll_response();

};
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17.7.2 Request C++ Class

// C++
class ExceptionList
{
  public:

ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);

};

class ContextList
{
  public:

ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

};

class Request
{
  public:

Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
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Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

};

17.7.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument, and so forth, with attribute-based accessors.

• Use of env attribute to access exceptions raised in DII calls.

• The invoke operation does not take a flag argument, since there are no flag values 
that are listed as legal in CORBA V2.0.

• The send_oneway and send_deferred operations replace the single send 
operation with flag values, in order to clarify usage.

• The get_response operation does not take a flag argument, and an operation 
poll_response is defined to immediately return with an indication of whether 
the operation has completed. This was done because in CORBA V2.0, if the type 
Status is void, the version with RESP_NO_WAIT does not enable the caller to 
determine if the operation has completed.

• The add_*_arg, set_return_type, and return_value member functions 
are added as shortcuts for using the attribute-based accessors.

17.7.4 Memory Management

Request has the following special memory management rule.

• Ownership of the return values of the target, operation, arguments, 
result, env, exceptions, contexts, and ctx functions is maintained by the 
Request; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules.

• The add_consume function consumes its TypeCode_ptr argument. The caller 
may not access the object referred to by the TypeCode_ptr after it has been 
passed in because the add_consume function may copy it and release the original 
immediately.

• Ownership of the return value of the item function is maintained by the 
ExceptionList; this return value must not be released by the caller.

ContextList has the following special memory management rules.

• The add_consume function consumes its char* argument. The caller may not 
access the memory referred to by the char* after it has been passed in because the 
add_consume function may copy it and free the original immediately.
17-12                                  CORBA V2.0                                  July 1996



17
• Ownership of the return value of the item function is maintained by the 
ContextList; this return value must not be released by the caller.

17.8 Context

A Context supplies optional context information associated with a method 
invocation.

17.8.1 Context Interface

// IDL
pseudo interface Context
{

readonly attribute Identifier context_name;
readonly attribute context parent;

Status create_child(in Identifier child_ctx_name, out

Context child_ctx);

Status set_one_value(in Identifier propname, in any

propvalue);
Status set_values(in NVList values);
Status delete_values(in Identifier propname);
Status get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};

17.8.2 Context C++ Class

// C++
class Context
{
  public:

const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char *, Context_ptr&);

Status set_one_value(const char *, const Any &);
Status set_values(NVList_ptr);
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Status delete_values(const char *);
Status get_values(

const char*,
Flags,
const char*,
NVList_ptr&

);
};

17.8.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.

• The signatures for values are uniformly set to any.

• In the C mapping, set_one_value used strings, while others used 
NamedValues containing any. Even though implementations need only support 
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.

17.8.4 Memory Management

Context has the following special memory management rule.

• Ownership of the return values of the context_name and parent functions is 
maintained by the Context; these return values must not be freed by the caller.

17.9 Principal

A Principal represents information about principals requesting operations. There 
are no defined operations.

There are no differences from the C-PIDL mapping.

17.9.1 Principal Interface

// IDL
pseudo interface Principal {};

17.9.2 Principal C++ Class

// C++
class Principal {};
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17.10 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped 
interface, for each basic and defined OMG IDL type, an implementation provides 
access to a TypeCode pseudo-object reference (TypeCode_ptr) of the form 
_tc_<type> that may be used to set types in any, as arguments for equal, and so 
on. In the names of these TypeCode reference constants, <type> refers to the local 
name of the type within its defining scope. Each C++ _tc_<type> constant must be 
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo-object reference constants, the prefix _tc_ should be 
used instead of the TC_ prefix prescribed in Section 6.7, Type Codes. This is to avoid 
name clashes for CORBA applications that simultaneously use both the C and C++ 
mappings.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil() 
operation that returns a nil object reference for a TypeCode. This operation can be 
used to initialize TypeCode references embedded within constructed types. However, 
a nil TypeCode reference may never be passed as an argument to an operation, since 
TypeCodes are effectively passed as values, not as object references.

17.10.1 TypeCode Interface

// IDL
pseudo interface TypeCode
{

exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal(in TypeCode tc);
TCKind kind();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, 

and tk_except
RepositoryId id() raises(BadKind);
Identifier name() raises(BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count() raises(BadKind);
Identifier member_name(in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type(in unsigned long index)

raises(BadKind, Bounds);
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// for tk_union
any member_label(in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type() raises(BadKind);
long default_index() raises(BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length() raises(BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type() raises(BadKind);

// deprecated interface
long param_count();
any parameter(in long index) raises(bounds);

};

17.10.2 TypeCode C++ Class

// C++
class TypeCode
{
  public:

class Bounds { ... };
class BadKind { ... };

Boolean equal(TypeCode_ptr) const;
TCKind kind() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

Long param_count() const;
Any *parameter(Long) const;

};
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17.10.3 Differences from C-PIDL

For C++, use prefix _tc_ instead of TC_ for constants.

17.10.4 Memory Management

TypeCode has the following special memory management rule.

• Ownership of the return values of the id, name, and member_name functions is 
maintained by the TypeCode; these return values must not be freed by the caller.

17.11 BOA

A BOA mediates between the ORB and object implementations.

17.11.1 BOA Interface

// IDL
pseudo interface BOA
{

Object create(

in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl

);
void dispose(in Object obj);
ReferenceData get_id(in Object obj);
void change_implementation(in Object obj, in

ImplementationDef impl);
Principal get_principal(in Object obj, in 
Environmentev);
void impl_is_ready(in ImplementationDef impl);
void deactivate_impl(in ImplementationDef impl);
void obj_is_ready(in Object obj, in Implementation
Def impl);
void deactivate_obj(in Object obj);

};
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17.11.2 BOA C++ Class

// C++
class BOA
{
  public:

Object_ptr create(
const ReferenceData &,
InterfaceDef_ptr,
ImplementationDef_ptr

);
void dispose(Object_ptr);
ReferenceData *get_id(Object_ptr);
void change_implementation(

Object_ptr,
ImplementationDef_ptr

);
Principal_ptr get_principal(

Object_ptr,
Environment_ptr

);
void impl_is_ready(ImplementationDef_ptr);
void deactivate_impl(ImplementationDef_ptr);
void obj_is_ready(Object_ptr, ImplementationDef_ptr);
void deactivate_obj(Object_ptr);

};

17.11.3 Differences from C-PIDL

Means to set exceptions are moved to Environment.

17.12 ORB

An ORB is the programmer interface to the Object Request Broker.

17.12.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);
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Status create_list(in long count, out NVList new_list);
Status create_operation_list(in OperationDef oper, out
NVList new_list);
Status create_named_value(out NamedValue nmval);
Status create_exception_list(out ExceptionList exclist);
Status create_context_list(out ContextList ctxtlist);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_multiple_requests_oneway(in RequestSeq req);
Status send_multiple_requests_deferred(in RequestSeq
req);
boolean poll_next_response();
Status get_next_response(out Request req);

};

17.12.2 ORB C++ Class

// C++
class ORB
{
  public:

class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
Status create_list(Long, NVList_ptr&);
Status create_operation_list(

OperationDef_ptr,
NVList_ptr&

);
Status create_named_value(NamedValue_ptr&);
Status create_exception_list(ExceptionList_ptr&);
Status create_context_list(ContextList_ptr&);

Status get_default_context(Context_ptr&);
Status create_environment(Environment_ptr&);

Status send_multiple_requests_oneway(
const RequestSeq&

);
Status send_multiple_requests_deferred(

const RequestSeq &
);
Boolean poll_next_response();
Status get_next_response(Request_ptr&);

};
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17.12.3 Differences from C-PIDL

• Added create_environment. Unlike the struct version, Environment 
requires a construction operation. (Since this is overly constraining for 
implementations that do not support real C++ exceptions, these implementations 
may allow Environment to be declared on the stack. See Section D.3, Without 
Exception Handling, for details.)

• Assigned multiple request support to ORB, made usage symmetrical with that in 
Request, and used a sequence type rather than otherwise illegal unbounded arrays 
in signatures.

• Added create_named_value, which is required for creating NamedValue 
objects to be used as return value parameters for the Object::create_request 
operation.

• Added create_exception_list and create_context_list (see Section 
17.7, Request, for more details).

17.12.4 Mapping of ORB and OA/BOA Initialization Operations 

ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part of 
the CORBA module (not the ORB interface) and is described in Section 7.4, ORB 
Initialization.

// PIDL 
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid 
orb_identifier);

};

The mapping of the preceding PIDL operations to C++ is as follows:

// C++
namespace CORBA {

typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier
);

};
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The C++ mapping for ORB_init (and OA_init, described in the next section) 
deviates from the OMG IDL PIDL in its handling of the arg_list parameter. This is 
intended to provide a meaningful PIDL definition of the initialization interface, which 
has a natural C and C++ binding. To this end, the arg_list structure is replaced with 
argv and argc parameters. 

The argv parameter is defined as an unbound array of strings (char **), and the 
number of strings in the array is passed in the argc (int &) parameter.

If a NULL ORBid is used, then argc arguments can be used to determine which ORB 
should be returned. This is achieved by searching the argc parameters for one tagged 
ORBid, e.g. -ORBid “ORBid_example.” 

For C++, the order of consumption of argv parameters may be significant to an 
application. In order to ensure that applications are not required to handle argv 
parameters, they do not recognize that the ORB initialization function must be called 
before the remainder of the parameters are consumed. Therefore, after the ORB_init 
call, the argv and argc parameters will have been modified to remove the ORB 
understood arguments. It is important to note that the ORB_init call can only reorder 
or remove references to parameters from the argv list; this restriction is made in order 
to avoid potential memory management problems caused by trying to free parts of the 
argv list or extending the argv list of parameters. This is why argv is passed as a 
char** and not a char**&. 

OA/BOA Initialization

The following PIDL specifies the operations (in the ORB interface) that allow 
applications to get pseudo-object references; it is described in detail in Section 7.5, OA 
and BOA Initialization. 

// PIDL
module CORBA {

interface ORB {
typedef sequence <string> arg_list;
typedef string OAid;

// Template for OA initialization operations
// <OA> <OA>_init (inout arg_list argv,
// in OAid oa_identifier);
BOA BOA_init (inout arg_list argv,

 in OAid boa_identifier);
 };

};

The mapping of the OAinit (BOA_init) operation (in the ORB interface) to the 
C++ programming language is as follows.
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// C++
namespace CORBA {

class ORB
{
  public:

typedef string OAid;

// Template C++ binding for OA init op
// <OA>_ptr <OA>_init  (int * argc,
//  char **argv,
//  OAid oa_identifier);
BOA_ptr BOA_init(

int & argc,
char ** argv,
const char *boa_identifier

);
};

}

If a NULL OAid is used, then argc arguments can be used to determine which OA 
should be returned. This is achieved by searching the argc parameters for one tagged 
OAid, e.g. -OAid “OAid_example.” 

For C++, the order of consumption of argv parameters may be significant to an 
application. In order to ensure that applications are not required to handle argv 
parameters, they do not recognize that the OA initialization function must be called 
before the remainder of the parameters are consumed by the application. Therefore, 
after the <OA>_init call, the argv and argc parameters will have been modified to 
remove the OA understood arguments. It is important to note that the OA_init call 
can only reorder or remove references to parameters from the argv list; this 
restriction is made in order to avoid potential memory management problems caused 
by trying to free parts of the argv list or extending the argv list of parameters. This 
is why argv is passed as a char** and not a char**&. 

17.12.5 Mapping of Operations to Obtain Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow 
applications to get pseudo-object references for the Interface Repository and Object 
Services. It is described in detail in Section 7.6, Obtaining Initial Object References.
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// PIDL
module CORBA {

interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId
identifier) raises (InvalidName);

};
};

The mapping of the preceding PIDL to the C++ language is as follows.

// C++
namespace CORBA {

class ORB {
  public:

typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(

const char *identifier
);

};
}

17.13 Object

The rules in this section apply to OMG IDL interface Object, the base of the OMG 
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a 
pseudo-object. However, it is included here because it references other pseudo-objects.

17.13.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
Status create_request(

in Context ctx,
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in Identifier operation,
in NVList arg_list,
in NamedValue result,
out Request request,
in Flags req_flags

);
Status create_request2(

in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags

);
};

17.13.2 Object C++ Class

In addition to other rules, all operation names in interface Object have leading 
underscores in the mapped C++ class. Also, the mapping for create_request is 
split into three forms, corresponding to the usage styles described in Section 4.2.1, 
create_request, and in Section 17.7, Request. The is_nil and release functions 
are provided in the CORBA name space, as described in Section 16.3.3, Object 
Reference Operations.

// C++
class Object
{
  public:

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
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NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);
Request_ptr _request(const char* operation);

};
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Server-Side Mapping 18
Server-side mapping refers to the portability constraints for an object implementation 
written in C++. The term server is not meant to restrict implementations to situations 
in which method invocations cross address space or machine boundaries. This mapping 
addresses any implementation of an OMG IDL interface.

The required functionality for a server described here is probably a subset of the 
functionality an implementor will actually need. As a consequence, in practice, few 
servers will be completely compliant. However, we expect most of the server code to 
be portable from one ORB implementation to another. In particular, the body of an 
operation implementation will usually comply with this mapping.

18.1 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++ 
name. For each operation in the interface, the class defines a nonstatic member 
function with the mapped name of the operation (the mapped name is the same as the 
OMG IDL identifier except when the identifier is a C++ keyword, in which case an 
underscore (‘_’) is prepended to the identifier, as noted in Section 16.1, Preliminary 
Information). Note that the ORB implementation may allow one implementation class 
to derive from another, so the statement “the class defines a member function” does 
not mean the class must explicitly define the member function—it could inherit the 
function.

The mapping does not specify how the implementation class is related to any other 
classes, including the generated class for the interface. This approach allows 
implementations to use either inheritance or delegation and to include other features 
from the ORB implementation (such as choosing a default transport representation). 
The examples in this chapter provide sample solutions for defining implementation 
classes. CORBA-compliant implementations are not required to use these alternatives.
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18.2 Implementing Operations

The signature of an implementation member function is the mapped signature of the 
OMG IDL operation. Unlike the client side, the server-side mapping requires that the 
function header include the appropriate exception (throw) specification. This 
requirement allows the compiler to detect when an invalid exception is raised, which is 
necessary in the case of a local C++-to-C++ library call (otherwise the call would have 
to go through a wrapper that checked for a valid exception). For example:

// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyFavoriteImplementationOfA ...
{
  public:

class B : public UserException {};
void f() throw(B);
...

};

The mapping provides two operations that are accessible from within the body of a 
member function: _this() and _boa(). The _this() function returns an object 
reference (T_ptr) for the target object. The _boa() function returns a BOA_ptr to 
the appropriate BOA object. The implementation may not assume where the _boa() 
function is defined, only that it is available within the member function. The _boa() 
function could be a member function, a static member function, or a static function 
defined in a name space that is accessible from the member functions of the 
implementation. The return values of _this() and _boa() must be released via 
CORBA::release().

Within a member function, the “this” pointer refers to the implementation object’s data 
as defined by the class. In addition to accessing the data, a member function may 
implicitly call another member function defined by the same class. For example:

// IDL
interface A
{

void f();
void g();

};
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// C++
class MyFavoriteImplementationOfA ...
{
  public:

void f();
void g();

  private:
long x_;

};

void MyFavoriteImplementationOfA::f()
{

x_ = 3;
g();

}

18.3 Examples

As with other examples shown in this mapping, the following examples are not meant 
to mandate a particular implementation. Rather, they show some of the 
implementations that are possible in order to help clarify the descriptions of the 
mapping.

18.3.1 Using C++ Inheritance for Interface Implementation

Implementation classes can be derived from a generated base class based on the OMG 
IDL interface definition. The generated base classes are known as skeleton classes, and 
the derived classes are known as implementation classes. Each operation of the 
interface has a corresponding virtual member function declared in the skeleton class. 
The signature of the member function is identical to that of the generated client stub 
class. The implementation class provides implementations for these member functions. 
The BOA invokes the methods via calls to the skeleton class’s virtual functions.

The following OMG IDL interface will be used in all the examples in this section.

// IDL
interface A
{

short op1();
void op2(in long l);

};

An IDL compiler generates an interface class A for this interface. This class contains 
the C++ definitions for the typedefs, constants, exceptions, attributes, and operations in 
the OMG IDL interface. It has a form similar to the following:
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// C++
class A : public virtual CORBA::Object
{
  public:

virtual Short op1() = 0;
virtual void op2(Long l) = 0;
...

};

Some ORB implementations might not use public virtual inheritance from 
CORBA::Object, and might not make the operations pure virtual, but the signatures 
of the operations will be the same.

On the server side, a skeleton class can be generated. This class is partially opaque to 
the programmer, though it will contain a member function corresponding to each 
operation in the interface.

// C++
class _sk_A : public A
{
  public:

// ...server-side implementation-specific detail
// goes here...
virtual Short op1() = 0;

virtual void op2(Long l) = 0;
...

};

To implement this interface, a programmer must derive from this skeleton class and 
implement each of the operations in the OMG IDL interface. An implementation class 
declaration for interface A would take the following form:

// C++
class A_impl : public _sk_A
{
  public:

Short op1();

void op2(Long l);
...

};

18.3.2 Using Delegation for Interface Implementation

Inheritance is not always the best solution for implementing interfaces. Using 
inheritance from the OMG IDL–generated classes forces a C++ inheritance hierarchy 
on the implementor. Sometimes, the overhead of such inheritance is too high. For 
example, implementing OMG IDL interfaces with existing legacy code might be 
impossible if inheritance from some global class was enforced.
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In some cases delegation can be used to good effect to solve this problem. Rather than 
inheriting from some global class, the implementation can be coded in any way at all, 
and some wrapper classes will delegate up-calls to that implementation. This section 
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 18.3.1, Using 
C++ Inheritance for Interface Implementation, will again be used.

// IDL
interface A
{

short op1();
void op2(in long l);

};

An OMG IDL compiler will generate a (possibly abstract) class A in C++ defining this 
interface.

Normally, the server implementor will have to derive from this class or some related 
class to implement a server-side object. However, the OMG IDL compiler could 
generate another class, called a tie. This class is partially opaque to the application 
programmer, though like the skeleton, it provides a method corresponding to each 
OMG IDL operation.

// C++
template <class T>
class _tie_A : public A
{
  public:

_tie_A(T &t);
Short op1();
void op2(Long l);
...

};

This class performs the task of delegation. When the template is instantiated with a 
class that supports the operations of A, then the _tie_A class will delegate all 
operations to that implementation class. When an instance of this class is created, then 
a reference to the actual implementation class is passed to the constructor. Typically 
the implementation will just call the corresponding method in the implementation class 
via this reference.
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// C++
template <class T>
class _tie_A : public A
{
  public:

_tie_A(T &t) : _ref(t) {}
Short op1() {return _ref.op1();}
void op2(Long l) {_ref.op2(l);}

  private:
T &_ref;

};

18.4 Mapping of Dynamic Skeleton Interface to C++

Section 5.3, Dynamic Skeleton Interface: Language Mapping, contains general 
information about mapping the Dynamic Skeleton Interface to programming 
languages. 

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++

• Mapping of the Basic Object Adapter’s Dynamic Implementation Routine to C++

18.4.1  Mapping of ServerRequest to C++

The ServerRequest pseudo-object maps to a C++ class in the CORBA name space, 
which supports the following operations and signatures.

// C++
class ServerRequest
{
  public:

Identifier op_name() throw(SystemException);
OperationDef_ptr op_def() throw(SystemException);
Context_ptr ctx() throw(SystemException);
void params(NVList_ptr parameters)

throw(SystemException);
void result(Any *value) throw(SystemException);
void exception(Any *value) throw(SystemException);

};

Note that, as with the rest of the C++ mapping, ORB implementations are free to make 
such operations virtual, and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed 
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the 
string returned by op_name(), in parameters in the NVList, or the context returned 
18-6                                  CORBA V2.0                                  July 1996



18
by ctx(). Similarly, data allocated by the DIR and handed to the ORB (the NVList 
parameters, any result value, and exception values) is freed by the ORB rather than by 
the DIR.

18.4.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the 
params() operation. The NVList provided by the DIR to the ORB includes the 
TypeCodes (inside a NamedValue) for all parameters, including out ones (their values 
are null pointers at first), for the operation. This allows the ORB to verify that the 
correct parameter types have been provided before filling their values in, but does not 
require it to do so. It also relieves the ORB of all responsibility to consult the interface 
repository, promoting high-performance implementations.

The NVList provided to the ORB then becomes owned by the ORB. It will not be 
deallocated until after the DIR returns. This allows the DIR to pass the out values, 
including the return side of inout values, to the ORB by modifying the NVList after 
params() has been called.

In order to guarantee that the ORB could always verify parameter lists, and to detect 
errors such as omitted parameters, Dynamic Implementation Routines are always 
required to call params(), even when the DIR believes that no parameters are used 
by the operation. When the DIR believes no parameters are used by the operation, it 
passes an empty NVList.

The ServerRequest will not send a response to the invocation until the DIR 
returns. If a return value is required, the result() operation must be invoked to 
provide that value to the ORB. Where no return value is required, this need not be 
invoked.

The params() and result() operations may be called only once, and in that exact 
order.

18.4.3 Sample Usage

In typical use, the DIR receives an up-call. It will determine the operation signature by 
using op_def() to consult a private cache of OperationDef information. This 
allows it to create an NVList and fill in the TypeCodes for all the operation’s 
parameters: the in values, out values, and inout values. Then the DIR calls 
params() with that NVList. At this point, the value pointers for all in and inout 
(the input side only) parameters in that NVList are valid.

The DIR then performs the work for the request, using the target object reference to 
determine to which real object the request relates. Next, it stores the value pointers for 
out and inout parameters into the NVList, and reports any result() data. It then 
returns from the DIR up-call, signifying to the ORB that it could send any response 
message. Finally, the ORB frees the data allocated by the DIR (in the NVList and in 
the result) after it to the client.
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18.4.4 Reporting Exceptions

To report an exception, rather than provide return values, the DIR provides the 
exception value inside an any, and passes that to exception(). As with result data, 
the data would be freed by the ORB after the DIR returns. (The DIR cannot in general 
throw exceptions, since in order to “throw” or “catch,” C++ systems require type 
information that can only be generated at compile time. DSI, like DII, cannot rely on 
such compile-time support.)

All exceptions are presented as values embedded in an any. This is required since the 
use of C++ catch/throw for user-defined exceptions relies on data generated by a C++ 
compiler, which will not be available to general bridges (which are constructed without 
any OMG IDL compiler support).

The exception() routine can be called only once, after params() is called. It may 
not be called if result() has been called.

18.4.5 Mapping of BOA’s Dynamic Implementation Routine

C++ server side mappings, implementation objects are C++ objects. To use the DSI, an 
object implements a class in the BOA name space that has a single member function 
with the following signature:

// C++
class DynamicImplementation
{
  public:

virtual void invoke(
CORBA::ServerRequestRef request,
CORBA::Environment&env

) throw (
// NO exceptions... uses ServerRequest::exception()

) = 0;
...

};

The env parameter is used in the BOA::get_principal() operation. Note that, as 
with the rest of the C++ mapping, the implementation inherits this interface, and may 
support other methods as well.

As with other C++ based operation implementations, two functions are accessible 
within the body of methods: _this(), returning an object reference 
(Object_ptr) for the target object, and _boa(), returning a BOA_ptr to the 
appropriate BOA. The method code may not assume where these two routines are 
defined.
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C++ Definitions for CORBA E
This appendix provides a complete set of C++ definitions for the CORBA module. The 
definitions appear within the C++ name space named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations; they are not the 
required definitions for these types.

 E.1 Primitive Types
typedef unsigned char Boolean;
typedef unsigned char Char;
typedef unsigned char Octet;
typedef short Short;
typedef unsigned short UShort;
typedef long Long;
typedef unsigned long ULong;
typedef float Float;
typedef double Double;

 E.2 String_var Class
 class String_var
 {
 public:

 String_var();
 String_var(char *p);
 String_var(const char *p);
 String_var(const String_var &s);
 ~String_var();
 String_var &operator=(char *p);
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 String_var &operator=(const char *p);
 String_var &operator=(const String_var &s);
 operator char*();
 operator const char*() const;
 char &operator[](ULong index);
 char operator[](ULong index) const;

 };

 E.3 Any Class
class Any
{

  public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);
~Any();

Any &operator=(const Any&);

void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
void operator<<=(Float);
void operator<<=(Double);
void operator<<=(const Any&);
void operator<<=(const char*);

Boolean operator>>=(Short&) const;
Boolean operator>>=(UShort&) const;
Boolean operator>>=(Long&) const;
Boolean operator>>=(ULong&) const;
Boolean operator>>=(Float&) const;
Boolean operator>>=(Double&) const;

Boolean operator>>=(Any&) const;
Boolean operator>>=(char*&) const;

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
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struct from_char {
from_char(Char c) : val(c) {}
Char val;

};
struct from_string {

from_string(char* s, ULong b) : val(s), bound(b) {}
char *val;
ULong bound;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_octet);
void operator<<=(from_string);

// special types needed for boolean, octet, char extraction
// these are suggested implementations only
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_object {

to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;

void replace(TypeCode_ptr, void *value, Boolean release = 
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FALSE);

TypeCode_ptr type() const;
const void *value() const;

  private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert or extract
// multiple IDL types mapped to unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

};

 E.4 Any_var Class
class Any_var
{
  public:

Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();
// other conversion operators for parameter passing

};

 E.5 Exception Class
// C++
class Exception
{
  public:

Exception(const Exception &);
~Exception();
Exception &operator=(const Exception &);

  protected:
Exception();

};

 E.6 SystemException Class
// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO, 
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COMPLETED_MAYBE };
class SystemException : public Exception
{
  public:

SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

};

 E.7 UserException Class
// C++
class UserException : public Exception
{
  public:

UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

};

 E.8 UnknownUserException Class
// C++
class UnknownUserException : public UserException
{
  public:

Any &exception();
};

 E.9 release and is_nil
// C++
namespace CORBA {

void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
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void release(Principal_ptr);
void release(TypeCode_ptr);
void release(BOA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(Principal_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(BOA_ptr);
Boolean is_nil(ORB_ptr);
...

}

 E.10 Object Class
// C++
class Object
{
  public:

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr &request,
Flags req_flags

);
Status _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_ptr &request,
Flags req_flags

);
Request_ptr _request(const char* operation);

};
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 E.11 Environment Class
// C++
class Environment
{
  public:

void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate();
static Environment_ptr _nil();

};

 E.12 NamedValue Class
// C++
class NamedValue
{
  public:

const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate();
static NamedValue_ptr _nil();

};

 E.13 NVList Class
// C++
class NVList
{
  public:

ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&, Flags);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
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Status remove(ULong);

static NVList_ptr _duplicate();
static NVList_ptr _nil();

};

 E.14 ExceptionList Class
// C++
class ExceptionList
{

  public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);

};

 E.15 ContextList Class
class ContextList
{
  public:

ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

};

 E.16 Request Class
// C++
class Request
{
  public:

Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;
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// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();

Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

static Request_ptr _duplicate();
static Request_ptr _nil();

};

 E.17 Context Class
// C++
class Context
{
  public:

const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char*, Context_ptr&);

Status set_one_value(const char*, const Any&);
Status set_values(NVList_ptr);
Status delete_values(const char*);
Status get_values(const char*, Flags, const char*,
NVList_ptr&);

static Context_ptr _duplicate();
static Context_ptr _nil();

};

 E.18 Principal Class
// C++
class Principal
{
  public:

static Principal_ptr _duplicate();
static Principal_ptr _nil();

};
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 E.19 TypeCode Class
// C++
class TypeCode
{
  public:

class Bounds { ... };
class BadKind { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;
ULong length() const;

TypeCode_ptr content_type() const;

Long param_count() const;
Any *parameter(Long) const;

static TypeCode_ptr _duplicate();
static TypeCode_ptr _nil();

};

 E.20 BOA Class
// C++
class BOA
{
  public:

Object_ptr create(
const ReferenceData&,
InterfaceDef_ptr,
ImplementationDef_ptr

);
void dispose(Object_ptr);
ReferenceData *get_id(Object_ptr);
void change_implementation(Object_ptr, ImplementationDef_ptr);
Principal_ptr get_principal(Object_ptr, Environment_ptr);
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void impl_is_ready(ImplementationDef_ptr);
void deactivate_impl(ImplementationDef_ptr);
void obj_is_ready(Object_ptr, ImplementationDef_ptr);
void deactivate_obj(Object_ptr);

static BOA_ptr _duplicate();
static BOA_ptr _nil();

};

 E.21 ORB Class
// C++
class ORB
{
  public:

typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
Status create_list(Long, NVList_ptr&);
Status create_operation_list(OperationDef_ptr, NVList_ptr&);
Status create_named_value(NamedValue_ptr&);
Status create_exception_list(ExceptionList_ptr&);
Status create_context_list(ContextList_ptr&);

Status get_default_context(Context_ptr&);
Status create_environment(Environment_ptr&);

Status send_multiple_requests_oneway(const RequestSeq&);
Status send_multiple_requests_deferred(const RequestSeq&);
Boolean poll_next_response();
Status get_next_response(Request_ptr&);

// OA initialization
typedef string OAid;

// Template C++ binding for OA init op
// <OA>_ptr <OA>_init(int * argc,
//  char **argv,
//  OAid oa_identifier);
BOA_ptr BOA_init(int & argc, char ** argv, const char 
*boa_identifier);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(const char *identifier);

static ORB_ptr _duplicate();
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static ORB_ptr _nil();
};

 E.22 ORB Initialization
// C++
typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier
);

 E.23 ServerRequest Class

// C++
class ServerRequest
{
  public:

Identifier op_name() throw(SystemException);
OperationDef_ptr op_def() throw(SystemException);
Context_ptr ctx() throw(SystemException);
void params(NVList_ptr parameters)

throw(SystemException);
void result(Any *value) throw(SystemException);
void exception(Any *value) throw(SystemException);

};
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Alternative Mappings for C++ 
Dialects F
This appendix describes alternative mappings for C++ dialects that do not match the 
assumptions specified in Section 15.1.2, C++ Implementation Requirements. 
Conforming implementations do not have to provide these workarounds if their C++ 
compiler supports the required features.

 F.1 64-bit Integers

IDL translators that support 64-bit integer types should map the signed type to 
LongLong and the unsigned type to ULongLong, where both names are defined in 
the CORBA name space.

 F.2 Without Name Spaces

If the target environment does not support the namespace construct but does support 
nested classes, then a module should be mapped to a C++ class. If the environment 
does not support nested classes, then the mapping for modules should be the same as 
for the CORBA C mapping (concatenating identifiers using an underscore (“_”) 
character as the separator).

Note that module constants map to file-scope constants on systems that support name 
spaces and class-scope constants on systems that map modules to classes.

 F.3 Without Exception Handling

For those C++ environments that do not support real C++ exception handling, referred 
to here as non-exception handling (non-EH) C++ environments, an Environment 
parameter passed to each operation is used to convey exception information to the 
caller.

As shown in Section 17.4, Environment, the Environment class supports the ability 
to access and modify the Exception it holds.
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As shown in Section 16.15, Mapping for Exception Types, both user-defined and 
system exceptions form an inheritance hierarchy that normally allow types to be caught 
either by their actual type or by a more general base type. When used in a non-EH C++ 
environment, the narrowing functions provided by this hierarchy allow for examination 
and manipulation of exceptions.

// IDL
interface A
{
exception Broken { ... };
void op() raises(Broken);
};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {
if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception
} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...
}
}

Section 17.12, ORB, specifies that Environment must be created using 
ORB::create_environment, but this is overly constraining for implementations 
requiring an Environment to be passed as an argument to each method invocation. 
For implementations that do not support real C++ exceptions, Environment may be 
allocated as a static, automatic, or heap variable. For example, all of the following are 
legal declarations on a non-EH C++ environment.

// C++
Environment global_env; // global
static Environment static_env;// file static

class MyClass
{

  public:
...
  private:
static Environment class_env; // class static

};

void func()
{
Environment auto_env; // auto
Environment *new_env = new Environment;// heap
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...
}

For ease of use, Environment parameters are passed by reference in non-EH 
environments.

// IDL
interface A
{
exception Broken { ... };
void op() raises(Broken);
};

// C++
class A ...
{
  public:
void op(Environment &);
...
};

For additional ease of use in non-EH environments, Environment should support 
copy construction and assignment from other Environment objects. These additional 
features are helpful for propagating exceptions from one Environment to another 
under non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and 
ORB run-times must ensure that all out and return pointers are returned to the caller 
as null pointers. If noninitialized or “garbage” pointer values are returned, client 
application code could experience run-time errors due to the assignment of bad 
pointers to T_var types. When a T_var goes out of scope, it attempts to delete the 
T* given to it; if this pointer value is garbage, a run-time error will almost certainly 
occur. 

 F.4 Without Run-Time Type Information (RTTI)

For C++ environments that do not support RTTI, the Exception class provides for 
narrowing within the exception hierarchy.

// C++
class UserException : public Exception
{
  public:
static UserException *_narrow(Exception *);
};

class SystemException : public Exception
{
  public:
static SystemException *_narrow(Exception *);
};
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Each exception class supports a static member function named _narrow. The 
parameter to the _narrow call is a pointer to the base class Exception. If the 
parameter is a null pointer, the return type of _narrow is a null pointer. If the actual 
(run-time) type of the parameter exception can be widened to the requested exception’s 
type, then _narrow will return a valid pointer to the parameter Exception. 
Otherwise, _narrow will return a null pointer.

Unlike the _narrow operation on object references, the _narrow operation on 
exceptions returns a suitably-typed pointer to the same exception parameter, not a 
pointer to a new exception. If the original exception goes out of scope or is otherwise 
destroyed, the pointer returned by _narrow is no longer valid.
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C++ Keywords G
Table G-1 lists all C++ keywords from the 4/28/95 Committee Draft of the ANSI 
(X3J16) C++ Language Standardization Committee.

Table G-1 C++ Keywords

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit extern

false float for friend goto

if inline int long mutable

namespace new not not_eq operator

or or_eq private protected public

register reinterpret_cast return short signed

sizeof static static_cast struct switch

template this throw true try

typedef typeid typename union unsigned

using virtual void volatile wchar_t

while xor xor_eq
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Smalltalk Mapping Overview 19
This chapter provides the following information:

• A rationale for the design of the Smalltalk mapping

• An overview of how the Smalltalk mapping is organized in this manual

• A mini-glossary of terms used in the Smalltalk chapters

• Requirements for an implementation of an OMG IDL–to–Smalltalk mapping

• Constraints imposed on an implementation of the OMG IDL–to–Smalltalk 
mapping

19.1 Key Design Decisions
The mapping of OMG IDL to the Smalltalk programming language was designed with the
following goals in mind:

• The Smalltalk mapping does not prescribe a specific implementation. Smalltalk 
class names are specified, as needed, since client code will need the class name 
when generating instances of datatypes. A minimum set of messages that classes 
must support is listed for classes that are not documented in the Smalltalk 
Common Base. The inheritance structure of classes is never specified.

• Whenever possible, OMG IDL types are mapped directly to existing, portable 
Smalltalk classes.

• The Smalltalk constructs defined in this mapping rely primarily upon classes and 
methods described in the Smalltalk Common Base document.

• The Smalltalk mapping only describes the public (client) interface to Smalltalk 
classes and objects supporting IDL. Individual IDL compilers or CORBA 
implementations might define additional private interfaces.

• The implementation of OMG IDL interfaces is left unspecified. Implementations 
may choose to map each OMG IDL interface to a separate Smalltalk class; 
provide one Smalltalk class to map all OMG IDL interfaces; or allow arbitrary 
Smalltalk classes to map OMG IDL interfaces.
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• Because of the dynamic nature of Smalltalk, the mapping of the any and union 
types is such that an explicit mapping is unnecessary. Instead, the value of the 
any and union types can be passed directly. In the case of the any type, the 
Smalltalk mapping will derive a TypeCode which can be used to represent the 
value. In the case of the union type, the Smalltalk mapping will derive a 
discriminator which can be used to represent the value.

• The explicit passing of environment and context values on operations is not 
required.

• Except in the case of object references, no memory management is required for 
data parameters and return results from operations. All such Smalltalk objects 
reside within Smalltalk memory, so garbage collection will reclaim their storage 
when they are no longer used.

• The proposed language mapping has been designed with the following vendor's 
Smalltalk implementations in mind: VisualWorks; Smalltalk/V; and VisualAge. 

19.1.1 Consistency of Style, Flexibility and Portability of Implementation

To ensure flexibility and portability of implementations, and to provide a consistent 
style of language mapping, the Smalltalk chapters use the programming style and 
naming conventions as described in the following documents:

• Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-
Wesley Publishing Company, Reading, MA. 1989.

• Smalltalk Portability: A Common Base. ITSC Technical Bulletin GG24-3093, 
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapters, Smalltalk Portability: A Common Base is referred to
as Smalltalk Common Base.) 

The items listed below are the same for all Smalltalk classes used in the Smalltalk
mapping:

• If the class is described in the Smalltalk Common Base document, the class must 
conform to the behavior specified in the document. If the class is not described in 
the Smalltalk Common Base document, the minimum set of class and instance 
methods that must be available is described for the class.

• All data types (except object references) are stored completely within Smalltalk 
memory, so no explicit memory management is required.

• The mapping is consistent with the common use of Smalltalk. For example, 
sequence is mapped to instances of OrderedCollection, instead of 
creating a Smalltalk class for the mapping.

19.2 Organization of the Smalltalk Mapping

In addition to this overview, the mapping of OMG IDL to the Smalltalk programming 
language is divided into the following chapters: 

• Mapping of all OMG IDL constructs (as defined in Chapter 3, OMG IDL Syntax 
and Semantics) to Smalltalk constructs

• Mapping of OMG IDL pseudo-objects to Smalltalk
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19.3 Glossary of Terms

Smalltalk object. An object defined using the Smalltalk language.

Message. Invocation of a Smalltalk method upon a Smalltalk object.

Message Selector. The name of a Smalltalk message. In this document, the message 
selectors are denoted by just the message name when the class or protocol they are 
associated with is given in context, otherwise the notation class>>method or 
protocol>>method will be used to explicitly denote the class or protocol the 
message is associated with.

Method. The Smalltalk code associated with a message.

Class. A Smalltalk class.

Protocol. A set of messages that a Smalltalk object must respond to. Protocols are 
used to describe the behavior of Smalltalk objects without specifying their class.

CORBA Object. An object defined in OMG IDL, accessed and implemented through 
an ORB.

Object Reference. A value which uniquely identifies an object.

IDL compiler. Any software that accesses OMG IDL specifications and generates or 
maps Smalltalk code that can be used to access CORBA objects. 

19.4 Implementation Constraints

This sections describes how to avoid potential problems with an OMG IDL–to–
Smalltalk implementation. 

19.4.1 Avoiding Name Space Collisions

There is one aspect of the language mapping that can cause an OMG IDL compiler to 
map to incorrect Smalltalk code and cause name space collisions. Because Smalltalk 
implementations generally only support a global name space, and disallow underscore 
characters in identifiers, the mapping of identifiers used in OMG IDL to Smalltalk 
identifiers can result in a name collision. See Section 20.2, “Conversion of Names to 
Smalltalk Identifiers,” on page 20-2 for a description of the name conversion rules.

As an example of name collision, consider the following OMG IDL declaration:

interface Example {
void sample_op () ;
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void sampleOp () ;
};

Both of these operations map to the Smalltalk selector sampleOp. In order to prevent 
name collision problems, each implementation must support an explicit naming 
mechanism, which can be used to map an OMG IDL identifier into an arbitrary 
Smalltalk identifier. For example, #pragma directives could be used as the 
mechanism.

19.4.2 Limitations on OMG IDL Types

This language mapping places limitations on the use of certain types defined in OMG
IDL.

For the any and union types, specific integral and floating point types may not be 
able to be specified as values. The implementation will map such values into an 
appropriate type, but if the value can be represented by multiple types, the one actually 
used cannot be determined.1 For example, consider the union definition below.

union Foo switch (long) {
 case 1: long x;
 case 2: short y;
};

When a Smalltalk object corresponding to this union type has a value that fits in both 
a long and a short, the Smalltalk mapping can derive a discriminator 1 or 2, and map 
the integral value into either a long or short value (corresponding to the value of the 
discriminator determined).

19.5 Smalltalk Implementation Requirements
This mapping places requirements on the implementation of Smalltalk that is being used
to support the mapping. These are:

• An integral class, conforming to the Integer class definition in the Smalltalk 
Common Base.

• A floating point class, conforming to the Float class definition in the Smalltalk 
Common Base.

• A class named Character conforming to the Character class definition in 
the Smalltalk Common Base.

• A class named Array conforming to the Array class definition in the 
Smalltalk Common Base.

• A class named OrderedCollection conforming to the 
OrderedCollection class definition in the Smalltalk Common Base.

• A class named Dictionary conforming to the Dictionary class 
definition in the Smalltalk Common Base.

1.To avoid this limitation for union types, the mapping allows programmers to specify an explicit 
binding to retain the value of the discriminator. See Section 20.12, “Mapping for Union Types,” 
on page 20-8 for a complete description.
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• A class named Association conforming to the Association class 
definition in the Smalltalk Common Base.

• A class named String conforming to the String class definition in the 
Smalltalk Common Base.

• Objects named true, false conforming to the methods defined for Boolean 
objects, as specified in the Smalltalk Common Base.

• An object named nil, representing an object without a value.

• A global variable named Processor, which can be sent the message 
activeProcess to return the current Smalltalk process, as defined in the 
document Smalltalk-80: The Language. This Smalltalk process must respond to 
the messages corbaContext: and corbaContext.

• A class which conforms to the CORBAParameter protocol. This protocol 
defines Smalltalk instance methods used to create and access inout and out 
parameters. The protocol must support the following instance messages:

value
Answers the value associated with the instance

value: anObject
Resets the value associated with the instance to anObject

To create an object that supports the CORBAParameter protocol, the message 
asCORBAParameter can be sent to any Smalltalk object. This will return a 
Smalltalk object conforming to the CORBAParameter protocol, whose value will be 
the object it was created from. The value of that CORBAParameter object can be 
subsequently changed with the value: message.
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 Mapping of OMG IDL to Smalltalk 20
This chapter describes the mapping of OMG IDL constructs to Smalltalk constructs. 

20.1 Mapping Summary

TABLE 30 on page 20-1 provides a brief description of the mapping of OMG IDL 
constructs to the Smalltalk language, and where in this chapter they are discussed.

Table 20-1 Summary of this Chapter 

OMG IDL 
Construct Smalltalk Mapping Where Discussed

Interface Set of messages that Smalltalk objects which 
represent object references must respond to. The 
set of messages corresponds to the attributes and 
operations defined in the interface and inherited 
interfaces. 

Section 20.3, “Mapping for Inter-
faces,” on page 20-3.

Object Refer-
ence

Smalltalk object that represents a CORBA object. 
The Smalltalk object must respond to all 
messages defined by a CORBA object’s interface. 

Section 20.5, “Mapping for 
Objects,” on page 20-3.

Operation Smalltalk message. Section 20.1.7, “Mapping for Oper-
ations,” on page 20-10.

Attribute 
Smalltalk message.

Section 20.7, ”Mapping for 
Attributes,” on page 20-4.

Constant Smalltalk objects available in the 
CORBAConstants dictionary. 

Section 20.7.1, “Mapping for Con-
stants,” on page 20-5.

Integral Type Smalltalk objects that conform to the Integer 
class.

Section 20.8, “Mapping for Basic 
Data Types,” on page 20-5.
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20.2 Conversion of Names to Smalltalk Identifiers

The use of underscore characters in OMG IDL identifiers is not allowed in all 
Smalltalk language implementations. Thus, a conversion algorithm is required to 
convert names used in OMG IDL to valid Smalltalk identifiers.

To convert an OMG IDL identifier to a Smalltalk identifier, remove each underscore 
and capitalize the following letter (if it exists). In order to eliminate possible 
ambiguities which may result from these conventions, an explicit naming mechanism 
must also be provided by the implementation. For example, the #pragma directive 
could be used.

Floating Point 
Type

Smalltalk objects which conform to the Float 
class. 

Described in Section 20.8, “Map-
ping for Basic Data Types,” on 
page 20-5.

Boolean Type Smalltalk true or false objects. Described in Section 20.8, 
“Mapping for Basic Data Types,” 
on page 20-5.

Enumeration 
Type

Smalltalk objects which conform to the COR-
BAEnum protocol. 

Section 20.10, “Mapping for 
Enums,” on page 20-7.

Any Type
Smalltalk objects that can be mapped into an 
OMG IDL type. 

Section 20.9, “Mapping for the any 
Type,” on page 20-7.

Structure 
Type

Smalltalk object that conforms to the 
Dictionary class. 

Section 20.11, “Mapping for Struct 
Types,” on page 20-8.

Union Type Smalltalk object that maps to the possible value 
types of the OMG IDL union or that conform to 
the CORBAUnion protocol. 

Section 20.12, “Mapping for Union 
Types,” on page 20-8.

Sequence 
Type

Smalltalk object that conforms to the 
OrderedCollection class. 

Section 20.13, “Mapping for 
Sequence Types,” on page 20-10.

String Type Smalltalk object that conforms to the String 
class. 

Section 20.14, “Mapping for String 
Types,” on page 20-10.

Array Type Smalltalk object that conforms to the Array 
class. 

Section 20.15, “Mapping for Array 
Types,” on page 20-10.

Exception 
Type Smalltalk object that conforms to the Dictio-

nary class. 

Section 20.16, “Mapping for 
Exception Types,” on page 20-10.

Table 20-1 Summary of this Chapter (Continued)

OMG IDL 
Construct Smalltalk Mapping Where Discussed
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For example, the OMG IDL identifiers:

add_to_copy_map
describe_contents

become Smalltalk identifiers

addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables have an
uppercase first letter, while other names have a lowercase first letter.

20.3 Mapping for Interfaces

Each OMG IDL interface defines the operations that object references with that 
interface must support. In Smalltalk, each OMG IDL interface defines the methods that 
object references with that interface must respond to.

Implementations are free to map each OMG IDL interface to a separate Smalltalk class,
map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary Smalltalk classes
to OMG IDL interfaces.

20.4 Memory Usage

One of the design goals is to make every Smalltalk object used in the mapping a pure 
Smalltalk object: namely datatypes used in mappings do not point to operating system 
defined memory. This design goal permits the mapping and users of the mapping to 
ignore memory management issues, since Smalltalk handles this itself (via garbage 
collection). Smalltalk objects which are used as object references may contain pointers 
to operating system memory, and so must be freed in an explicit manner.

20.5 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object called an object 
reference. The object must respond to all messages defined by that CORBA object's 
interface.

An object reference can have a value which indicates that it represents no CORBA object.
This value is the standard Smalltalk value nil.

20.6 Invocation of Operations
OMG IDL and Smalltalk message syntaxes both allow zero or more input parameters to
be supplied in a request. For return values, Smalltalk methods yield a single result object,
whereas OMG IDL allows an optional result and zero or more out or inout parameters to
be returned from an invocation. In this binding, the non-void result of an operation is
returned as the result of the corresponding Smalltalk method, whereas out and inout
parameters are to be communicated back to the caller via instances of a class conforming
to the CORBAParameter protocol, passed as explicit parameters.
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For example, the following operations in OMG IDL: 

boolean definesProperty(in string key);
void defines_property(
in string key,
out boolean is_defined);

are used as follows in the Smalltalk language: 

aBool := self definesProperty: aString.

self 
definesProperty: aString 
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property_protection(in string key,
out Protection pval);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_list,
inout DynamicInvocation::NamedValue result,
out Request request,
in Flags req_flags);

would be invoked in the Smalltalk language as:

aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject
createRequest: aContext
operation: anIdentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of OMG IDL operations that are specified with a void return type is
undefined.

20.7 Mapping for Attributes

OMG IDL attribute declarations are a shorthand mechanism to define pairs of simple 
accessing operations; one to get the value of the attribute and one to set it. Such 
accessing methods are common in Smalltalk programs as well, thus attribute 
declarations are mapped to standard methods to get and set the named attribute value, 
respectively.
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For example:

attribute string title;
readonly attribute string my_name;

means that Smalltalk programmers can expect to use title and title: methods to
get and set the title attribute of the CORBA object, and the myName method to retrieve
the my_name attribute.

20.7.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interface 
and module definitions. OMG IDL constant values are stored in a dictionary named 
CORBAConstants under the fully qualified name of the constant, not subject to the 
name conversion algorithm. The constants are accessed by sending the at: message 
to the dictionary with an instance of a String whose value is the fully qualified 
name.

For example, given the following OMG IDL specification,

module ApplicationBasics{
const CopyDepth shallow_cpy = 4;
};

the ApplicationBasics::shallow_cpy constant can be accessed with the following
Smalltalk code

value := CORBAConstants at:
'::ApplicationBasics::shallow_cpy'.

After this call, the value variable will contain the integral value 4.

20.8 Mapping for Basic Data Types
The following basic datatypes are mapped into existing Smalltalk classes. In the case of
short, unsigned short, long, unsigned long, float, double, and octet, the actual
class used is left up to the implementation, for the following reasons:

• There is no standard for Smalltalk that specifies integral and floating point classes 
and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the classes are 
made available as constants included in code, or as the result of computation.

The basic datatypes are mapped as follows:

short 

An OMG IDL short integer falls in the range [-215,215-1]. In Smalltalk, a short is 
represented as an instance of an appropriate integral class.
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long

An OMG IDL long integer falls in the range [-231,231-1]. In Smalltalk, a long is 
represented as an instance of an appropriate integral class.

unsigned short

An OMG IDL unsigned short integer falls in the range [0,216-1]. In Smalltalk, an 
unsigned short is represented as an instance of an appropriate integral class.

unsigned long

An OMG IDL unsigned long integer falls in the range [0,232-1]. In Smalltalk, an 
unsigned long is represented as an instance of an appropriate integral class.

float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point 
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an instance 
of an appropriate floating point class.

double

An OMG IDL double conforms to the IEEE double-precision (64-bit) floating point 
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a double is represented as an 
instance of an appropriate floating point class.

char

An OMG IDL character holds an 8-bit quantity mapping to the ISO Latin-1 (8859.1) 
character set. In Smalltalk, a character is represented as an instance of Character.

boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In Smalltalk, 
a boolean is represented by the values true or false, respectively.

octet

An OMG IDL octet is an 8-bit quantity that undergoes no conversion during 
transmission. In Smalltalk, an octet is represented as an instance of an appropriate 
integral class with a value in the range [0,255].
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20.9 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determined 
at runtime, an explicit mapping of the any type to a particular Smalltalk class is not 
required. Instead, wherever an any is required, the user may pass any Smalltalk object 
which can be mapped into an OMG IDL type. For instance, if an OMG IDL structure 
type is defined in an interface, a Dictionary for that structure type will be mapped. 
Instances of this class can be used wherever an any is expected, since that Smalltalk 
object can be mapped to the OMG IDL structure.

Likewise, when an any is returned as the result of an operation, the actual Smalltalk
object which represents the value of the any data structure will be returned.

20.10 Mapping for Enums
OMG IDL enumerators are stored in a dictionary named CORBAConstants under the
fully qualified name of the enumerator, not subject to the name conversion algorithm. The
enumerators are accessed by sending the at: message to the dictionary with an instance
of a String whose value is the fully qualified name.

These enumerator Smalltalk objects must support the CORBAEnum protocol, to allow
enumerators of the same type to be compared. The order in which the enumerators are
named in the specification of an enumeration defines the relative order of the enumerators.
The protocol must support the following instance methods:

< aCORBAEnum
Answers true if the receiver is less than aCORBAEnum, otherwise answers 
false.

<= aCORBAEnum
Answers true if the receiver is less than or equal to aCORBAEnum, otherwise 
answers false.

= aCORBAEnum
Answers true if the receiver is equal to aCORBAEnum, otherwise answers false.

> aCORBAEnum
Answers true if the receiver is greater than aCORBAEnum, otherwise answers 
false.

>= aCORBAEnum
Answers true if the receiver is greater than or equal to aCORBAEnum, otherwise 
answers false.
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For example, given the following OMG IDL specification,

module Graphics{ 
enum ChartStyle

{lineChart, barChart, stackedBarChart, pieChart};
};

the Graphics::lineChart enumeration value can be accessed with the following
Smalltalk code

value := CORBAConstants at: '::Graphics::lineChart'.

After this call, the value variable is assigned to a Smalltalk object that can be compared
with other enumeration values.

20.11 Mapping for Struct Types
An OMG IDL struct is mapped to an instance of the Dictionary class. The key for
each OMG IDL struct member is an instance of Symbol whose value is the name of the
element converted according to the algorithm in  Section 20.2. For example, a structure
with a field of my_field would be accessed by sending the at: message with the key
#myField. 

For example, given the following OMG IDL declaration:

struct  Binding {
Name binding_name; 
BindingType binding_type; 
};

the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName

and set as follows:

aBindingStruct at: #bindingName put: aName

20.12 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are provided: an implicit binding 
and an explicit binding.1 The implicit binding takes maximum advantage of the 
dynamic nature of Smalltalk and is the least intrusive binding for the Smalltalk 
programmer. The explicit binding retains the value of the discriminator and provides 
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding semantics 
is implementation specific, all implementations must provide both mechanisms.

1.Although not required, implementations may choose to provide both implicit and explicit map-
pings for other OMG IDL types, such as structs and sequences. In the explicit mapping, the 
OMG IDL type is mapped to a user specified Smalltalk class.
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Binding semantics is expected to be specifiable on a per-union declaration basis, for 
example using the #pragma directive.

20.12.1 Implicit Binding

Wherever a union is required, the user may pass any Smalltalk object that can be 
mapped to an OMG IDL type, and whose type matches one of the types of the values 
in the union. Consider the following example:

structure S { long x; long y; };

union U switch (short) {
case 1: S s;
case 2: long l;
default: char c;
};

In the example above, a Dictionary for structure S will be mapped. Instances of 
Dictionary with runtime elements as defined in structure S, integral numbers, or 
characters can be used wherever a union of type U is expected. In this example, 
instances of these classes can be mapped into one of the S, long, or char types, and 
an appropriate discriminator value can be determined at runtime.

Likewise, when an union is returned as the result of an operation, the actual Smalltalk 
object which represents the value of the union will be returned.

20.12.2 Explicit Binding

Use of the explicit binding will result in specific Smalltalk classes being accepted and
returned by the ORB. Each union object must conform to the CORBAUnion protocol.
This protocol must support the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the discriminator associated with the instance.

value
Answers the value associated with the instance.

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by any Smalltalk object.
This method will return a Smalltalk object conforming to the CORBAUnion protocol,
whose discriminator will be set to aDiscriminator and whose value will be set to
the receiver of the message.
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20.13 Mapping for Sequence Types

Instances of the OrderedCollection class are used to represent OMG IDL 
elements with the sequence type.

20.14 Mapping for String Types

Instances of the Smalltalk String class are used to represent OMG IDL elements 
with the string type.

20.15 Mapping for Array Types

Instances of the Smalltalk Array class are used to represent OMG IDL elements with 
the array type.

20.16 Mapping for Exception Types

Each defined exception type is mapped to an instance of the Dictionary class. See 
Section 6.20.1 for a complete description.

20.17 Mapping for Operations

OMG IDL operations having zero parameters map directly to Smalltalk unary 
messages, while OMG IDL operations having one or more parameters correspond to 
Smalltalk keyword messages. To determine the default selector for such an operation, 
begin with the OMG IDL operation identifier and concatenate the parameter name of 
each parameter followed by a colon, ignoring the first parameter. The mapped selector 
is subject to the identifier conversion algorithm.
For example, the following OMG IDL operations:

void add_to_copy_map( 
in CORBA::ORBId id, 
in LinkSet link_set);

void connect_push_supplier( 
in EventComm::PushSupplier push_supplier);

void add_to_delete_map( 
in CORBA::ORBId id, 
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:
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20.18 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional context 
must be passed as parameters to each operation, this Smalltalk mapping does not 
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message. So 
although it is not a parameter on the operation, it is a required part of the operation 
invocation.

This mapping defines the CORBAExceptionEvent protocol to convey exception 
information in place of the environment used in the C mapping. This protocol can 
either be mapped into native Smalltalk exceptions or used in cases where native 
Smalltalk exception handling is unavailable. 

A context expression can be associated with the current Smalltalk process by sending 
the message corbaContext: to the current process, along with a valid context 
parameter. The current context can be retrieved by sending the corbaContext 
message to the current process.

The current process may be obtained by sending the message activeProcess to 
the Smalltalk global variable named Processor.

20.19 Argument Passing Considerations

All parameters passed into and returned from the Smalltalk methods used to invoke 
operations are allocated in memory maintained by the Smalltalk virtual machine. Thus, 
explicit free()ing of the memory is not required. The memory will be garbage 
collected when it is no longer referenced.

The only exception is object references. Since object references may contain pointers 
to memory allocated by the operating system, it is necessary for the user to explicitly 
free them when no longer needed. This is accomplished by using the operation 
release of the CORBA::Object interface.

20.20 Handling Exceptions

OMG IDL allows each operation definition to include information about the kinds of 
run-time errors which may be encountered. These are specified in an exception 
definition which declares an optional error structure which will be returned by the 
operation should an error be detected. Since Smalltalk exception handling classes are 
not yet standardized between existing implementations, a generalized mapping is 
provided.

In this binding, an IDL compiler creates exception objects and populates the 
CORBAConstants dictionary. These exception objects are accessed from the 
CORBAConstants dictionary by sending the at: message with an instance of a 
String whose value is the fully qualified name. Each exception object must conform 
to the CORBAExceptionEvent protocol. This protocol must support the 
following instance methods:
CORBA V2.0         Implicit Arguments to Operations      July 1995 20-11



20
corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message 
corbaHandle:do: with appropriate handler and scoping blocks as parameters. 
The aBlock parameter is the Smalltalk block to evaluate. It is passed no parameters. 
The aHandlerBlock parameter is a block to evaluate when an exception occurs. 
It has one parameter: a Smalltalk object which conforms to the 
CORBAExceptionValue protocol.

corbaRaise

Exceptions may be raised by sending an exception object the message corbaRaise.

corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message 
corbaRaiseWith:. The parameter is expected to be an instance of the Smalltalk 
Dictionary class, as described below.

For example, given the following OMG IDL specification,

interface NamingContext {
...

exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};

the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev | "error handling logic here" ]
do: [aNamingContext destroy].

20.20.1 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values are 
constructed using instances of the Smalltalk Dictionary class. The keys of the 
dictionary are the names of the elements of the exception, the names of which are 
converted using the algorithm in Section 20.2, “Conversion of Names to Smalltalk 
Identifiers,” on page 20-2. The following example illustrates how exception values are 
used:
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interface NamingContext {

   ...

   exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

Object resolve (in Name n)
raises (CannotProceed);

   ...

};

would be raised in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value:
aNamingContext)

with: (Association key: #restOfName value:
aName)).

20.20.2 The CORBAExceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing it one argument 
which conforms to the CORBAExceptionValue protocol. This protocol must 
support the following instance messages:

corbaExceptionValue

Answers the Dictionary the exception was raised with.

Given the NamingContext interface defined in the previous section, the following code
illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle:[:ev |

cxt:=ev corbaExceptionValue at: #cxt.
restOfName :=ev corbaExceptionValue at:

#restOfName]
do:[aNamingContext destroy].

In this example, the cxt and restOfName variables will be set to the respective 
values from the exception structure, if the exception is raised. 
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Mapping of Pseudo-Objects to 
Smalltalk 21
CORBA defines a small set of standard interfaces which define types and operations for 
manipulating object references, for accessing the Interface Repository, and for Dynamic 
Invocation of operations. Other interfaces are defined in pseudo OMG IDL (PIDL) to 
represent in a more abstract manner programmer access to ORB services which are 
provided locally. These PIDL interfaces sometimes resort to non-OMG IDL constructs, 
such as pointers, which have no meaning to the Smalltalk programmer. This chapter 
specifies the minimal requirements for the Smalltalk mapping for PIDL interfaces. The 
operations are specified below as protocol descriptions.

Parameters with the name aCORBAObject are expected to be Smalltalk objects, which 
can be mapped to an OMG IDL interface or data type. 

Unless otherwise specified, all messages are defined to return undefined objects.

21.1 CORBA::Request

The CORBA::Request interface is mapped to the CORBARequest protocol, which 
must include the following instance methods:

addArg: aCORBANamedValue
Corresponds to the add_arg operation.

invoke
Corresponds to the invoke operation with the invoke_flags set to 0.

invokeOneway
Corresponds to the invoke operation with the invoke_flags set to 
CORBA::INV_NO_RESPONSE.

send
Corresponds to the send operation with the invoke_flags set to 0.
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sendOneway
Corresponds to the send operation with the invoke_flags set to 
CORBA::INV_NO_RESPONSE.

pollResponse
Corresponds to the get_response operation, with the response_flags set to 
CORBA::RESP_NO_WAIT. Answers true if the response is complete, false 
otherwise.

getResponse
Corresponds to the get_response operation, with the response_flags set to 0.

21.2 CORBA::Context

The CORBA::Context interface is mapped to the CORBAContext protocol, which 
must include the following instance methods:

setOneValue: anAssociation
Corresponds to the set_one_value operation.

setValues: aCollection
Corresponds to the set_values operation. The parameter passed in should be a 
collection of Associations.

getValues: aString 
Corresponds to the get_values operation without a scope name and op_flags = 
CXT_RESTRICT_SCOPE. Answers a collection of Associations.

getValues: aString propName: aString
Corresponds to the get_values operation with op_flags set to 
CXT_RESTRICT_SCOPE. Answers a collection of Associations.

getValuesInTree: aString propName: aString
Corresponds to the get_values operation with op_flags set to 0. Answers a collection 
of Associations.

deleteValues: aString
Corresponds to the delete_values operation.

createChild: aString
Corresponds to the create_child operation. Answers a Smalltalk object conforming to 
the CORBAContext protocol.

delete
Corresponds to the delete operation with flags set to 0.

deleteTree
Corresponds to the delete operation with flags set to 
CTX_DELETE_DESCENDENTS.
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21.3 CORBA::Object

The CORBA::Object interface is mapped to the CORBAObject protocol, which 
must include the following instance methods:

getImplementation
Corresponds to the get_implementation operation. Answers a Smalltalk object 
conforming to the CORBAImplementationDef protocol.

getInterface
Corresponds to the get_interface operation. Answers a Smalltalk object conforming 
to the CORBAInterfaceDef protocol.

isNil
Corresponds to the is_nil operation. Answers true or false indicating whether or 
not the object reference represents an object.

createRequest: aCORBAContext

operation: aCORBAIdentifier 

argList: aCORBANVListOrNil

result: aCORBAParameter 

request: aCORBAParameter 

reqFlags: flags

Corresponds to the create_request operation.

duplicate
Corresponds to the duplicate operation. Answers a Smalltalk object representing an 
object reference, conforming to the interface of the CORBA object.

release1

Corresponds to the release operation.

21.4 CORBA::ORB

The CORBA::ORB interface is mapped to the CORBAORB protocol, which must 
include the following instance methods:

objectToString: aCORBAObject
Corresponds to the object_to_string operation. Answers an instance of the String 
class.

1.The semantics of this operation will have no meaning for those implementations that rely 
exclusively on the Smalltalk memory manager. 
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stringToObject: aString
Corresponds to the string_to_object operation. Answers an object reference, which 
will be an instance of a class which corresponds to the InterfaceDef of the CORBA 
object.

createOperationList: aCORBAOperationDef
Corresponds to the create_operation_list operation. Answers an instance of 
OrderedCollection of Smalltalk objects conforming to the 
CORBANamedValue protocol.

getDefaultContext
Corresponds to the get_default_context operation. Answers a Smalltalk object 
conforming to the CORBAContext protocol.

sendMultipleRequests: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to 
0.The parameter passed in should be a collection of Smalltalk objects conforming to 
the CORBARequest protocol. 

sendMultipleRequestsOneway: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set 
to CORBA::INV_NO_RESPONSE. The parameter passed in should be a 
collection of Smalltalk objects conforming to the CORBARequest protocol. 

pollNextResponse
Corresponds to the get_next_response operation, with the response_flags set to 
CORBA::RESP_NO_WAIT. Answers true if there are completed requests 
pending, false otherwise.

getNextResponse
Corresponds to the get_next_response operation, with the response_flags set to 0. 

21.5 CORBA::NamedValue

PIDL for C defines CORBA::NamedValue as a struct while C++-PIDL specifies it 
as an interface. CORBA::NamedValue in this mapping is specified as an interface 
that conforms to the CORBANamedValue protocol. This protocol must include the 
following instance methods:

name
Answers the name associated with the instance. 

name: aString
Resets the name associated with instance to aString.

value
Answers the value associated with the instance.

value: aCORBAObject
Resets the value associated with instance to aCORBAObject.
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flags
Answers the flags associated with the instance.

flags: argModeFlags
Resets the flags associated with instance to argModeFlags.

To create an object that supports the CORBANamedValue protocol, the instance 
method asCORBANamedValue: aName flags: argModeFlags can be 
invoked by any Smalltalk object. This method will return a Smalltalk object conforming to 
the CORBANamedValue protocol, whose attributes associated with the instance will 
be set appropriately.

21.6 CORBA::NVList
The CORBA::NVList interface is mapped to the equivalent of the OMG IDL definition

typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing the NVList type should be instances of the 
OrderedCollection class, whose elements are Smalltalk objects conforming to 
the CORBANamedValue protocol.
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Glossary
activation Preparing an object to execute an operation. For example, copying the persistent 
form of methods and stored data into an executable address space to allow execu-
tion of the methods on the stored data.

adapter Same as object adapter.

attribute An identifiable association between an object and a value. An attribute A is made 
visible to clients as a pair of operations: get_A and set_A. Readonly attributes 
only generate a get operation.

basic object adapter The object adapter described in Chapter 8.

behavior The observable effects of an object performing the requested operation including 
its results binding. See language binding, dynamic invocation, static invocation, 
or method resolution for alternatives.

class See interface and implementation for alternatives.

client The code or process that invokes an operation on an object.

context object A collection of name-value pairs that provides environmental or user-preference 
information. See Chapter 4.

CORBA Common Object Request Broker Architecture.

data type A categorization of values operation arguments, typically covering both behavior 
and representation (i.e., the traditional non-OO programming language notion of 
type).

deactivation The opposite of activation.

deferred synchronous request A request where the client does not wait for completion of the request, but does 
intend to accept results later. Contrast with synchronous request and one-way 
request.
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domain A concept important to interoperability, it is a distinct scope, within which com-
mon characteristics are exhibited, common rules observed, and over which a dis-
tribution transparency is preserved. 

dynamic invocation Constructing and issuing a request whose signature is possibly not known until 
run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle requests 
whose signatures are possibly not known until run-time.

externalized object reference An object reference expressed as an ORB-specific string. Suitable for storage in 
files or other external media.

implementation A definition that provides the information needed to create an object and allow 
the object to participate in providing an appropriate set of services. An imple-
mentation typically includes a description of the data structure used to represent 
the core state associated with an object, as well as definitions of the methods that 
access that data structure. It will also typically include information about the 
intended interface of the object.

implementation definition language
A notation for describing implementations. The implementation definition lan-
guage is currently beyond the scope of the ORB standard. It may contain vendor-
specific and adapter-specific notations.

implementation inheritance The construction of an implementation by incremental modification of other 
implementations. The ORB does not provide implementation inheritance. Imple-
mentation inheritance may be provided by higher level tools.

implementation object An object that serves as an implementation definition. Implementation objects 
reside in an implementation repository.

implementation repository A storage place for object implementation information.

inheritance The construction of a definition by incremental modification of other definitions. 
See interface and implementation inheritance.

instance An object is an instance of an interface if it provides the operations, signatures 
and semantics specified by that interface. An object is an instance of an imple-
mentation if its behavior is provided by that implementation.

interface A listing of the operations and attributes that an object provides. This includes 
the signatures of the operations, and the types of the attributes. An interface defi-
nition ideally includes the semantics as well. An object satisfies an interface if it 
can be specified as the target object in each potential request described by the 
interface. 

interface inheritance The construction of an interface by incremental modification of other interfaces. 
The IDL language provides interface inheritance.

interface object An object that serves to describe an interface. Interface objects reside in an inter-
face repository.
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interface repository A storage place for interface information.

interface type A type satisfied by any object that satisfies a particular interface. 

interoperability The ability for two or more ORBs to cooperate to deliver requests to the proper 
object. Interoperating ORBs appear to a client to be a single ORB.

language binding or mapping The means and conventions by which a programmer writing in a specific pro-
gramming language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perform a 
requested service. Methods associated with an object may be structured into one 
or more programs.

method resolution The selection of the method to perform a requested operation.

multiple inheritance The construction of a definition by incremental modification of more than one 
other definition.

object A combination of state and a set of methods that explicitly embodies an abstrac-
tion characterized by the behavior of relevant requests. An object is an instance 
of an implementation and an interface. An object models a real-world entity, and 
it is implemented as a computational entity that encapsulates state and operations 
(internally implemented as data and methods) and responds to request or ser-
vices.

object adapter The ORB component which provides object reference, activation, and state 
related services to an object implementation. There may be different adapters 
provided for different kinds of implementations.

object creation An event that causes the existence of an object that is distinct from any other 
object.

object destruction An event that causes an object to cease to exist.

object implementation Same as implementation.

object reference A value that unambiguously identifies an object. Object references are never 
reused to identify another object.

objref An abbreviation for object reference.

one-way request A request where the client does not wait for completion of the request, nor does it 
intend to accept results. Contrast with deferred synchronous request and synchro-
nous request.

operation A service that can be requested. An operation has an associated signature, which 
may restrict which actual parameters are valid.

operation name A name used in a request to identify an operation.

ORB Object Request Broker. Provides the means by which clients make and receive 
requests and responses.
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ORB core The ORB component which moves a request from a client to the appropriate 
adapter for the target object.

parameter passing mode Describes the direction of information flow for an operation parameter. The 
parameter passing modes are IN, OUT, and INOUT.

persistent object An object that can survive the process or thread that created it. A persistent object 
exists until it is explicitly deleted.

referential integrity The property ensuring that an object reference that exists in the state associated 
with an object reliably identifies a single object.

repository See interface repository and implementation repository.

request A client issues a request to cause a service to be performed. A request consists of 
an operation and zero or more actual parameters. 

results The information returned to the client, which may include values as well as status 
information indicating that exceptional conditions were raised in attempting to 
perform the requested service.

server A process implementing one or more operations on one or more objects.

server object An object providing response to a request for a service. A given object may be a 
client for some requests and a server for other requests.

signature Defines the parameters of a given operation including their number order, data 
types, and passing mode; the results if any; and the possible outcomes (normal 
vs. exceptional) that might occur. 

single inheritance The construction of a definition by incremental modification of one definition. 
Contrast with multiple inheritance.

skeleton The object-interface-specific ORB component which assists an object adapter in 
passing requests to particular methods.

state The time-varying properties of an object that affect that object’s behavior.

static invocation Constructing a request at compile time. Calling an operation via a stub proce-
dure. 

stub A local procedure corresponding to a single operation that invokes that operation 
when called.

synchronous request A request where the client pauses to wait for completion of the request. Contrast 
with deferred synchronous request and one-way request.

transient object An object whose existence is limited by the lifetime of the process or thread that 
created it.

type See data type and interface.

value Any entity that may be a possible actual parameter in a request. Values that serve 
to identify objects are called object references. 
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