8.4.1

 Cod in Subdivisions 22-24
State of the stock

Spawning biomass in relation to precautionary limits	Fishing mortality in relation to precautionary limits	Fishing mortality in relation to highest yield	Fishing mortality in relation to agreed target	Comment
Increased risk	Undefined	Overexploited	NA	

Based on the most recent estimates of SSB, ICES classifies the stock as being at risk of reduced reproductive capacity, with the spawning stock being just below \mathbf{B}_{pa} in 2007 (22 400 t). In the absence of defined fishing mortality reference points the state of the stock cannot be evaluated with regard to these. Fishing mortality in 2006 was estimated to be 0.9 . At the present exploitation rate the stock is dependent upon the strength of incoming year classes. The three latest year classes are estimated to be well below average.

Management objectives

Until 2005, advice was given according to the IBSFC long-term management strategy for cod in the Baltic adopted in 2003 (Resolution XX on the Management Plan for the Cod Stocks in the Baltic Sea). No management plan is implemented at the moment, but the EC is in the process of developing a multi-annual plan for the two cod stocks in the Baltic which is scheduled to be agreed upon during 2007 (see Eastern Baltic cod in Section 8.4.2).

Reference points

	Type	Value	Technical basis
Precautionary approach	$\mathrm{B}_{\text {lim }}$	not defined	
	B_{pa}	23000 t	MBAL
	$\mathrm{F}_{\text {lim }}$	not defined	
	F_{pa}	not defined	
Targets	F_{y}	not defined	

(unchanged since: 1998)
Yield and spawning biomass per Recruit
F-reference points:

	Fish Mort Ages 3-6	Yield/R	SSB/R
Average last 3	1.14		
years	0.25	0.56	0.45
$\mathrm{~F}_{\text {max }}$	0.15	0.77	3.37
$\mathrm{~F}_{0.1}$	1.44	0.53	5.19
$\mathrm{~F}_{\text {med }}$		0.32	

Single-stock exploitation boundaries

Exploitation boundaries in relation to existing management plan

There is no agreed management plan for this stock. The proposed multi-annual plan implies landings of 22695 t for 2008. The implied 10% reduction in fishing effort and fishing mortality compared to last year would result in a catch of 17930 t in 2008 . However, the proposed plan puts a 15%, cap on the deviation of the TACs between consecutive years which results in a TAC of 22695 t for 2008. ICES has not evaluated whether this management plan is consistent with the precautionary approach.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential, and considering ecosystem effects

ICES has previously recommended target fishing mortalities of $0.3-0.6$ which would result in a low risk to reproduction and high long-term yields. This would correspond to landings of 7000-12 000 t in 2008.

Exploitation boundaries in relation to precautionary limits

A reduction of F by 40% is needed to bring SSB above \mathbf{B}_{pa} in 2009. This corresponds to landings of less than 13500 t in 2008.

Conclusions on exploitation boundaries

In the absence of an agreed management plan, ICES concludes that the exploitation boundaries for this stock should be based on the precautionary limits. Accordingly, the landings in 2008 should be less than 13500 t .

Short-term implications

Outlook for 2008

Basis: $\mathrm{F}(2007)=\mathbf{F}_{\mathrm{sq}}(2004-06$ unscaled $)=1.14 ; \operatorname{SSB}(2008)=19.0 \mathrm{kt} ; \mathrm{TAC}(2007)=26.7^{3)} \mathrm{kt}$; Landings $(2007)=$ 22.9 kt ; Discards $=2.3 \mathrm{kt}$

Rationale	$\begin{gathered} \hline \text { TAC } \\ (\mathbf{2 0 0 8}) \end{gathered}$	Basis	$\begin{gathered} \hline \text { Total } \\ \text { F } \\ (\mathbf{2 0 0 8}) \end{gathered}$	$\begin{gathered} \hline \text { Landings } \\ \text { F (2008) } \end{gathered}$	$\begin{aligned} & \hline \text { Disc F } \\ & (2008) \end{aligned}$	Discards (2008)	$\begin{gathered} \text { SSB } \\ (2009) \end{gathered}$	$\begin{gathered} \text { \%SSB } \\ \text { change } \end{gathered}$	\% TAC change 2)
Zero catch	0	$\mathrm{F}=0$	0	0	0	0	39.07	+106	-100
Status quo	19.17	F_{sq}	1.14	1.10	0.04	2.48	16.78	-27	-25
Status quo Precautionary limits	6.75	$\mathbf{F}_{\text {sq }} * 0.26$	0.30	0.28	0.02	0.68	30.94	63\%	-75\%
	9.80	$\mathbf{F}_{\text {sq }} * 0.4$	0.45	0.44	0.02	1.02	27.31	44\%	-63\%
	12.26	$\mathbf{F}_{\text {sq }} * 0.53$	0.60	0.58	0.02	1.29	24.42	29\%	-54\%
	13.49	$\mathbf{F}_{\text {sq }} * 0.6$	0.68	0.66	0.02	1.47	23.00	21\%	-49\%
	15.11	$\mathbf{F}_{\text {sq }} * 0.7$	0.80	0.77	0.03	1.68	21.11	11\%	-43\%
	16.58	$\mathbf{F}_{\text {sq }} * 0.8$	0.91	0.88	0.03	1.88	19.42	2\%	-38\%
	17.93	$\mathbf{F}_{\text {sq }} * 0.9$	1.02	0.99	0.03	2.07	17.88	-6\%	-33\%
	19.17	$\mathbf{F}_{\text {sq }}$ * 1.0	1.14	1.10	0.04	2.26	16.49	-13\%	-28\%
	20.31	F_{sq} * 1.1	1.25	1.20	0.05	2.44	15.22	-20\%	-24\%
$\begin{gathered} \text { Proposed } \\ \text { management plan } \end{gathered}$	22.695	$\mathbf{F}_{\text {sq }} * 1.34$	1.52	1.47	0.05	2.84	12.63	-33\%	-15\%

Weights in ' 000 t . Shaded scenarios are not considered consistent with the precautionary approach.
${ }^{1)} \operatorname{SSB}(2009)$ relative to $\operatorname{SSB}(2008)$.
${ }^{2)}$ Calculated landings (2008) relative to TAC 2007 (26.7 kt)
${ }^{3)}$ Preliminary TAC - if no recovery plan is agreed by 30 June 2007 a further TAC reduction of 9% will be implemented.

Management considerations

The fishery is largely based on recruiting year classes. Recruitment has been below average since 1999. Discarding continues to be substantial. The assessment includes discards; the advice refers to landings only.

Evaluation of a candidate for a multi annual [management] plan

As a response to a request from the EC in 2005, ICES carried out simulations demonstrating that under the current exploitation pattern target fishing mortalities (all catches) close to $0.3-0.6$ (ages 3-6) would result in a low risk to reproductive capacity and high long-term yields. EC is developing a multi-annual plan taking this advice in consideration (COM(2006) 411), which is expected to be agreed upon in 2007. This plan incorporates a target fishing mortality of 0.6 and a reduction in fishing effort of 10% by year. The plan is intended to cover both the Eastern and the Western cod stocks.

An initial evaluation of this plan was conducted for Eastern Baltic cod (see Section 8.4.2), but ICES is currently not in a position to evaluate whether the proposal is in accordance with the precautionary approach.

Regulations and their effects

The EC Council Regulation for the Baltic TAC and quota 2007 involves reductions in the effort (10% in terms of number of fishing days) and TACs for all Baltic cod fisheries (6%), as well as strengthening control measures. If the multi-annual plan 2007 is not agreed by 30 June, the TAC reduction will automatically increase to 15% (compared to 2006).

A 'Bacoma' codend with a $120-\mathrm{mm}$ mesh was introduced by IBSFC in 2001 in parallel to an increase in diamond mesh size to 130 mm in traditional codends. The expected effect of introducing the Bacoma $120-\mathrm{mm}$ exit window was nullified by compensatory measures in the industry. This was to some extent explained by the mismatch between the selectivity of the $120-\mathrm{mm}$ Bacoma trawl and the minimum landing size. In October 2003, the regulation was changed to a $110-\mathrm{mm}$ Bacoma window which was expected to enhance the compliance by the fishing industry and to be in better accordance with the minimum landing size. The latter was changed to 38 cm in the same year. This appears to have been accepted by the fishing industry, although it has not yet been possible to evaluate its effects.

In addition to this, the fisheries are regulated by a seasonal closure from 1 to 7 January, from 31 March to 1 May, and on 31 December in 2007. Additional 77 days of closure have to be allocated individually by the member states in 2007. This is a total increase in closed fishing days of 10% compared to last year. In 2006 the seasonal closure was from 15 March to 14 May in 2006 with an additional 30 days of closure, to be allocated individually by the member states. Beside this regulation it is allowed to land a maximum of 20 kg or 10% cod as bycatch caught within the 12-mile economic zone by vessels below 12 meters with certain gears. It is currently not possible to fully evaluate the effect of these measures, but the TAC for 2006 was not fully taken.

There are actions in progress to improve enforcement and control for both cod stocks in the Baltic (Copenhagen declaration on combating unreported cod fishery in the Baltic Sea, 28 March 2007). However, unallocated landings are not considered to be a major problem in the fisheries on western Baltic cod.

The environment

Spawning success of Baltic cod appears to be related to the presence of high-saline and oxygen-rich water during the spawning period. The amount of water with these characteristics depends on the inflow of high salinity water from the North Sea. The high cod recruitment from the mid-1970s reflected a relatively high frequency of major inflows of highsalinity water from the North Sea, leading to high oxygen concentrations in the cod spawning areas and hence to high egg survival and good recruitment. Since the mid-1980s there were few major inflows from the North Sea, leading to poorer conditions for recruitment.

Scientific basis

Data and methods

The assessment is based on catch data, two commercial cpue indices, and three survey indices. Two new fisheryindependent series were available this year; one series used previously was excluded. Commercial cpue series have been completely reworked.

Discard data have been available since 1996 and are used in the assessment as yearly proportions discarded per agegroup. Before 1996, an average proportion discarded per age-group estimated for 1996-2003 is applied. The season and area coverage of discard sampling requires improvement. A relationship between year-class strength and discard rates cannot be estimated from the available data. Due to recent changes in technical regulations, e.g. the increase of minimum landing size, introduction of BACOMA 110 and varying closures, discard rates may have varied additionally. The discard raising procedure was changed this year: Discards are now raised to the total mixed fisheries landings and not only to cod landings.

Information from the fishing industry

Some of the information on misreporting between areas came from industry sources, especially with respect to allocating Kattegat cod to the Western Baltic the later years, in the order of 2000-2500 t. However, it is not possible to quantify the total misreporting and this figure was therefore not used.

Uncertainties in assessment and forecast

The assessment appears to be reasonable, but there is some retrospective bias. The available survey indices give a consistent picture of stock development. The exclusion of misreported catch did not improve the assessment. The
impact that the BACOMA window will have on the selectivity cannot be precisely estimated, and this may increase uncertainty. Age group 2 was excluded from the trawler tuning fleet to account for the likely changed selectivity.

Comparison with previous assessment and advice

The current assessment uses different input data than the previous one. The reworked data series have improved the diagnostics of the assessment. The SSB estimates are consistent with last year's assessment, but the fishing mortality estimates were revised upwards by 22% for 2005 .

As the abandoned IBSFC management plan is still not replaced by a new management plan, the advice is again based on precautionary limits.

The recruitment in the recent 3 years has been very low which has led to a lower advice compared to previous years.

Sources of information

Report of the Baltic Fisheries Assessment Working Group. ICES Headquarters, 17-26 April 2007 (ICES CM 2007/ACFM:15).

Year	ICES Advice	Predicted landings corresp. to advice	Agreed TAC ${ }^{1}$	ACFM Landings $(22-24)$	$\begin{gathered} \text { ACFM } \\ \text { Landings } \\ (22-32) \end{gathered}$
1987	TAC	9		29	236
1988	TAC	16		29	223
1989	TAC	14	220	19	198
1990	TAC	8	210	18	171
1991	TAC	11	171	17	140
1992	Substantial reduction in F	-	100	18	73^{2}
1993	F at lowest possible level	-	40	21	66^{2}
1994	TAC	22	60	31	124^{2}
1995	30% reduction in fishing effort from 1994 level	-	120	34	142^{2}
1996	30% reduction in fishing effort from 1994 level	-	165	51	173
1997	Fishing effort should not be allowed to increase above the level of recent years	-	180	44	132
1998	20\% reduction in F from 1996	35	160	34	102
1999	At or below $\mathbf{F}_{\text {sq }}$ with 50% probability	38	126	42	115
2000	Reduce F by 20\%	44.6	105	38	128
2001	Reduce F by 20\%	48.6	105	34	126
2002	Reduce F to below 1.0	36.3	76	24	92
2003	Reduce F to below 1.0	22.6-28.8 ${ }^{3}$	75	25	94
2004	Reduce F to below 1.0	< 29.6	29.6	21	
2005	Reduce F to below 0.92	<23.4	24.7	22	
2006	Management plan	28.4	28.4	23	
2007	Keep SSB at $\mathbf{B}_{\text {pa }}$	20.5	26.7^{4}		
2008	Rebuild SSB to \mathbf{B}_{pa}	13.5			

Weights in '000 t.
${ }^{1}$ Included in TAC for total Baltic, until and including 2003.
${ }^{2}$ The reported landings in 1992-1995 are known to be incorrect due to incomplete reporting.
${ }^{3}$ Two options based on implementation of the adopted mesh regulation.
${ }^{4}$ If no management plan is adopted before 30 June 2007 the TAC will be further reduced by 9%.

Figure 8.4.1.1 Cod in Subdivisions 22-24. Landings, fishing mortality, recruitment, and SSB.

Figure 8.4.1.2 Cod in Subdivisions 22-24. Stock and recruitment, yield, and SSB per recruit.

Cod in Sub-divisions 22 to 24

Figure 8.4.1.3 Cod in Subdivisions 22-24. Historical performance of the assessments.

Table 8.4.1.1 Cod in SD 22-24. Total landings (tons) of COD in the ICES Sub-divisions 22, 23, 24.

Year	Denmark		Finland	German Dem.Rep. ${ }^{2}$$\|$	$\begin{array}{\|c\|} \hline \text { Germany, } \\ \text { FRG } \\ \hline 22+24 \\ \hline \end{array}$	Estonia		Latvia 24	Poland 24	Sweden			22	23	Total		
	23	22+24	24			22	24			22	23	24			24	Unalloc.	22+24
1965		19,457		9,705	13,350							2,182	27,867		17,007		44,874
1966		20,500		8,393	11,448							2,110	27,864		14,587		42,451
1967		19,181		10,007	12,884							1,996	28,875		15,193		44,068
1968		22,593		12,360	14,815							2,113	32,911		18,970		51,881
1969		20,602		7,519	12,717							1,413	29,082		13,169		42,251
1970		20,085		7,996	14,589							1,289	31,363		12,596		43,959
1971		23,715		8,007	13,482							1,419	32,119		14,504		46,623
1972		25,645		9,665	12,313							1,277	32,808		16,092		48,900
1973		30,595		8,374	13,733							1,655	38,237		16,120		54,357
1974		25,782		8,459	10,393							1,937	31,326		15,245		46,571
1975		23,481		6,042	12,912							1,932	31,867		12,500		44,367
1976	712	29,446		4,582	12,893							1,800	33,368	712	15,353		48,721
1977	1,166	27,939		3,448	11,686						550	1,516	29,510	1,716	15,079		44,589
1978	1,177	19,168		7,085	10,852						600	1,730	24,232	1,777	14,603		38,835
1979	2,029	23,325		7,594	9,598						700	1,800	26,027	2,729	16,290		42,317
1980	2,425	23,400		5,580	6,657						1,300	2,610	22,881	3,725	15,366		38,247
1981	1,473	22,654		11,659	11,260						900	5,700	26,340	2,373	24,933		51,273
1982	1,638	19,138		10,615	8,060						140	7,933	20,971	1,778	24,775		45,746
1983	1,257	21,961		9,097	9,260						120	6,910	24,478	1,377	22,750		47,228
1984	1,703	21,909		8,093	11,548						228	6,014	27,058	1,931	20,506		47,564
1985	1,076	23,024		5,378	5,523						263	4,895	22,063	1,339	16,757		38,820
1986	748	16,195		2,998	2,902						227	3,622	11,975	975	13,742		25,717
1987	1,503	13,460		4,896	4,256						137	4,314	12,105	1,640	14,821		26,926
1988	1,121	13,185		4,632	4,217						155	5,849	9,680	1,276	18,203		27,883
1989	636	8,059		2,144	2,498						192	4,987	5,738	828	11,950		17,688
1990	722	8,584		1,629	3,054						120	3,671	5,361	842	11,577		16,938
1991	1,431	9,383			2,879						232	2,768	7,184	1,663	7,846		15,030
1992	2,449	9,946			3,656						290	1,655	9,887	2,739	5,370		15,257
1993	1,001	8,666			4,084						274	1,675	7,296	1,275	7,129	5,528	14,425
1994	1,073	13,831			4,023						555	3,711	8,229	1,628	13,336	7,502	21,565
1995	2,547	18,762	132		9,196			15			611	2,632	16,936	3,158	13,801		30,737
1996	2,999	27,946	50		12,018		50	32			1,032	4,418	21,417	4,031	23,097	2,300	44,514
1997	1,886	28,887	11		9,269		6		263		777	2,525	21,966	2,663	18,995		40,961
1998	2,467	19,192	13		9,722		8	13	623		607	1,571	15,093	3,074	16,049		31,142
1999	2,839	23,074	116		13,224		10	25	660		682	1,525	20,409	3,521	18,225		38,634
2000	2,451	19,876	171		11,572		5	84	926		698	2,564	18,934	3,149	16,264		35,198
2001	2,124	17,446	191		10,579		40	46	646		693	2,479	14,976	2,817	16,451		31,427
2002	2,055	11,657	191		7,322			71	782		354	1,727	11,968	2,409	9,781		21,749
2003	1,373	13,275	59		6,775			124	568		551	1,899	9,573	1,925	13,127		22,700
2004	1,927	11,386			4,651			221	538		393	1,727	9,091	2,320	9,430	13	18,521
2005	1,902	9,867	2		7,002	72	67	476	1,093		719	835	8,729	2,621	10,686	9	19,415
$2006{ }^{1}$	1,899	9761	242		7,516		91	586	801			1,855	9,979	1,914	10,858		20,837

Table 8.4.1.2
Cod in Subdivisions 22-24.
$\left.\begin{array}{crlll}\hline \text { Year } & \begin{array}{c}\text { Recruitment } \\ \text { Age 1 } \\ \text { thousands }\end{array} & \text { SSB } & \text { Landings } & \text { Mean F } \\ & 262766 & 38045 & \text { tonnes } & \text { tonnes }\end{array}\right]$

