JavaScript Security in Communicator 4x

ThisdocumentdescribesthesecuritymodelusedbyJavaScriptinCommunicator 4.x
andprovidesinformationonhowyoucanusethenewsecurityfeaturestocreatesigned
JavaScript scripts.

There are two security policies in JavaScript:

= The same origin policy is the default policy. It dates from Navigator 2.0, with
necessary coverage fixes in Navigator 2.01 and Navigator 2.02.

= ThesignedscriptpolicyisnewtoCommunicator 4.0.ThisnewpolicyforlavaScriptis
baseduponthenewlavasecuritymodel,calledobjectsigning. Tomakeuseofthenew
policyinJavaScript,youmustusethe newJavasecurity classesand thensignyour
JavaScript scripts.

This document is intended for JavaScript programmers. Its contains the following
sections:

= Same Origin Policy

< Signed Script Policy

= ldentifying Signed Scripts

= Using Expanded Privileges

= Writing the Script

= Signing Scripts

= Troubleshooting Signed Scripts

Same Origin Policy

The same origin policy is quite simple: When loading adocument from one origin, a
scriptloadedfromadifferentorigin cannotgetorsetcertainpredefined properties of
certain browser and HTML objects in a window or frame. (Those properties are
listed in Table 2.)

JavaScript Security in Communicator 4 Xk

Same Origin Policy

Here, Communicator defines the origin as the substring of a URL that includes
protocol://host where host includes the optional :port part. To illustrate,
Table 1 gives examples of origin comparisons to the URL http:/
company.com/dir/page.html

Table 1 Same origin comparisons

URL Outcome Reason
http://company.com/dir2/other.html Success
http://company.com/dir/inner/another.html Success
http://mww.company.com/dir/other.html Failure Different domains
file://D|/myPage.htm Failure Different protocols
http://company.com:80/dir/etc.html Failure Different port

There is one exception to the same origin rule. A script can set the value of
document.domain toasuffix of the currentdomain. Ifitdoes so, the shorter domain
isusedforsubsequentoriginchecks. Forexample,assumeascriptinthedocumentat
http://www.company.com/dir/other.html| executes this statement:

document.domain = "company.com";

Afterexecution ofthatstatement, the page would passthe origincheck withhttp:/
company.com/dir/page.html

Table 2 lists the properties that can be accessed only by scripts that pass the
same origin check.

Table 2 Properties subject to origin check

Object Properties

image lowsrc , src
layer src

location All except x and y

2 JavaScript Security in Communicatok 4.

Same Origin Policy

Table 2 Properties subject to origin check

Object Properties

window find

document For both read and write: anchors , applets , cookie , domain ,
elements , embeds, forms , lastModified , length | links
referrer , tittle , URL formName (for each named form),
reflectedJavaClass (for each Java class reflected into JavaScript

using LiveConnect)
For write only: all other properties

New Access Errors

Totighten security, some changes have been made to whenthe origin checks apply.

Named forms

In Navigator 3.0, named forms were not subject to an origin check even though the
document.forms arraywas.InCommunicator 4.0,namedformsarealsosubjecttoan
origin check. This can cause existing code to break.

Youcaneasilyworkaroundtheresultingsecurityerrors. Todoso,createanewvariable
asapropertyofthewindow object, settingthe named formasthevalue ofthevariable.
You can then access that variable (and hence the form) through the window object.

File: URLs

In Navigator 3.0, when you use <SCRIPT SRC="..."> toload a JavaScriptfile, the
URL specified inthe SRCattribute could be any URL type (file: ,http: ,andsoon),
regardless of the URL type of the file that contained the SCRIPT tag.

InCommunicator 4.0,ifyouloadadocumentwithany URL otherthanafile: URL,
and that document itself contains a <SCRIPT SRC="..."> tag, the internal SRC
attribute can't refer to another file: URL.

Togetthe3.0behaviorin4.0, userscanaddthefollowinglinetotheirpreferencesfile:

user_pref(“javascript.allow.file_src_from_non_file", true);

However,becautiouswiththispreference.ltopensasecurityhole.Usersshouldn’tset
thispreferencetotrueunlesstheyhavesomeoverridingreasonforacceptingthatrisk.

JavaScript Security in Communicatok 43

Signed Script Policy

Origin Checks and Layers

Alayercanhave adifferentorigin thanthe surrounding document. Origin checksare
made between documents and scripts in layers from different origins. That is, if a
documenthasone or more layers, JavaScriptchecksthe origins ofthose layers before
they can interact with each other or with the parent document.

For information on layers, see Dynamic HTML in Netscape Communicator.*

Origin Checks and Java Applets

YourHTML page cancontain APPLETtagsto use Javaapplets. Ifan APPLETtag hasthe
MAYSCRIPTattribute, that applet can use JavaScript. In this situation, the applet is
subjecttoorigincheckswhencallingJavaScript.Forthispurpose,theoriginoftheapplet
is the URL of the document that contains the APPLET tag.

Signed Script Policy

ThelavaScriptsecuritymodelforsignedscriptsisbaseduponthelavasecuritymodelfor
signed objects. The scripts you cansign are inline scripts (those that occur within the
SCRIPT tag), event handlers, JavaScript entities, and separate JavaScript files.

Asignedscriptrequestsexpandedprivileges,gainingaccesstorestrictedinformation. It
requeststheseprivilegesbyusingLiveConnectandthenewJavaclassesreferredtoasthe
JavaCapabilitiesAPI. Theseclassesaddfacilitiestoandrefinethe control provided by
thestandardJavaSecurityManager class. Youcanusetheseclassestoexercisefine-
grained control overactivitiesbeyondthe “sandbox”—the Java term forthe carefully
defined limits within which Java code must otherwise operate.

Allaccess-control decisions boil down to who isallowed to do what. Inthismodel, a
principal representsthe “who,” atargetrepresentsthe “what,” and the privileges
associatedwithaprincipalrepresenttheauthorization(ordenialofauthorization)fora
principal to access a specific target.

Once you have written the script, you sign it using Netscape’s Page Signer tool. Page
Signer associates a digital signature with the scripts on an HTML page. That digital
signatureisownedbyaparticularprincipal (areal-worldentitysuchasNetscapeorJohn

1. http://developer.netscape.com/library/documentation/communicator/dynhtml/index.htm

4 JavaScript Security in Communicatok 4.

Signed Script Policy

Smith). Asingle HTML page can havescriptssigned by differentprincipals. Thedigital
signatureisplacedinalavaArchive (JAR)file.Ifyousignaninlinescript,eventhandler,
orJavaScriptentity,Page Signerstoresonlythesignatureandtheidentifierforthescript
inthe JAR file. If you sign a JavaScript file with Page Signer, it stores the source in the
JAR file as well.

Theassociated principalallowsthe usertoconfirmthevalidity ofthe certificateusedto
signthescript. Italsoallowstheusertoensurethatthescripthasn’'tbeentamperedwith
sinceitwassigned. The userthencan decide whethertogrant privilegesbasedonthe
validated identity of the certificate owner and validated integrity of the script.

Youshouldalwayskeepinmindthatausermaydenytheprivilegesrequested byyour
script. You should write your scripts to react gracefully to such decisions.

Thisdocumentassumesthatyouarealreadyfamiliarwiththebasicprinciplesofobject
signing, usingthe JavaCapabilitiesAPIl,and creatingdigital signatures. Thefollowing
documents provide information on these subjects:

= Netscap©bjecsigningEstablishing rustoDownloadedoftwareprovideamverview
ofobjectsigning.Besureyouunderstandthismaterial before usingsignedscripts.

= Introductiontothe Capabilities Classes?givesmore detailson howto usethe Java
CapabilitiesAPl.BecausesignedscriptsusethisAPItorequestprivileges,youneed
to understand this information as well.

= JavaCapabilitiesAPIPintroducestheJavaAPlusedforobjectsigningandprovides
details on where to find more information about this API.

= UsingPageSigner*describesthesigningtoolforcreatingsignedJavaScriptscripts.

= OverviewofObject-SigningResources®containsalistofdocumentsandresourcesthat
provide information on object signing, from creating the Java applet to getting a
certificate to packaging and signing it.

- JavaScriptGuide®ontainsnformationaboutusingLiveConnectioaccesslavaclasses
from a JavaScript script.

http://developer.netscape.com/library/documentation/signedobj/trust/index.htm
http://developer.netscape.com/library/documentation/signedobj/capabilities/index.html
http://developer.netscape.com/library/documentation/signedobj/capsapi.html
http://developer.netscape.com/library/documentation/signedobj/pagesign/index.htm
http://developer.netscape.com/library/documentation/signedobj/overview.html
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html

ok~ wbdPE

JavaScript Security in Communicatok 45

Signed Script Policy

Note Navigator 3.0 provided data tainting to provide a means of secure access to specific
componentsonapage. Because signedscriptsprovide greater security thantainting,
tainting has been disabled in Communicator 4.x.

SSL Servers and Unsigned Scripts

Analternative to using the Page Signertool tosignyourscriptsisto serve themfroma
secureserver.Communicatortreatsall pagesserved froman SSLserverasifthey were
signedwiththe publickey ofthatserver. Youdo nothavetosigntheindividualscripts
for this to happen.

IfyouhaveanSSLserver,thisisamuchsimplerwaytogetyourscriptstoactasthough
theyweresigned.Thisisparticularlyhelpfulifyoudynamicallygeneratescriptsonyour
server and want them to behave as if signed.

ForinformationonsettingupaNetscapeserverasanSSLserver,seeManagingNetscape
Servers.!

Codebase Principals

As does Java, JavaScript supports codebase principals. A codebase principal isa
principal derived from the origin of the script rather than from verifying a digital
signature of a certificate. Since codebase principals offer weaker security, they are
disabled by default in Communicator.

Fordeployment,yourscriptsshouldnotrelyoncodebaseprincipalsbeingenabled.You
mightwanttoenablecodebaseprincipalswhendevelopingyourscripts,butyoushould
sign them before delivery.

Toenablecodebaseprincipals,endusersmustaddtheappropriate preferencetotheir
Communicator preference file. To do so, add this line to the file:
user_pref("signed.applets.codebase_principal_support", true);
Evenwhencodebaseprincipalsaredisabled, Communicatorkeepstrackofcodebase

principals to use in enforcement of the same origin security policy, described in
“Same Origin Policy” on page 1. Unsigned scripts have an associated set of

1. http://developer.netscape.com/library/documentation/enterprise/mngserv/index.htm

6 JavaScript Security in Communicatok 4.

Note

Signed Script Policy

principals that contains a single element, the codebase principal for the page
containing the script. Signed scripts also have codebase principals in addition to
the stronger certificate principals.

Withcodebase principalsenabled, whentheuseraccessesthescript,adialogdisplays
similartotheonedisplayedwithsignedscripts. Thedifferenceisthatthisdialogasksthe
user to grant privileges based on the URL and doesn’t provide author verification. It
advisestheuserthatthescripthasnotbeendigitallysignedandmayhavebeentampered
with.

If a page includes signed scripts and codebase scripts, and
signed.applets.codebase_principal_support isenabled,all ofthescriptson
that page are treated as though they are unsigned and codebase principals apply.

Fomoreinformationoncodebaseprincipals,seelntroductiontotheCapabilitiesClasses.

Scripts Signed by Different Principals

JavaScriptdiffersfromJavainseveralimportantwaysthatrelatetosecurity. Javasigns
classes and is able to protect internal methods of those classes through the public/
private/protectedmechanism.Markingamethodasprotectedorprivateimmediately
protects it from an attacker. In addition, any class or method marked final inJava
cannot be extended and so is protected from an attacker.

Ontheotherhand, because JavaScripthasno conceptofpublicand private methods,
there are no internal methods that could be protected by simply signing a class. In
addition, all methods can be changed at runtime, so must be protected at runtime.

In JavaScript you can add new properties to existing objects, or replace existing
properties(includingmethods) atruntime. YoucannotdothisinJava.So,onceagain,
protection that is automatic in Java must be handled separately in JavaScript.

WhilethesignedscriptsecuritymodelforjavaScriptisbasedontheobjectsigningmodel
forJava,thesedifferencesinthelanguagesmeanthatwhenJavaScriptscriptsproduced
bydifferentprincipalsinteract,itismuchhardertoprotectthescripts. Becauseallofthe
JavaScriptcodeonasingleHTMLpagerunsinthesameprocess,differentscriptsonthe
same page can change each other’s behavior. For example, ascript might redefine a
function defined by an earlier script on the same page.

Toensuresecurity,thebasicassumptionofthelavaScriptsignedscriptsecuritymodelis
thatmixedscriptsonanHTMLpageoperateasiftheywereallsignedbytheintersectionofthe
principals that signed each script.

JavaScript Security in Communicatok 47

Signed Script Policy

Forexample, assume principals A and B have signed one script, but only principal A
signed another script. Inthis case, a page with both scripts acts as if it were signed by
only A.

Thisassumption also meansthatifasigned scriptis onthe same page asan unsigned
script,bothscriptsactasiftheywereunsigned. Thisoccursbecausethesignedscripthas
acodebaseprincipalandacertificate principal, whereasthe unsignedscripthasonlya
codebase principal. (See “Codebase Principals” on page 6.) The two codebase
principals are always the same for scripts from the same page; therefore, the
intersection of the principals of the two scripts yields only the codebase
principal. This is also what happens if both scripts are unsigned.

You can use the import and export functions to allow scripts signed by different
principals to interact in a secure fashion. For information on how to do so, see

1

‘Importing and Exporting Functions” on page 18.

Checking Principals for Windows and
Layers

Inordertoprotectsignedscriptsfromtampering, Communicator 4.0addsanewsetof
checksatthecontainerlevel,whereacontaineriseitherawindoworalayer. Toaccess
the properties of a signed container, the script seeking access must be signed by a
superset of the principals that signed the container.

These cross-container checks apply to most properties, whether predefined (by
Communicator)oruser-defined (whetherby HTMLcontent, orbyscriptfunctionsand
variables). The cross-container checks do not apply to the following properties of
window :

e closed

= height

= outerHeight

= outerWidth

= pageXOffset

= pageYOffset

= screenX

= screenY

® secure

e width

8 JavaScript Security in Communicatok 4.

Signed Script Policy

Ifallscriptsonapagearesignedbythesameprincipals,containerchecksareappliedto
the window. If some scripts in a layer are signed by different principals, the special
container checks apply to the layer. Figure 1 illustrates the method
Communicator uses to determine which containers are associated with which
sets of principals.

Figure 1 Assigning principals to layers.

Window B=E o B=E
(outermost I
container) |
Intermediate } {
layer between \ Defined
JavaScript pr|n0| pals
and window {
Layer with
JavaScript Defined
principals
Assign script’s Intersect script’s If script’s principals are
principals to principals with the same as the
window. those of layer intermediate layer’s,
containing do nothing. Otherwise
JavaScript and assign script’s principals
assign result to to layer containing
that layer. JavaScript.

Thismethodworksasfollows:Considereachscriptonthepageinorderofdeclaration,
treating javascript: URLs as new unsigned scripts.

1. Ifthisisthefirstscriptthathasbeenseenonthe page,assignthisscript’s principals
tobetheprincipalsforthewindow. (Ifthecurrentscriptisunsigned, thismakesthe
window’s principal a codebase principal.) Done.

2. Iftheinnermostcontainer (thecontainerdirectlyincludingthescript) hasdefined
principals,intersectthecurrentscript'sprincipalswiththecontainer’sprincipalsand
assigntheresulttobetheprincipalsforthecontainer.Ifthetwosetsofprincipalsare
notequal,intersectingthesetsreducesthenumberofprincipalsassociatedwiththe
container. Done.

JavaScript Security in Communicatox 49

Signed Script Policy

3. Otherwise,findtheinnermostcontainerthathasdefinedprincipals.(Thismaybethe
window itself, if there are no intermediate layers.) If the principals of the current
scriptarethesameastheprincipalsofthatcontainer,leavetheprincipalsasis.Done.

4. Otherwise,assignthecurrentscript’'sprincipalstobetheprincipalsofthecontainer.
Done.

illustrates this process.

Forexample,assumeapage hastwoscripts(andnolayers), withonescriptsignedand
theotherunsigned.Communicatorfirstseesthesignedscript,whichcausesthewindow
objecttobeassociatedwithtwo principals—thecertificate principal fromthesignerof
thescriptandthecodebaseprincipalderivedfromthelocationofthepagecontainingthe
script.

WhenCommunicatorseesthesecond (unsigned)script,itcomparesthe principals of
thatscriptwiththeprincipalsofthecurrentcontainer. Theunsignedscripthasonlyone
principal,thecodebaseprincipal.Withoutlayerstheinnermostcontaineristhewindow
itself, which already has principals.

Becausethesetsofprincipalsdiffer,theyareintersected,yieldingasetwithonemember,
the codebase principal. Communicator stores the result on the window object,

narrowing itsset of principals. Note thatall functions that were definedin the signed
scriptarenowconsideredunsigned.Consequently,mixingsignedandunsignedscripts
on a page without layers results in all scripts being treated as if they were unsigned.

Now assume the unsigned script is in a layer on the page. This results in different
behavior. Inthiscase,whenCommunicatorseesthe unsignedscript, itsprincipalsare
againcomparedtothoseofthesignedscriptinthewindowandtheprincipalsarefound
tobedifferent.However,nowthattheinnermostcontainer(thelayer)hasnoassociated
principals,theunsignedprincipalsareassociatedwiththeinnermostcontainer;theouter
container(thewindow)isuntouched.Inthiscase,signedscriptscontinuetooperateas
signed.However,accessesbytheunsignedscriptinthelayertoobjectsoutsidethelayer
are rejected because the layer has insufficient principals. See “Isolating an

Unsigned Layer within a Signed Container” on page 17 for more information on
this case.

10 JavaScript Security in Communicatox 4.

Identifying Signed Scripts

|dentifying Signed Scripts

You can sign inline scripts, event handler scripts, JavaScript files, and JavaScript
entities. You cannot sign javascript: URLSs. You must identify the thing
you're signing within the HTML file:

= To sign an inline script, you add both an ARCHIVEattribute and an ID
attribute to the SCRIPT tag for the script you want to sign. If you do not
include an ARCHIVE attribute, Communicator uses the ARCHIVEattribute
from an earlier script on the same page.

= To sign an event handler, you add an ID attribute for the event handler to
the tag containing the event handler. In addition, the HTML page must also
contain a signed inline script preceding the event handler. That SCRIPT tag
must supply the ARCHIVE attribute.

= To sign a JavaScript entity, you do not do anything special to the entity.
Instead, the HTML page must also contain a signed inline script preceding
the JavaScript entity. That SCRIPT tag must supply the ARCHIVEand ID
attributes.

= To sign an entire JavaScript file, you don't add anything special to the file.
Instead, the SCRIPT tag for the script that uses that file must contain the
ARCHIVE attribute.

Once you've written the HTML file, see “Signing Scripts” on page 23 for
information on how to sign it.

ARCHIVE attribute

All signed scripts (inline script, event handler, JavaScript file, or JavaScript
entity) require a SCRIPT tag’s ARCHIVEattribute whose value is the name of the
JAR file containing the digital signature. For example, to sign a JavaScript file,
you could use this tag:

<SCRIPT ARCHIVE="myArchive.jar* SRC="myJavaScript.js"> </SCRIPT>

Event handler scripts do not directly specify the ARCHIVE Instead, the handler
must be preceded by a script containing ARCHIVE For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">

</SCRIPT>

JavaScript Security in Communicatok411

Identifying Signed Scripts

<FORM>
<INPUT TYPE="button" VALUE="OK"

</FORM>

Unless you use more than one JAR file, you need only specify the file once.
Include the ARCHIVEtag in the first script on the HTML page and the remaining
scripts on the page use the same file. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">
document.write("This script is signed.");
</SCRIPT>

<SCRIPT ID="b">
document.write("This script is signed too.");
</SCRIPT>

ID Attribute

Signed inline and event handler scripts require the ID attribute. The value of this
attributeisastring thatrelates the scripttoitssignature inthe JARfile. The ID mustbe
unique within a JAR file.

When atag contains more than one event handler script, you only needone ID . The
entire tag is signed as one piece.

Inthe following example, the firstthree scripts use the same JAR file. The third script
accessesalJavaScriptfilesoitdoesn’tusethe ID tag. The fourth script usesadifferent
JAR file, and its ID of "a" is unique to that file.

<HTML>

<SCRIPT ARCHIVE="firstArchive.jar" ID="a">
document.write("This is a signed script.");
</SCRIPT>

<BODY
onLoad="alert('A signed script using firstArchive.jar")"
onLoad="alert('One ID needed for these event handler scripts')"
ID="b">

<SCRIPT SRC="myJavasScript.js">
</SCRIPT>

<LAYER>
<SCRIPT ARCHIVE="secondArchive.jar" ID="a">
document.write("This script uses the secondArchive.jar file.");

12 JavaScript Security in Communicatox 4.

Using Expanded Privileges

</SCRIPT>
</LAYER>

</BODY>
</HTML>

Using Expanded Privileges

As with Java signed objects, signed scripts use calls to Netscape’s Java security
classes to request expanded privileges. The Java classes are explained in Java
Capabilities API.

In the simplest case, you add one line of code asking permission to access a
particular target representing the resource you want to access. (See “Targets” on
page 14 for more information.) For example:

netscape.security.PrivilegeManager.enablePrivilege("UniversalSendMail")

When the script calls this function, the signature is verified, and if the signature
is valid, expanded privileges can be granted. If necessary, a dialog displays
information about the application’s author, and gives the user the option to
grant or deny expanded privileges.

Privileges are granted only in the scope of the requesting function and only
after the request has been granted in that function. This scope includes any
functions called by the requesting function. When the script leaves the
requesting function, privileges no longer apply.

The following example demonstrates this by printing:

: disabled
. disabled
: disabled
. enabled
. enabled
: enabled
. disabled
. disabled

O EFL, WN O

Function g requests expanded privileges, and only the commands and
functions called after the request and within function g are granted privileges.

<SCRIPT ARCHIVE="ckHistory.jar" ID="a">

function printEnabled(i) {
if (history[0] ==""){

JavaScript Security in Communicatok413

Using Expanded Privileges

document.write(i + ": disabled
");
}else {
document.write(i + ": enabled
");

}
}
function f() {
printEnabled(1);
}
function g() {
printEnabled(2);
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");
printEnabled(3);
f0;
printEnabled(4);
}
function h() {
printEnabled(5);
a();
printEnabled(6);
}
printEnabled(7);
h();
printEnabled(8);
</SCRIPT>
Targets
The types of information you can access are called targets. These are listed below.

Target Description

UniversalBrowserRead Allowsreadingofprivilegeddatafromthebrowser.This
allows the script to pass the same origin check for any
document.

UniversalBrowserWrite Allowsmodificationofprivilegeddatainabrowser.This
allows the script to pass the same origin check for any
document.

UniversalBrowserAccess Allowsbothreadingandmodificationofprivilegeddata

fromthebrowser. Thisallowsthescripttopassthesame
origin check for any document.

14 JavaScript Security in Communicatox 4.

Using Expanded Privileges

Target

Description

UniversalFileRead

UniversalPreferencesRead

Allows ascriptto read any files stored on hard disks or
other storage media connected to your computer.

Allows the script to read preferences using the

navigator.preference method.
UniversalPreferencesWrite Allows the script to set preferences using the

navigator.preference method.
UniversalSendMail Allows the program to send mail in the user’s name.

For a complete list of targets, see Netscape System Targets.

JavaScript Features Requiring Privileges

ThissectionliststheJavaScriptfeaturesthatrequireexpandedprivilegesandthetarget
usedtoaccesseachfeature.Unsignedscriptscannotuseanyofthesefeatures,unlessthe
end user has enabled codebase principals.

Setting a file upload widget requires UniversalFileRead
Submitting a form to a mailto: ~ or news: URL requires UniversalSendMail

Using an about: URL other than about:blank requires
UniversalBrowserRead

event oObject: Setting any property requires UniversalBrowserWrite

DragDrop event: Getting the value of the data property requires
UniversalBrowserRead

history object: Getting the value of any property requires
UniversalBrowserRead

navigator object:

— Getting the value of a preference using the preference method requires
UniversalPreferencesRead

— Setting the value of a preference using the preference method requires
UniversalPreferencesWrite

JavaScript Security in Communicatok 415

Using Expanded Privileges

e window

object: Allow of the following operations require

UniversalBrowserWrite

— Adding or removing the directory bar, location bar, menu bar, personal

bar,

scroll bar, status bar, or toolbar.

— Using the methods in the following table under the indicated
circumstances

enableExternalCapture To capture eventsin pages loaded from different servers. Follow this method with
captureEvents
close To unconditionally close a browser window.
moveBy To move a window offscreen.
moveTo To move a window offscreen.
open = Tocreateawindow smaller than 100 x 100 pixels or larger than the screen can
accommodate by using innerWidth | innerHeight , outerWidth ,and
outerHeight
= To place a window off screen by using screenX and screenY .
= To create a window without a titlebar by using titlebar
= To use alwaysRaised , alwaysLowered , or z-lock for any setting.
resizeTo To resize a window smaller than 100 x 100 pixels or larger than the screen can
accommodate.
resizeBy To resize a window smaller than 100 x 100 pixels or larger than the screen can
accommodate.

— Setting the properties in the following table under the indicated
circumstances:

innerWidth

innerHeight

Tosettheinnerwidthofawindowtoasize smallerthan 100 x
100 or larger than the screen can accommodate.

Tosettheinnerheightofawindowtoasize smallerthan 100x
100 or larger than the screen can accommodate.

16 JavaScript Security in Communicatox 4.

Writing the Script

Example

The following script includes a button, that, when clicked, displays an alert
dialog containing part of the URL history of the browser. To work properly, the
script must be signed.

<SCRIPT ARCHIVE="myArchive.jar" ID="a">

function getHistory(i) {
/[Attempt to access privileged information
return history[i];

}

function getimmediateHistory() {
/IRequest privilege
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead");
return getHistory(1);

}
</SCRIPT>

<INPUT TYPE="button" onClick="alert(getimmediateHistory());" ID="b">

Writing the Script

Thissectiondescribesspecialconsiderationsforwritingsignedscripts.Formoretipson
writingyourscripts seeDannyGoodman’sViewSource'article ApplyingSignedScripts.?

Capturing Events from Other Locations

Ifawindowwithframesneedstocaptureeventsinpagesloadedfromdifferentlocations
(servers), use the enableExternalCapture method in a signed script requesting
UniversalBrowserWrite privileges. Use this method before calling the
captureEvents method. For example, with the following code the window can
capture all Click events that occur across its frames.

<SCRIPT ARCHIVE="myArchive.jar" ID="archive">

function captureClicks() {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");

1. http://developer.netscape.com/news/viewsource/index.html
2. http://developer.netscape.com/news/viewsource/goodman_sscripts.html

JavaScript Security in Communicatok417

Writing the Script

enableExternalCapture();
captureEvents(Event.CLICK);

}

</SCRIPT>

Isolating an Unsigned Layer within a Signed
Container

To create an unsigned layer within a signed container, you need to perform
some additional steps to make scripts in the unsigned layer work properly.

= You must set the __parent__ property of the layer object to null so that
variable lookups performed by the script in the unsigned layer do not
follow the parent chain up to the window object and attempt to access the
window object’s properties, which are protected by the container check.

= Because the standard objects (String , Array , Date , and so on) are defined
in the window object and not normally in the layer, you must call the
initStandardObjects method of the layer object. This creates copies of
the standard objects in the layer’s scope.

International Characters in Signed Scripts

When used in scripts, international characters can appear in string constants
and in comments. JavaScript keywords and variables cannot include special
international characters.

Scripts that include international characters cannot be signed because the
process of transforming the characters to the local character set invalidates the
signature. To work around this limitation:

= Escape the international characters (‘'Ox\ea’ , and so on).

= Put the data containing the international characters in a hidden form
element, and access the form element through the signed script.

= Separate signed and unsigned scripts into different layers, and use the
international characters in the unsigned scripts.

18 JavaScript Security in Communicatox 4.

Writing the Script

< Remove comments that include international characters.

There is no restriction on international characters the HTML surrounding the
signed scripts.

Importing and Exporting Functions

You might want to provide interfaces to call into secure containers (windows
and layers). To do so, you use the import and export statements. Exporting a
function name makes it available to be imported by scripts outside the
container without being subject to a container test.

Youcanonlyimportandexportfunctions,eithertop-levelfunctions(associatedwitha
window object) or methods of some other object. You cannotimportorexportentire
objects or properties that aren’t functions.

Importing a function into your scope creates a new function of the same name as the
imported function. Calling that function calls the corresponding function from the
secure container.

To use import and export , you must explicitly set the LANGUAGHttribute of the
SCRIPT tag to "JavaScriptl.2"

Inthe signed scriptthatdefinesafunctionyouwantto let otherscriptsaccess, use the
export statement. The syntax of this statement is:

exportStmt ::= export exprList
exprList = expr | expr, exprList

where eachexpr mustresolvetothename ofafunction. Theexport statementmarks
each function as importable.

Inthescriptinwhichyouwanttoimportthatfunction,usetheimport statement. The
syntax of this statement is:

importStmt ::= import importList
importList = importElem | importElem , importList
importElem = expr . funName | expr .*

Executingmport expr.funNameevaluatesxprandthenimportshefunNamefunctionof
thatobjectintothe currentscope. Itisan error if expr does not evaluate to an object, if
thereisnofunctionnamedfunName,orifthefunctionexistsbuthasnotbeenmarkedas
importable. Executing import expr.* imports all importable functions of expr.

JavaScript Security in Communicatok 419

Writing the Script

Example

The following example has three pages in a frameset. The file

containerAccess.html defines the frameset and calls a user function when the
framesetisloaded.Onepage,secureContainer.html ,hassignedscriptsandexports
afunction. The other page, access.html ,importsthe exported functionand callsit.

While this example exports a function that does not enable or require expanded
privileges,youcanexportfunctionsthatdoenableprivileges.lfyoudoso,youshouldbe
very careful to not inadvertently allow access to an attacker. For more
information, see “Be Careful What You Export” on page 21.

File containerAccess.html

<HTML>

<FRAMESET NAME=myframes ROWS="50%,*" onLoad="inner.myOnLoad()">
<FRAME NAME=inner SRC="access.htm|">

<FRAME NAME=secureContainer SRC="secureContainer.html|">
</FRAMESET>

</HTML>

File secureContainer.html

<HTML>

This page defines a variable and two functions.
Only one function, publicFunction, is exported.

<SCRIPT ARCHIVE="secureContainer.jar"' LANGUAGE="JavaScript1.2" ID="a">

function privateFunction() {
return 7;

}
var privateVariable = 23;

function publicFunction() {
return 34,

}

export publicFunction;

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");
document.write("This page is at " + history[0]);

/I Privileges revert automatically when the script terminates.
</SCRIPT>
</HTML>

20 JavaScript Security in Communicatox 4.

Writing the Script

File access.html

<HTML>
This page attempts to access an exported function from a signed
container. The access should succeed.

<SCRIPT LANGUAGE="JavaScriptl.2">

function myOnLoad() {
var ctnr = top.frames.secureContainer;
import ctnr.publicFunction;
alert("value is " + publicFunction());

}

</SCRIPT>
</HTML>

Hints for Writing Secure JavaScript

Check the Location of the Script

Ifyouhavesignedscriptsinpagesyouhavepostedtoyoursite, itispossibletocopythe
JAR file from your site and post it on another site. As long as the signed scripts
themselves are not altered, the scripts will continue to operate under your

signature. (See “Debugging Invalid Hash Errors” on page 25 for one exception
to this rule.)

If you wish to prevent this, you can force your scripts to work only from your site.

<SCRIPT ARCHIVE="siteSpecific.jar" ID="a" LANGUAGE="JavaScriptl.2">
if (document.URL.match(/*http:\/\V\www.company.com\//)) {
netscape.security.PrivilegeManager.enablePrivilege(...);
/I Do your stuff

}
</SCRIPT>

Then if the JAR file and script are copied to another site, they no longer work. If the
personwhocopiesthescriptaltersittobypassthe checkonthesourceofthescript,the
signature is invalidated.

JavaScript Security in Communicatok 421

Writing the Script

Be Careful What You Export

Whenyou exportfunctions fromyour signed script, you are in effecttransferringany
trustthe user has placed inyoutoany scriptthat calls your functions. Thismeansyou
havearesponsibilitytoensurethatyouare notexportinginterfacesthatcanbeusedin
waysyoudo notwant. Forexample, the following programexportsacalltoeval that
can operate under expanded privileges.

<SCRIPT ARCHIVE="duh.jar" ID="a">
function myEval(s) {
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalFileAccess");
return eval(s);

}
export myEval; // Don’t do this!!!!
</SCRIPT>

Now any otherscriptcanimportmyEval andreadandwriteanyfileontheuser’shard
disk using trust the user has granted to you.

Minimize the Trusted Code Base

Insecurityparlance,thetrustedcodebase(TCB)isthesetofcodethathasprivilegesto
performrestricted actions. One waytoimprove security isreduce the size ofthe TCB,
which then gives fewer points for attack or opportunities for mistakes.

Forexample,thefollowingcode,ifexecutedinasignedscriptwiththeuser’'sapproval,
opens a new window containing the history of the browser:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserAccess");

var win = window.open();

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}

win.close();

</SCRIPT>

The TCB in this instance is the entire script because privileges are acquired at the
beginningand neverreverted. Youcouldreducethe TCBbyrewritingthe programas
follows:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">

var win = window.open();

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserAccess");

22 JavaScript Security in Communicatox 4.

Writing the Script

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}

netscape.security.PrivilegeManager.revertPrivilege(
"UniversalBrowserAccess");

win.close();

</SCRIPT>

With this change, the TCB becomes only the loop containing the accesses to the
history property. You could avoid the extra call into Java to revert the privilege by
introducing a function:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
function writeArray() {
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserAccess");
for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");
}
}

var win = window.open();
writeArray();
win.close();
</SCRIPT>

TheprivilegesareautomaticallyrevertedwhenwriteArray ~ returns,soyoudon’thave
to do so explicitly.

Use the Minimal Capability Required for the Task

Another way of reducing your exposure to exploits or mistakes is by only using the
minimalcapabilityrequiredtoperformthegivenaccess.Forexample,thepreviouscode
requested UniversalBrowserAccess , Which is a macro target containing both
UniversalBrowserRead and UniversalBrowserWrite . Only
UniversalBrowserRead is required to read the elements of the history array, so
you could rewrite the above code more securely:

<SCRIPT ARCHIVE="historyWin jar" ID="a">
function writeArray() {
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");
for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");
}
}

var win = window.open();
writeArray();

JavaScript Security in Communicatok 423

Signing Scripts

win.close();
</SCRIPT>

Signing Scripts

During development of a script you'll eventually sign, you can use codebase
principals for testing, as described in “Codebase Principals” on page 6. Once
you've finished modifying the script, you need to sign it.

For any script to be granted expanded privileges, all scripts on the same HTML
page or layer must be signed. If you use layers, you can have both signed and
unsigned scripts as long as you keep them in separate layers. For more

information, see “Signed Script Policy” on page 4.

You can sign JavaScript files (accessed with the SRCattribute of the SCRIPT
tag), inline scripts, event handler scripts, and JavaScript entities. You cannot
sign javascript: URLs. Before you sign the script, be sure you've properly
identified it, as described in “Identifying Signed Scripts” on page 10.

Using Page Signer

Use Page Signer to sign scripts. Page Signer is a Perl script (signPages) that
uses JAR Packager Command Line to sign your scripts and package the digital
signature and related information in a JAR file. For information on JAR Packager
Command Line, see Using JAR Packager Command Line.!

The signPages script extracts scripts from HTML files, signs them, and places
their digital signatures in the archive specified by the ARCHIVE attribute in the
SCRIPT tag from the HTML files. It also takes care of copying external
JavaScript files loaded by the SRCattribute of the SCRIPT tag. The SCRIPT tags
in the HTML pages can specify more than one JAR file; if so, signPages creates
as many JAR files as it needs.

For information on using this tool, see Using Page Signer.

1. http://developer.netscape.com/library/documentation/signedobj/command/index.htm

24 JavaScript Security in Communicatox 4.

Troubleshooting Signed Scripts

After Signing

Once you've signed a script, any time you change it you must resign it. For
JavaScript files, this means you cannot change anything in the file. For inline
scripts, you cannot change anything between the initial <SCRIPT ...> and the
closing </SCRIPT> . For event handlers and JavaScript entities, you cannot
change anything at all in the tag that includes the handler or entity.

A change can be as simple as adding or removing whitespace in the script.

Changes to a signed script’s byte stream invalidate the script’s signature. This
includes moving the HTML page between platforms that have different
representations of text. For example, moving an HTML page from a Windows
server to a UNIX server changes the byte stream and invalidates the signature.
(This doesn’t affect viewing pages from multiple platforms.) To avoid this, you
can move the page in binary mode. Note that doing so changes the appearance
of the page in your text editor but not in the browser.

Although you cannot make changes to the script, you can make changes to the
surrounding information in the HTML file. You can even copy a signed script
from one file to another, as long as you make sure you change nothing within
the script.

Troubleshooting Signed Scripts

Errors on the Java Console

Be sure to check the Java console for errors if your signed scripts do not
function as expected. You may see errors such as the following:

Error: Invalid Hash of this JAR entry (-7882)
jar file: C:\Program Files\Netscape\Users\norris\cache\MVI9CF1F.JAR
path: 1

The path value printed for signed JavaScript is either the value of the ID
attribute or the SRCattribute of the tag that supplied the script.

JavaScript Security in Communicatok 425

Troubleshooting Signed Scripts

Debugging Invalid Hash Errors

Invalid hash errors occur if the script has changed from when it was signed.
The most common cause of this problem is that the scripts have been moved
from one platform to another with a text transfer rather than a binary transfer.
Because line separator characters can differ from platform to platform, the hash
could change from when the script was originally signed.

One good way to debug this sort of problem is to use the -s option to
signPages , which will save the inline scripts in the JAR file. You can then
unpack the jar file when you get the hash errors and compare it to the HTML
file to track down the source of the problems. For information on signPages ,
see Using Page Signer.

“User did not grant privilege” Exception or
Unsigned Script Dialog

Depending on whether or not you have enabled codebase principals, you see
different behavior if a script attempts to enable privileges when it isn’t signed or
when its principals have been downgraded due to mixing.

Ifyouhavenotenabledcodebaseprincipalsandascriptattemptstoenableprivilegesfor
anunsignedscript,itgetsanexceptionfromJavathatthe“userdid notgrantprivilege”.
Ifyoudidenablecodebaseprincipals, youwillseealavasecurity dialogthataskingfor
permissions for the unsigned code.

Thisbehavioriscausedbyeitheranerrorinverifyingthecertificateprincipals(whichwill
cause an error to be printed to the Java console; see “Errors on the Java
Console” on page 25), or by mixing signed and unsigned scripts. There are
many possible sources of unsigned scripts. In particular, because there is no
way to sign Javascript: URLs or dynamically generated scripts, using them
causes the downgrading of principals.

26 JavaScript Security in Communicatox 4.

	JavaScript Security in Communicator�4.x
	Same Origin Policy
	New Access Errors
	Origin Checks and Layers
	Origin Checks and Java Applets

	Signed Script Policy
	SSL Servers and Unsigned Scripts
	Codebase Principals
	Scripts Signed by Different Principals
	Checking Principals for Windows and Layers

	Identifying Signed Scripts
	ARCHIVE attribute
	ID Attribute

	Using Expanded Privileges
	Targets
	JavaScript Features Requiring Privileges

	Writing the Script
	Capturing Events from Other Locations
	Isolating an Unsigned Layer within a Signed Contai...
	International Characters in Signed Scripts
	Importing and Exporting Functions
	Hints for Writing Secure JavaScript

	Signing Scripts
	Using Page Signer
	After Signing

	Troubleshooting Signed Scripts
	Errors on the Java Console
	Debugging Invalid Hash Errors
	 User did not grant privilege” Exception or Unsign...

