
A Performance-Oriented Data Parallel
Virtual Machine for GPUs (sketches_0451)

Mark Peercy
ATI Research, Inc.

Mark Segal
ATI Research, Inc.

Derek Gerstmann
ATI Research, Inc.

Abstract

Existing GPU programming interfaces require applications to
adopt a graphics-centric programming model exported by a
device driver tuned for real-time graphics and games. However,
this programming model hinders the development, and
performance, of non-graphics applications by imposing a
graphics policy for program execution and hiding hardware
resources. We present a new virtual machine abstraction for
GPUs that provides policy-free, low-level access to the hardware
and is designed for high-performance, data-parallel applications.

1 Overview

Several non-graphics applications, including physics, numerical
analysis, and simulation, have been implemented on graphics
processors in order to take advantage of their inexpensive raw
compute power, and high-bandwidth latency-tolerant memory
systems [GPGPU]. Unfortunately, such programs must rely on
OpenGL and Direct3D to access the hardware. These APIs are
simultaneously over-specified (one must set state and manipulate
data that is not directly relevant) and underspecified (the inner
workings of the hardware are, by design, suppressed) for this
class of computation. In addition, the drivers that implement
these APIs make critical policy decisions, such as where data
resides in memory and when it is copied, that may be suboptimal.

This mismatch between interface and intent can compromise
performance, undermining the very motivation for porting
applications to the GPU. We present a new virtual machine
abstraction for graphics processors that hides all non-relevant
graphics components and exposes the GPU as a data parallel
processor array and memory controller, fed by a simple command
processor. The exported components are specified sufficiently
close to the actual hardware such that an application appears to
be speaking directly to a device without intervention. Having
control of relevant policy and resources ensures that applications
can maximize performance.

2 The Data Parallel Virtual Machine (DPVM)

The DPVM consists of three major components: the command
processor, the data parallel array, and the memory controller (see
Figure 1). All non-critical GPU features are hidden and managed
by the virtual machine, enabling the DPVM to support multiple
architectures with a simplified interface. Furthermore, the
DPVM model allows the GPU to coexist with other applications.
For example, a game may use a single graphics device to perform
a physics simulation at one point and graphics rendering at
another. A particular DPVM implementation can seamlessly
integrate with video display drivers, graphics APIs, or other
DPVM instantiations.

Command Processor: An application sends commands (such as
set memory addresses and formats, invalidate and flush caches,
and start program) to the DPVM by writing them into command
buffers in memory, and then sending them to the DPVM.
Methods to open and close a device, submit a command buffer,
and wait for a command buffer are exported via a shared library.
Global information, such as memory pool sizes and addresses are
returned upon device open. This interface simplifies device
communication, and eliminates unwanted policy.

Data Parallel Array: Computation is performed by a data-
parallel processor array. The DPVM specifies an application
binary interface that exposes the native instruction set
architecture of the processors. Developers can program the GPU
either in its native machine language, or through binary
executables generated by a compiler from a higher level
language. Once a program is compiled (or written directly), it is
immune to driver changes that might affect its performance.

Memory Controller: In contrast to textures, render targets, and
opaque program constructs, the DPVM presents graphics
memory directly to the application. Program instructions,
constants, inputs, outputs, and command buffers are stored in
GPU (video) or PCI-Express (shared between GPU and CPU)
memory locations specified by the application. The application
also specifies the input and output data formats to the memory
controller, prior to reading or writing memory. Memory can also
be cast: values written in one format (e.g. a 4-channel array) can
be read in another format (e.g. a 1-channel array of 4 times the
length) without moving or copying data. This gives the
application complete control over how it manages memory.

Figure 1. Simplified Block Diagram of the ATI DPVM.

Implementation: We have implemented the DPVM on ATI's
X1k architecture [ATI] using components from ATI's graphics
driver, as well as other custom support libraries. We
implemented several data-parallel applications, including matrix-
matrix multiply, FFT, and Julia set computation. Because the
DPVM presents the processors and memory directly, we have
been able to achieve performance not possible with the graphics
APIs.

3 Conclusion

The DPVM provides a straightforward programming model for
data parallel applications. It gives access to essential low-level
functionality, yet presents a simplified target more palatable for
tool development than the full hardware specification. As a
result, developers can focus on compilers, debuggers, and
libraries that target the data-parallel array of fragment processors
without the burden of a graphics-centric driver. This is essential
for developing high-performance data parallel applications that
use the GPU for computation.

References

[GPGPU] GENERAL-PURPOSE COMPUTATION USING GRAPHICS
HARDWARE.<http://www.gpgpu.org>

[ATI] ATI, INC. 2006. RADEON X1K FAMILY TECH OVERVIEW.

Data Parallel
Processor Array

Command
Processor

CPU

GPU MemoryPCI-E Memory

DPP Outputs

Commands

Constants

DPP Inputs

Instructions

DPP Outputs

Commands

Constants

DPP Inputs

Instructions

Memory Controller

http://www.gpgpu.org/

	Abstract
	1	Overview
	2	The Data Parallel Virtual Machine (DPVM)
	3	Conclusion
	References

