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Abstract. This paper describes a linear attack on the Ake98 block ci-
pher, an updated version of the Akelarre cipher presented by Alvarez
et al. at the SAC’96 Workshop. The new attacks require the assump-
tion of weak keys. It is demonstrated that Ake98 does not introduce
enough security measures to counter cryptanalytic attacks, both in a
known-plaintext and in a ciphertext-only setting. A key-recovery attack
on 4.5-round Ake98, for instance, is applicable to a weak-key class of size
2108, and requires only 71 known plaintexts, with an effort of 71 · 270

half-round decryptions. Moreover, the existence of weak keys precludes
the use of Ake98 as a building block for other cryptographic primitives,
such as in Davies-Meyer Hash mode. Attacks using weak keys can be ap-
plied up to 11.5 rounds of Ake98 with less effort than an exhaustive key
search. But, Ake98 with 8.5 rounds is already slower than IDEA, RC6
or AES, which implies that this updated version of the Akelarre cipher
does not seem to provide significant advantages (security or efficiency)
compared to the former, more established ciphers.
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1 Introduction

Akelarre is a block cipher designed by Alvarez et al. [4] and presented
at SAC’96 Workshop. Akelarre combines design features from the IDEA
[9] and RC5 [11] ciphers, and processes 128-bit text blocks, uses a 128-
bit key, and iterates 4 rounds plus an output transformation (OT). The
operations of modular addition, ¢, and exclusive-or, ⊕, were inherited
from IDEA, while bitwise rotation, ≪, came from RC5. In [8], Knudsen
and Rijmen presented known-plaintext and ciphertext-only attacks on
Akelarre for any number of rounds, and that are independent of the key
schedule algorithm. Further attacks were also presented by Ferguson and
Schneier in [6], but using chosen plaintext.

Subsequently, the designers of Akelarre presented Ake98 [3] that is
claimed to avoid the previous attacks on Akelarre.



This paper is organized as follows: Sect. 2 describes briefly the Ake-
larre block cipher; Sect. 3 describes Ake98 and the main differences with
Akelarre. Sect. 4 explains the attack on Ake98, its similarity to the at-
tack of Knudsen-Rijmen, the attack requirements and its complexity. Sub-
sect. 4.2 describes a ciphertext-only attack on Ake98. Sect. 5 compares
the software performance of Ake98 with that of AES, IDEA and RC6.
Sect. 6 concludes the paper.
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Fig. 1. Computational graph of the Akelarre block cipher.

2 The Akelarre Cipher

The Akelarre block cipher was presented at the SAC’96 workshop, and
its design combines features from the IDEA and RC5 ciphers. Akelarre
uses three operations on w-bit words: bitwise exclusive-or, denoted ⊕,
addition modulo 2w, denoted ¢, and bitwise rotation, denoted ≪. The
multiplication operation of IDEA is absent. A note on terminology: the
notation lsbi(X) (lower case) will denote the i-th least significant bit(s) of
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X, while LSBj(X) (upper case) will denote the ensemble of i consecutive
least significant bits3.

All of the internal operations in Akelarre are on w-bit words. Ake-
larre operates on variable-length words, text blocks and keys, and uses
a variable number of rounds. The suggested parameter values in [4] are:
128-bit blocks, 32-bit words, 128-bit key and 4 rounds. Fig. 1 depicts
the computational graph of Akelarre. The MA-box of IDEA becomes an
AR-box (Addition-Rotation box). Details of the AR-box are given in the
Appendix.

The key schedule algorithm of Akelarre will not be described in this
paper but the interested reader can find further information in [4].

42 31P P P P

Z2 Z3 Z4Z 1
(i) (i) (i) (i)

boxZ

Z Round
i−th

(i)

(i)

(i)<<< LSB_7(Z   )5

6

17

(r−1) more rounds
Y Y Y

1

1

2

2

3

3

4

4Y

T
T

T
T

1 2 3 4

X X X1 2X 3 4

U U U U

AR´

Z Z ZZ
Transf.
Output(r+1)

1<<< LSB_7(Z     )

42 31C C C C

2
(r+1)

3
(r+1) (r+1)

4 5
(r+1)

Fig. 2. Computational graph of the Ake98 cipher.

3 For example, if X = 011011102 in binary, then lsb1(X) = 0, lsb2(X) = 1, but
LSB2(X) = 2, and LSB3(X) = 6.
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3 The Ake98 Cipher

In [3], an updated version of Akelarre, called Ake98, was presented. It is
claimed that Ake98 resists the attacks made formerly on Akelarre [6, 8].
Ake98 differs from Akelarre in the new AR-box (Addition-Rotation box), in
the swapping of words at the end of a round, and the addition of subkeys
in the beginning of each round. Fig. 2 depicts the computational graph
of Ake98. Details of the AR-box of Ake98 are provided in the Appendix
(Sect. 7).

The block and key sizes, the number of rounds, and the internal word
sizes in Ake98 are variable but no minimum value is set by the authors
for any parameter. For comparison purposes, the same parameter values
for Akelarre will also be assumed for Ake98.

The key schedule of Ake98 will not be described here. The only prop-
erty assumed for the key schedule of Ake98 is that it behaves as a pseudo-
random number generator. Further details of the subkey generation in
Ake98 can be found in [3].

4 A Known-Plaintext Attack on Ake98

The Knudsen-Rijmen attack [8] on Akelarre exploited the fact that the
leftmost input to the AR-box can be computed from just two input and
output words in a round. From Fig. 1, T1⊕T3 = Y1⊕Y3 for the i-th round.
Similarly, T2 ⊕ T4 = Y2 ⊕ Y4. These relations can be extended across the
key-dependent rotation as4

(Y1 ⊕ Y3)|(Y2 ⊕ Y4) = ((X1 ⊕ X3)|(X2 ⊕ X4)) ≪ Z
(i)
1 . (1)

Relation (1) always holds, independent of the round subkeys and of the
AR-box. Moreover, this is an iterative relation, namely it can be combined
with itself. The attack of [8] uses (1) as an invariant for the full Akelarre,
except for the input and output transformations (Fig. 1). Notice that this
attack applies to any number of rounds.

Notice that (1) does not hold for the IDEA and PES [9] ciphers because
of the addition and the multiplication operations (Akelarre and Ake98 do
not use multiplication).

For Ake98 similar relations to (1) can be obtained, under weak subkey
assumptions. Observe that in Fig. 2, T1 ⊕ T3 = Y1 ⊕ Y2, and T2 ⊕ T4 =

4 The vertical bar ’|’ stands for concatenation.
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Y3 ⊕ Y4. To achieve a similar relation to (1), both of them are combined,
resulting in

T1 ⊕ T2 ⊕ T3 ⊕ T4 = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 . (2)

Furthermore, across the key-dependent rotation:

Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 = (U1 ⊕ U2 ⊕ U3 ⊕ U4) ≪ Z
(i)
5 , (3)

where it is implicitly assumed that only the least significant seven bits of

Z
(i)
5 are used as the rotation amount.

Relation (3) does not hold in general across the modular addition with
subkeys at the beginning of a round, but it still holds with certainty for
the least significant bit, because of the absence of a carry bit5:

lsb1(Y1⊕Y2⊕Y3⊕Y4) = lsb
−Z

(i)
5 mod 32+1

(X1⊕X2⊕X3⊕X4⊕Z
(i)
1 ⊕Z

(i)
2 ⊕Z

(i)
3 ⊕Z

(i)
4 ) .

(4)

Relation (4) is not iterative, but under the assumption that LSB7(Z
(i)
5 ) ∈

{0, 32, 64, 96}, that is, a rotation amount that is a multiple of the word
size of Ake98, this relation can be rewritten as:

lsb1(Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4) = lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ Z
(i)
1 ⊕ Z

(i)
2 ⊕ Z

(i)
3 ⊕ Z

(i)
3 ) , (5)

which is iterative, and independent of the new AR-box. Iterating relation
(5) four times, results in a probabilistic distinguisher, under the weak sub-

key assumptions: LSB7(Z
(1)
5 ), LSB7(Z

(2)
5 ), LSB7(Z

(3)
5 ), LSB7(Z

(4)
5 ) ∈ {0,

32, 64, 96}. Assuming that the key schedule algorithm of Ake98 can be
modeled as a pseudo-random number generator, each of the weak sub-
key assumptions will be taken independently. Therefore, the probability
that these assumptions hold for four consecutive rounds is approximated
as (4/27)4 = 2−20 since there are 27 possible rotation amounts. Simi-
larly, under the assumption of a random behavior of the key schedule of
Ake98, the weak subkey assumptions are expected to hold for a class of
2128 · 2−20 = 2108 (weak) user keys.

For 4-round Ake98, a 1-bit invariant, using relation (5), can be con-
structed:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4) ⊕ lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4) = (6)

lsb1(Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ lsb1(Z

(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕

lsb1(Z
(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕ lsb1(Z

(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) .

Notice in (6) that for a fixed key, one bit of information on the key, namely,

lsb1(⊕
4
i,j=1Z

(j)
i ), can be recovered given one bit lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4)

5 Parameters of the ’lsb’ function are counted from 1 up to 32.
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of ciphertext information and of the plaintext, lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4);
or alternatively, given the plaintext, and an unknown key, one bit of
information on the ciphertext can be obtained with certainty.

Relation (6) alone can be used to distinguish 4-round Ake98 (under
weak key assumptions and without the OT) from a random permutation,
using only known plaintext/ciphertext pairs.

Moreover, (6) can be used in a key-recovery attack, to discover the
subkeys of the OT. If we call the output transformation a half-round, this
is a 0.5R attack. The corresponding 1-bit distinguisher is:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4) ⊕ lsb1(Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ (7)

lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ lsb1(Z

(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕

lsb1(Z
(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) =

lsb1((C1 ⊕ Z
(5)
2 ⊕ C2 ¯ Z

(5)
3 ⊕ (C3 ¯ Z

(5)
4 ) ⊕ (C4 ⊕ Z

(5)
5 )) ≫ LSB5(Z

(5)
1 )) .

In a known-plaintext setting, the unknowns in (7) are6 LSB5(Z
(5)
1 ), Z

(5)
2 ⊕

Z
(5)
5 , Z

(5)
4 , Z

(5)
3 and lsb1(⊕

4
i,j=1Z

(j)
i ). Actually, only the LSB5(Z

(5)
1 )-th bit

of Z
(5)
2 ⊕Z

(5)
5 is required. In total, 5+1+32+32 = 70 subkey bits can be

recovered, and the effort for each of the 270 subkey candidates is equivalent
to decrypting the OT, or a half-round computation.

The amount of known plaintext (KP) needed for the attack is com-
puted as follows. Once the 70 subkey bits are guessed correctly in (7),
the combined value of plaintext, ciphertext and guessed subkey bits must
match the 1-bit key-dependent invariant:

lsb1(⊕
4
i,j=1Z

(j)
i ) . (8)

The value of (8) is unknown, but is constant for a fixed key. Therefore, the
correct 70 subkey bits must always give a constant value, whatever the
plaintext, while the wrong 70 subkey bits will only match (8) with a prob-
ability of 1/2. This reasoning is based on the fact that the correct subkey
value actually decrypts the OT, reducing the 4.5 rounds to four rounds,
where the distinguisher can be checked; but, the wrong subkey will not
decrypt the OT correctly, rather, it will add a further 0.5 rounds on top of
the 4.5-round Ake98, and its 1-bit result shall be (more) random. Thus,
the expected number of false alarms (subkeys) surviving this filtering after
71 known plaintext/ciphertext pairs are used, is 270 · (1

2)71 < 1.
The attack using the 4-round distinguisher (7) was applied to a 4.5-

round Ake98 and not to 5.5 rounds, because the latter would require too

6 Even though the least significant seven bits of Z
(5)
1 are used in a block, the invariant

involves (the xor of) 32-bit words, thus only the five least significant bits of Z
(5)
1 are

relevant.
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many subkey bits to recover simultaneously, namely the subkeys of one
round plus the OT. The distinguisher for 5.5-round Ake98 would be:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ (9)

lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ lsb1(Z

(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕

lsb1(Z
(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) =

lsb1((((C1 ⊕ Z
(6)
2 ) ≫ LSB5(Z

(6)
1 ) ⊕ Z

(5)
1 ) ⊕

((C2 ¯ Z
(6)
3 ) ≫ LSB5(Z

(6)
1 )¯ Z

(5)
2 ) ⊕

((C3 ¯ Z
(6)
4 ) ≫ LSB5(Z

(6)
1 )¯ Z

(5)
3 ) ⊕

((C4 ⊕ Z
(6)
5 ) ≫ LSB5(Z

(6)
1 ) ⊕ Z

(5)
4 )) ≫ LSB5(Z

(5)
5 )) .

Note that a 1.5R-attack on 5.5-round Ake98 using (9) would require guess-

ing one bit of Z
(5)
1 ⊕Z

(5)
4 , Z

(6)
2 , and Z

(6)
5 ; the full 32 bits of Z

(5)
2 , Z

(5)
3 , Z

(6)
3 ,

Z
(6)
4 , and LSB5(Z

(6)
1 ), LSB5(Z

(5)
5 ), or 141 subkey bits simultaneously.

In general, the more rounds are attacked the smaller the weak key
class. Table 1 lists the number of weak keys for attacks on a different
number of rounds of Ake98. All the attacks require about 71 known
plaintext/ciphertext pairs, and effort equivalent to 71 · 270 decryptions
of the OT. Assuming the OT is about half a round, it represents 1

9
of a 4.5-round encryption. Thus, the attack complexity is equivalent to
1
9 · 71 · 270 ≈ 8 · 270 = 273 4.5-round encryptions.

Table 1. Estimated effort and weak key class size, |WKC|, in attacks on Ake98.

# Rounds |WKC| Attack Effort

4.5 2108 272

6.5 298 1
13

· 71 · 270 ≈ 272

8.5 288 1
17

· 71 · 270 ≈ 272

10.5 278 1
21

· 71 · 270 ≈ 272

11.5 273 1
23

· 71 · 270 ≈ 271.5

12.5 268 1
25

· 71 · 270 ≈ 271.5

25.5 23 1
51

· 71 · 270 ≈ 270

From Table 1, in order to avoid attacks based on weak keys, Ake98
should have more than 25.5 rounds. Nonetheless, our attack is more effi-
cient than exhaustive key search (in a weak-key class) up to 11.5 rounds.
For 12.5-round Ake98, the exhaustive key search effort for a weak-key
class of size 268 is less than the 271.5 encryptions of our attack.
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As the last remark, the attack described in this section, although
explained for a 32-bit word version of Ake98, applies similarly to other
word sizes.

4.1 New Weak Key Classes

The rationale for choosing subkeys that cause rotations by multiples of
32 bits can be further extended to weak subkeys whose values are of the
form 16 + 32t, 0 ≤ t ≤ 3. In this case, a one-round relation with input

(X1, X2, X3, X4) and output (Y
(1)
1 , Y

(1)
2 , Y

(1)
3 , Y

(1)
4 ) becomes:

lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) =

lsb1((Y
(1)
1 ⊕ Y

(1)
2 ⊕ Y

(1)
3 ⊕ Y

(1)
4 ) ≫ 16) , (10)

which is not iterative. But, if two consecutive rounds have block rotations
by amounts of the form 16 + 32t, 0 ≤ t ≤ 3, then for the next round:

lsb1(Y
(1)
1 ⊕ Y

(1)
2 ⊕ Y

(1)
3 ⊕ Y

(1)
4 ⊕ Z

(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) =

lsb1((Y
(2)
1 ⊕ Y

(2)
2 ⊕ Y

(2)
3 ⊕ Y

(2)
4 ) ≫ 16) , (11)

where Y
(2)
i , 1 ≤ i ≤ 4 are the output words after two rounds. Combining

(10) and (11) results in:

lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4) = lsb1(Y
(2)
1 ⊕ Y

(2)
2 ⊕ Y

(2)
3 ⊕ Y

(2)
4 ) ⊕

lsb1(Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ lsb1((Z

(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ≫ 16) ,

(12)

which has the following properties:

– it is a 2-round iterative linear relation, in contrast to (5) which is
1-round iterative;

– it holds with a probability that depends on the carry bit of addition

with the two subkeys in the middle of a block between rounds, Z
(i)
2 and

Z
(i)
3 . The probability that there is no carry from the 15-th to the 16-th

bit is p = 1/2 + 1/217. Assuming the subkey values are independent,
the probability of (12) holding is approximated as p2 ≈ 2−2.
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Thus, this new weak-subkey assumption implies another, new weak-key
class, namely the one which generates rotations of the form 16 + 32t, 0 ≤
t ≤ 3, distinct from the original weak-key class that generates rotations
of the form 32t, 0 ≤ t ≤ 3. The former weak-key class, though, is less
effective since it holds with a lower probability, 2−2 every two rounds,
than the latter.

It is straightforward to deduce other rotation amounts, for example,
8 + 32t, 0 ≤ t ≤ 3, which lead to further new weak-key classes, with
exponentially lower probability compared to (5) and (12) due to the carry
bits of addition with subkeys. These linear relations become iterative for
4, 8 or more rounds. The rotation amounts do not need to be powers of 2
plus a multiple of 32. More generally, the rotation amounts can be of the
form i + 32t, 0 ≤ t ≤ 3, 0 ≤ i ≤ 31. The main point for deducing any of
these linear relations is to track the exact position of the least significant bit
of each 32-bit word in a block, because, once this bit is correctly located,
the xor of 32-bit words in (5) can be applied.

Consequently, the key space can be split into several sets of disjoint
weak-key classes, one for each possible set of rotation amounts, and several
of them correspond to keys which are susceptible to an attack similar to
that in Sect. 4.

4.2 Ciphertext-Only Attack on Ake98

The attack on 4.5-round Ake98 presented in Sect. 4 can also be adapted
to recover subkeys at the top (plaintext) end of Ake98. The fact that only
a few bits of the plaintext blocks are needed for the attack motivates a
ciphertext-only (CO) approach to attack Ake98. We assume that cipher-
text is always known by any adversary. Further, assume that the plaintext
is known to be ASCII text, and some probable phrases (16 bytes long,
that is, the block size of Ake98) are suspected to occur regularly in the
plaintext, for instance, “replyimmediately” or “tocommandergeneral”.

The ciphertext-only attack on 4.5-round Ake98 assumes that the last
four block rotations, including the one in the OT are a multiple of the word
size (32 bits), instead of the first four block rotations. The distinguisher
is similar to (7):

lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4) ⊕ lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ (13)

lsb1(Z
(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕ lsb1(Z

(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) ⊕

lsb1(Z
(5)
1 ⊕ Z

(5)
2 ⊕ Z

(5)
3 ⊕ Z

(5)
4 ) =

lsb1((P1 ⊕ Z
(1)
1 ⊕ (P2 ¢ Z

(1)
2 ) ⊕ (P3 ¢ Z

(1)
3 ) ⊕ P4 ⊕ Z

(1)
4 ) ≫ LSB5(Z

(1)
5 )) .

Thus, (13) only requires the xor of some least significant bits of the
plaintext blocks, namely, only some small statistical information. The
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time complexity and amount of probable texts for this attack are the
same as for the attack in Sect. 4, requiring about 71 (probable) 16-byte
long plaintexts encrypted under a fixed key. Similar attacks apply to more
rounds of Ake98, under the appropriate weak subkey assumptions.

5 Software Performance of Ake98

Table 2 lists the main parameters and the performance in software of
Ake98, AES, IDEA and RC6 block ciphers, for comparison. Performance
estimates for encryption and key schedule were measured in CPU cycles
per byte encrypted on an AMD Duron 1.2 GHz, 512 MB RAM and 128
MB cache memory, under Linux, and using the gcc compiler ver. 3.2.2
with optimization option -O3. Measurements were obtained from 216 up
to 226 blocks encrypted under each cipher.

Table 2. Software performance and main parameters of some block ciphers.

Cipher Ake98 AES IDEA RC6-w/r/b

Operations ⊕,¢,≪ ⊕,xtime,S-box ⊕,¢,¯ ⊕, *, ≪
Block Size (bits) variable 128 64 4w

Key Size (bits) 64t 128; 192; 256 128 8b

#Rounds variable] 10; 12; 14 8.5 r, r = 20 (AES)
Origin Alvarez et al. Daemen, Lai, Massey, Rivest et al.

Rijmen Murphy
Year 2000 1998 1991 1998

Word Size (bits) variable 8 16 w, w = 32 (AES)
Cipher Structure IDEA+RC5 SPN own Feistel

Key Schedule Oper. ¢, modular ⊕, bit byte
squaring S-box permutation permutation

Reference [3] [5] [9] [12]

Encryption Speed 73 55 93 30

]: 4.5 rounds, 128-bit block, 128-bit key.

From Table 2, the performance figures indicate that 4.5-round Ake98
is faster than 8.5-round IDEA, but slower than 10-round AES and 20-
round RC6 (standard parameters), under the same test conditions.

Moreover, Table 3 shows that the software performance of Ake98 for
increasing number of rounds degrades sharply. For 8 rounds, Ake98 is
not faster than any of the three previously mentioned ciphers. For more
than 25.5 rounds, Ake98 is not expected to have any weak key, but then it
becomes about four times slower than IDEA, eight times slower than AES,
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Table 3. Software performance of variable-round Ake98.

# Rounds Ake98 4.5 8.5 12.5 16.5 20.5 24.5 28.5

# CPU cycles/byte 73 142 212 283 354 427 499

and more than 14 times slower than RC6. Moreover, with more than 427
cycles/byte, the performance of Ake98 becames worse than that of all
NESSIE block cipher candidates, except GrandCru [1, p. 53–55].

6 Conclusions

This report presented the first7 known-plaintext and ciphertext-only at-
tacks on Ake98. In a key-recovery attack, the subkeys of the OT can be
recovered with only 71 known plaintext/ciphertext pairs. The attacks are
independent of the redesigned AR-box, and can be applied up to 11.5
rounds with less effort than an exhaustive key search. To avoid weak
keys, Ake98 would need more than 25.5 rounds, but then its performance
degrades sharply.

The attacks in Sect. 4 exploited two main weaknesses of Ake98: the
key schedule algorithm did not make any provision to avoid the key-
dependent rotation amounts to be multiples of 32 (the word size), even
for consecutive rounds; moreover, the subkey mixing operations at the
beginning of a round allows invariants involving only the least significant
text bits, similar to the attack of [8]. These attacks perhaps could be
avoided, for example, if the key schedule algorithm had guaranteed that
the rotation amounts were both text and key dependent, such as in RC6
[12].

Another important observation is that even if the rotation amounts
were properly generated, the encryption and decryption structures of
Ake98 would still not be reciprocal, that is, the computational graphs for
encryption and decryption of Ake98 are different, because the modular
addition and bit rotation operations do not commute. Thus, the compu-
tational graph does not become an involution by simply transforming the
subkeys, as in IDEA. The existence of weak subkeys for Ake98 are far
reaching. Even though the class of 2108 weak keys represent only a frac-
tion of 2−20 of the key space, it implies for instance, that Ake98 might
not be used as a building block of other cryptographic primitives, such
as in Davies-Meyer or Matyas-Meyer-Oseas hash function constructions

7 The authors are not aware of any other attack on Ake98, under any assumption.
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[10, p. 340, Cap. 9] because the key input depends on the input mes-
sage string or intermediate hash values, and they can be manipulated to
cause weak rotations as in the attacks of Sect. 4. Further the weak-key
class size (|WKC|) and type of attacks on IDEA and Ake98 are com-
pared in Table 4. Notice that Hawkes’ attacks on IDEA [7] require chosen
plaintext (CP), Boomerang attacks on IDEA [2] require chosen plaintext
adaptively-chosen ciphertext (CPACC), while the attacks on Ake98, in
this paper, require known plaintext (KP) or ciphertext only (CO). It can
be noticed additionally in Table 4 that the weak-key class sizes for Ake98
are bigger than for IDEA. Therefore, the attacks on Ake98 apply not only to
larger weak-key classes but also work under much more realistic assumptions
than on IDEA.

Table 4. Comparison of weak-key class sizes for IDEA and Ake98.

# Rounds
Attack Cipher Type 4 4.5 5 5.5 6 8.5

Hawkes IDEA CP 299 297 284 282 282 263

Boomerang IDEA CPACC 2104 2103 297 297 283 264

this paper Ake98 KP/CO 2108 2103 2103 298 298 283

Additionally, if Ake98 were used in (full 128-bit) OFB and CFB modes
of operation [10], then the use of weak keys at the beginning of every round
would result in the exclusive-or of the LSBs of the four input words to
match the xor of the LSBs of the four output words. This invariant would
propagate to the ciphertext, actually revealing information on the plaintext.
Since Ake98 with only 4.5 rounds is already slower than the AES and
RC6, even its practical usefulness for confidentiality purposes becomes
jeopardized.

As the last comment, it is not straightforward to determine which 128-
bit user key(s) lead to subkeys that cause weak rotations at the beginning
of each round, but the key schedule algorithm does not have any provision
to avoid such weak subkeys. It is left as an open problem to discover which
128-bit Ake98 key(s) can lead to weak subkeys.
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7 Appendix

This appendix shows the AR-boxes (Addition-Rotation boxes) of Ake-
larre and Ake98 (Fig. 3). For the left-rotation operation, ≪, the rotation
amounts are 4- or 5-bit values from parts of P1 and Q2. In Fig.3(a), rota-
tions affect 32-bit operands. For example, the first rotation of P2 to the
left is by an amount represented by the five bits P1[1 . . . 5]. In Fig.3(b),
the rotations affect operands 31 bits wide, namely excluding the most or
the least significant bits (darkened in the pictures). These pictures are
described for illustrative purposes only, because the attacks in this paper
are independent of the AR-boxes.
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Fig. 3. AR-box of Ake98 (a), and of Akelarre (b).
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