
JavaScript Security in Communicator 4.x
This document describes the security model used by JavaScript in Communicator 4.x
and provides information on how you can use the new security features to create signed
JavaScript scripts.

There are two security policies in JavaScript:

• The same origin policy is the default policy. It dates from Navigator 2.0, with
necessary coverage fixes in Navigator 2.01 and Navigator 2.02.

• The signed script policy is new to Communicator 4.0. This new policy for JavaScript is
based upon the new Java security model, called object signing. To make use of the new
policy in JavaScript, you must use the new Java security classes and then sign your
JavaScript scripts.

This document is intended for JavaScript programmers. Its contains the following
sections:

• Same Origin Policy

• Signed Script Policy

• Identifying Signed Scripts

• Using Expanded Privileges

• Writing the Script

• Signing Scripts

• Troubleshooting Signed Scripts

Same Origin Policy
The same origin policy is quite simple: When loading a document from one origin, a
script loaded from a different origin cannot get or set certain predefined properties of
certain browser and HTML objects in a window or frame. (Those properties are
listed in Table 2.)
JavaScript Security in Communicator 4.x1

Same Origin Policy
Here, Communicator defines the origin as the substring of a URL that includes
protocol://host where host includes the optional :port part. To illustrate,
Table 1 gives examples of origin comparisons to the URL http://

company.com/dir/page.html .

There is one exception to the same origin rule. A script can set the value of
document.domain to a suffix of the current domain. If it does so, the shorter domain
is used for subsequent origin checks. For example, assume a script in the document at
http://www.company.com/dir/other.html executes this statement:

document.domain = "company.com";

After execution of that statement, the page would pass the origin check with http://

company.com/dir/page.html .

Table 2 lists the properties that can be accessed only by scripts that pass the
same origin check.

Table 1 Same origin comparisons

URL Outcome Reason

http://company.com/dir2/other.html Success

http://company.com/dir/inner/another.html Success

http://www.company.com/dir/other.html Failure Different domains

file://D|/myPage.htm Failure Different protocols

http://company.com:80/dir/etc.html Failure Different port

Table 2 Properties subject to origin check

Object Properties

image lowsrc , src

layer src

location All except x and y
2 JavaScript Security in Communicator 4.x

Same Origin Policy
New Access Errors

To tighten security, some changes have been made to when the origin checks apply.

Named forms

In Navigator 3.0, named forms were not subject to an origin check even though the
document.forms array was. In Communicator 4.0, named forms are also subject to an
origin check. This can cause existing code to break.

You can easily work around the resulting security errors. To do so, create a new variable
as a property of the window object, setting the named form as the value of the variable.
You can then access that variable (and hence the form) through the window object.

File: URLs

In Navigator 3.0, when you use <SCRIPT SRC="..."> to load a JavaScript file, the
URL specified in the SRC attribute could be any URL type (file: , http: , and so on),
regardless of the URL type of the file that contained the SCRIPT tag.

In Communicator 4.0, if you load a document with any URL other than a file: URL,
and that document itself contains a <SCRIPT SRC="..."> tag, the internal SRC
attribute can’t refer to another file: URL.

To get the 3.0 behavior in 4.0, users can add the following line to their preferences file:

user_pref("javascript.allow.file_src_from_non_file", true);

However, be cautious with this preference. It opens a security hole. Users shouldn’t set
this preference to true unless they have some overriding reason for accepting that risk.

window find

document For both read and write: anchors , applets , cookie , domain ,
elements , embeds, forms , lastModified , length , links ,
referrer , title , URL, formName (for each named form),
reflectedJavaClass (for each Java class reflected into JavaScript
using LiveConnect)
For write only: all other properties

Table 2 Properties subject to origin check

Object Properties
JavaScript Security in Communicator 4.x 3

Signed Script Policy
Origin Checks and Layers

A layer can have a different origin than the surrounding document. Origin checks are
made between documents and scripts in layers from different origins. That is, if a
document has one or more layers, JavaScript checks the origins of those layers before
they can interact with each other or with the parent document.

For information on layers, see Dynamic HTML in Netscape Communicator.1

Origin Checks and Java Applets

Your HTML page can contain APPLET tags to use Java applets. If an APPLET tag has the
MAYSCRIPT attribute, that applet can use JavaScript. In this situation, the applet is
subject to origin checks when calling JavaScript. For this purpose, the origin of the applet
is the URL of the document that contains the APPLET tag.

1. http://developer.netscape.com/library/documentation/communicator/dynhtml/index.htm

Signed Script Policy
The JavaScript security model for signed scripts is based upon the Java security model for
signed objects. The scripts you can sign are inline scripts (those that occur within the
SCRIPT tag), event handlers, JavaScript entities, and separate JavaScript files.

A signed script requests expanded privileges, gaining access to restricted information. It
requests these privileges by using LiveConnect and the new Java classes referred to as the
Java Capabilities API. These classes add facilities to and refine the control provided by
the standard Java SecurityManager class. You can use these classes to exercise fine-
grained control over activities beyond the “sandbox”—the Java term for the carefully
defined limits within which Java code must otherwise operate.

All access-control decisions boil down to who is allowed to do what. In this model, a
principal represents the “who,” a target represents the “what,” and the privileges
associated with a principal represent the authorization (or denial of authorization) for a
principal to access a specific target.

Once you have written the script, you sign it using Netscape’s Page Signer tool. Page
Signer associates a digital signature with the scripts on an HTML page. That digital
signature is owned by a particular principal (a real-world entity such as Netscape or John
4 JavaScript Security in Communicator 4.x

Signed Script Policy
Smith). A single HTML page can have scripts signed by different principals. The digital
signature is placed in a Java Archive (JAR) file. If you sign an inline script, event handler,
or JavaScript entity, Page Signer stores only the signature and the identifier for the script
in the JAR file. If you sign a JavaScript file with Page Signer, it stores the source in the
JAR file as well.

The associated principal allows the user to confirm the validity of the certificate used to
sign the script. It also allows the user to ensure that the script hasn’t been tampered with
since it was signed. The user then can decide whether to grant privileges based on the
validated identity of the certificate owner and validated integrity of the script.

You should always keep in mind that a user may deny the privileges requested by your
script. You should write your scripts to react gracefully to such decisions.

This document assumes that you are already familiar with the basic principles of object
signing, using the Java Capabilities API, and creating digital signatures. The following
documents provide information on these subjects:

• Netscape Object Signing: Establishing Trust for Downloaded Software1 provides an overview
of object signing. Be sure you understand this material before using signed scripts.

• Introduction to the Capabilities Classes2 gives more details on how to use the Java
Capabilities API. Because signed scripts use this API to request privileges, you need
to understand this information as well.

• Java Capabilities API3 introduces the Java API used for object signing and provides
details on where to find more information about this API.

• Using Page Signer4 describes the signing tool for creating signed JavaScript scripts.

• Overview of Object-Signing Resources5 contains a list of documents and resources that
provide information on object signing, from creating the Java applet to getting a
certificate to packaging and signing it.

• JavaScript Guide6 contains information about using LiveConnect to access Java classes
from a JavaScript script.

1. http://developer.netscape.com/library/documentation/signedobj/trust/index.htm
2. http://developer.netscape.com/library/documentation/signedobj/capabilities/index.html
3. http://developer.netscape.com/library/documentation/signedobj/capsapi.html
4. http://developer.netscape.com/library/documentation/signedobj/pagesign/index.htm
5. http://developer.netscape.com/library/documentation/signedobj/overview.html
6. http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html
JavaScript Security in Communicator 4.x 5

Signed Script Policy
Note Navigator 3.0 provided data tainting to provide a means of secure access to specific
components on a page. Because signed scripts provide greater security than tainting,
tainting has been disabled in Communicator 4.x.

SSL Servers and Unsigned Scripts

An alternative to using the Page Signer tool to sign your scripts is to serve them from a
secure server. Communicator treats all pages served from an SSL server as if they were
signed with the public key of that server. You do not have to sign the individual scripts
for this to happen.

If you have an SSL server, this is a much simpler way to get your scripts to act as though
they were signed. This is particularly helpful if you dynamically generate scripts on your
server and want them to behave as if signed.

For information on setting up a Netscape server as an SSL server, see Managing Netscape
Servers.1

Codebase Principals

As does Java, JavaScript supports codebase principals. A codebase principal is a
principal derived from the origin of the script rather than from verifying a digital
signature of a certificate. Since codebase principals offer weaker security, they are
disabled by default in Communicator.

For deployment, your scripts should not rely on codebase principals being enabled. You
might want to enable codebase principals when developing your scripts, but you should
sign them before delivery.

To enable codebase principals, end users must add the appropriate preference to their
Communicator preference file. To do so, add this line to the file:

user_pref("signed.applets.codebase_principal_support", true);

Even when codebase principals are disabled, Communicator keeps track of codebase
principals to use in enforcement of the same origin security policy, described in
“Same Origin Policy” on page 1. Unsigned scripts have an associated set of

1. http://developer.netscape.com/library/documentation/enterprise/mngserv/index.htm
6 JavaScript Security in Communicator 4.x

Signed Script Policy
principals that contains a single element, the codebase principal for the page
containing the script. Signed scripts also have codebase principals in addition to
the stronger certificate principals.

With codebase principals enabled, when the user accesses the script, a dialog displays
similar to the one displayed with signed scripts. The difference is that this dialog asks the
user to grant privileges based on the URL and doesn’t provide author verification. It
advises the user that the script has not been digitally signed and may have been tampered
with.

Note If a page includes signed scripts and codebase scripts, and
signed.applets.codebase_principal_support is enabled, all of the scripts on
that page are treated as though they are unsigned and codebase principals apply.

For more information on codebase principals, see Introduction to the Capabilities Classes.

Scripts Signed by Different Principals

JavaScript differs from Java in several important ways that relate to security. Java signs
classes and is able to protect internal methods of those classes through the public/
private/protected mechanism. Marking a method as protected or private immediately
protects it from an attacker. In addition, any class or method marked final in Java
cannot be extended and so is protected from an attacker.

On the other hand, because JavaScript has no concept of public and private methods,
there are no internal methods that could be protected by simply signing a class. In
addition, all methods can be changed at runtime, so must be protected at runtime.

In JavaScript you can add new properties to existing objects, or replace existing
properties (including methods) at runtime. You cannot do this in Java. So, once again,
protection that is automatic in Java must be handled separately in JavaScript.

While the signed script security model for JavaScript is based on the object signing model
for Java, these differences in the languages mean that when JavaScript scripts produced
by different principals interact, it is much harder to protect the scripts. Because all of the
JavaScript code on a single HTML page runs in the same process, different scripts on the
same page can change each other’s behavior. For example, a script might redefine a
function defined by an earlier script on the same page.

To ensure security, the basic assumption of the JavaScript signed script security model is
that mixed scripts on an HTML page operate as if they were all signed by the intersection of the
principals that signed each script.
JavaScript Security in Communicator 4.x 7

Signed Script Policy
For example, assume principals A and B have signed one script, but only principal A
signed another script. In this case, a page with both scripts acts as if it were signed by
only A.

This assumption also means that if a signed script is on the same page as an unsigned
script, both scripts act as if they were unsigned. This occurs because the signed script has
a codebase principal and a certificate principal, whereas the unsigned script has only a
codebase principal. (See “Codebase Principals” on page 6.) The two codebase
principals are always the same for scripts from the same page; therefore, the
intersection of the principals of the two scripts yields only the codebase
principal. This is also what happens if both scripts are unsigned.

You can use the import and export functions to allow scripts signed by different
principals to interact in a secure fashion. For information on how to do so, see
“Importing and Exporting Functions” on page 18.

Checking Principals for Windows and
Layers

In order to protect signed scripts from tampering, Communicator 4.0 adds a new set of
checks at the container level, where a container is either a window or a layer. To access
the properties of a signed container, the script seeking access must be signed by a
superset of the principals that signed the container.

These cross-container checks apply to most properties, whether predefined (by
Communicator) or user-defined (whether by HTML content, or by script functions and
variables). The cross-container checks do not apply to the following properties of
window :
• closed
• height
• outerHeight
• outerWidth
• pageXOffset
• pageYOffset
• screenX
• screenY
• secure
• width
8 JavaScript Security in Communicator 4.x

Signed Script Policy
If all scripts on a page are signed by the same principals, container checks are applied to
the window. If some scripts in a layer are signed by different principals, the special
container checks apply to the layer. Figure 1 illustrates the method
Communicator uses to determine which containers are associated with which
sets of principals.

Figure 1 Assigning principals to layers.

This method works as follows: Consider each script on the page in order of declaration,
treating javascript: URLs as new unsigned scripts.

1. If this is the first script that has been seen on the page, assign this script’s principals
to be the principals for the window. (If the current script is unsigned, this makes the
window’s principal a codebase principal.) Done.

2. If the innermost container (the container directly including the script) has defined
principals, intersect the current script’s principals with the container’s principals and
assign the result to be the principals for the container. If the two sets of principals are
not equal, intersecting the sets reduces the number of principals associated with the
container. Done.

Window
(outermost
container)

Intermediate
layer between
JavaScript
and window

Layer with
JavaScript

Assign script’s
principals to
window.

Intersect script’s
principals with
those of layer
containing
JavaScript and
assign result to
that layer.

If script’s principals are
the same as the
intermediate layer’s,
do nothing. Otherwise
assign script’s principals
to layer containing
JavaScript.

Defined
principals

Defined
principals
JavaScript Security in Communicator 4.x 9

Signed Script Policy
3. Otherwise, find the innermost container that has defined principals. (This may be the
window itself, if there are no intermediate layers.) If the principals of the current
script are the same as the principals of that container, leave the principals as is. Done.

4. Otherwise, assign the current script’s principals to be the principals of the container.
Done.

illustrates this process.

For example, assume a page has two scripts (and no layers), with one script signed and
the other unsigned. Communicator first sees the signed script, which causes the window
object to be associated with two principals—the certificate principal from the signer of
the script and the codebase principal derived from the location of the page containing the
script.

When Communicator sees the second (unsigned) script, it compares the principals of
that script with the principals of the current container. The unsigned script has only one
principal, the codebase principal. Without layers the innermost container is the window
itself, which already has principals.

Because the sets of principals differ, they are intersected, yielding a set with one member,
the codebase principal. Communicator stores the result on the window object,
narrowing its set of principals. Note that all functions that were defined in the signed
script are now considered unsigned. Consequently, mixing signed and unsigned scripts
on a page without layers results in all scripts being treated as if they were unsigned.

Now assume the unsigned script is in a layer on the page. This results in different
behavior. In this case, when Communicator sees the unsigned script, its principals are
again compared to those of the signed script in the window and the principals are found
to be different. However, now that the innermost container (the layer) has no associated
principals, the unsigned principals are associated with the innermost container; the outer
container (the window) is untouched. In this case, signed scripts continue to operate as
signed. However, accesses by the unsigned script in the layer to objects outside the layer
are rejected because the layer has insufficient principals. See “Isolating an
Unsigned Layer within a Signed Container” on page 17 for more information on
this case.
10 JavaScript Security in Communicator 4.x

Identifying Signed Scripts
Identifying Signed Scripts
You can sign inline scripts, event handler scripts, JavaScript files, and JavaScript
entities. You cannot sign javascript: URLs. You must identify the thing
you’re signing within the HTML file:

• To sign an inline script, you add both an ARCHIVE attribute and an ID
attribute to the SCRIPT tag for the script you want to sign. If you do not
include an ARCHIVE attribute, Communicator uses the ARCHIVE attribute
from an earlier script on the same page.

• To sign an event handler, you add an ID attribute for the event handler to
the tag containing the event handler. In addition, the HTML page must also
contain a signed inline script preceding the event handler. That SCRIPT tag
must supply the ARCHIVE attribute.

• To sign a JavaScript entity, you do not do anything special to the entity.
Instead, the HTML page must also contain a signed inline script preceding
the JavaScript entity. That SCRIPT tag must supply the ARCHIVE and ID
attributes.

• To sign an entire JavaScript file, you don’t add anything special to the file.
Instead, the SCRIPT tag for the script that uses that file must contain the
ARCHIVE attribute.

Once you’ve written the HTML file, see “Signing Scripts” on page 23 for
information on how to sign it.

ARCHIVE attribute

All signed scripts (inline script, event handler, JavaScript file, or JavaScript
entity) require a SCRIPT tag’s ARCHIVE attribute whose value is the name of the
JAR file containing the digital signature. For example, to sign a JavaScript file,
you could use this tag:

<SCRIPT ARCHIVE="myArchive.jar" SRC="myJavaScript.js"> </SCRIPT>

Event handler scripts do not directly specify the ARCHIVE. Instead, the handler
must be preceded by a script containing ARCHIVE. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">
...
</SCRIPT>
JavaScript Security in Communicator 4.x 11

Identifying Signed Scripts
<FORM>
<INPUT TYPE="button" VALUE="OK"

onClick="alert('A signed script')" ID="b">
</FORM>

Unless you use more than one JAR file, you need only specify the file once.
Include the ARCHIVE tag in the first script on the HTML page and the remaining
scripts on the page use the same file. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">
document.write("This script is signed.");
</SCRIPT>

<SCRIPT ID="b">
document.write("This script is signed too.");
</SCRIPT>

ID Attribute

Signed inline and event handler scripts require the ID attribute. The value of this
attribute is a string that relates the script to its signature in the JAR file. The ID must be
unique within a JAR file.

When a tag contains more than one event handler script, you only need one ID . The
entire tag is signed as one piece.

In the following example, the first three scripts use the same JAR file. The third script
accesses a JavaScript file so it doesn’t use the ID tag. The fourth script uses a different
JAR file, and its ID of "a" is unique to that file.

<HTML>

<SCRIPT ARCHIVE="firstArchive.jar" ID="a">
document.write("This is a signed script.");
</SCRIPT>

<BODY
onLoad="alert('A signed script using firstArchive.jar')"
onLoad="alert('One ID needed for these event handler scripts')"
ID="b">

<SCRIPT SRC="myJavaScript.js">
</SCRIPT>

<LAYER>
<SCRIPT ARCHIVE="secondArchive.jar" ID="a">
document.write("This script uses the secondArchive.jar file.");
12 JavaScript Security in Communicator 4.x

Using Expanded Privileges
</SCRIPT>
</LAYER>

</BODY>
</HTML>

Using Expanded Privileges
As with Java signed objects, signed scripts use calls to Netscape’s Java security
classes to request expanded privileges. The Java classes are explained in Java
Capabilities API.

In the simplest case, you add one line of code asking permission to access a
particular target representing the resource you want to access. (See “Targets” on
page 14 for more information.) For example:

netscape.security.PrivilegeManager.enablePrivilege("UniversalSendMail")

When the script calls this function, the signature is verified, and if the signature
is valid, expanded privileges can be granted. If necessary, a dialog displays
information about the application’s author, and gives the user the option to
grant or deny expanded privileges.

Privileges are granted only in the scope of the requesting function and only
after the request has been granted in that function. This scope includes any
functions called by the requesting function. When the script leaves the
requesting function, privileges no longer apply.

The following example demonstrates this by printing:

7: disabled
5: disabled
2: disabled
3: enabled
1: enabled
4: enabled
6: disabled
8: disabled

Function g requests expanded privileges, and only the commands and
functions called after the request and within function g are granted privileges.

<SCRIPT ARCHIVE="ckHistory.jar" ID="a">

function printEnabled(i) {
if (history[0] == "") {
JavaScript Security in Communicator 4.x 13

Using Expanded Privileges
document.write(i + ": disabled
");
} else {

document.write(i + ": enabled
");
}

}

function f() {
printEnabled(1);

}

function g() {
printEnabled(2);
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead");
printEnabled(3);
f();
printEnabled(4);

}

function h() {
printEnabled(5);
g();
printEnabled(6);

}

printEnabled(7);
h();
printEnabled(8);

</SCRIPT>

Targets

The types of information you can access are called targets. These are listed below.

Target Description

UniversalBrowserRead Allows reading of privileged data from the browser. This
allows the script to pass the same origin check for any
document.

UniversalBrowserWrite Allows modification of privileged data in a browser. This
allows the script to pass the same origin check for any
document.

UniversalBrowserAccess Allows both reading and modification of privileged data
from the browser. This allows the script to pass the same
origin check for any document.
14 JavaScript Security in Communicator 4.x

Using Expanded Privileges
For a complete list of targets, see Netscape System Targets.

JavaScript Features Requiring Privileges

This section lists the JavaScript features that require expanded privileges and the target
used to access each feature. Unsigned scripts cannot use any of these features, unless the
end user has enabled codebase principals.

• Setting a file upload widget requires UniversalFileRead .

• Submitting a form to a mailto: or news: URL requires UniversalSendMail .

• Using an about: URL other than about:blank requires

UniversalBrowserRead .

• event object: Setting any property requires UniversalBrowserWrite .

• DragDrop event: Getting the value of the data property requires
UniversalBrowserRead .

• history object: Getting the value of any property requires
UniversalBrowserRead .

• navigator object:

— Getting the value of a preference using the preference method requires
UniversalPreferencesRead .

— Setting the value of a preference using the preference method requires
UniversalPreferencesWrite .

UniversalFileRead Allows a script to read any files stored on hard disks or
other storage media connected to your computer.

UniversalPreferencesRead Allows the script to read preferences using the
navigator.preference method.

UniversalPreferencesWrite Allows the script to set preferences using the
navigator.preference method.

UniversalSendMail Allows the program to send mail in the user’s name.

Target Description
JavaScript Security in Communicator 4.x 15

Using Expanded Privileges
• window object: Allow of the following operations require
UniversalBrowserWrite .

— Adding or removing the directory bar, location bar, menu bar, personal
bar, scroll bar, status bar, or toolbar.

— Using the methods in the following table under the indicated
circumstances

— Setting the properties in the following table under the indicated
circumstances:

enableExternalCapture To capture events in pages loaded from different servers. Follow this method with
captureEvents .

close To unconditionally close a browser window.

moveBy To move a window offscreen.

moveTo To move a window offscreen.

open • To create a window smaller than 100 x 100 pixels or larger than the screen can
accommodate by using innerWidth , innerHeight , outerWidth , and
outerHeight .

• To place a window off screen by using screenX and screenY .

• To create a window without a titlebar by using titlebar .

• To use alwaysRaised , alwaysLowered , or z-lock for any setting.

resizeTo To resize a window smaller than 100 x 100 pixels or larger than the screen can
accommodate.

resizeBy To resize a window smaller than 100 x 100 pixels or larger than the screen can
accommodate.

innerWidth To set the inner width of a window to a size smaller than 100 x
100 or larger than the screen can accommodate.

innerHeight To set the inner height of a window to a size smaller than 100 x
100 or larger than the screen can accommodate.
16 JavaScript Security in Communicator 4.x

Writing the Script
Example

The following script includes a button, that, when clicked, displays an alert
dialog containing part of the URL history of the browser. To work properly, the
script must be signed.

<SCRIPT ARCHIVE="myArchive.jar" ID="a">

function getHistory(i) {
//Attempt to access privileged information
return history[i];

}

function getImmediateHistory() {
//Request privilege
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead");
return getHistory(1);

}

</SCRIPT>
...
<INPUT TYPE="button" onClick="alert(getImmediateHistory());" ID="b">

Writing the Script
This section describes special considerations for writing signed scripts. For more tips on
writing your scripts, see Danny Goodman’s View Source1 article, Applying Signed Scripts.2

Capturing Events from Other Locations

If a window with frames needs to capture events in pages loaded from different locations
(servers), use the enableExternalCapture method in a signed script requesting
UniversalBrowserWrite privileges. Use this method before calling the
captureEvents method. For example, with the following code the window can
capture all Click events that occur across its frames.

1. http://developer.netscape.com/news/viewsource/index.html
2. http://developer.netscape.com/news/viewsource/goodman_sscripts.html

<SCRIPT ARCHIVE="myArchive.jar" ID="archive">
...
function captureClicks() {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
JavaScript Security in Communicator 4.x 17

Writing the Script
enableExternalCapture();
captureEvents(Event.CLICK);
...

}
...
</SCRIPT>

Isolating an Unsigned Layer within a Signed
Container

To create an unsigned layer within a signed container, you need to perform
some additional steps to make scripts in the unsigned layer work properly.

• You must set the __parent__ property of the layer object to null so that
variable lookups performed by the script in the unsigned layer do not
follow the parent chain up to the window object and attempt to access the
window object’s properties, which are protected by the container check.

• Because the standard objects (String , Array , Date , and so on) are defined
in the window object and not normally in the layer, you must call the
initStandardObjects method of the layer object. This creates copies of
the standard objects in the layer’s scope.

International Characters in Signed Scripts

When used in scripts, international characters can appear in string constants
and in comments. JavaScript keywords and variables cannot include special
international characters.

Scripts that include international characters cannot be signed because the
process of transforming the characters to the local character set invalidates the
signature. To work around this limitation:

• Escape the international characters ('0x\ea' , and so on).

• Put the data containing the international characters in a hidden form
element, and access the form element through the signed script.

• Separate signed and unsigned scripts into different layers, and use the
international characters in the unsigned scripts.
18 JavaScript Security in Communicator 4.x

Writing the Script
• Remove comments that include international characters.

There is no restriction on international characters the HTML surrounding the
signed scripts.

Importing and Exporting Functions

You might want to provide interfaces to call into secure containers (windows
and layers). To do so, you use the import and export statements. Exporting a
function name makes it available to be imported by scripts outside the
container without being subject to a container test.

You can only import and export functions, either top-level functions (associated with a
window object) or methods of some other object. You cannot import or export entire
objects or properties that aren’t functions.

Importing a function into your scope creates a new function of the same name as the
imported function. Calling that function calls the corresponding function from the
secure container.

To use import and export , you must explicitly set the LANGUAGE attribute of the
SCRIPT tag to "JavaScript1.2" .

In the signed script that defines a function you want to let other scripts access, use the
export statement. The syntax of this statement is:

exportStmt ::= export exprList
exprList ::= expr | expr , exprList

where each expr must resolve to the name of a function. The export statement marks
each function as importable.

In the script in which you want to import that function, use the import statement. The
syntax of this statement is:

importStmt ::= import importList
importList ::= importElem | importElem , importList
importElem ::= expr . funName | expr .*

Executing import expr.funName evaluates expr and then imports the funName function of
that object into the current scope. It is an error if expr does not evaluate to an object, if
there is no function named funName, or if the function exists but has not been marked as
importable. Executing import expr.* imports all importable functions of expr.
JavaScript Security in Communicator 4.x 19

Writing the Script
Example

The following example has three pages in a frameset. The file
containerAccess.html defines the frameset and calls a user function when the
frameset is loaded. One page, secureContainer.html , has signed scripts and exports
a function. The other page, access.html , imports the exported function and calls it.

While this example exports a function that does not enable or require expanded
privileges, you can export functions that do enable privileges. If you do so, you should be
very careful to not inadvertently allow access to an attacker. For more
information, see “Be Careful What You Export” on page 21.

File containerAccess.html

<HTML>
<FRAMESET NAME=myframes ROWS="50%,*" onLoad="inner.myOnLoad()">
<FRAME NAME=inner SRC="access.html">
<FRAME NAME=secureContainer SRC="secureContainer.html">
</FRAMESET>
</HTML>

File secureContainer.html

<HTML>
This page defines a variable and two functions.
Only one function, publicFunction, is exported.

<SCRIPT ARCHIVE="secureContainer.jar" LANGUAGE="JavaScript1.2" ID="a">

function privateFunction() {
return 7;

}

var privateVariable = 23;

function publicFunction() {
return 34;

}
export publicFunction;

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");

document.write("This page is at " + history[0]);

// Privileges revert automatically when the script terminates.
</SCRIPT>
</HTML>
20 JavaScript Security in Communicator 4.x

Writing the Script
File access.html

<HTML>
This page attempts to access an exported function from a signed
container. The access should succeed.

<SCRIPT LANGUAGE="JavaScript1.2">

function myOnLoad() {
var ctnr = top.frames.secureContainer;
import ctnr.publicFunction;
alert("value is " + publicFunction());

}

</SCRIPT>
</HTML>

Hints for Writing Secure JavaScript

Check the Location of the Script

If you have signed scripts in pages you have posted to your site, it is possible to copy the
JAR file from your site and post it on another site. As long as the signed scripts
themselves are not altered, the scripts will continue to operate under your
signature. (See “Debugging Invalid Hash Errors” on page 25 for one exception
to this rule.)

If you wish to prevent this, you can force your scripts to work only from your site.

<SCRIPT ARCHIVE="siteSpecific.jar" ID="a" LANGUAGE="JavaScript1.2">
if (document.URL.match(/^http:\/\/www.company.com\//)) {

netscape.security.PrivilegeManager.enablePrivilege(...);
// Do your stuff

}
</SCRIPT>

Then if the JAR file and script are copied to another site, they no longer work. If the
person who copies the script alters it to bypass the check on the source of the script, the
signature is invalidated.
JavaScript Security in Communicator 4.x 21

Writing the Script
Be Careful What You Export

When you export functions from your signed script, you are in effect transferring any
trust the user has placed in you to any script that calls your functions. This means you
have a responsibility to ensure that you are not exporting interfaces that can be used in
ways you do not want. For example, the following program exports a call to eval that
can operate under expanded privileges.

<SCRIPT ARCHIVE="duh.jar" ID="a">
function myEval(s) {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalFileAccess");

return eval(s);
}
export myEval; // Don’t do this!!!!
</SCRIPT>

Now any other script can import myEval and read and write any file on the user’s hard
disk using trust the user has granted to you.

Minimize the Trusted Code Base

In security parlance, the trusted code base (TCB) is the set of code that has privileges to
perform restricted actions. One way to improve security is reduce the size of the TCB,
which then gives fewer points for attack or opportunities for mistakes.

For example, the following code, if executed in a signed script with the user’s approval,
opens a new window containing the history of the browser:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserAccess");
var win = window.open();
for (var i=0; i < history.length; i++) {

win.document.writeln(history[i] + "
");
}
win.close();
</SCRIPT>

The TCB in this instance is the entire script because privileges are acquired at the
beginning and never reverted. You could reduce the TCB by rewriting the program as
follows:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
var win = window.open();
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserAccess");
22 JavaScript Security in Communicator 4.x

Writing the Script
for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}
netscape.security.PrivilegeManager.revertPrivilege(

"UniversalBrowserAccess");
win.close();
</SCRIPT>

With this change, the TCB becomes only the loop containing the accesses to the
history property. You could avoid the extra call into Java to revert the privilege by
introducing a function:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
function writeArray() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserAccess");

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}
}
var win = window.open();
writeArray();
win.close();
</SCRIPT>

The privileges are automatically reverted when writeArray returns, so you don’t have
to do so explicitly.

Use the Minimal Capability Required for the Task

Another way of reducing your exposure to exploits or mistakes is by only using the
minimal capability required to perform the given access. For example, the previous code
requested UniversalBrowserAccess , which is a macro target containing both
UniversalBrowserRead and UniversalBrowserWrite . Only
UniversalBrowserRead is required to read the elements of the history array, so
you could rewrite the above code more securely:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
function writeArray() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}
}
var win = window.open();
writeArray();
JavaScript Security in Communicator 4.x 23

Signing Scripts
win.close();
</SCRIPT>

Signing Scripts
During development of a script you’ll eventually sign, you can use codebase
principals for testing, as described in “Codebase Principals” on page 6. Once
you’ve finished modifying the script, you need to sign it.

For any script to be granted expanded privileges, all scripts on the same HTML
page or layer must be signed. If you use layers, you can have both signed and
unsigned scripts as long as you keep them in separate layers. For more
information, see “Signed Script Policy” on page 4.

You can sign JavaScript files (accessed with the SRC attribute of the SCRIPT
tag), inline scripts, event handler scripts, and JavaScript entities. You cannot
sign javascript: URLs. Before you sign the script, be sure you’ve properly
identified it, as described in “Identifying Signed Scripts” on page 10.

Using Page Signer

Use Page Signer to sign scripts. Page Signer is a Perl script (signPages) that
uses JAR Packager Command Line to sign your scripts and package the digital
signature and related information in a JAR file. For information on JAR Packager
Command Line, see Using JAR Packager Command Line.1

The signPages script extracts scripts from HTML files, signs them, and places
their digital signatures in the archive specified by the ARCHIVE attribute in the
SCRIPT tag from the HTML files. It also takes care of copying external
JavaScript files loaded by the SRC attribute of the SCRIPT tag. The SCRIPT tags
in the HTML pages can specify more than one JAR file; if so, signPages creates
as many JAR files as it needs.

For information on using this tool, see Using Page Signer.

1. http://developer.netscape.com/library/documentation/signedobj/command/index.htm
24 JavaScript Security in Communicator 4.x

Troubleshooting Signed Scripts
After Signing

Once you’ve signed a script, any time you change it you must resign it. For
JavaScript files, this means you cannot change anything in the file. For inline
scripts, you cannot change anything between the initial <SCRIPT ...> and the
closing </SCRIPT> . For event handlers and JavaScript entities, you cannot
change anything at all in the tag that includes the handler or entity.

A change can be as simple as adding or removing whitespace in the script.

Changes to a signed script’s byte stream invalidate the script’s signature. This
includes moving the HTML page between platforms that have different
representations of text. For example, moving an HTML page from a Windows
server to a UNIX server changes the byte stream and invalidates the signature.
(This doesn’t affect viewing pages from multiple platforms.) To avoid this, you
can move the page in binary mode. Note that doing so changes the appearance
of the page in your text editor but not in the browser.

Although you cannot make changes to the script, you can make changes to the
surrounding information in the HTML file. You can even copy a signed script
from one file to another, as long as you make sure you change nothing within
the script.

Troubleshooting Signed Scripts

Errors on the Java Console

Be sure to check the Java console for errors if your signed scripts do not
function as expected. You may see errors such as the following:

Error: Invalid Hash of this JAR entry (-7882)
jar file: C:\Program Files\Netscape\Users\norris\cache\MVI9CF1F.JAR
path: 1

The path value printed for signed JavaScript is either the value of the ID
attribute or the SRC attribute of the tag that supplied the script.
JavaScript Security in Communicator 4.x 25

Troubleshooting Signed Scripts
Debugging Invalid Hash Errors

Invalid hash errors occur if the script has changed from when it was signed.
The most common cause of this problem is that the scripts have been moved
from one platform to another with a text transfer rather than a binary transfer.
Because line separator characters can differ from platform to platform, the hash
could change from when the script was originally signed.

One good way to debug this sort of problem is to use the -s option to
signPages , which will save the inline scripts in the JAR file. You can then
unpack the jar file when you get the hash errors and compare it to the HTML
file to track down the source of the problems. For information on signPages ,
see Using Page Signer.

“User did not grant privilege” Exception or
Unsigned Script Dialog

Depending on whether or not you have enabled codebase principals, you see
different behavior if a script attempts to enable privileges when it isn’t signed or
when its principals have been downgraded due to mixing.

If you have not enabled codebase principals and a script attempts to enable privileges for
an unsigned script, it gets an exception from Java that the “user did not grant privilege”.
If you did enable codebase principals, you will see a Java security dialog that asking for
permissions for the unsigned code.

This behavior is caused by either an error in verifying the certificate principals (which will
cause an error to be printed to the Java console; see “Errors on the Java
Console” on page 25), or by mixing signed and unsigned scripts. There are
many possible sources of unsigned scripts. In particular, because there is no
way to sign Javascript: URLs or dynamically generated scripts, using them
causes the downgrading of principals.
26 JavaScript Security in Communicator 4.x

	JavaScript Security in Communicator�4.x
	Same Origin Policy
	New Access Errors
	Origin Checks and Layers
	Origin Checks and Java Applets

	Signed Script Policy
	SSL Servers and Unsigned Scripts
	Codebase Principals
	Scripts Signed by Different Principals
	Checking Principals for Windows and Layers

	Identifying Signed Scripts
	ARCHIVE attribute
	ID Attribute

	Using Expanded Privileges
	Targets
	JavaScript Features Requiring Privileges

	Writing the Script
	Capturing Events from Other Locations
	Isolating an Unsigned Layer within a Signed Contai...
	International Characters in Signed Scripts
	Importing and Exporting Functions
	Hints for Writing Secure JavaScript

	Signing Scripts
	Using Page Signer
	After Signing

	Troubleshooting Signed Scripts
	Errors on the Java Console
	Debugging Invalid Hash Errors
	 User did not grant privilege” Exception or Unsign...

