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Abstract

Factorization is important for both practical and theoretical reasons. In secure digital communi-
cation, security of the commonly used RSA public key cryptosystem depends on the difficulty of
factoring large integers. In number theory, factoring is of fundamental importance.

This research has analyzed algorithms for integer factorization based on continued fractions and
binary quadratic forms, focusing on runtime analysis and comparison of parallel implementations
of the algorithm. In the process it proved several valuable results about continued fractions.

In 1975, Daniel Shanks used class group infrastructure to modify the Morrison-Brillhart algo-
rithm and develop Square Forms Factorization, but he never published his work on this algorithm
or provided a proof that it works. This research began by analyzing Square Forms Factorization,
formalizing and proving the premises on which the algorithm is based. First, this research analyzed
the connections between continued fractions and quadratic forms, proving, among other things,
that the square of any ambiguous cycle is the principal cycle. Then, the connection with ideals was
developed, requiring a generalization to the standard description and formulas for multiplication of
ideals. Lastly, the connection was made with lattices and minima, allowing for a generalization of
the formulas relating composition with distance. These results are fundamental to explaining why
Square Forms Factorization works.

This research also analyzed several variations, including two different parallel implementations,
one of which was considered by Shanks and one of which is original. The results suggest that the
new implementation, which utilizes composition of quadratic forms, is slower for small numbers of
processors, but is more efficient asymptotically as the number of processors grows.

Shanks’ Square Forms Factorization, including a concept he called Fast Return, has been im-
plemented in C and Magma and some experimental runtime analysis has been done. A parallel
version in C has been implemented and tested extensively.
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Chapter 1

Introduction

The problem of distinguishing prime numbers from composite numbers and of

resolving the latter into their prime factors is known to be one of the most

important and useful in arithmetic. It has engaged the industry and wisdom of

ancient and modern geometers ... the dignity of the science itself seems to require

that every possible means be explored for the solution of a problem so elegant

and so celebrated.

C. F. Gauss [8]

Factorization is important for both practical and theoretical reasons. In secure digital

communication, the RSA public key cryptosystem is often used. The security of this cryp-

tosystem depends on the difficulty of factoring large integers. In number theory, factoring is

of fundamental importance.

The algorithms for factoring larger and larger integers quickly have developed significantly

over the years. There are many ways of doing this, ranging from trial division to the number

field sieve. This research focuses on a specific underdeveloped algorithm introduced by Daniel

Shank 1975, Square Forms Factorization, but also analyzes two new variations, one due to

a conjecture by Pomerance and one introduced by this author. The overall goal of this

research was to analyze algorithms for integer factorization based on the use of continued
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fractions and quadratic forms, focusing on proving mathematical results in these areas and

determining average runtime. We proposed several preliminary sub-goals to this end:

1. Analyze the conditions for which Square Forms Factorization provides a factorization.

2. Analyze the connection between continued fractions and quadratic forms and provide

related proofs.

3. Analyze a test of direction.

4. Produce a computer implementation of these algorithms.

The first sub-goal was to analyze the conditions for which Square Forms Factorization

provides a factorization. This information is important to cryptology, as the security of some

public key cryptosystems is dependent on the difficulty of factorization. The result is that

Square Forms Factorization will work on every composite number. However, the runtimes

vary greatly, so in addition to the original goal, this research analyzed which numbers Square

Forms Factorization may factor significantly faster or slower than others, which is just as

important since numbers that factor extremely slowly are almost as secure as numbers that

the algorithm doesn’t factor at all. It is possible to determine sufficient conditions for which

a number factors quickly but necessary conditions remain elusive. Specifically, if N is of

the form (a2m + b)(c2m + d), it is possible to define conditions for special cases, but these

conditions have not been generalized. Proposition 1 of §4.3 provides a specific example of

this.

The second sub-goal was to analyze the connection between continued fractions and

quadratic forms, specifically intending to analyze the work done by Shanks. This research

has taken significantly longer than planned for in the original timeline. Much of the existing

information on these theories was scattered and disorganized, and many of the papers either

lacked proofs or contained errors, so it was valuable to organize this information into a form

that could be useful. The most important achievement in this was the development and

proof of a formula relating infrastructure distance with composition of quadratic forms.
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The third sub-goal was to analyze a test of direction useful to a new algorithm being de-

veloped. The research in this area has demonstrated that a test of direction within continued

fractions probably cannot be used effectively for factorization.

The fourth of the original sub-goals was to produce a computer implementation of these

algorithms. Shanks’ Square Forms Factorization has been implemented in both C and

Magma, including libraries of functions concerning the operations essential to quadratic

forms and continued fractions. This source code will be made available in a distributable

form.

Concerning runtime, Jason Gower [9] has recently analyzed the runtime of SQUFOF

for his Ph.D. thesis at Purdue University. Included in this was an analysis of multipliers,

a concept that will be used in these implementations. However, it has been conjectured

by Pomerance that as SQUFOF is easy to parallelize, a parallel implementation may be

competitive, so a new goal was set of analyzing the parallel implementation of SQUFOF.

A parallel version of SQUFOF has been developed and has been implemented and tested

in C. This code is included in Appendix B. This algorithm has been compared with an older

parallel implementation of SQUFOF.

Chapter 2 provides some background to the problem of factorization, basic number theory,

and some of the tools related to Square Forms Factorization. Chapter 3 describes how Square

Forms Factorization developed from the existing theory. Chapter 4 describes Square Forms

Factorization, including several variations of the algorithm, and describes some significance

the algorithm may have for cryptology.
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Chapter 2

Background

2.1 The Problem and its Importance

There are several different kinds of factorization; this research will focus on integer factoriza-

tion. Consider an integer N . Factorization is the process of finding integers p and q greater

than 1 such that N = pq. Complete factorization would require repeating this process for

both p and q until all of the remaining factors are prime. However, if an algorithm can be

developed to quickly factor N into p and q, the same algorithm can be used over again on p

and q. For example, it is easy to see that 105 = 5 · 21 and then repeat to factor 21. From

here, you would see that since 21 = 3 · 7, 105 = 5 · 3 · 7. Although in this simple case, the

complete factorization is easy to find, this task becomes much harder for large numbers.

2.1.1 Number Theoretic Applications

In number theory, the factors of a number dictate many of the characteristics of the number.

For example, Euler’s φ function, which tells how many numbers less than N are relatively

prime to N , can be directly calculated from the complete factorization. For an integer that

is the product of distinct odd primes, φ(N) may be calculated by multiplying each of the

factors minus 1.

Example 1. 105 = 5 · 3 · 7. Therefore φ(105) = (5 − 1)(3 − 1)(7 − 1) = 48, so there are 48
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integers less than 105 that are relatively prime to 105.

Also, determining whether a number is a quadratic residue (i.e. the square of another

number modulo N), can be determined directly using Gauss’s Quadratic Reciprocity Law if

the complete factorization of N is known.

Example 2. 192 = 361 = 46+3·105, so that 46 is a quadratic residue modulo 105 with square

root 19. One would represent this as 192 ≡ 46 (mod 105). With the complete factorization,

we can use Gauss’s Quadratic Reciprocity Law to analyze 46 modulo 3,5, and 7 to determine

whether or not 46 is a quadratic residue modulo 105 without actually having to find its square

root first [8].

Therefore, factoring large numbers has been a focus of research for a variety of theoretical

reasons.

2.1.2 Cryptographic Applications

One practical application of factorization is public key cryptography. The idea of public key

cryptography is that it is possible to keep a communication secret without having to keep the

key secret. The message is encrypted by one key, which is made public, and is decrypted by

another key, which is kept secret. In the most prevalent public key encryption system, RSA1

[19], the cryptographer chooses a number that is the product of two large prime2 numbers p

and q: N = pq. Then an exponent e is chosen such that e is relatively prime to (p−1)(q−1).

Although there are several variations, in the normal public key version, N and e are made

public. The user of the RSA system then privately calculates d, the inverse of e modulo

(p− 1)(q− 1). Anyone is able to encrypt something to him by raising blocks of the message

to the power e, modulo N: c ≡ me (mod N), where m is the original message and c is the

encrypted message. Then, the recipient is able to decrypt by evaluating m ≡ cd (mod N)

[19].

1RSA is named after Rivest, Shamir, and Adleman. It was earlier developed by Clifford Cooks of GCHQ,
but this was only recently declassified [5].

2Usually, these are just numbers that pass several primality tests and thus have a high probability of
being prime, called pseudo-primes. Very rarely, one of them will not be, but this is rare enough to not cause
significant problems.
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Example 3.

p = 4327, q = 1009, N = pq = 4365943

e = 2005

and from this the cryptographer would use p, q and e to calculate d = 865597. He would

make N and e public. Suppose someone wants to send him the message 809.

The sender would evaluate 8092005 (mod N) as 1591327. This would be sent over the

internet.

The receiving computer would then evaluate 1591327865597 (mod N) as 809. Since this is

the only computer with access to d, anyone else intercepting the message would have great

difficulty in determining the message

Another application of public key cryptography is for signatures. If the sender uses

his private key to encrypt a message, the receiver may use the public key to decrypt the

message and be certain of who the message originated from and that no one along the way

has modified it. Often this is combined with a second layer of encryption to prevent anyone

else from also being able to use the public key to read the message.

As long as someone intercepting a message is unable to factor N , it is usually impossible

to obtain d, so that the message cannot be broken. The security of RSA and its variations

depends highly on whether or not N can be factored [24]. Although extremely fast factor-

ization would be a threat to these systems, the advances in number theory produced by

faster factorization would likely provide a number of alternative secure systems. Also, in

addition to the potential for alternative secure systems, there is the strong possibility that

fast factorization algorithms will work better for some numbers than others. If there are

classes of numbers that a faster factorization algorithm does not work on, this would en-

able designers of the algorithm to increase their security by relying more on these numbers.

Regardless of whether or not the algorithm works for all numbers or provides alternative

systems, for security purposes it is necessary to understand the strengths and weaknesses of

the algorithm.
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2.1.3 Runtime Analysis

Up to this point we have referred to the speed of factorization in general terms, but there are

several different ways to classify the speed of an algorithm. Let N be the number to factor.

Let n be the number of bits in N , n = log2N . An algorithm’s run time is called exponential

if it increases exponentially with the size of the input, in this case n. Linear refers to an

algorithm where the time increases proportionally to the number of bits3. Polynomial refers

to an algorithm for which the time required is some polynomial function of n. Thus, linear

time is a special case of polynomial time. There are some algorithms that fall in between

polynomial and exponential time and are referred to as sub-exponential.

Note that different algorithms may be faster for different sizes of numbers or even for

different systems. This is why the runtime is analyzed in terms of growth. For small values

of n, linear and exponential may be fairly close or linear may even be faster, but the runtime

of an exponential algorithm will grow faster with the size of n, so that for sufficiently large

n, an exponential algorithm will be slower than a sub-exponential, which will be faster than

a polynomial, which will be faster than a linear.

The runtimes for sub-exponential algorithms are described by complicated formulas. De-

fine

L(α, c) = exp(cnα(log n)1−α))

If α = 1, this is an exponential algorithm. If α = 0, this is a polynomial algorithm. For

values of α in between 0 and 1, the algorithms are sub-exponential.

In terms of asymptotic average runtime, the best general purpose factorization algorithm

is the general number field sieve, with a runtime4 of L(1/3, 4
32/3 + o(1)) [6]. Two other

algorithms are currently in common use, the elliptic curve method, which has a runtime of

L(1/2, 1 + o(1)) [13] and the multiple polynomial quadratic sieve, which has a runtime of

3Since n = log2 N , so that such a runtime is logarithmic in N , this is often referred to as logarithmic,
resulting in a certain amount of confusion. Note that both ways of expressing runtime will be used in this
paper.

4The expression o(1) is little o notation. It converges to 0 as n goes to infinity. An understanding of little
o notation is not important for understanding this report.
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L(1/2, 1) [16]. Although each of these algorithms is slower on average, they are each faster

for some types of integers, so that in combination they tend to be faster than the number

field sieve.

Another less commonly considered characteristic of a factorization algorithm is the effi-

ciency with which it can use multiple processors working simultaneously. The current trend

in ultra-fast computing is to use a large number of inexpensive processors instead of a single

expensive processor. Given this trend, it is important that a good algorithm be able to use

a multiple processor system efficiently. Dividing a single task between multiple processors is

called parallelization. With perfect efficiency, factoring a number with 10 processors should

take on average one tenth the time required for factorization on a single processor, but no

algorithm can ever quite attain perfect efficiency.

2.2 Basic Number Theory

Mathematics is the Queen of the sciences, and arithmetic the Queen of mathe-

matics.

C. F. Gauss [25]

This section provides a quick overview of basic number theory concepts and notation

that will be used throughout this report. Those already familiar with number theory are

welcome to skip this section, as none of this is original and may be found in any standard

number theory text [10].

Number theory analyzes sets of numbers. If an element e is in a set S, this is written

e ∈ S. If an element e is not in a set S, this is written e 6∈ S. If all the elements in set S1 are

in set S2, then S1 is contained in set S2 and this is written S1 ⊂ S2. If S1 ⊂ S2 and S2 ⊂ S1,

then S1 = S2.

The set of all real numbers is denoted R. Although this set will be important, it is

primarily several special subsets of the real numbers that this research will focus on:
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The first subset of the real numbers is the set of integers, represented as Z.

Z = {...− 3,−2,−1, 0, 1, 2, 3...}.

The natural numbers are the integers ≥ 1. The operations on the integers are the standard

addition and multiplication. Addition has the usual four basic properties: associativity,

commutativity, identity, and inverses.

Multiplication has three basic properties: associativity, commutativity, and identity.

One other property, distributivity, involves both addition and multiplication:

a · (b+ c) = ab+ ac.

There are several other relations that are important in Z. A natural number a divides

an integer b if there exists an integer k such that b = ka and this is written a | b. If a does

not divide b, this is written a - b. A natural number > 1 is prime if it may only be divided

by itself and 1. There are several basic properties of this relation:

If a | b and b | a, then a = b.

If a | b and a | c, then a | (b+ c).

If a | b, then a | bc.

If a is prime and a | bc, then a | b or a | c.

If for some integer n and a prime p, pn | b, but pn+1 - b, this is written pn ‖ b.

c is the greatest common divisor of a and b if c > 0, c | a, c | b, and for any integer d such

that d | a and d | b, d | c. This is written c = gcd(a, b) or sometimes (although not in this

report) as merely (a, b).

Two integers a and b are relatively prime if gcd(a, b) = 1, that is, if a and b have no factor

in common.

If p,m, n are integers with p prime such that pm ‖ a and pn ‖ b, then pmin(m,n) ‖

gcd(a, b).

If c = gcd(a, b), there exist integers x, y ∈ Z such that ax+ by = c. gcd(a, b), along with

these two integers, may be efficiently calculated using Euclid’s extended algorithm.

c is the least common multiple of a and b if c > 0, a | c, b | c, and for any integer d such
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that a | d and b | d, c | d. This is written c = lcm(a, b) or sometimes merely as {a, b}. If

p,m, n are integers with p prime such that pm ‖ a and pn ‖ b, then pmax(m,n) ‖ lcm(a, b).

The gcd and lcm are related by the formula gcd(a, b) · lcm(a, b) = ab.

If c | (a− b), then we say that a is congruent to b modulo c, written a ≡ b (mod c). This

relation has several basic properties:

If a ≡ b (mod n), then b ≡ a (mod n).

If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

If a ≡ b (mod n) and c ≡ d (mod n), then a + b ≡ c + d (mod n) and ac ≡ bd

(mod n).

By using Euclid’s extended algorithm to compute greatest common divisors, for a rela-

tively prime to b it is possible to calculate a−1 (mod b). Thus, division modulo b is defined

as reducing to least terms and then multiplying by the inverse.

One important type of number is a quadratic residue. The integer a is a quadratic residue

of integer base b if there exists some integer x such that x2 ≡ a (mod b). For example, 2 is

a quadratic residue of 7 because 32 = 9 ≡ 2 (mod 7). The symbol used is
(

a
b

)
.

(
a
b

)
= 1 if

x2 ≡ a (mod b) has a solution, −1 if it does not, and 0 if a and b are not relatively prime. If

a is a quadratic residue of b and a is a quadratic residue of c and b and c are relatively prime,

then a is a quadratic residue of bc. Gauss’s Quadratic Reciprocity Law provides a fast way

of determining quadratic residues modulo a base whose prime factorization is known:

Theorem 2.2.1. For p and q distinct primes:

(
p

q

)
(
q

p
) = (−1)(p−1)(q−1)/4

(
2

p

)
= (−1)(p2−1)/8

(
−1

p

)
= (−1)(p−1)/2

There are many other well-known properties concerning congruences. For example, “Fer-

mat’s little theorem”: for p prime and a an integer if p - a, then ap−1 ≡ 1 (mod p). This

is often used to test whether not an integer N is prime. (If for some a < N , aN−1 6≡ 1
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(mod N), then N is not prime. However, there are infinitely many composite numbers that

will appear prime for any a such that gcd(a,N) = 1, so the converse is not necessarily true

[1].)

In Z, inverses are not defined for multiplication. However, this question brings us to the

set of rational numbers, represented as Q.

Q = {a/b : a, b ∈ Z, b 6= 0}

All of the properties for addition and multiplication in Z still apply, in addition to one

more:

If a ∈ Q and a 6= 0, then there exists a unique integer b such that a · b = 1. This

is written as a−1 or 1/a.

Let α denote a real or complex number not belonging to Q. Denote the set of all finite

linear combinations with integer coefficients of all the non-negative powers of α by,

Z[α] = {a0 + a1α+ a2α
2 + a3α

3 + ... : ai ∈ Z}.

For example, if α =
√

2, then Z[
√

2] contains 5+3
√

2 and 4−2
√

2, but does not contain 3√
2
.

Alternately, the new set could be the set of all linear combinations of all the powers of

α. That is,

Q(α) = {...a−2α
−2 + a−1α

−1 + a0 + a1α+ a2α
2 + ... : ai ∈ Q}

For example, Q(
√

2) contains both 3 +
√

2 and 4 + 2√
2
, but does not contain

√
3.

For an element ζ in either of the sets Z[
√
N ] and Q(

√
N), ζ refers to the conjugate of ζ,

which is found by changing the sign of the algebraic part. For example, if ζ = 1 +
√

3, then

ζ = 1−
√

3.

The norm of ζ is N (ζ) = ζζ.
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2.3 Quadratic Field Number Theory

This section introduces four areas of mathematics that this research has focused on: con-

tinued fractions, quadratic forms, ideals, and lattices. These areas are closely related and

therefore have the same property of being periodic. See the appendices for a more detailed

analysis of each of these topics, along with related proofs and an analysis of their connections.

1. A continued fraction is a tool originally used for rational approximation. Given a

number α, the goal is to represent α in the form

α = b0 +
1

b1 + 1
b2+...

for integers bi. This is often abbreviated as [b0, b1, b2, ...]. The expressions found by

truncating this, b0, [b0, b1], [b0, b1, b2], ... are called the convergents. These simplify down

to rational numbers An/Bn.

The sequence of bi’s is found by the recursive formulas

x0 = α, b0 = bx0c (2.1)

∀i ≥ 1 xi =
1

xi−1 − bi−1

, bi = bxic (2.2)

Note that this formula is derived by solving the equation xi−1 = bi−1 + 1
xi

for xi. bxc

refers to the floor of x, the greatest integer less than or equal to x.

If x0 =
√
N for N a non-square integer (that is, not the square of another integer), then

this sequence may be calculated efficiently. In particular, each xi reduces to the form
√

N+P
Q

with P and Q integers. The integer P in the numerator is called the residue.

The denominator Q is called a pseudo-square. There are formulas to calculate these

recursively, after the first several steps, without doing arithmetic on any integer larger

than
√
N :
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bi =

⌊
b
√
Nc+ Pi−1

Qi

⌋
Pi = biQi − Pi−1 Qi+1 = Qi−1 + bi(Pi−1 − Pi) (2.3)

The rational approximation produced may also be evaluated recursively, so that the

integers Ai and Bi such that Ai/Bi = [b0, b1, ...bi] may be calculated efficiently. For

factorization, the relation

A2
i−1 ≡ (−1)iQi (mod N) (2.4)

has been important for several algorithms. This equation also explains the name

‘pseudo-square’.

Take the following example:

Example 4.

x0 =
√

41, b0 = 6
√

41 = 6 + 1
x1

x1 = 1
x0−b0

= 1√
41−6

=
√

41+6
5

, b1 = 2
√

41 = 6 + 1
2+ 1

x2

x2 = 1
x1−b1

= 5√
41−4

=
√

41+4
5

, b2 = 2
√

41 = 6 + 1
2+ 1

2+ 1
x3

x3 = 1
x2−b2

= 5√
41−6

=
√

41+6
1

, b3 = 12
√

41 = 6 + 1
2+ 1

2+ 1

12+ 1
x4

At this point it is evident that x4 = x1 and the sequence is periodic. This always

occurs with the continued fraction expansion for
√
N for N non-square. The length of

this period is closely related to several deep number theory ideas involving the class

number and the regulator.

A more thorough explanation of continued fractions, including detailed proofs is given

in Appendix A.1.

2. A binary quadratic form is a polynomial of the form F (x, y) = ax2 + bxy + cy2, for

a, b, c ∈ Z. (Often this is abbreviated5 as (a, b, c)).

5As b is usually even, many writings on quadratic forms represent this as the triplet (a, b/2, c), so that
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Two quadratic forms are equivalent if they have the same range, the set of possible

values for F (x, y) for integer values of x and y, written F1 ∼ F2. Appendix A.2 gives

a more precise description of equivalence. The surprising fact is that two quadratic

forms are equivalent if and only if they correspond to terms from the same continued

fraction expansion (Theorem A.2.4 in Appendix A.2), so that the cycle formed by the

xi’s used to compute continued fractions corresponds to a cycle of equivalent quadratic

forms.

The primary operation on quadratic forms is composition. This operation is defined in

detail in Appendix A.2, Proposition 2. The composition of two binary quadratic forms

is another binary quadratic form, written with the symbol (∗). Note that although

the original definition of this operation is related to multiplication, this is an operation

that is quite distinct from multiplication, as the product of two binary quadratic forms

is no longer a binary quadratic form.

Equivalence and composition are closely related. Specifically, if F1 ∼ F2, then F1 ∗G ∼

F2 ∗ G. The cycles of equivalent forms are the elements of the class group, which has

been studied extensively.

A more thorough explanation of quadratic forms is given in Appendix A.2.

3. A lattice is the set of all finite linear combinations (with integer coefficients) of a

generating set that contains a vector space basis for the rational vector space the lattice

is contained in. For this research, the ambient vector space is Q(
√
N) × Q(

√
N). If

α1, α2, ..., αk ∈ Q(
√
N)×Q(

√
N) are vectors, then

[α1, α2, ..., αk] =

{
k∑

i=1

niαi : ni ∈ Z

}
is a lattice.

The notation is often abused slightly, so that the vector 〈ζ, ζ〉 is represented by just ζ.

−14x2+10xy+5y2 would be represented (−14, 5, 5). This report does not take out this factor of 2. Although
this will be clear throughout this report, please observe the potential for confusion on this “annoying little
2 [2]” when comparing different sources on quadratic forms.
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There are several properties of lattices that are important for this research.

Definition 2.3.1. For a vector v = 〈v1, v2〉, the normed body of v, R(v) is the set

R(v) = {〈x1, x2〉 : x1, x2 ∈ R, |x1| < |v1|, |x2| < |v2|}

Abusing notation again, denote R(ξ) = R(〈ξ, ξ〉).

A number ξ (or actually the corresponding vector) is a minimum of L ifR(ξ)∩L = {0},

where 0 is the vector 〈0, 0〉. Figure 2.1 provides an example of this.

A lattice L is reduced if 1 ∈ L and 1 is a minimum.

6

-

ru rw
rrr rr rr rv r

Figure 2.1: A Lattice with Minima

The image above demonstrates minima of a lattice. The lattice is the set of points.

Each of the points u, v, and w are minima of this lattice, since there are no points of

the lattice inside their respective normed bodies (the rectangles) except the origin.

Another important characteristic of minima is adjacency. If 〈x1, y1〉 and 〈x2, y2〉 are

minima with |x1| > |x2| and |y1| < |y2|, these two minima are adjacent if there does

not exist another minima 〈x3, y3〉 such that |x2| < |x3| < |x1| and |y1| < |y3| < |y2|. In

Figure 2.1, u and v are adjacent minima and v and w are adjacent minima.

The important connection between lattices and continued fractions is a method devel-

oped by Voronoi for finding a chain of adjacent minima for a lattice (and a chain of
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other reduced lattices). This process matches the continued fraction algorithm exactly,

a property that implies that the distance derived from lattices also applies to continued

fractions and quadratic forms.

A more thorough description of lattices is given in Appendix A.4.

4. An ideal is a common algebra concept that is used in a variety of contexts. For a ring

S , a set I is an ideal of S if

I ⊂ S.

If a, b ∈ I, then a+ b ∈ I and a− b ∈ I.

If a ∈ I and s ∈ S, then a · s ∈ I.

A classic example is the set of all even integers, 2Z, within the set Z of all integers.

The sum of two even integers is still an even integer and the product of an even integer

with any integer is an even integer.

This analysis focuses on ideals of Z[
√
N ], for N a non-square positive integer. Describ-

ing these ideals will again require the notation for the lattice generated by a set. With

this notation the ideals of Z[
√
N ] are of the form [Q, s

√
N+P ], for some integers Q, s, P

and a set I = [Q, s
√
N + P ] is an ideal of Z[

√
N ] if and only if sQ | N (s

√
N + P ),

s | Q, and s | P (Appendix A.3, Lemma A.3.2). An ideal is primitive if s = 1.

The multiplication of ideals is important to many fields. For the ideals I = [Q,
√
N+P ]

and J = [Q′,
√
N + P ′],

I · J = [QQ′, Q
√
N +QP ′, Q′

√
N +Q′P, (

√
N + P )(

√
N + P )]

This may then be simplified to reduce it to an ideal of the form s[q,
√
N + p], where s,

q, and p may be calculated efficiently.
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The quadratic form (of discriminant ∆ ≡ 0 (mod 4)) F (x, y) = Ax2 + Bxy + Cy2

corresponds to the ideal

A,
√(

B

2

)2

− AC +
B

2


and similarly the ideal [Q,

√
N + P ] corresponds to the quadratic form

F (x, y) = Qx2 + 2Pxy +

(
P 2 −N
Q

)
y2

Note that ∆ = 4N .

The value of ideals is that the equations defining multiplication of ideals correspond

exactly to the equation defining composition of quadratic forms, providing a connection

between quadratic forms and lattices. A more thorough description of ideals is given

in Appendix A.3.

The appendices also describe the one to one correspondence between the elements of these

different sets. For this paper, it is sufficient to understand that these maps do exist, that

is, each term in the continued fraction expansion is paired with exactly one quadratic form,

exactly one lattice, and exactly one ideal and given any one, any of these four expressions

may be calculated immediately. The indices derived from continued fractions are typically

also used for the related quadratic forms, ideals, and lattices.

As all of these tools are closely related, they all have the property of being periodic, as

demonstrated by Example 4. The reason for this is that the bounds on the coefficients of a

reduced quadratic form (Definition A.2.1) imply that there can only be a finite number of

them. Since the recursive formulas (2.3) provide a way of getting from one reduced quadratic

form to the next, this process must eventually repeat and thus be periodic. The length of

this period is equal to the regulator of the class group and is related to many other number

theory concepts ([12], [20]).
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If the continued fraction expansion is started with something other than x0 =
√
N , the

result may be a sequence that is completely disjoint from the principal cycle (the sequence

that begins with x0 =
√
N). Most of these cycles are symmetric6. Lemma A.1.6 and Theorem

A.1.7 provide a thorough definition and analysis of these symmetries, but the concept can

be readily understood from several examples:

Example 5. In Example 4, the period of the denominators was 1, 5, 5, 1, ..., so that 1 and 5

are both symmetry points. If x0 =
√

115, then the period of the denominators is

1, 15, 6, 11, 9, 10, 9, 11, 6, 15, 1, ...

so that the symmetry points are 1 and 10.

If instead x0 =
√

115+9
2

, then the period of the denominators is

2, 17, 3, 5, 3, 17, 2, ...

This is a different cycle for the class group for N = 115.

These are the cycles that are important for factorization.

The square of a quadratic form in the principal cycle is also in the principal cycle and

Theorem A.2.8 shows that the square of a form in any ambiguous cycle is also in the principle

cycle. This property enables a variety of methods of finding points in ambiguous cycles other

than the principal cycle.

6The non-symmetric cycles are not analyzed in this paper.
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Chapter 3

History: From Morrison and Brillhart

to Present

3.1 Before Shanks

In 1931, D. H. Lehmer and R. E. Powers [11] introduced one simple and fairly intuitive

algorithm for using continued fractions for factorization. Unfortunately, as it had the frus-

trating tendency to fail a few times before succeeding, it was dropped. However, as better

computing capabilities became available, John Brillhart began to consider that although

this algorithm was cumbersome for smaller numbers, it might have an advantage for larger

numbers. In 1970, Morrison and Brillhart implemented CFRAC, as it became known, and

tried to factor a 39 digit number [15]. The entire algorithm is a bit more complicated, but

here is a description sufficient for our purposes.

If the equation

x2 ≡ y2 (mod N) (3.1)

can be solved such that

x 6≡ ±y (mod N), (3.2)
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then gcd(x−y,N) provides a nontrivial factor of N . Choosing a value for x and then looking

for a value for y that satisfies equations (3.1) and (3.2) is not computationally effective for

large N . Fermat, the first to employ this concept, tested values of x greater than
√
N to

find a value such that x2 (mod N) was already a perfect square. However, these numbers

get large quickly. Continued fractions provide another approach to achieving this and since

0 < Qi < 2
√
N , the chances of finding a perfect square are greatly improved. From (2.4),

A2
i−1 ≡ (−1)iQi (mod N). If for some i, Q2i is a perfect square then this provides a solution

to (3.1) and it only remains to check whether or not gcd(x+ y,N) or gcd(x− y,N) provide

a nontrivial factor of N . However, there are not very many perfect squares in the continued

fraction expansion so Morrison and Brillhart [15] used products to obtain squares. For

example, for N = 1333, the continued fraction expansion provides 732 ≡ −3 (mod N) and

17892 ≡ −12 (mod N). From this, (73·1789)2 ≡ (−3)(−12) = 62 (mod N), quickly yielding

gcd(73 · 1789− 6, 1333) = 43, so that 1333 = 31 · 43.

There are two problems with this algorithm. First, it requires the calculation of the

Ai’s, which are of the same size as N , after reduction modulo N , while the rest of the

algorithm only requires arithmetic on numbers of size
√
N . Second, after going through a

nontrivial amount of computation to find a relation that solves (3.1), not all of these result

in a factorization. I provide one example:

Example 6. In the continued fraction for
√

1333, Q6 = 9 = 32 and A5 = 10661, so that

106612 ≡ 32 (mod 1333). Unfortunately 10661 ≡ −3 (mod 1333), so this square does not

result in a nontrivial factor of 1333.

3.2 Shanks’ Work

In 1975, Daniel Shanks developed several very interesting algorithms for factorization ([22],[23])

based on an understanding of quadratic forms and the class group infrastructure. First he de-

veloped an improvement to the Morrison-Brillhart algorithm. Roughly speaking, rather then

saving the Ai’s, he was able to use composition of quadratic forms to combine numbers to

produce squares and then use the “infrastructure” to use those squares to find a factorization.
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In addition, he developed from the concept of infrastructure a system of predicting whether

or not any given square would provide a nontrivial factor. Unfortunately, this didn’t save

very much time and was a much more complicated algorithm than the Morrison-Brillhart

algorithm.

From here the development of the algorithm was prompted by the number 260+230−1. It

failed a Fermat primality test1, but when Morrison and Brillhart tried to factor it, it failed 114

times. Therefore, they stopped, multiplied it by some small constant and tried again. This

time it worked on the first try, but they wanted to know why it had failed so many times.

So they asked Shanks to analyze it. Unfortunately (or fortunately in hindsight), Shanks

only had an HP-65 available and he couldn’t fit his entire algorithm into it. Therefore, he

discarded all the work of combining numbers to form squares and just cycled through until

he found one already there. The code for this was much shorter, and as it turned out the

algorithm, which became known as Square Forms Factorization or SQUFOF, was actually

significantly faster. Here’s how it works:

The continued fraction cycles contain symmetry points that potentially provide a fac-

torization for N . The goal of SQUFOF and any related algorithms is to search for these

symmetry points. SQUFOF, described in Figure 3.1, provides a fairly simple way of achiev-

ing this. The basic version searches the sequence in order until it finds a perfect square on

an even index. Then it takes the square root of the denominator and the conjugate of the

numerator (effectively switching cycles and changing direction) and continues cycling until

it finds the symmetry point, which is indicated by a repeated numerator. At this point Pi

at this point must then have a factor in common with the Qi+1. Since N = P 2
i + QiQi+1,

this repeated numerator provides the factor for N .

Example 7. Let N be 1353:

1The Fermat primality test is based on Fermat’s classical result that for p prime, ap ≡ a (mod p) [10].
Equivalently, if aN 6≡ a (mod N) for some integer a, then N isn’t prime.
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Given N to be factored:

x0 ←
√
N b0 ← bx0c

while Qi 6= perfect square
Apply equation(2.2) twice

Reduce xi to the form
√

N−Pi

Qi

x′0 ←
√

N+Pi√
Qi

while Pi 6= Pi−1

Apply equation (2.2) and reduce

gcd(N,Pi), the greatest common
divisor, is a nontrivial factor.

Figure 3.1: SQUFOF without Composition

x0 =
√

1353 b0 = 36

x1 =
1√

1353− 36
=

√
1353 + 36

57
= 1 +

√
1353− 21

57

x2 =
57√

1353− 21
=

√
1353 + 21

16
= 3 +

√
1353− 27

16
(3.3)

The second fraction in each step is found by rationalizing. At each step, the integers

taken out are bi and the remaining fractions are between 0 and 1. After subtracting bi the

remaining fraction is inverted to find xi+1. As a point of reference, we have approximated

so far that
√

1353 ≈ 36 + 1
1+ 1

3

. SQUFOF stops here because 16 is a perfect square. Taking

the conjugate of the numerator and the square root of the denominator, we obtain:

x′0 =

√
1353 + 27

4
= 15 +

√
1353− 33

4

x′1 =
4√

1353− 33
=

√
1353 + 33

66
= 1 +

√
1353− 33

66
(3.4)

Here, since the residue 33 is repeated, we quickly find that 33 is a factor of 1353. 1353 =

33 · 41 = 3 · 11 · 41.
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Shanks developed Square Forms Factorization, or SQUFOF, based on a concept called

the infrastructure of the class group. This refers to the relationship between distance and

composition. Define the distance from Fm to Fn by:

D(Fm, Fn) = log(
n∏

k=m+1

xk) (3.5)

where xk are the corresponding terms in the continued fraction expansion. Since distance

is the log of the product of the terms in between, roughly speaking, distance is nearly

proportional to the difference in indices. Then the location of the form resulting from the

composition of two quadratic forms is controlled by:

D(F1 ∗G1, Fn ∗Gm) = D(F1, Fn) +D(G1, Gn) + ζ (3.6)

where ζ is small2. This formula is proven in the arguments leading up to Theorem A.5.2.

By equation (3.6), the distance from a symmetry point is doubled when a quadratic form

is squared, so that the square root of a quadratic form is half the distance from a symmetry

point as the original quadratic form. The change made to the continued fraction expansion

upon the occurrence of a perfect square corresponds exactly to taking the square root of

a quadratic form and reversing its direction, so that in the second phase (after the change

in sequence is made) the algorithm is going backwards on a different cycle. The distance

covered from making this change until obtaining the symmetry point will be one half the

distance covered before finding this square. Since this distance may be known as well as

necessary, it is possibly to use some of the quadratic forms found along the way to shorten

this return.

Formally, here is the version of Square Forms Factorization that Shanks intended:

2The bound for ζ is proportional to log log N while the two distances on the right side of the formula
have a bound proportional to log N , so ζ is usually negligible, although it may be calculated if necessary.
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Given N to be factored:

Q0 ← 1, P0 ← b
√
Nc, Q1 ← N − P 2

0

r ← b
√
Nc

while Qi 6= perfect square for some i even

bi ←
⌊

r+Pi−1

Qi

⌋
Pi ← biQi − Pi−1

Qi+1 ← Qi−1 + bi(Pi−1 − Pi)
if i = 2n for some n

Store (Qi, 2 · Pi) F0 = (
√
Qi, 2 · Pi−1,

P 2
i−1−N

Qi
)

Compose F0 with stored forms according to the
binary representation of i/2 and store result to F0.
F0 = (A,B,C)
Q0 ← |A|, P0 ← B/2, Q1 ← |C|
q0 ← Q1, p0 ← P0, q1 ← Q0

while Pi 6= Pi−1 and pi 6= pi−1

Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)
If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .
If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

Figure 3.2: SQUFOF with Composition

Note that it is faster to approximate roughly which quadratic forms are needed to find

the symmetry point than to actually calculate the distance exactly. The result is that after

this composition, the quadratic form is close to the symmetry point but not exactly on it.

In the last while loop, the search for the symmetry point has to be made in both directions,

but this search is typically very short. The only forms that need to be stored are those with

an index that is a power of two.

For example, if a square were found on step 56, there should be roughly 28 steps backward

in the second phase. If after taking the square root and reversing the direction, F0 is

composed with the quadratic form with index 16, the form with index 8, and the form with

index 4, the result will be very close to the symmetry point.
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3.3 After Shanks

Shanks died in 1996 leaving several papers on Square Forms Factorization in unpublished

form [27]. These were incomplete and contained very few proofs. However, Shanks suggests

he had proofs. In his main paper, for example, he states that SQUFOF has an average

runtime of O( 4
√
N) and says this will be proven later. Since the paper was not complete, it

may never be known whether or not Shanks possessed a proof of this critical detail.

Although Shanks did not publish his work, it has been picked up by several people.

Williams [26], in 1985, provides a description of SQUFOF based on ideals and lattices.

Williams demonstrates how continued fractions can be seen as an intuitive extension of the

theory of lattice minima (§4) and uses lattices to connect composition with distance (§6).

Williams went further by generalizing these results complex cubic fields. Riesel [18], also in

1985, gives a good exposition of SQUFOF using the theory of continued fractions. Buell [2],

in 1989, provides a thorough analysis of quadratic forms and gives a description of SQUFOF.

Recently, the thesis of Jason Gower in [9] discussed the runtime analysis of SQUFOF and

Shanks’ belief that the expected runtime is O( 4
√
N) = L(1, 1/4). Jason Gower provides a

good description of continued fractions, quadratic forms, and the basic SQUFOF algorithm.

He also did some research and experiments on the use of a multiplier and discovered that

it could be an effective method to accelerate the algorithm. His analysis of the runtimes is

based on the distribution of square forms through the ambiguous cycles and is supported by

extensive data. This work was completed in December of 2004.

However, although much of the theory about SQUFOF was known, some of it was not

and most of it was very scattered with few proofs. Until now, no complete explanation of why

SQUFOF works had been published. Therefore, in the appendices I have compiled all of this

information and provided proofs and examples. I first analyzed continued fractions, showing

that taking the conjugate of the numerator provide a new and intuitive explanation of the
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reversal of direction (Lemmas A.1.3 - A.1.4). This understanding then provides immediate

results about the periodicity and symmetries of the cycles (Lemmas A.1.5 - A.1.7). These

symmetry points correspond to symmetry points in the quadratic form cycle (Lemma A.2.6).

The fact that the square of any ambiguous cycle is the principal cycle is of fundamental

importance to SQUFOF and is proved in Theorem A.2.8. This result was probably under-

stood by Shanks, but apparently never stated explicitly. This fact implies that after taking

the square root of a quadratic form in the principal cycle the result is in an ambiguous cycle

so that there will be a symmetry point.

The application of ideals to quadratic forms required a slight generalization to the stan-

dard description of ideals (Lemma A.3.2). This slight extra generality allows a proof that

multiplication of ideals corresponds to composition of quadratic forms. The well-known re-

sult about the multiplication of ideals was also generalized slightly (A.3.3) so that the case

of quadratic forms with discriminant ≡ 1 (mod 4) could be handled without working in

Z
[√

N+1
2

]
. The connection between lattice reduction and continued fraction reduction also

shows that a distance for reduction may be computed (Lemma A.5.1).

Theorem A.5.2 relates composition of quadratic forms with distance and is a generaliza-

tion of the distance formula provided by Williams in [26]. This generalization is essential for

SQUFOF as it relates distances in different non-principal cycles with composition. Lemma

A.5.3, which relates the entire distance around different cycles, is proved based on this. With

these facts, it is possible to prove that the distance traveled in the non-principal cycle before

finding a symmetry point will be one half of the distance traveled in the principal cycle to

find the square form.

Appendix A.6 provides a complete description of Square Forms Factorization, including

an explanation of why Shanks was able to know whether or not a square was proper and an

explanation of what Shanks referred to as Fast Return. Fast Return, an idea that is typically

not implemented with SQUFOF, uses composition to significantly speed up the second phase



33

of the algorithm.
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Chapter 4

Computer Based Experiments

Appendix B includes the C implementation of SQUFOF with Fast Return. These algo-

rithms have also been implemented in Magma. These have both been tested extensively

for functionality. The runtimes have also been compared to elliptic curve method, multiple

polynomial quadratic sieve, and the number field sieve. Although a thorough comparison of

SQUFOF with other algorithms has not been done, it is fairly clear that on a single computer

SQUFOF is slower than elliptic curves, the number field sieve, or the multiple polynomial

quadratic sieve for most numbers. However, there have been several other areas that have

been researched. It has been conjectured by Pomerance [17] that a parallel implementation

of SQUFOF would be competitive. This area of research provided some valuable insights

into these algorithms.

4.1 Two Parallel Implementations

The current trend in ultra-fast computing is to use a large number of inexpensive processors

instead of a single expensive processor [7]. With the large amount of computation required

for factorization, the efficiency of a parallel implementation is especially important for these

algorithms. In 1982, Shanks and Cohen attempted a parallelization by having multiple pro-



35

cessors attempt to factor N , 3N , 5N , etc. Gower’s recent Ph.D. thesis (under Dr. Wagstaff)

[9] analyzed the use of multipliers and found them to be effective in general but didn’t provide

much evidence on their efficiency for parallelization.

Parallelization by multipliers has been implemented in C using the MPI library for the

purpose of runtime comparison and is included in Appendix B.

This research has discovered that composition of quadratic forms provide a different

possible approach to parallelization. By computing a quadratic form several steps into the

cycle and squaring it a reasonable1 number of times, a quadratic form far out into the cycle

can be found. Call it F . The first processor may be assigned to search this segment for a

perfect square. The next processor can search from F to F 2, the next from F 2 to F 3, etc.

Each of these segments will be roughly equal sizes. When a processor finds a perfect square,

it may use the quadratic forms involved in computing its segment in order to come close to

the symmetry point. Specifically, this last step is made easier if the starting point of the

segment is found by squaring. In pseudo-code:

Given N to be factored:

r ← b
√
Nc

F0 ← (1, 2r,N − r2)
Cycle F0 several steps forward.
for i = 1 to size (size is the logarithmic size of a segment.)

Fi ← Fi−1 ∗ Fi−1

Processor 0:
Assign one processor to search from F0 to Fsize.
Fstart ← Fsize

Fend ← F 2
size

FrootS ← Fsize−1

FrootE ← Fsize

Fstep ← Fsize−1

while A factor hasn’t been found
Wait for a processor to be free and send Fstart, Fend, and FrootS.
Fstart ← Fend

FrootS ← FrootE

1Empirically, 20-30 times works well. This parameter isn’t critical.
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FrootE ← FrootE ∗ Fstep

Fend ← F 2
rootE

Processor n:
Receive Fstart, Fend, and FrootS

count ← 0
F0 = (A,B,C)
while A factor is not found and Fstart 6= Fend

Cycle Fstart forward 2 steps.
count ← count+1
if A is a perfect square

Ftest ← F
−1/2
start

Ftest ← Ftest ∗ FrootS

for j = size to 1 (This loop composes Ftest with the necessary
if count > 2j forms to bring it close to the symmetry point.)
Ftest ← Ftest ∗ Fj

count ← count −2j

Search in both directions from Ftest for a symmetry point.
if Factorization found at symmetry point, output and quit.

if A factor is still not found
Receive new Fstart, Fend, and FrootS and start over.

Figure 4.1: Parallel SQUFOF

Since there is no overlap between the segments searched by the processors and since

the perfect squares are, apparently, distributed randomly, this parallelization should be ex-

tremely efficient. The size of the segments is determined by how far the first for loop

goes. There are only two hazards when choosing this. If the segment size is too small, the

processors will finish their segments so quickly that receiving new segments will become a

bottleneck. Alternately, if the segments are too long, the processors may divide up more

than the entire cycle, so that there is overlap. However, except for rare numbers that will

factor trivially fast regardless, there is significant room in between these two bounds.

This parallel version has been implemented in C using the MPI library. The code is

included in Appendix B.
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There are several characteristics of these algorithms that were analyzed in this compar-

ison. The test integers were all products of randomly chosen primes of roughly equal size

generated by Magma. 80 bit, 100 bit and 120 bit integers were all tested on 20, 30, 40 and

50 processors. This allows an analysis of both how each algorithm is affected by the size of

the integers and how efficiently each algorithm uses an increasing number of processors.

The first comparison is an analysis of which algorithm was faster on a larger number of

the integers. Table 4.1 shows these results.

Processors

20 30 40 50

80 0.39 0.38 0.39 0.30

bits 100 0.37 0.34 0.43 0.40

120 0.35 0.31 0.29 0.39

Table 4.1: % Wins by the Segments Parallelization

The data is clearly showing that parallelization with multipliers is faster than segments

and shows no apparent pattern as to how the size of the integers or the number of the

processors might affect this.

The next comparison is an analysis of the average runtimes. This comparison, demon-

strated in Table 4.2 is a bit more interesting.

Segments Multipliers

Processors: 80 100 120 80 100 120

20 5.04 157.27 5416.97 2.95 82.62 3255.65

Bits 30 3.03 116.76 4287.37 1.95 59.75 2028.72

40 2.53 74.50 2690.76 1.68 52.90 1683.57

50 2.13 77.67 2538.80 1.23 53.60 1287.80

Table 4.2: Comparison of Average Runtimes

A quick survey of this data shows that for the segments parallelization, the average

runtime was cut in half from 20 processors to 40, while the multipliers implementation
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didn’t do quite so well. This can be represented by multiplying each runtime by the number

of processors and then dividing by the mean runtime for that many bits to place all the

results on a single graph:
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Figure 4.2: Segments Efficiency of Parallelization
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Figure 4.3: Multipliers Efficiency of Parallelization

These graphs show that the efficient use of multiple processors for the segments paral-

lelization is roughly unaffected by increasing the number of processors, while the multipliers

parallelization is less efficient at using a larger number of processors. This is the expected

result. As Jason Gower demonstrated in [9], the use of a multiplier can decrease the average
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runtime by an average of 27%. Therefore, for small numbers of processors, using multi-

pliers should immediately cut the average runtime down. However, for larger numbers of

processors, the multipliers available aren’t used as efficiently.

This same trend can be expressed by graphing the ratios of average runtimes:
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Figure 4.4: Ratios of Segments v. Multipliers

Although the data isn’t completely clear, the trend is toward segments being faster than

multipliers if enough processors are used. Based on the ratios, a linear regression predicts

a crossover at 180 processors. However, as larger multipliers are used, the efficiency of the

multipliers should drop off significantly, so the actual crossover will be earlier than that.

Considering that directly, SQUFOF probably has average runtime of O( 4
√
N), and it

appears to use the processors available with near perfect efficiency, the expected runtime

on multiple processors is O( 4
√
N/np), where np is the number of processors. Based on the

data that for 120 bits, the factorization took an average of 31.91 processor hours, it is

then expected that RSA-576, the last RSA challenge number factored, would take 31.91 ∗

2(576−120)/4 = 6.63 ∗ 1035 processor hours. Thus, for example, with 1020 processors, it would

take 6.63 ∗ 1015 hours = 7.57 ∗ 1011 years. Both of these figures are extremely unfeasible.

Therefore, a parallel implementation of SQUFOF will probably never be competitive with

other algorithms.
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4.2 Test of Direction

Based on the symmetry of the cycles of quadratic forms, any fast test to determine whether

or not the continued fraction expansion is in the correct direction, that is, whether or not it

has passed the factorization yet, would provide a faster factorization algorithm by performing

a binary search (Figure 4.5).

Given N to be factored:

Q0 ← 1, P0 ← b
√
Nc

Apply equation (2.2) for 2 steps.
F0 ← (Q2, 2 · P2,−Q3)
i← 0
while Fi is in the right direction

Fi+1 ← Fi ∗ Fi

i← i+ 1
Flast ← Fi−1

while i ≥ 0
if Flast ∗ Fi is in the right direction
Flast ← Flast ∗ Fi

i← i− 1
Search forward from Flast (should be only a couple steps)

to obtain the factorization.

Figure 4.5: Binary Search based on a Test of Direction

Example 8. N = 2035153, Q0 = 1, P0 = 1426

Then, F0 = (1, 2 ·1426,−1677). The square of this form would be itself, so we recursively

step forward a few steps to obtain: F8 = (663, 2774,−168).

This form is squared until it is past the symmetry point:

F8 ∗ F8 = (1569, 1522,−928) = F22

F22 ∗ F22 = (896, 2798,−87) = F44

F44 ∗ F44 = (1648, 1726,−783) = F82
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F82 ∗ F82 = (411, 2104,−2259) is past the symmetry point.

F82 ∗ F44 = (9, 2846,−1136) = F134

F134 ∗ F22 is past the symmetry point.

F134 ∗ F8 = (1153, 1898,−984) = F144

Recursively stepping forward from here, it is quickly found that F147 = (−1008, 2018, 1009)

and F148 = (1009, 2018,−1008). Therefore, 1009 is the symmetry point and 2035153 =

1009 · 2017.

The decisions for this example of whether or not a form was reversed (past the symmetry

point) were determined by merely comparing with the actual continued fraction expansion.

However, ideally this could be done without doing the entire expansion. The function that

determines whether or not a form is reversed is called a test of direction. There were several

possible candidates:

Conjecture 1. If Qi|Qi−1, (Qi)
3 - Qi−1, and Qi is not a power of 2, then the continued fraction

expansion is in the correct direction.

In all other cases, this test provides no information. The condition Qi|Qi−1 does not

occur very frequently, so on its own it cannot provide a useful test of direction. However,

the attempt to explain this empirical pattern has provided several possible alternatives:

First, it is possible to find a multiple k such that in the expansion with Qi unchanged,

Pi replaced by kPi and N replaced by k2N , this condition is met. For notation, let Qi =

Q′
0. Since using −k instead of k produces the same sequence in the opposite direction,

it is necessary to relate this sequence to the original sequence in order to extract useful

information. From this, it has so far been found that if Qi+3|Q′
1 and Q′

0|Q′
−1, then the original

expansion is in the correct direction. Finding multiples such that the second condition is

satisfied can be accomplished by using continued fractions to find the convergents of
√

N−Ri

Q2
i

,

where Ri ≡
√
N ≡ Pi − P 2

i −N

2Pi
(mod Q2

i ).
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This provides a test of direction that returns a result about 2% of the time. This would

potentially provide a polynomial time factorization algorithm, except that the time required

to do this test of direction increases with the size of N .

One other possible test of direction involves reduction distance. After a quadratic form

is squared, it often requires multiple steps in order to reduce to a quadratic form within

the standard bounds. This is referred to as reduction distance. Since the overall distance

from a symmetry point is doubled when a quadratic form is squared, it makes some intuitive

sense that this distance from the nearest symmetry point should be related to this reduction

distance. Empirically, the reduction distance for a quadratic form oriented away from the

nearest symmetry point tends to be shorter. Concerning the conjecture, if Qi | Qi−1, then

the square of (Qi, Pi−1,−Qi−1) is (Q2
i , Pi−1,−Qi−1/Qi) and the reduction distance is 0, so

this would provide an explanation for Conjecture 1.

Empirically, comparing reduction distances is a test of direction that generally works near

the symmetry point, but is inconclusive away from the symmetry point. Thus, one other idea

may be necessary in order to apply this. Using the class number formula [3], it is possible to

approximate what the distance to the symmetry point should be. This approximation may

be able to come close enough to the symmetry point that some combination of the two tests

of direction may be able to provide the necessary information.

4.3 Fast Numbers

The other area of research was whether there were some integers that would factor extremely

fast and whether these would pose a security risk. In general, it seems likely that the numbers

that factor extremely fast are of the form (f 2m+ c)(g2m+ d), where m is “large” and a,b,c,

and d are relatively small. The general conditions on these variables appear to be very

complicated. The simpler special case of p(p+ 2a), for which it is fairly easy to analyze the
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conditions exactly and determine how often this case occurs, provides some indication of the

complexity of this question. Although an exact solution may be developed for any particular

case, for the general case it has so far only been possible to approximate how often these

cases occur.

Proposition 1. Let N = p(p + 2a), where p and a are integers with 0 < a <
√
p. Then the

Square Forms Factorization algorithm will provide a factorization of N on the second step

with runtime O(logN). Specifically, Q2 = a2 and Q1 6= a.

Proof: Let Q0 = 1.

(a− 1)2 < a2 < p < 2p

(a− 1)2 − 2p < 0

p2 + 2ap+ (a− 1)2 − 2p < p2 + 2ap < p2 + 2ap+ a2

(p+ a− 1)2 < N < (p+ a)2

b
√
Nc = p+ a− 1

Therefore, P0 = p+ a− 1 and Q1 = N − P 2
0 = 2p− (a− 1)2. b1 =

⌊
2p+2a−2

2p−(a−1)2

⌋
. Now,

a2 − a− p < 0

p+ a− 1 < 2p− (a− 1)2

2p+2a−2
2p−(a−1)2

< 2

b1 = 1

Therefore, P1 = p− a(a− 1). Q2 =
N−P 2

1

Q1
= 2a2p−a2(a−1)2

2p−(a−1)2
= a2.

If Q1 = a, then 2p − (a − 1)2 = a, so that a = 1±
√

8p−3
2

and 8p − 3 ≡ 5 (mod 8) and is

thus not a perfect square. Since a is an integer, this is then impossible.

y0 =

√
N − p+ a(a− 1)

a
= (a− 1) +

√
N − p
a
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y1 =
a√
N − p

=

√
N + p

2p
= 1 +

√
N − p
2p

The factor of p is thus found extremely rapidly. Since the only part of the algorithm that

takes a significant amount of time is approximating the square root of N , the algorithm has

a runtime of O(logN) for numbers that meet this criteria. QED

For the other cases, the fact that p(4p + 4a + 1) and p(4p + 4a + 3) have significantly

different bounds for a should be some indication as to how quickly this problem can get

messy. However, some approximations can still be determined empirically. Let N = (f 2m+

c)(g2m+ d). Then empirically N factors quickly for approximately the same cases as when

f 2g2N = (f 2g2m + g2c) ∗ (f 2g2m + f 2d) factors quickly. Let p = f 2g2m + g2c) and let

a = (f 2d− g2c)/2 or (f 2d− g2c− 1)/2, then f 2g2N = p(p+2a) or p(p+2a+1, respectively.

In either case, the two factors (f 2g2m+g2c) and (f 2g2m+f 2d) must have roughly half their

bits the same.

For a given N = qr, consider the probability that there exist f and g such that g2q and

f 2r have the same number of bits and the first 3 bits are the same. This probability can

easily be tested empirically. The continued fraction expansion for q/r provides potential

values for f and g. A test of 1015 pairs of 100 bit integers and 1015 pairs of 300 bit primes

show that this happens approximately 11% of the time in each case, with only a couple of

pairs that had multiple values of f and g meeting the criteria. It seems reasonable to assume

that if the size of the paired integers wasn’t required to be equal, the probability would be

different but would still be fairly constant. Let this constant be k. Then for each bit after

that, there is a 50% probability of q and r having the same value. Since roughly the first

half of the bits must be equal, the probability is k ∗ (.5)log2 N/2−3 = 8k/
√
N = O(1/

√
N).

Thus, these numbers, although interesting, are extremely rare and should not be a concern

in normal operations.
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Chapter 5

Conclusions and Future Work

This report has described and explained why Square Forms Factorization works, completing

the work started by Daniel Shanks. Specifically, a thorough correspondence was described

between quadratic forms, continued fractions, ideals and lattices, resulting in a proof of a

generalized distance formula. This allowed a proof that Square Forms Factorization works for

every composite number. Several variations have been considered. An analysis shows that

the use of multipliers decreases the average runtime by 25%. However, the use of multipliers

alone is an inefficient method of implementing Square Forms Factorization on a large number

of processors. Parallelization by dividing the cycle into segments for each processor appears

to be more efficient with larger number of processors. The crossover between these two

methods appears to be at about 100 processors. In light of this, the best parallelization

would probably involve some combination. Two alternatives were considered but not tried.

It would be fairly simple to use a single multiplier and then use segments to parallelize. It

may be even more efficient to use several multipliers and then use segments to divide each

of those between many processors.

With the parallelization, it is important to realize that these parallelizations are all very

easy to implement and would be very effective as a distributive process. The only information
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that the master processor needs to send is basic information needed to assign a segment.

The other processor then works independently until it either finds a factor or finishes its

segment.

Another alternative considered using a test of direction to perform a binary search. How-

ever, the test of direction only appeared to be effective near the symmetry points and even

with an approximation of the regulator it was not possible to get close enough to the sym-

metry points for the test of direction to be useful.

One other property of Square Forms Factorization that was considered is which numbers

factor extremely fast. Although there are integers of every size that factor in time O(logN),

they are rare. The result was that an integer N has a probability O(1/
√
N) of meeting this

criteria. Therefore, this isn’t a threat worth considering seriously.
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Chapter 6

Glossary

Conjugate: modification to an algebraic number changes the sign of a certain term in an

expression, traditionally the part of an expression that is either irrational or imaginary.

In the context of continued fractions, it applies to changing the sign of a residue, the

integer part of the numerator of an xi in the continued fraction expansion.

Cryptography: the process of encoding and decoding information to prevent it from being

read by anyone who intercepts the message. Used in variety of civil and military

applications.

Euclid’s Algorithm: a fast algorithm for determining the greatest common divisor of two

integers. Given x and y, the extended Euclidian algorithm also determines the coeffi-

cients a and b such that ax+ by = gcd(x, y).

Floor: the greatest integer less than or equal to a given number. Symbol: bxc

Greatest Common Divisor: largest integer that divides a pair or group of integers. Sym-

bol: gcd(x, y)

Modular Arithmetic: two integers are considered equal (congruent) if their difference is

divisible by a base. Thus, 3 ≡ 10 (mod 7). Numbers are represented by integers



48

between 0 and N − 1, where N is the base. Multiplication, addition, and subtraction

are normal, except that the results are reduced to the range 0 to N − 1. Division is

performed by reducing fractions to least terms, applying an extended Euclid’s algorithm

to find the inverse of the denominator, and then performing multiplication. Symbol:

(mod N)

Modulo: operation related to division that returns the remainder:

73
11

= 6 7
11

, so 73 modulo 11 = 7. Symbol: % or (mod N).

Non-square integer that is not a perfect square of another integer.

NUCOMP-NUDUPL: algorithms designed by Daniel Shanks to perform composition of

quadratic forms quickly.

Parallelization: the distribution of a single task between multiple processors working si-

multaneously.

Perfect Square: integer that is the square of another integer. Thus, 9 is a perfect square

because 32 = 9.

Prime: integer that has no divisors other than itself and 1. The first several are 2, 3, 5, 7, 11....

Primitive: a characteristic that implies not having common factors. For quadratic forms,

a form whose coefficients do not contain a common factor. For ideals, an ideal whose

elements does not contain a common integer factor.

Pseudo-square: the denominator of an xi in the continued fraction expansion, denoted Qi.

When Q0 = 1, (−1)iQi is a quadratic residue and in general −QiQi−1 is a quadratic

residue.

Quadratic Reciprocity Law (Gauss): determines which numbers are quadratic residues

of a prime:
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Symbol:
(

a
p

)
= 1 if x2 ≡ a (mod p) has a solution, −1 if it does not, and 0 if p | a.

Theorem: For p and q distinct primes:

(
p

q

)
(
q

p
) = (−1)(p−1)(q−1)/4

(
2

p

)
= (−1)(p2−1)/8

(
−1

p

)
= (−1)(p−1)/2

Quadratic Residue: a perfect square modulo some base N . 2 is a quadratic residue of 7

because 32 ≡ 2 (mod 7).

Relatively Prime: a description of two integers that have no common divisors. Thus, 8

and 15 are relatively prime, even though they are not prime by the normal definition.

Residue: an integer that remains in the numerator after bi has been subtracted from xi in

the continued fraction expansion.

RSA: a cryptology algorithm named after Rivest, Shamir, and Adleman. It was earlier

developed by Clifford Cooks of GCHQ, but this was only recently declassified. Its

security is dependent on the difficulty of factorization [5].

SQUFOF: Square Forms Factorization algorithm, developed by Daniel Shanks in 1975.
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Appendix A

Proofs

The largest part of this research has been developing formal proofs of the concepts sup-

porting Square Forms Factorization. Section A.1 introduces and proves a number of results

pertaining to continued fractions. Section A.2 introduces and proves several results about

binary quadratic forms and describes their connection to continued fractions. Section A.3

analyzes how ideals are related to quadratic forms and section A.4 analyzes how lattices are

closely tied in with ideals. Section A.5 uses the connection between quadratic forms and

lattices to prove the general distance formula, which is used in section A.6 to explain why

SQUFOF works.

A.1 Continued Fractions

One tool used by many different algorithms is the continued fraction expression for
√
N ,

where N is the number to be factored. This expression is calculated recursively[10]:

x0 =
√
N, b0 = bx0c (A.1)

∀i ≥ 1 xi =
1

xi−1 − bi−1

, bi = bxic (A.2)

√
N = b0 +

1

b1 + 1
b2+...

(A.3)
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Observe that solving equation (A.2) for xi−1 gives xi−1 = bi−1 + 1
xi

. Repeatedly substi-

tuting this into itself gives equation (A.3).

Before developing the theory too much further, allow me to offer one example of how

this works, just so that the pieces make sense to you. To simplify the expansion some, the

integers taken out in the third step of each line are the bi:

Example 9.

x0 =
√

41, b0 = 6
√

41 = 6 + 1
x1

x1 = 1√
41−6

=
√

41+6
5

= 2 +
√

41−4
5

√
41 = 6 + 1

2+ 1
x2

x2 = 5√
41−4

=
√

41+4
5

= 2 +
√

41−6
5

√
41 = 6 + 1

2+ 1

2+ 1
x3

x3 = 5√
41−6

=
√

41+6
1

= 12 +
√

41−6
1

√
41 = 6 + 1

2+ 1

2+ 1

12+ 1
x4

From this step, it is evident that x4 = x1 and the cycle repeats from here. Observe that

if the sequence starts with x0 =
√

41 + 6, then also x3 = x0. Regardless, the expression on

the right, if truncated at any point provides a rational approximation to
√

41. Often this

will be written as merely [6, 2, 2, 12, ...] to save space or [6, 2, 2, 12] to indicate that this part

repeats. The various numbers on the left have some important properties that we will now

analyze in some depth.

Throughout, assume that N is an odd positive integer and is not a perfect square. For

number theory purposes, let

x0 =

√
N + P−1

Q0

where P−1, Q0 are integers chosen such that

P 2
−1 ≡ N (mod Q0), 0 < P−1 <

√
N, and |

√
N −Q0| < P−1. (A.4)

There are many ways of doing this1. The recursive formulas are:

1Choosing x0 =
√

N +b
√

Nc, so that P−1 = b
√

Nc and Q0 = 1 is one possibility. Choosing x0 =
√

N+P−1
2 ,

where P−1 = b
√

Nc or b
√

Nc − 1, such that P−1 is odd, is another possibility.
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xi+1 =
1

xi − bi
bi = bxic, i ≥ 0

Formally, the assumed equation is:

xi+1 =
Qi√
N − Pi

=

√
N + Pi

Qi+1

= bi+1 +

√
N − Pi+1

Qi+1

, i ≥ 0 (A.5)

Note that this equation serves as a definition of Qi, Pi, Qi+1, Pi+1 ∈ Q, so that these equations

are true regardless of the conditions on these variables. Theorem A.1.1 provides some well-

known fundamental properties and identities of continued fractions. In [18], Hans Riesel

provides very clear proofs of most of this.

Theorem A.1.1. [18] In the continued fraction expansion of x0 satisfying (A.4), each xi

reduces to the form
√

N+Pi−1

Qi
, with (a) N = P 2

i + QiQi+1, (b) Pi = biQi − Pi−1, (c) bi =⌊
b
√

Nc+Pi−1

Qi

⌋
≥ 1, (d) 0 < Pi <

√
N , (e) |

√
N − Qi| < Pi−1, (f) Qi is an integer, and (g)

Qi+1 = Qi−1 + bi(Pi−1 − Pi). Furthermore, (h) this sequence is eventually periodic.

Proof:

(a) From (A.5), the equation Qi√
N−Pi

=
√

N+Pi

Qi+1
requires that N = P 2

i +QiQi+1.

(b) It is evident from simplifying the expression on the far right of (A.5) that

√
N + Pi

Qi+1

=

√
N + bi+1Qi+1 − Pi+1

Qi+1

.

Therefore, Pi+1 = bi+1Qi+1 − Pi.

(c) For i = 0, by the assumption |
√
N −Q0| < P−1

Q0 <
√
N + P−1

Therefore,

b0 =

⌊√
N + P−1

Q0

⌋
≥ 1

For i > 0, bi−1 = bxi−1c. By the definition of floor, xi−1− 1 < bi−1 ≤ xi−1. If bi−1 = xi−1,

then the continued fraction [b0, b1, ...bi−1] is rational and is equal to x0 =
√

N+P−1

Q0
, which
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is irrational since N is not a perfect square. Therefore, xi−1 − 1 < bi−1 < xi−1, so that

0 < xi−1 − bi−1 < 1. Therefore, xi = 1
xi−1−bi−1

> 1, so that bi = bxic ≥ 1.

Note that there is no integer between b
√
Nc + Pi−1 and

√
N + Pi−1, so it is trivial that⌊√

N+Pi−1

Qi

⌋
=

⌊
b
√

Nc+Pi−1

Qi

⌋
.

(d-e) The statements |
√
N −Qi| < Pi−1 and 0 < Pi−1 <

√
N may be proven inductively.

Base case: i = 1

P0 = b
√
Nc or b

√
Nc − 1, so by definition 0 < P0 <

√
N .

Since x0 meets (A.4), |
√
N −Q0| < P−1.

Induction: Assume |
√
N −Qi| < Pi−1 and 0 < Pi−1 <

√
N .

Note that these assumptions require that 0 < Qi < 2
√
N . From (c), 0 < xi − bi < 1

means 0 <
√

N−Pi

Qi
< 1. Since Qi > 0, 0 <

√
N − Pi < Qi. From the left side of this,

Pi <
√
N . Now, either Qi ≤

√
N or Qi >

√
N .

Case 1: If Qi ≤
√
N , then

√
N − Pi < Qi ≤

√
N , so that Pi > 0.

Case 2: If Qi >
√
N , then by (b), Pi = biQi − Pi−1 > bi

√
N −

√
N = (bi − 1)

√
N ≥ 0.

Therefore, 0 < Pi <
√
N .

Since xi+1 > 1, it is trivial that Qi+1 <
√
N + Pi so that showing |

√
N − Qi+1| < Pi

reduces to showing Qi+1 >
√
N − Pi. Since 1 =

N−P 2
i

QiQi+1
=

√
N+Pi

Qi

√
N−Pi

Qi+1
, this is equivalent to

showing: √
N + Pi

Qi

> 1. (A.6)

Assume the contrary, that Qi ≥
√
N + Pi. Then,

bi(
√
N + Pi)− Pi ≤ biQi − Pi = Pi−1 <

√
N,

bi
√
N + Pi(bi − 1) <

√
N,

√
N(bi − 1) + Pi(bi − 1) < 0,

(bi − 1)(
√
N + Pi) < 0.

But
√
N and Pi are positive, so this implies bi < 1, contradicting Theorem A.1.1 (c). There-
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fore, (A.6) holds.

(f) The fact that N = P 2
i + QiQi+1 requires that Qi+1 =

N−P 2
i

Qi
. In order to show that

∀i Qi is an integer, the statements that Qi is an integer and Qi | N − P 2
i may be proven

inductively.

Base case: i = 0

By definition, Q0 is an integer and P 2
−1 ≡ N (mod Q0). But P0 ≡ P−1 (mod Q0), so

P 2
0 ≡ N (mod Q0). Therefore, Q0 | N − P 2

0 .

Induction: Assume for some i, Qi is an integer and Qi | (N − P 2
i ). Then, since N =

P 2
i + QiQi+1, Qi+1 =

N−P 2
i

Qi
, so that since Qi | (N − P 2

i ), Qi+1 is an integer. Also, Qi =

N−P 2
i

Qi+1
, so that since Qi is an integer, Qi+1 | (N − P 2

i ), so that P 2
i ≡ N (mod Qi+1). Since

Pi+1 = bi+1Qi+1 − Pi, Pi+1 ≡ Pi (mod Qi+1). Therefore, P 2
i+1 ≡ N (mod Qi+1), so that

Qi+1 | (N − P 2
i+1) and the induction is complete.

(g) Solving (b) for bi gives Pi−1+Pi

Qi
= bi. Multiply by (Pi−1 − Pi) to obtain:

P 2
i−1 − P 2

i

Qi

= bi(Pi−1 − Pi)

Rearranging and adding N
Qi

gives:

N − P 2
i

Qi

=
N − P 2

i−1

Qi

+ bi(Pi−1 − Pi)

Qi+1 = Qi−1 + bi(Pi−1 − Pi)

.

(h) Since each xi and thus the entire sequence that follows it is defined by the two integers

Qi and Pi−1, limited by the bounds 0 < Qi < 2
√
N and 0 < Pi <

√
N , there is only a finite

number of distinct xi’s. Therefore, for some π and some k, ∀i ≥ k xi = xi+π. QED

The fact that each xi reduces to the form
√

N+Pi−1

Qi
is important for computational effi-

ciency because this together with (c) imply that floating point arithmetic is not necessary for

any of these calculations. Also, by use of (b) and (g), the arithmetic used in this recursion

is on integers < 2
√
N .
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One application of continued fractions is rational approximations.

√
N = b0 +

1

b1 + 1
b2+...

If this continued fraction is truncated at any point, the result is an approximation to
√
N . One might imagine that it is necessary to start simplifying at the lower right end of

this expression to obtain this approximation. However, Theorem A.1.2, also included in [18],

provides a simpler answer.

Theorem A.1.2. Let:

A−1 = 1, A0 = b0, Ai = biAi−1 + Ai−2, i > 0

B−1 = 0, B0 = 1, Bi = biBi−1 +Bi−2, i > 0

Then for i ≥ 0, [b0, b1, ...bi] = Ai

Bi
and A2

i−1 −B2
i−1N = (−1)iQi.

Note that the last equation gives A2
i−1 ≡ (−1)iQi (mod N). Although this equation

will change some when generalized to other continued fractions, these denominators {Qi}

will consistently be referred to as pseudo-squares. A proof of this theorem is given in [18].

Therefore, instead of reproducing the proof, I will provide an example:

Example 10.

x0 =
√

403 + 20 = 40 +
√

403− 20

x1 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

x2 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

x3 = 14√
403−9

=
√

403+9
23

= 1 +
√

403−14
23

x4 = 23√
403−14

=
√

403+14
9

= 3 +
√

403−13
9

x5 = 9√
403−13

=
√

403+13
26

= 1 +
√

403−13
26

x6 = 26√
403−13

=
√

403+13
9

= 3 +
√

403−14
9

x7 = 9√
403−14

=
√

403+14
23

= 1 +
√

403−9
23

From this, a table may be used to recursively calculate the approximation2:

2Actually, in this case b0 = 40, but since that would be an approximation to x0 =
√

403+20, subtracting
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i −1 0 1 2 3 4 5 6

bi 20 13 2 1 3 1 3

Ai 1 20 261 542 803 2951 3754 14213

Bi 0 1 13 27 40 147 187 708

filling in Ai and Bi from left to right. From the last column,
√

403 ≈ 14213/708.

Since the continued fraction is eventually periodic, it is reasonable to consider that when it

loops around on itself, the terms being considered may have come from some terms “earlier”

in the recursion. Example 10 provides some indication as to how the recursive formulas

may be reversed, as {Qi} and {bi} are symmetric about x5, so that after x5 these numbers

are cycled through in reverse order. Lemma A.1.3 addresses how each bi is calculated two

different ways and Lemma A.1.4 shows that by exchanging these two related expressions,

the direction is reversed.

Lemma A.1.3.

b
√
N + Pi

Qi

c = b
√
N + Pi−1

Qi

c = bi

Proof: The second part of this equation, that b
√

N+Pi−1

Qi
c = bi follows from the definition

of bi.

Theorem A.1.1 (e) implies that Qi >
√
N − Pi−1. Therefore,

b
√
N + Pi

Qi

c = b
√
N + biQi − Pi−1

Qi

c = bi + b
√
N − Pi−1

Qi

c = bi. QED

Considering Example 10, it is then natural to suspect that the mechanism for going in

the opposite direction will be precisely the same as the standard approach, except that the

numerator is changed first. Note that this same change (with the exception of c0) could be

achieved by merely changing the sign of Pi−1.

20 from b0 yields an approximation to
√

403.
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Lemma A.1.4. Let xi, bi, Pi, Qi, and N be as in Theorem A.1.1, i ≥ 0. Let y0 =
√

N+Pi+1

Qi+1

and let c0 = by0c. Define inductively yj = 1
yj−1−cj−1

. Then c0 = bi+1 and yj =
√

N+Pi−j+1

Qi−j+1
,

j ≥ 0.

Proof: By (A.6) and Lemma 1, c0 = by0c = b
√

N+Pi+1

Qi+1
c = bi+1. By mathematical

induction it suffices to prove the case j = 1. Using Theorem A.1.1

y1 =
1

y0 − c0
=

1
√

N+Pi+1

Qi+1
− bi+1

=
1

√
N+Pi+1−bi+1Qi+1

Qi+1

=
1

√
N−Pi

Qi+1

=

√
N + Pi

N−P 2
i

Qi+1

=

√
N + Pi

Qi

QED

This demonstrates an important fact about continued fractions, the fact that the direction

of the sequences of pseudo-squares and residues can be reversed (i.e. the indices decrease)

by making a slight change and applying the same recursive mechanism.

Using Lemma A.1.4, x3 may be used, for example, to find x2 and x1. Continuing this

process, denote the terms before x0 as x−1, x−2, .... Define Q−i and P−i similarly3. Example

11 demonstrates this with the continued fractions from Example 10:

Example 11. x3 =
√

403+9
23

and P3 = 14, so let y0 =
√

403+14
23

to obtain

y0 =
√

403+14
23

= 1 +
√

403−9
23

y1 = 23√
403−9

=
√

403+9
14

= 2 +
√

403−19
14

y2 = 14√
403−19

=
√

403+19
3

= 13 +
√

403−20
3

y3 = 3√
403−20

=
√

403+20
1

= 40 +
√

403−20
1

y4 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

y5 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

Then, just as y2 gives x1 =
√

403+20
3

, y4 gives x−1 =
√

403+19
3

and y5 gives x−2 =
√

403+9
14

.

Combining periodicity with reversibility strengthens Theorem A.1.1 (h).

3Since y0 meets (A.4) and the same recursive formula is applied, it is clear that Theorem A.1.1 still
applies to negative indices.
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Lemma A.1.5. There exists a positive integer π such that ∀i xi = xi+π, i not necessarily

positive.

Proof: From the proof of Theorem A.1.1 (h) there are k and π such that ∀i ≥ k,

xi = xi+π. Essentially, this is equivalent to proving that there is no lower bound for k.

Assume the contrary, that there is some lower bound k. Let k and π be the smallest such

integers. Then xk = xk+π. But by Lemma A.1.4 xk−1 = xk+π−1, so that k−1 also meets this

criteria, violating the assumption that k is the smallest such integer. Therefore, ∀i xi = xi+π.

QED

Throughout, π will consistently denote the period, even when considering this period in

the context of quadratic forms or lattices.

Often the continued fraction may have other characteristics that are interesting besides

its periodicity. For factorization, continued fractions with symmetries, such as at x0 and x5

from Example 10, will be especially important. If the starting condition near some point is

the same in both directions, the entire sequence will be symmetric about that point. This is

the point of Lemma A.1.6.

Lemma A.1.6. Let x0 =
√

N+P−1

Q0
meet (A.4) such that Q0 | 2P−1. The sequence of pseudo-

squares is symmetric about Q0, so that ∀i Qi = Q−i.

Proof:

Observe that 0 <
√
N − P0 < Q0, with P0 = b0Q0 − P−1, so that

0 <
√
N − b0Q0 + P−1 < Q0.

There can only be one possible integer value of b0 that satisfies this inequality. Since 0 <
√
N − P−1 < Q0, b0 = 2P−1/Q0 satisfies this inequality, so that P0 = P−1.

Let y−1 =
√

N+P1

Q1
. Then, by Lemma 2, y0 =

√
N+P0

Q0
=

√
N+P−1

Q0
= x0

Therefore, the sequence of pseudo-squares will be symmetric about Q0, since in either

direction the first continued fraction term is the same. Therefore, Qi = Q−i. QED
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The presence of one point of symmetry allows a proof that another point of symmetry

exists and that a factorization of N may be obtained from this symmetry4:

Theorem A.1.7. Let s = bπ
2
c, where π is the period from Lemma A.1.5. If π is even,

∀i Qs+i = Qs−i, but Qs 6= Q0 and Qs | 2N . If π is odd, ∀i Qs+i+1 = Qs−i and either

gcd(Qs, N) is a nontrivial factor of N or −1 is a quadratic residue of N .

Proof:

Case 1: If π is even, π = 2s. Then, by Lemmas A.1.6 and A.1.5, Qs+i = Q−s−i =

Q2s−s−i = Qs−i. Since Qs+1 = N−P 2
s

Qs
and Qs−1 =

N−P 2
s−1

Qs
, this simplifies to P 2

s = P 2
s−1, but

since ∀i Pi > 0, this provides Ps = Ps−1.

Now Qs = Ps+Ps−1

bs
= 2Ps

bs
, so that Qs | 2Ps.

Assume Qs = Q0. If Qs is even, then P0 ≡ Ps ≡ 1 (mod 2) and if Qs is odd, Qs | Ps.

Either way, there is then a unique integer in the range (
√
N − Q0,

√
N) satisfying these

conditions, so that Ps = P0. Therefore, xs =
√

N+P0

Q0
= x0, contradicting the fact that π is

the smallest positive integer such that ∀i Qi = Qi+π. Therefore, Qs 6= Q0.

Now N = P 2
s +QsQs+1, so it is apparent that if Qs is odd, then Qs | Ps, so that Qs | N .

Conversely, if Qs is even, then (Qs/2) | Ps, so that (Qs/2) | N . Either way, Qs | 2N .

Case 2: If π is odd, π = 2s+ 1. Then, by Lemma A.1.6 and A.1.5, Qs+i+1 = Q−s−i−1 =

Q2s+1−s−i−1 = Qs−i.

Specifically, Qs = Qs+1, so that N = P 2
s + QsQs+1 = P 2

s + Q2
s, so that P 2

s+1 ≡ −Q2
s

(mod N). If gcd(Qs, N) > 1, this is a nontrivial factor ofN , and the proof is done. Therefore,

assume that Qs and N are relatively prime, so that Q−1
s (mod N) exists. Then (Q−1

s )2P 2
s+1 ≡

−1 (mod N). Then Q−1
s Ps+1 is a square root of −1 modulo N . QED

One final concept that will appear much more important in later sections is equivalence.

Define the set T to be set of all numbers of the form
√

N+P
Q

such that:

P 2 ≡ N (mod Q), (A.7)

4This was actually discovered in the opposite order. It was clear that ambiguous forms that met this
criterion provided a factorization but was later realized that these same forms produced symmetry points.
This was first noticed by Gauss [8] and first applied by Shanks [23].
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Then define

T∗ = {x ∈ T : 0 < P <
√
N, |
√
N −Q| < P}.

An element x ∈ T is reduced if x ∈ T∗. For x, y ∈ T∗, x is equivalent to y if x appears

in the same continued fraction expansion as y and it is trivial that this is an equivalence

relation on T∗. Extending this to all of T requires a lemma relating elements of T−T∗ with

elements of T∗.

Lemma A.1.8. Let x = x0 ∈ T− T∗. x0 may be reduced by applying

xi+1 =
1

xi − bi
, bi = bxi − 1/2c, i ≥ 0 (A.8)

until |Qi| < 2
√
N for some i and then applying equation (A.2) normally until xk ∈ T∗ for

some k > 0.

Proof: The choice of bi yields that
∣∣∣√N−Pi

Qi

∣∣∣ < 1
2

after the first step, so that |Pi| <
1
2
|Qi|+

√
N . Therefore,

|Qi+1| =
∣∣∣N−P 2

i

Qi

∣∣∣
=

∣∣∣√N−Pi

Qi

∣∣∣ |√N + Pi|

< 1
2
(2
√
N + 1

2
|Qi|

=
√
N + 1

4
|Qi|

so that |Qi| will decrease as long as |Qi| > 4
3

√
N . When |Qr| < 2

√
N , revert back to the

standard formula for br. There are three cases for what Qr is:

Case 1: 0 < Qr <
√
N . In this case, it is clear that xr+1 will be reduced.

Case 2:
√
N < Qr < 2

√
N . In this case, if Pr > 0, then xr+1 will be reduced. Otherwise,

|Pr| <
√
N , so that xr+1 will be in Case 1.

Case 3: −2
√
N < Qr < 0. Then

√
N < Pr <

√
N + |Qr|, yielding Qr+1 < 2

√
N + |Qr|.

If Qr+1 < 2
√
N , it is in Case 1 or Case 2. If 2

√
N < Qr+1 < 2

√
N + |Qr|, the choice of br

provides
√
N + Pr > Qr+1, so that 0 < Pr+1 <

√
N , so that xr+2 will be in Case 1. QED
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I will provide one example of reduction:

Example 12.

x0 =
√

403+267
−134

= −2 +
√

403−1
−134

x1 = −134√
403−1

=
√

403+1
−3

= −8 +
√

403−23
−3

x2 = −3√
403−23

=
√

403+23
42

= 1 +
√

403−19
42

x3 = 42√
403−19

=
√

403+19
1

= 39 +
√

403−20
1

Lemma A.1.8 defines a map from T to T∗ (Elements of T∗ are mapped to themselves).

Then two elements are equivalent if their corresponding elements of T∗ are equivalent and it

is clear that this is still an equivalence relation. Essentially, this equates to saying that two

numbers x and y are equivalent if their continued fraction expansions have the same “tail”,

so that after a certain number of terms of each they have identical cycles. Appendix A.2

will define a different equivalence relation on binary quadratic forms and then prove that it

corresponds to this.

A.2 Binary Quadratic Forms

A fuller account of binary quadratic forms can be found in Gauss’s [8] and in Buell’s [2].

However, here are the necessary fundamental ideas.

A binary quadratic form is a polynomial of the form F (x, y) = ax2+bxy+cy2, x, y, a, b, c ∈

Z (Often this is abbreviated as (a, b, c)). In some sense then, a quadratic form may be

considered to be the set of all the numbers it can represent for various values of x and y.

Thus, two quadratic forms are equivalent if they represent the same set of integers. It is

evident that if one form is transformed into another by the substitution

 x

y

 =

 a b

c d

 x′

y′

 , ad− bc = ±1, (A.9)

then, since this matrix is invertible, the two forms are equivalent. As one further useful

distinction, (A.9) is proper if its determinant is +1 and improper if its determinant is −1.

The symbol (∼) will only apply to proper equivalence. For the purpose of factorization, the
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interesting forms are those that can be improperly transformed into themselves, referred to

as ambiguous forms.

Example 13. F (x, y) = −14x2 + 10xy + 5y2 is transformed into itself by the substitution:

 x

y

 =

 1 0

−2 −1

 x′

y′

 ,
so (−14, 10, 5) is ambiguous.

Denote the set of all quadratic forms with discriminant ∆ by F∆, or often just F. The

next obvious question is the organization of all of the quadratic forms equivalent to some

given form. Since there are an infinite number of forms equivalent to any form, the search

must be narrowed some by first defining reduced forms.

Definition A.2.1. A quadratic form ax2+bxy+cy2, with positive discriminant ∆ = b2−4ac

is reduced if:

0 < b <
√

∆ (A.10)

|
√

∆− 2|a|| < b (A.11)

Note that ∆ = b2 − 4ac and (A.10) require that ac < 0, so that a and c must have

opposite signs.

Making Gauss’s description of the organization make some sense will require one more

of his definitions:

Definition A.2.2. Two forms F (x, y) = ax2 + bxy + cy2 and F ′(x, y) = a′x2 + b′xy + c′y2

are adjacent if c = a′.

To each quadratic form, there is a unique reduced equivalent form adjacent to it on

each side5, and since (A.10-A.11) imply a finite number of possible coefficients, this process

5Although Gauss had a recursive mechanism for finding these, continued fractions provide a sufficient
mechanism for this that will be defined momentarily. Note that reversal suddenly becomes trivial.
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eventually repeats, forming a cycle. The important aspect of this is that the cycle is actually

all of the reduced forms equivalent to the first form:

Theorem A.2.3. [8] If the reduced forms F ,F ′ are properly equivalent, each of them will be

contained in the period of the other.

Gauss proves this in Article 193 of [8], Lenstra proves this in [12], and it is a corollary of

Lemma A.4.7 in Appendix A.4. Therefore the proof is omitted.

For now, the important detail is that the quadratic forms correspond directly to the

elements of T, and that the reduced quadratic forms correspond to elements of T∗. Note

that the elements of T have attached indices, where the important trait of the index is

whether it is odd or even. Define a map from T to F by

ΦT,F : T→ F
√

N−Pi

Qi
→ Fi(x, y) = Qi(−1)ix2 + 2Pixy +Qi+1(−1)i+1y2

(A.12)

The inverse map is

ΦF,T : F→ T

ax2 + bxy + cy2 → xi =

√
∆/4−b/2

|a| ∈ T
(A.12′)

where the discriminant of the quadratic form is ∆ is the element of T is given either an

even or odd index as a is positive or negative, respectively. Note that ∆ = b2 − 4ac gives

4a | ∆− b2, so that xi really is in T.

§A.1 defined an equivalence on T and suggested that it corresponded with an equivalence

of binary quadratic forms. Theorem A.2.4 formalizes this:

Theorem A.2.4. Under the mapping ΦT,F, the equivalence classes of T correspond to the

equivalence classes of F. That is, for xi, xj ∈ T corresponding to Fi = ΦT,F(xi), Fj =

ΦT,F(xj) ∈ F, respectively, xi ∼ xj if and only if Fi ∼ Fj.

Proof:

Let xi ∼ xj. Since xi and xj must be in the same continued fraction expansion, assume
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without loss of generality that j = i + 1. The other cases may be easily derived from this

case. Then the quadratic form related to xi is given in (A.12). The substitution

 x

y

 =

 0 1

−1 (−1)ibi+1

 x′

y′


transforms Fi into

Qi+1(−1)i+1x2 + 2Pi+1xy +Qi+2(−1)i+2y2

Observe that this matrix has determinant 1, so that this equivalence is proper.

In order to prove the converse, that the xi’s related to equivalent quadratic forms are

equivalent, by Theorem A.2.3, observe that the last coefficient of the quadratic form related to

xi, Qi+1(−1)i+1, is then the first coefficient of the quadratic form related to xi+1. Therefore,

these two forms are adjacent and thus equivalent. QED

The real value of quadratic forms is the composition of quadratic forms. In Article 236

of [8], Gauss provides a very flexible definition of composition. Gauss defines composition

as multiplying two quadratic forms together and then making a substitution to simplify this

into another binary quadratic form. The algorithm he provides is very complicated, allowing

for choices of variables along the way that permit the result to be any quadratic form in the

resulting equivalence class. The result of composition should be predictable, so definition

needs to be limited some. Shanks and Buell both provide a significant simplification of this

algorithm. The symbol (∗) will consistently be used for composition.

Proposition 2. [2] Let F1 = (a1, b1, c1) and F2 = (a2, b2, c2) be primitive forms of discriminants

d1 and d2, respectively, such that d1 = ∆n2
1 and d2 = ∆n2

2 for integers n1 and n2 and ∆,

with ∆ = gcd(d1, d2). Let

m = gcd(a1n2, a2n1,
b1n2 + b2n1

2
).

Then the congruences
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mn1B ≡ mb1 (mod 2a1)

mn2B ≡ mb2 (mod 2a2)

m(b1n2 + b2n1)B ≡ m(b1b2 + ∆n1n2) (mod 4a1a2)

are simultaneously solvable6 for an integer B, and the composition of F1 and F2 is:

F1 ∗ F2 = (
a1a2

m2
, B,

(B2 −∆)m2

4a1a2

)

of discriminant ∆.

See [21] for a derivation of this in the case where the discriminants are equal or [2] for a

proof of this case. Buell [2] also provides the substitutions that would be needed for Gauss’s

definition of composition.

The next question is how this operation is related to equivalence.

Theorem A.2.5. If F1 ∼ F2, then F ∗ F1 ∼ F ∗ F2.

Gauss proves this in Article 237-239 of [8].

Therefore, composition treats the equivalence classes in the convenient manner. These

equivalence classes are then the elements of the class group, with composition as the group

operation. The application of Theorem A.2.5 is that it doesn’t matter which form is used to

represent an equivalence class.

The significance of ambiguous forms for factorization has been mentioned some above. It

is evident that if one form is ambiguous, then its entire equivalence class is also ambiguous.

Lemmas A.2.6 generalizes the reasons to be interested in these classes.

Lemma A.2.6. An ambiguous equivalence class contains two points of symmetry, that is,

pairs of reduced adjacent forms, (c, b, a) and (a, b, c) in the cycle that are the symmetric

reverse of each other. Let a be the connecting term of either symmetry point. Either a

divides the determinant, or a/2 divides the determinant.

Proof:

6By convention, choose the answer with the smallest absolute value.
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Let A be an ambiguous equivalence class and let F = ax2 + bxy + cy2 ∈ A. Let F ′ =

cx2 + bxy + ay2. Then since F ∈ A, there is a substitution of determinant −1 that maps F

into itself. Since the obvious substitution to exchange x and y in F has determinant −1, the

product of these two is a proper substitution that transforms F into F ′. Therefore, F ′ ∈ A,

so that if F is F0, F
′ is Fj for some j. Then that F1 must be the reverse of Fj−1, and

so forth. Now, if j is even, then by this process Fj/2 is its own reverse. However, by the

definition of being reduced, the end coefficients of each form must have opposite sign, so this

is impossible. Therefore, j must be odd, and then F j−1
2

is the reverse of F j+1
2

.

At this point, observe that since the end-coefficients alternate signs, the entire period

must be even. By the same arguments as Theorem A.1.7, one could show that there must

be another point of symmetry with the property that ∀i Qs+i = Qs−i, but such that Qs is

not the same as the connecting term at the first symmetry point. The two quadratic forms

containing Qs as an end coefficient then meet the criteria.

The fact that either a divides the determinant, or a/2 divides the determinant was proven

in Theorem A.1.7, since the determinant is 4N . QED.

Note that Theorem A.1.7 described two different types of points of symmetry. With

the quadratic form cycle, the second case can be ignored because of the alternating signs.

However, it is quite possible for the term at one symmetry point to be merely the negative

of the term at the other symmetry point. This would correspond to the continued fraction

having an odd period and there would be a symmetry point of the second type in the

continued fraction at half-way. However, this type of symmetry does not generally provide

a factorization for N .

Lastly, it is important how these ambiguous forms fit into the rest of the class group. First,

addressing the class group structure requires inverses. Lemma A.2.7 is fairly elementary and

is probably stated somewhere else. Let 1 represent the form in the principal cycle whose first

coefficient is 1. Let F−1 indicate the symmetric reverse of F , (a, b, c)−1 = (c, b, a). Lemma

A.2.7 justifies this notation:

Lemma A.2.7. F ∗ F−1 ∼ 1
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Proof:

Let F = ax2 + bxy+ cy2. Then F−1 = cx2 + bxy+ ay2. Let G be the next form adjacent

to F−1, that is G = ax2+b′xy+c′y2, with a | (b+b′) from the correspondence with continued

fractions. Composing F ∗G, n1 = n2 = 1 and m = a, so that the first coefficient of F ∗G is

1. Therefore, F ∗G ∼ 1, but F−1 ∼ G, so F ∗ F−1 ∼ 1. QED.

Note that this implies that the square of a symmetry point is 1.

Theorem A.2.8 was probably known by Shanks, since SQUFOF depends highly on it, but

it does not seem that he states this explicitly anywhere.

Theorem A.2.8. An equivalence class has order 2 or 1 in the class group if and only if it

is ambiguous.

Proof:

Let A be an ambiguous class. Let F ∈ A. Then F ∼ F−1, so that F ∗ F ∼ F ∗ F−1 ∼ 1.

Therefore F ∗ F is in the principal cycle, so that A has order 2 or 1 in the class group.

Conversely, assume that an equivalence class A has order 2 or 1 in the class group. Let

F ∈ A. Then F ∗F is in the principal ideal, so that F ∗F ∼ (F ∗F )−1. But from composition,

it is clear that (F ∗ F )−1 ∼ F−1 ∗ F−1. So F ∗ F ∼ F−1 ∗ F−1. Since the class group is

associative, composing on the right with F maintains equivalence. Therefore:

(F ∗ F ) ∗ F ∼ (F−1 ∗ F−1) ∗ F

1 ∗ F ∼ F−1 ∗ (F−1 ∗ F )

F ∼ F−1

Therefore, A is ambiguous. QED.

Certainly the class group structure is interesting, but it is now possible to return to the

problem from the Morrison-Brillhart algorithm of Example 6 with Q3 = 3, so Q6 = 9 doesn’t

provide a nontrivial factor of N . The quick explanation is that if you square the quadratic

form with first coefficient Q3, you obtain the quadratic form with first coefficient Q6. Since

the principal cycle is closed under composition, it seems as though, and perhaps would be

convenient if, the forms in the principal cycle formed a group. However, the problem of
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reduction prevents this:

Example 14. Consider the quadratic form F = (36, 70,−3), with determinant 4 ·1333. Com-

pare (F ∗ F ) ∗ F , with F ∗ F ∗ F , where the difference is that in the first the result is

reduced after the first composition. F ∗F = (324,−38,−3) and the very next adjacent form

(−3, 68, 59), is reduced. F ∗ (−3, 68, 59) = (−12, 70, 9), which is already reduced. However,

without reduction F ∗F ∗F = F ∗ (324,−38,−3) = (729, 448,−348). When this is reduced,

the first reduced form found, after 2 steps, is (9, 56,−61).

Therefore, the principal cycle, with the operation being composition followed by reduc-

tion, doesn’t even meet the requirements for being power associative. However, the obser-

vation that the two results are adjacent forms, and that the second reduction took one step

longer, prompts us to dig a little deeper.

Understanding this requires what Shanks referred to as infrastructure distance. For

m < n, and for xi ∈ T, the terms in the continued fraction in (A.5), Shanks defined

infrastructure distance by

DF(xm, xn) = log(
n∏

k=m+1

xk) (A.13)

Lenstra [12] adds a term of 1
2
log(Qn/Qm) to this, with the effect that the resulting

formulas are slightly simplified but the proofs are more complicated and less intuitive. This

definition is used by Williams in [26].

Since the quadratic forms are cyclic, in order for the distance between two forms to be

measured consistently, it must be considered modulo the distance around the principal cycle.

Definition A.2.9. Let π be the period of the principal cycle. The regulator R of the class

group is the distance around the principal cycle, that is,

R = DF(F0, Fπ) = D(1, Fπ)

Therefore, distance must be considered modulo R, so that DF is a map from pairs of

forms to the interval [0, R) ∈ R. The addition of two distances must be reduced modulo R
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as necessary.

Further analysis of this distance will require two more tools: ideals and lattices. In order

to relate to continued fractions, the ideals will be in Z[
√
N ] = {a+ b

√
N : a, b ∈ Z} and the

lattices will be in Q(
√
N) = {a+ b

√
N : a, b ∈ Q}where N is a non-square positive integer.

A.3 Ideals

Remark: The ideals in Z[
√
N ] typically correspond only to quadratic forms of discriminant

4N . Note that if N ≡ 1 (mod 4), then Z[
√
N ] is not the ring of integers for Q(

√
N). For

N ≡ 1 (mod 4), an analysis of ideals in Z[
√

N+1
2

] is also interesting, but will be avoided in

the interest of simplicity. Quadratic forms of discriminant N ≡ 1 (mod 4) may be related

to ideals in Z[
√
N ] via first multiplying by 2 to obtain quadratic forms of discriminant 4N .

For ξ ∈ Q(
√
N), let ξ refer to the conjugate of ξ (i.e. 1 +

√
3 = 1−

√
3).

The norm of a number in Q(
√
N) is N (ξ) = ξξ ∈ Q.

To simplify notation, the symbols H, I, J , and K will consistently be ideals, u and v

will be elements of ideals, α and β will be elements of Z[
√
N ], ξ and ζ will be elements of

Q(
√
N), and L will be a lattice.

Our definition of an ideal is the same as in any other commutative ring with identity:

Definition A.3.1. A subset I of a ring R is an ideal if for u, v ∈ I, u± v ∈ I and for α ∈ R,

u · α ∈ I (that is, I is closed under addition and multiplication by an element of R). If I is

an ideal of R = Z[
√
N ], define L(I) to be the least positive rational integer in I.

Describing ideals will require the notation for the lattice generated by a set. If

α1, α2, ..., αk ∈ Z[
√
N ],

denote7 the lattice generated by these as

7Observe the difference between the use of [...] here and in §A.1. This expression is completely unrelated
to rational approximations.
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[α1, α2, ..., αk] = {
k∑

i=1

niαi : ni ∈ Z} (A.14)

Lemma A.3.2 identifies necessary and sufficient conditions for a set in Z[
√
N ] to be an ideal.

Lemma A.3.2. For Q, s,N, P ∈ Z, N non-square and positive, [Q, s
√
N +P ] is an ideal of

the ring Z[
√
N ] if and only if sQ | N (s

√
N + P ), s | Q, and s | P .

Proof: Assume that I = [Q, s
√
N + P ] is an ideal of Z[

√
N ]. Then, choosing α =

P − s
√
N , N (s

√
N + P ) ∈ I. Since this is an integer, Q | N (s

√
N + P ). Choosing

α =
√
N , Q

√
N ∈ I. Therefore, s | Q. Since Q | N (s

√
N + P ), this also implies that s | P .

Therefore, α could have been chosen α = P/s −
√
N so that Q | N (s

√
N + P )/s, so that

sQ | N (s
√
N + P ).

Conversely, let I = [Q, s
√
N + P ] and assume that sQ | N (s

√
N + P ), s | Q, and s | P .

Closure under addition is trivial. To see that I is closed under multiplication by an element

of Z[
√
N ], one need only consider multiplication by 1 and

√
N , since they form a basis for

Z[
√
N ]. Multiplication by 1 is trivial. For

√
N ,

Q
√
N =

Q

s
(s
√
N + P )− P

s
Q

and Q/s and −P/s are integers. Also,

(s
√
N + P )

√
N = sN + P

√
N =

P

s
(s
√
N + P ) + (

−P 2 + s2N

sQ
)Q

and P
s

and (−P 2+s2N
sQ

) are integers. QED

If s = 1, an ideal is primitive. Since s | P and s | Q, ideals that are not primitive will

often be written (s)[Q,
√
N + P ]. Let I be the set of all primitive ideals.

Represented in the form I = [Q,
√
N + P ], it is clear that |Q| is the smallest positive

rational integer in I. Define

L(I) = min{I ∩ Z+} (A.15)



74

At this point, it is possible to define a correspondence between quadratic forms (of dis-

criminant ∆ ≡ 0 (mod 4)) and ideals by:

ΦF,I(F (x, y) = Ax2 +Bxy + Cy2) = [A,

√
(
B

2
)2 − AC +

B

2
] (A.16)

ΦI,F([Q,
√
N + P ]) = F (x, y) = Qx2 + 2Pxy + (

P 2 −N
Q

)y2 (A.16′)

and define a reduced ideal as an ideal corresponding to a reduced quadratic form. Note that

∆ = 4N .

For example, the quadratic form (15, 2 · 12,−1) corresponds to the ideal [15,
√

159 + 12].

The one potential problem that immediately becomes apparent is that while [15,
√

159 + 12]

and [−15,
√

159 + 12] are the same ideal, (15, 2 · 12,−1) and (−15, 2 · 12, 1) are different

quadratic forms. However, it is apparent that the negative sign is merely carried through

composition without affecting the computations. Since each of these forms is in the same

location within its respective cycle, this difference will not be important to this investigation

of composition and distance.

ΦT,F and ΦF,I may be combined to obtain

ΦT,I(
Q√
N − P

) = [Q,
√
N − P ]

and ΦI,T is defined in the related obvious way.

If A = [αi] and B = [βi], i = 1, 2, 3..., d, then it is clear that A = B if and only if there

exists a d× d matrix M with determinant ±1 such that:

〈αi〉 = M〈βi〉

where 〈αi〉 and 〈βi〉 are vectors.

For these purposes, the most important operation with ideals is their multiplication.

Multiplication is defined by
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[αi] · [βj] = [αiβj]

For example,

I = [15,
√

159 + 12] · [10,
√

159 + 13] = [150, 10
√

159 + 120, 15
√

159 + 195, 315 + 25
√

159]

The 4th component is the sum of the 2nd and 3rd, so it is unnecessary for describing the

ideal.

Applying the matrix


1 0 0

0 1 0

0 −1 1


which has determinant 1, subtracts the 2nd component from the third to obtain

I = [150, 10
√

159 + 120, 5
√

159 + 75]

The matrix, with determinant 1,


1 0 0

0 1 −2

0 0 1


will subtract twice the 3rd component from the 2nd to obtain

I = [150,−30, 5
√

159 + 75]

Here the 1st component is a multiple of the 2nd and is thus unnecessary. The answer is

simplified to obtain
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I = [30, 5
√

159 + 75] = 5[6,
√

159 + 15]

The process of multiplying ideals can be greatly simplified by several well-known formu-

lae8 [14].

Theorem A.3.3. Let I = [Q,
√
N + P ] and J = [Q′,

√
N + P ′] be ideals of Q

√
N . Let

C = N−P 2

Q
, C ′ = N−(P ′)2

Q′ . If gcd(Q,P,C) = gcd(Q′, P ′, C ′) = 1, then I · J = s[q,
√
N + p],

where

s = gcd(Q,Q′, P + P ′) (A.17)

h = gcd(Q,Q′, C, C ′, 2) (A.18)

q = hQQ′/s2 (A.19)

p ≡ P (mod Q/s) (A.20)

p ≡ P ′ (mod Q′/s) (A.21)

(P + P ′)p ≡ N + PP ′ (mod QQ′/s) (A.22)

Proof9:

Consider the product:

I · J = [QQ′, Q
√
N +QP ′, Q′

√
N +Q′P,N + PP ′ + (P + P ′)

√
N ] (A.23)

The smallest integer in I · J may be found by considering the smallest integers that may

be produced taking these elements pair-wise.

L(I · J) = gcd(QQ′, lcm(Q,Q′)(P − P ′),
lcm(Q,P + P ′)Q′C ′

P + P ′ ,
lcm(Q′, P + P ′)QC

P + P ′ )

8In [14], (A.22) is stated as (P − p)(P ′ − p) ≡ n + tp + p2 (mod QQ′/s), but in this case t = 0 and
n = −N .

9Some of the arguments were taken from Buell’s proof in [2] concerning composition of quadratic forms.
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Let s = gcd(Q,Q′, P +P ′), h = gcd(Q,Q′, C, C ′, 2), w = hQQ′/s. Let f 6= 2 be a prime.

Let a, b, c, d, e, k be the largest possible integers such that fa | Q, f b | Q′, f c | (P + P ′),

fd | C, f e | C ′, fk | (P − P ′). Then fa+b ‖ QQ′, fmax(a,b)+k ‖ lcm(Q,Q′)(P − P ′),

fmax(a,c)+b+e−c ‖ lcm(Q,P+P ′)Q′C′

P+P ′ , and fmax(b,c)+a+d−c ‖ lcm(Q′,P+P ′)QC
P+P ′ ).

The following analysis proves that if f 6= 2, the maximum exponent of f in L(I · J)

is a + b − min(a, b, c) while if h = 2, then the maximum exponent of 2 in L(I · J) is

a + b + 1 − min(a, b, c), while if h = 1, then the maximum exponent of f in L(I · J) is

a + b − min(a, b, c). As this is broken in several different cases, an outline of the proof is

helpful:

1) a = 0 or b = 0 or c = 0
2) a 6= 0,b 6= 0, and c 6= 0

2.1) f 6= 2
2.1.1) a+ d 6= b+ e

f | (P − P ′)
f - (P − P ′)

2.1.2) a+ d = b+ e
f | (P − P ′)
f - (P − P ′)

2.2) f = 2
2.2.1) a+ d 6= b+ e

c > 1, k > 1
c > 1, k ≤ 1
c = 1

2.2.2) a+ d = b+ e
c > 1, k > 1
c = 1
k = 1

Case 1) If a = 0, then max(a, c) + b + e − c = b + e ≥ b, max(b, c) + a + d − c ≥ b and

a+ b = b, so the maximum exponent for f in L(I · J) is b = a+ b−min(a, b, c). Similarly, if

b = 0, then the maximum exponent is a = a+ b−min(a, b, c).

Assume c = 0. fa+d ‖ QC = N − P 2 and f b+e ‖ Q′C ′ = N − (P ′)2, subtracting,

fmin(a+d,b+e) | (P 2 − (P ′)2) = (P + P ′)(P − P ′). Since c = 0, then fmin(a+d,b+e) | (P − P ′).

Therefore, fmax(a,b)+min(a+d,b+e) | lcm(Q,Q′)(P−P ′). However, max(a, b)+min(a+d, b+e) ≥
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max(a, b) + min(a, b) = a+ b. Therefore, the maximum exponent for f in L(I · J) is

min(a+ b,max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(a+ b, a+ b+ e, a+ b+ d)

= a+ b = a+ b−min(a, b, c)

Case 2.1.1) Assume c 6= 0, f 6= 2, and a+ d 6= b+ e. Then, fmin(a+d,b+e) ‖ (P 2− (P ′)2) =

(P + P ′)(P − P ′). If f | (P − P ′), then f | 2P and f | 2P ′. Since f 6= 2, this gives f | P ,

f | P ′. Then, d = e = 0. Also, c ≤ min(a, b). Then, the maximum exponent for f in L(I ·J)

is

min(a+ b,max(a, b) + min(a, b)− c,max(a, c) + b− c,max(b, c) + a− c) =

a+ b− c = a+ b−min(a, b, c)

If f - (P −P ′) then c = min(a+ d, b+ d) and the maximum exponent for f in L(I · J) is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a = min(a, b, c), then this is min(b, c+b+e−c,max(b, c)+a+d−c) = b = a+b−min(a, b, c).

The case is similar if b = min(a, b, c). If c = min(a, b, c), then since c = min(a + d, b + e),

this gives c = min(a, b). Then the maximum exponent is

min(max(a, b), a+b+e−c, b+a+d−c) = max(a, b) = a+b−min(a, b) = a+b−min(a, b, c)

Case 2.1.2) Assume c 6= 0, f 6= 2, but a + d = b + e. As before, if f | (P − P ′),

then d = e = 0. In this case also a = b. Assume c ≤ a. Note that fa−c | (P − P ′) and

max(a, b) + min(a+ d, b+ e)− c = a+ b− c. Then the maximum exponent is

min(a+ b,max(a, c) + b− c,max(b, c) + a− c) = a+ b− c = a+ b−min(a, b, c).
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Alternately, assume c > a. Then for some k, fk ‖ (P − P ′). The maximum exponent is

min(a+ b,max(a, b) + k, b,max(b, c) + a− c) = b = a+ b− a = a+ b−min(a, b, c)

Conversely, assume f - (P − P ′). Then c ≥ a+ d = b+ e and the maximum exponent is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(max(a, b), a+ d)

= max(a, b) = a+ b−min(a, b) = a+ b−min(a, b, c)

Case 2.2.1) Let f = 2. Assume a + d 6= b + e. Then 2min(c,k) ‖ 2P and 2min(c,k) ‖ 2P ′, so

that 2min(c,k)−1 ‖ P, P ′. If c > 1 and k > 1, then d = e = 0 and as before the largest exponent

is a+ b−min(a, b, c). Assume c > 1, k ≤ 1. Then k = 1 and c = min(a+ d, b+ e)− 1. The

largest exponent is then

min(a+ b,max(a, b) + 1,max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a ≤ min(b, c) this reduces to b+min(e, 1) = a+ b+min(e, 1)−min(a, b, c). c+1 ≤ a+d ≤

c + d, so d ≥ 1. Note that if e ≥ 1 then this is a special case and h = 2. If e = 0, it is the

same as before. The cases when b ≤ min(a, c) are similar.

If c ≤ min(a, b), this exponent is min(max(a, b)+1, a+b+e−c, b+a+d−c). Without loss

of generality, assume a+ d > b+ e so that c = a+ d− 1 ≥ c+ d− 1, so that d = 1 and a = c.

Then the exponent is min(b+1, b+e, b+d) = b+min(1, e, d) = a+b+min(1, e, d)−min(a, b, c).

Note again that if e ≥ 1 and d ≥ 1, then this is the special case where h = 2. Otherwise, it

is the same as before.

Assume c = 1. Then k ≥ 1. Then the exponent is

min(a+ b,max(a, b) + min(a+ d, b+ e)− 1, a+ b+ e− 1, a+ b+ d− 1).
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If d = 0 or e = 0, h = 1 and this is a + b − 1 = a + b −min(a, b, c). Otherwise, h = 2 and

the exponent is a+ b = a+ b+ 1−min(a, b, c).

Case 2.2.2) Lastly, assume that c 6= 0 but a + d = b + e. For some k, 2k ‖ (P − P ′).

c + k ≥ a + d. If c > 1 and k > 1, then d = e = 0, a = b. The exponent is then

min(2a, a+ k,max(a, c) + b− c). If c > a, this is min(2a, a+ k, a) = a = a+ b−min(a, b, c).

If c ≤ a, the exponent is min(2a, a+ k, 2a− c) = 2a− c = a+ b−min(a, b, c).

Alternately, if c = 1, then k ≥ a+ d− 1 and the exponent is

min(a+ b,max(a, b) + k, a+ b+ e− 1, b+ a+ d− 1) = min(a+ b, a+ b+ e− 1, a+ b+ d− 1).

If e > 0 and d > 0, h = 2 and this exponent is a + b = a + b + 1 −min(a, b, c). If e = 0 or

d = 0, h = 1 and this is a+ b− 1 = a+ b−min(a, b, c).

If k = 1 then c ≥ 1 and specifically c ≥ a + d − 1 = b + e − 1. If c ≤ min(a, b), then

d = e = 1 so that h = 2, c = a = b and the exponent is

min(2a, a+ 1) = a+ 1 = a+ b+ 1−min(a, b, c)

If a ≤ min(b, c), then d ≥ e and the exponent is

min(a+ b, b+ 1, b+ e,max(b, c) + a+ d− c) = min(b+ 1, b+ e)

If e ≥ 1, then d ≥ e ≥ 1, so h = 2 and in this case the exponent is b+1 = a+b+1−min(a, b, c).

If e = 0, h = 1 and in this case the exponent is b = a+ b−min(a, b, c).

Therefore,

L(I · J) = hQQ′/s

so that for f 6= 2, the highest exponent is a + b − min(a, b, c) and for f = 2, the highest

exponent is a+ b−min(a, b, c) if h = 1 and a+ b+ 1−min(a, b, c) if h = 2. Note that this
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is still divisible by s. After that s is factored out, the result is q = hQQ′/s2.

There are integers t, u, and v such that tQ + uQ′ + v(P + P ′) = s. First, consider

divisibility by s. This is trivial for every term except N + PP ′. By the definition of s,

P + P ′ ≡ 0 (mod s)

P ′ ≡ −P (mod s)

PP ′ ≡ −P 2 (mod s)

N + PP ′ ≡ N − P 2 (mod s)

and since s | Q and Q | (N − P 2), s | N + PP ′.

The linear combination of the last three elements with coefficients t, u, and v respectively

is:

s
√
N + tQP ′ + uQ′P + v(N + PP ′)

so that it is evident that after s is factored out, the remaining ideal is primitive. Since this is

the element of I · J with the smallest coefficient of
√
N , clearly p = t(Q/s)P ′ + u(Q′/s)P +

v(N + PP ′)/s, modulo L(I · J). Then,

p = t(Q/s)P ′ + (s− tQ− v(P + P ′))P/s+ v(N + PP ′)/s

≡ P + v(N − P 2)/s (mod Q/s)

≡ P (mod Q/s)

since Q | (N − P 2). By symmetric arguments, p ≡ P ′ (mod Q′/s).

To prove (A.22), consider:
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(P + P ′)sp = (P + P ′)(tQP ′ + uQ′P + v(N + PP ′)

= (P + P ′)(tQP ′ + uQ′P ) + (P + P ′)(N + PP ′)v

= (P + P ′)(tQP ′ + uQ′P ) + (s− tQ− uQ′)(N + PP ′)

= s(N + PP ′) + tQ((P ′)2 −D) + uQ′(P 2 −N)

≡ s(N + PP ′) (mod QQ′)

Therefore, (P + P ′)p ≡ N + PP ′ (mod QQ′/s). QED

Observe that when h = 1 (A.19) could be restated as

L(I · J) = L(I)L(J)/s2 (A.24)

remembering that L(I) is defined as the smallest positive rational integer in I. This equation

is proven in [26] and will be useful later.

Also observe that for h = 1, the equations describing the product of two ideals correspond

exactly to the composition of two quadratic forms. Shanks notes this in [21]. Therefore, the

equations concerning distance and multiplication of ideals will correspond to distance and

composition of quadratic forms.

The case when h = 2 connects composition of quadratic forms of discriminant ≡ 1

(mod 4) to multiplication of ideals. If F and G are two quadratic forms with discriminant

N ≡ 1 (mod 4), then 2F and 2G have discriminant 4N and correspond to ideals I2F and

I2G in Z[
√
N ]. Multiplying, h = 2 and I2F · I2G = I2(F∗G). Therefore, although this case will

not be considered further, it is readily seen that the distance formulas derived from ideals in

Z[
√
N ] will still correspond to composition of quadratic forms of discriminant ≡ 1 (mod 4).
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A.4 Lattices

Consider lattices in Q(
√
N)×Q(

√
N). Define L as the set of all lattices in Q(

√
N)×Q(

√
N).

Define the map M : Q(
√
N)→ Q(

√
N)×Q(

√
N) by

M(ξ) = 〈ξ, ξ〉

Multiplication in Q(
√
N) × Q(

√
N) is defined component-wise, that is, 〈ξ, ξ′〉 · 〈ζ, ζ ′〉 =

〈ξζ, ξ′ζ ′〉, so that it is clear that M is homomorphic and one-to-one.

Distance will relate to a concept called a minimum:

Definition A.4.1. For a vector v = 〈v1, v2, ...vd〉, the normed body of v, R(v) is the set

R(v) = {〈x1, x2, ...xd〉 : xi ∈ R, |xi| < |vi|, i = 1, 2, ...d}

Abusing notation, denote R(ξ) = R(〈ξ, ξ〉).

A number ξ (or actually the corresponding vector) is a minimum of L if R(ξ)∩L = {0},

where 0 is the vector 〈0, 0〉.

A lattice L is reduced if 1 ∈ L and 1 is a minimum.

For this case with d = 2, the normed body is a rectangle in R2. Note that for ξ ∈ Q(
√
N)

the normed body R(ξ) has area equal to four times the absolute value of the norm |N (ξ)|.

To avoid unnecessary generality, this investigation will focus specifically on the lattices

corresponding to ideals. Specifically, for the primitive ideal I = [Q,
√
N + P ], define the

associated lattice containing 1 in Q(
√
N) as LI = [1, (

√
N + P )/Q].

Conversely, to each lattice containing 1 in Q(
√
N) there is an associated primitive lattice

(which may or may not be an ideal) in Z[
√
N ]. Equation (A.15) defined the function L. In

a similar fashion, for a lattice L, define
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L(L) = min{n ∈ Z+ : nL ⊂ Z[
√
N ]} (A.25)

Then if L(L)L is an ideal of Z[
√
N ] it is the primitive ideal associated to a lattice L. Note

that if an ideal I is associated to a lattice LI , then L(I) = L(LI). Define

ΦI,L([Q,
√
N + P ]) = [1, (

√
N + P )/Q]

and

ΦL,I(L) = L(L)L

Note that for some lattices L, ΦL,I(L) may not actually be an ideal. Lemma A.4.2 provides

conditions for it to be an ideal sufficient for this analysis:

Lemma A.4.2. Let I be a primitive ideal and let L = ΦI,L(I). If L′ is a lattice with basis

{1, ξ} and for some θ, θL′ = L, then J = ΦL,I(L′) is a primitive ideal and

(L(I)θ)J = (L(J))I

Proof: Let I = [Q,
√
N + P ]. Then L = [1, (

√
N + P )/Q]. The statement that θL′ = L

requires that

θ

 1

ξ

 = T

 1

(
√
N + P )/Q


where T is a 2 × 2 matrix with determinant ±1. Multiplying by L(I) = L(L) = Q and

L(J) = L(L′):

Qθ

 L(L′)

L(L′)ξ

 = L(L′)T

 Q

(
√
N + P )
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so that (L(I)θ)J = (L(J))I. Therefore, J is an ideal. It is primitive by the definition of

ΦL,I. QED

For an example of minima, consider the lattice [1,
√

159−12]. R(1) is a square with sides

of length 2 centered at the origin and a simple graph demonstrates that 0 is the only point

in the lattice and contained in this square. Therefore 1 is a minimum.
√

159 − 12 is also a

minimum. R(
√

159 + 12) is a narrower and taller rectangle also centered at the origin.

Given two minima, it is important to be able to determine whether or not there is another

minimum between them. In vector format, if 〈x1, y1〉 and 〈x2, y2〉 are minima with |x1| > |x2|

and |y1| < |y2|, these two minima are adjacent if there does not exist another minima 〈x3, y3〉

such that |x2| < |x3| < |x1| and |y1| < |y3| < |y2|.

Voronoi developed a method (and a theorem) concerning adjacent minima ([4], [26]).

Theorem A.4.3. Let L be a lattice with {ξ, ζ} as a basis, where ξ, ζ ∈ Q(
√
N) and suppose

that ζ > ξ > 0. Then ζ and ξ are adjacent minima of L if and only if |ξ| > |ζ| and ζξ < 0.

Proof: Assume ξ and ζ are adjacent minima. Since they are both minima, |ξ| > |ζ|, or

else ζ would not be a minima. Also 0 < ζ − ξ < ζ. Since ζ is a minima, this requires that

|ζ − ξ| > |ζ|. If ζ and ξ had the same sign, this would not be possible. Therefore, ζξ < 0.

Conversely, assume that |ξ| > |ζ| and ζξ < 0. Assume that ξ is not a minimum of L.

Then there exists some ω ∈ Q(
√
N) such that |ω| < ξ and |ω| < |ξ|. Since ω = aξ + bζ for

some a, b ∈ Z, |aξ+bζ| < ξ and |aξ+bζ| < |ξ|. If ab = 0, then either a = 0 or b = 0. If a = 0,

then the second statement contradicts the hypothesis. If b = 0, then the first statement gives

ξ < ξ, clearly false. However, if ab > 0 then |aξ + bζ| > ξ and if ab < 0, then since ζξ < 0,

|aξ + bζ| > |ξ|. Therefore, ξ must be a minima. By similar reasoning, ζ must be a minima.

Concerning adjacency, assume that there is another minima ω between ξ and ζ. Since

ω = aξ + bζ for some a, b ∈ Z, ξ < |aξ + bζ| < ζ and |ζ| < |aξ + bζ| < |ξ|. Since ζ > ξ > 0,

the first statement requires that b = 0 and then the second statement simplifies to |a| < 1,
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requiring that a = 0 and providing a contradiction. Therefore, ξ and ζ are adjacent minima.

QED

From the previous example, it is now possible to check that ξ = 1 and ζ =
√

159 + 12

are indeed adjacent minima.

The idea that will actually connect to continued fractions (and distance) is the search for

a sequence of adjacent minima. This sequence is formed by relating different lattices. The

following Lemmas are due to Williams [26].

Lemma A.4.4. Let L and L′ be reduced lattices. If ξL′ = L, then ξ is a minimum of L.

Proof: Since 1 ∈ L′, ξ ∈ L. If ξ is not a minimum of L, then there exists a ζ ∈ L such

that ζ 6= 0 and |ζ| < |ξ| and |ζ| < |ξ|. Let β = ζ/ξ, so that β ∈ L′. |β| = |ζ/ξ| < 1 and

|β| = |ζ/ξ| < 1, contradicting the fact that L′ is reduced. Therefore, ξ is a minimum of L.

QED

Now consider the converse of this statement. Note that bxc denotes the floor of x.

Lemma A.4.5. Let L = [1, ξ], where 1 and ξ are adjacent minima of L with 1 > ξ > 0. Let

L′ = (1/ξ)L. Then L′ is a reduced lattice.

Proof: L′ = (1/ξ)[1, ξ] = [1/ξ, 1] = [1/ξ − b1/ξc, 1], so that 1 ∈ L′. It is sufficient to

show that 1 and ξ′ = 1/ξ − b1/ξc are adjacent minima. First, 1 and ξ′ are a basis for L′

and 1 > ξ′ > 0. Since 0 < ξ < 1, b1/ξc > 1. Since ξ < 0, ξ′ = 1/ξ − b1/ξc < 0 − 1 = −1.

Thereby satisfying both the requirement that ξ
′ · 1 < 0 and the requirement that |ξ′| > 1.

Therefore, by Theorem A.4.3, 1 and ξ′ are adjacent minima of L′ and thus L′ is a reduced

lattice. QED

Actually, these proofs provide a bit more by actually finding the minimum adjacent to 1

in the new lattice. The next Lemma makes use of this minimum [26]:

Lemma A.4.6. Let L, L′, ξ, and ξ′ be as above. Let ζ be the minimum adjacent to ξ other

than 1 in L. Then ζ = ξξ′.



87

Proof: ξξ′ = ξ(1/ξ−b1/ξc) = 1−ξb1/ξc, so that [ξ, ξξ′] is a basis for L. Since 1 > ξ′ > 0,

ξ > ξξ′ > 0. Since |ξ′| > 1, |ξξ′| > |ξ|. Since ξ
′
< 0, ξ · ξξ′ = (ξ)2ξ′ < 0. Therefore, by

Theorem A.4.3, ξ and ξξ′ are adjacent minima. Since ξξ′ 6= 1, ζ = ξξ′. QED

Observe that by a similar process, one could find a reduced lattice L′′ = 1/ξ′L′, etc. Then

L′′ = 1/(ξξ′)L. To generalize, define ξ = ξ1 and L = L1 and this is a sequence of reduced

lattices and their minima. A chain of adjacent minima of L1 may be defined by

θn =
n−1∏
i=1

ξi (A.26)

and then

θnLn = L1 (A.27)

Since each Ln is a reduced lattice, by Lemma A.4.4 each θn is a minimum of L1.

Although it is not true in higher dimensions, it is fairly trivial in 2-d that this chain of

adjacent minima provides a complete (although infinite) list of the minima with x-coordinate

between 0 and 1.

Lemma A.4.7. Let 〈φ, φ〉 be a minimum of a lattice L, with 0 < φ < 1. Then for some n,

φ = θn, where θn is defined by equation (A.26)

Define distance in terms of this chain of minima by

DL(Ln,Lm) = log(θn/θm) (A.28)

It will become readily apparent that the subscript L is unnecessary, but it provides clarity

for now. Before continuing it is appropriate to provide an example of these concepts. First,

as a reference, consider the steps for the continued fraction expansion of
√

159− 12 and the

quadratic form distances DF covered to the end of each step:
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x1 = 1√
159−12

=
√

159+12
15

= 1 +
√

159−3
15

, DF(F0, F1) = log(
√

159+12
15

)

x2 = 15√
159−3

=
√

159+3
10

= 1 +
√

159−7
10

, DF(F0, F2) = log(
√

159+13
10

)

x3 = 10√
159−7

=
√

159+7
11

= 1 +
√

159−4
11

, DF(F0, F3) = log(2
√

159+25
11

)

x4 = 11√
159−4

=
√

159+4
13

= 1 +
√

159−9
13

, DF(F0, F4) = log(3
√

159+38
13

)

x5 = 13√
159−9

=
√

159+9
6

= 3 +
√

159−9
6

, DF(F0, F5) = log(5
√

159+63
6

).

The continued fraction corresponds to quadratic forms which correspond to ideals, which

are associated with lattices that contain 1. In this case, the lattice associated with x1 is

L1 = [1, 1/x1] = [1,
√

159− 12] and 1/x1 is a minimum adjacent to 1 in L1. From here:

L2 = 1√
159−12

L1 = [ 1√
159−12

, 1] = [
√

159+12
15

, 1] = [1,
√

159−3
15

] = [1, 1/x2]

L3 = 15√
159−3

L2 = [ 15√
159−3

, 1] = [
√

159+3
10

, 1] = [1,
√

159−7
10

] = [1, 1/x3]

...

and it is apparent that this same pattern of correspondence will continue, that is

ΦT,L(xn) = ΦT,I(ΦI,L(xn)) = [1, 1/xn] = Ln (A.29)

from which it is also apparent that the sequences of lattices will be periodic.

Computing equation (A.26), for example, θ3 = (
√

159− 12)(
√

159−3
15

) = 13−
√

159. With

θ1 = 1,

D(L1,L3) = log(1/(13−
√

159)) = log((
√

159 + 13)/10)

It is readily apparent that the definition of distances in lattices corresponds to the defi-

nition given for quadratic forms. Note that these distances must still be considered modulo

R, the regulator, since the sequence of lattices is still cyclic.
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A.5 The Generalized Distance Formula

Going back to ideals, note that if I1 = L(L1)L1 and In = L(Ln)Ln is another ideal corre-

sponding to a lattice later in the same sequence, then

θnLn = L1

L(L1)L(Ln)θnLn = L(L1)L(Ln)L1

(L(L1)θn)In = (L(Ln)I1 (A.30)

where once again, the distance (this time between ideals) is given by D(I1, In) = − log(θn).

Now, this definition of distance is well and good for reduced ideals, but as of yet, it hasn’t

been applied it to non-reduced ideals. To relate the definitions of reduced lattices and

continued fractions observe that the definition of a reduced continued fraction implies that

for a term xi =
√

N+Pi−1

Qi
, being reduced equates to

√
N + Pi−1

Qi

> 1

0 <

√
N − Pi−1

Qi

< 1

so that it is clear that if Lx = [1, 1/x], then 1 and x are adjacent minima and the lattice

is reduced. The process of dealing with a non-reduced lattice correlates to the process of

reducing a continued fraction as demonstrated in the proof of Lemma A.1.8. See [26] for a

more general Lemma.

Lemma A.5.1. Let I be any primitive ideal in Z[
√
N ]. There exists a reduced ideal In and

a θn ∈ I such that



90

(L(I)θn)In = (L(In))I (A.31)

Proof:

Let I = [Q,
√
N + P ]. Then the associated lattice is LI = [1,

√
N+P
Q

] = [1, ξ1]. If I

is reduced, In = I, u = L(I), and the proof is done. If I is not reduced, then LI is not

reduced. Without loss of generality, assume that 0 < ξ1 < 1 (since otherwise it would just

have to be reduced by an integer.). Let L2 = 1/ξ1LI = [1/ξ, 1] = [1, 1/ξ − b1/ξ − 1/2c].

Then ξ1L2 = LI . Continuing in similar manner10, by Lemma A.1.8 and the correspondence

between lattices and continued fractions for some n,ξn reduced, and thus Ln reduced. As in

(A.26), set

θn =
n−1∏
i=1

ξi

so that

θnLn = LI

Then (L(I)θn)In = (L(In)I. QED

Let I1, J1 be reduced primitive ideals. Let K1 be the primitive ideal found by multiplying

I1 and J1 and removing a factor and let s be the factor removed, so that (s)K1 = I1J1, s ∈ Z.

By Lemma A.5.1 there exists a reduced ideal Kj and a λj ∈ K1 such that

(L(K1)λj)Kj = (L(Kj))K1 (A.32)

corresponding to D(K1, Kj) = − log(λj).

Let In ∼ I1 and Jm ∼ J1 and let H1 be the primitive ideal found by multiplying In and

10Note that it is irrelevant whether or not the second components of the intermediate lattices are either
minima or adjacent to 1. Also note that, as in Lemma A.1.8, the formula would change slightly when the
denominators get small.
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Jm and removing a factor and let t be the factor removed, so that (t)H1 = InJm, t ∈ Z. By

Lemma A.5.1 there exists a reduced ideal Hk and a ηk ∈ K1 such that

(L(H1)ηk)Hk = (L(Hk))H1 (A.33)

corresponding to D(H1, Hk) = − log(ηk).

Also, there exist minima µn and φm in the lattices corresponding to I1 and J1, respectively,

such that

(L(I1)µn)In = (L(In))I1 (A.34)

and

(L(J1)φm)Jm = (L(Jm))J1 (A.35)

corresponding to D(I1, In) = − log(µn) and D(J1, Jm) = − log(φm).

By combining (A.24) and (A.32)-(A.35):

(L(Hk))Kj =
(

L(Hk)L(Kj)

L(K1)λj

)
K1

=
(

L(Hk)L(Kj)

L(K1)λjs

)
I1J1

=
(

L(Hk)L(Kj)L(I1)L(J1)µnφm

L(K1)λjsL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφm

λjL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφmt

λjL(In)L(Jm)

)
H1

=
(

L(Hk)L(Kj)sµnφm

λjtL(H1)

)
H1

=
(

L(Kj)sµnφmηk

λjt

)
Hk

Set

ψ =
sµnφmηk

tλj
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and then

(L(Kj)ψ)Hk = (L(Hk))Kj (A.36)

Since Kj and Hk are reduced, by Lemma A.4.4 ψ is a minimum of the lattice LKj
, so

that for some n, ψ = θn. Therefore,

D(Kj, Hk) = − log(ψ) = − log(µn)− log(φm)− log(ηk) + log(λj)− log(s/t)

= D(I1, In) +D(J1, Jm) + ζ

where ζ = D(H1, Hj)−D(K1, Kj) + log(t/s) will be small compared to D(Kj, Hk) for m,n

large.

By the correspondence between multiplication of ideals and composition of quadratic

forms, this result may be restated in terms of forms:

Theorem A.5.2. If F1 ∼ Fn are equivalent forms and G1 ∼ Gm are equivalent forms and

Dρ,1 is the reduction distance for F1 ∗G1 and Dρ,2 is the reduction distance for Fn ∗Gm and

s and t are the factors cancelled in each respective composition, then

D(F1 ∗G1, Fn ∗Gm) = D(F1, Fn) +D(G1, Gn) + ζ

where ζ = Dρ,2 −Dρ,1 + log(t/s).

Example 6 from the Morrison-Brillhart algorithm is in the principal cycle. By Theorem

A.5.2 when a form F is composed with itself, the distance from 1 to F is roughly doubled,

d(1, F 2) = 2d(1, F ) + ζ. Therefore, the index is roughly doubled, since distance is roughly

proportional to the difference in indices, so that F3 ∗ F3 = F6, and Q6 = 9 is the square of

Q3 = 3.

Since the square of any symmetry point has first coefficient 1, observe that if the distance
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around some cycle were unrelated to the distance around the principal cycle, then this

result would be affected by which symmetry point this distance was referenced from. From

Definition A.2.9 R = D(F0, Fπ) in the principal cycle. At this point, it is clear that the

distance in other cycles must be the same.

Lemma A.5.3. Let A be a primitive ambiguous cycle with a period π. Then,

R = D(F0, Fπ)

Proof: Let {Fi} have period π and let F0 and Fπ/2 be the two symmetry points of A.

Then F0 ∗F0 = 1 = Fπ/2 ∗Fπ/2, with Dρ,1 = Dρ,2 = 0, s and t the respective first coefficients.

Therefore,

0 = D(F0 ∗ F0, Fπ/2 ∗ Fπ/2) = 2D(F0, Fπ/2) + log(t/s) = D(F0, Fπ)

where the 3rd step is obtained from the 2nd by the fact that the product in D(F0, Fπ/2)

includes the last denominator t and not the first denominator s.

Therefore, D(F0, Fπ) = nR. Considering composition of F0 with forms in the principal

cycle, clearly D(F0, Fπ) ≤ R, so that D(F0, Fπ) = R. QED

A.6 Proof of Square Forms Factorization (SQUFOF)

It’s not certain how much Shanks may have rigorously proven concerning distances, but

based on the understanding he had of distance and infrastructure, he was able to develop

Square Forms Factorization. A short example will demonstrate and explain the algorithm:

let N = 3193. Expanding the continued fraction (principal cycle), Q10 = 49. The quadratic

form for this is F = 49x2 + 58xy − 48y2. Since 49 is a perfect square, 7x2 + 58xy − 336y2,

which reduces with Dρ = 0 to G = 7x2 + 100xy − 99y2 is a quadratic form whose square is
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F . Therefore, by Theorem A.2.8, G is in a class of order 2 or 1, so that G is an ambiguous

form, so that there are two points of symmetry in its cycle. Since by Theorem A.5.2,

2D(Gs, G) = D(1, F ) (mod R). So D(Gs, G) = D(1, F )/2 (mod R/2). Since the two points

of symmetry are R/2 away from each other, this means that there is a symmetry point at

distance D(1, F )/2 behind G. Therefore, a point of symmetry may be found by reversing G

and traveling this short distance. Now if the coefficient at this symmetry point is ±1, then

there would have been a 7 somewhere before F in the continued fraction expansion. If the

coefficient is 2, then this symmetry point could be composed with G to find 14 at an earlier

point in the principle cycle. Therefore, the symmetry point provides a nontrivial factor for

N . In this case, after 6 steps it provides 31 as a factor of 3193.

The second phase of this algorithm can be made significantly (at least for larger numbers)

faster if the quadratic forms from the continued fraction expansion with indices that are

powers of 2 are saved. In this example, F = F10, so that G is about the 5th form in its

cycle11. The composition of G−1 with F4 and F1 is close and a simultaneous search in both

direction from there quickly finds the symmetry point. In this case, it is only necessary to

store log2 k forms for k steps, so that it is more efficient to check each square to see if it

works than to check each square root against the previous pseudo-squares to predict whether

it will work.

Formally, here is the algorithm for factoring N :

11Roughly, since in this case 5 ≈ 6.
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Q0 ← 1, P0 ← b
√
Nc, Q1 ← N − P 2

0

r ← b
√
Nc

while Qi 6= perfect square for some i even

bi ←
⌊

r+Pi−1

Qi

⌋
Pi ← biQi − Pi−1

Qi+1 ← Qi−1 + bi(Pi−1 − Pi)

if i = 2n for some n

Store (Qi, 2 · Pi) F0 = (
√
Qi, 2 · Pi−1,

P 2
i−1−N

Qi
)

Compose F0 with stored forms according to the

binary representation of i/2 and store result to F0.

F0 = (A,B,C)

Q0 ← |A|, P0 ← B/2, Q1 ← |C|

q0 ← Q1, p0 ← P0, q1 ← Q0

while Pi 6= Pi−1 and pi 6= pi−1

Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)

If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .

If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

Finding a perfect square that provides a factorization is the slowest part of the algorithm,

so the number of steps required to obtain this is a good measure of the total runtime. Let W

be the number of forms examined before a square for is found that provides a factorization.

In [23], Shanks states that for N having k distinct prime factors12,

E(W ) = ln(8)
2 +
√

2

2

4
√
N

2k − 2
.

12Shanks actually let N have k + 1 distinct prime factors, so the distance looks slightly different but is
equivalent.
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Shanks did not provide a proof, and it actually wasn’t quite right for all N , but in 2004,

Jason Gower analyzed the runtime and concluded:

Conjecture 2. [9] Let N be square-free and have k distinct odd prime factors. Let W be the

number of forms that SQUFOF must examine before finding a square form that provides a

factorization. Then,

E(W ) ∼


2(
√

2+1) 4√N log 2
2k−2

ifN ≡ 1 (mod 4),

3(
√

2+2) 4√N log 2
2(2k−2)

ifN ≡ 2 or 3 (mod 4)
(A.37)

Note that for N ≡ 2 or 3 (mod 4), this is equivalent to Shanks estimate.

Therefore, Square Forms Factorization probably has an average runtime of O( 4
√
N).
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Appendix B

Source Code

B.1 Number Theory Functions

This first program, NumberTheory.c, has all of the basic functions needed for composition

of quadratic forms and cycling.

#include <stdio.h>

#include <stdlib.h>

#include "gmp.h"

struct form {

mpz_t Q0;

mpz_t P;

mpz_t Q1;

mpz_t b;

};

//prints a the coefficients of a quadratic form on a single line

void outputF(struct form A)

{

printf(" ");

mpz_out_str(stdout,10,A.Q0);

printf(" ");

mpz_out_str(stdout,10,A.P);

printf(" ");
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mpz_out_str(stdout,10,A.Q1);

printf(" \n");

}

//sets dest = src

void ftof(struct form *dest,struct form src)

{

mpz_set((*dest).Q0,src.Q0);

mpz_set((*dest).P,src.P);

mpz_set((*dest).Q1,src.Q1);

mpz_set((*dest).b,src.b);

}

//Calculates modular inverses. Also handles if A and base are not relatively prime.

//Sets d = gcd(A,base). Sets inv = inverse of A modulo (base/d).

void inverse(mpz_t inv, mpz_t d, mpz_t A, mpz_t base)

{

mpz_t t,one;

double one_d = 1;

mpz_init(t);

mpz_init_set_d(one,one_d);

mpz_gcdext(d,inv,t,A,base);

if(mpz_cmp(d,one))

{

mpz_cdiv_q(A,A,d);

mpz_gcdext(t,inv,t,A,base);

}

mpz_clear(t);

mpz_clear(one);

}

//Solves a system of contruence equations: Chinese remainder theorem.

// Sets soln congruent to EQ[0] modulo EQ[1], EQ[2] modulo EQ[3], etc.

int congruent(mpz_t soln, int size, mpz_t EQ[])

{

mpz_t modu,cong,d,inv,temp,temp2,prodSoFar;

int i;

mpz_init(prodSoFar);

mpz_init(modu);

mpz_init(cong);
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mpz_init(d);

mpz_init(inv);

mpz_init(temp);

mpz_init(temp2);

mpz_set(soln,EQ[0]);

mpz_set(prodSoFar,EQ[1]);

for(i = 1; i<size; i++)

{

mpz_set(cong,EQ[2*i]);

mpz_abs(modu,EQ[2*i+1]);

inverse(inv,d,prodSoFar,modu);

mpz_sub(temp,soln,cong);

mpz_cdiv_r(temp2,temp,d);

if(mpz_sgn(temp2))

{

mpz_clear(prodSoFar);

mpz_clear(modu);

mpz_clear(cong);

mpz_clear(d);

mpz_clear(inv);

mpz_clear(temp);

mpz_clear(temp2);

return 0;

}

mpz_mul(temp,temp,inv);

mpz_addmul(soln,temp,prodSoFar);

mpz_cdiv_q(temp2,modu,d);

mpz_mul(prodSoFar,prodSoFar,temp2);

mpz_cdiv_r(soln,soln,prodSoFar);

}

mpz_clear(prodSoFar);

mpz_clear(modu);

mpz_clear(cong);

mpz_clear(d);

mpz_clear(inv);

mpz_clear(temp);
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mpz_clear(temp2);

return 1;

}

//Takes one step. Note that Qform := [Q1,P1,Q2,b1], all positive.

void cFracStep(struct form *A,mpz_t root)

{

mpz_t temp;

mpz_init_set(temp,(*A).P);

mpz_add((*A).b,root,(*A).P);

mpz_fdiv_q((*A).b,(*A).b,(*A).Q1);

mpz_submul((*A).P,(*A).b,(*A).Q1);

mpz_neg((*A).P,(*A).P);

mpz_sub(temp,temp,(*A).P);

mpz_addmul((*A).Q0,temp,(*A).b);

mpz_swap((*A).Q0,(*A).Q1);

mpz_clear(temp);

}

//Tests if form A is reduced.

int goodForm(struct form A, mpz_t root)

{

mpz_t lRoot;

mpz_init_set(lRoot,root);

mpz_sub(lRoot,root,A.Q1);

mpz_abs(lRoot,lRoot);

if((mpz_cmp(A.P,root)>0)||(mpz_cmp(A.P,lRoot)<0))

return 0;

return 1;

}

//Given that r is the sqrt(square) mod base, squares base and finds sqrt(square) mod new base congruent to r

int CompSquare(mpz_t r, mpz_t square, mpz_t base)

{

mpz_t bs,inv,d,temp1,temp2;

mpz_init_set(bs,base);
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mpz_mul(base,base,base);

if(!mpz_cmp(base,bs))

{

mpz_clear(bs);

return 1;

}

mpz_clear(bs);

mpz_init(inv);

mpz_init(d);

mpz_init(temp1);

mpz_init(temp2);

inverse(inv,d,r,base);

mpz_fdiv_qr(temp1,temp2,square,d);

if(mpz_sgn(temp2))

{

mpz_clear(inv);

mpz_clear(d);

mpz_clear(temp2);

mpz_clear(temp1);

return 0;

}

mpz_addmul(r,inv,temp1);

if(mpz_tstbit(r,0))

mpz_sub(r,r,base);

mpz_cdiv_q_ui(r,r,2);

mpz_fdiv_r(r,r,base);

mpz_clear(temp1);

mpz_clear(temp2);

mpz_clear(inv);

mpz_clear(d);
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return 1;

}

//Reverses a quadratic form and takes a step so that the first coefficient is unchanged.

void reverse(struct form *A,mpz_t root)

{

mpz_swap((*A).Q0,(*A).Q1);

cFracStep(A,root);

}

//Reduces A. Does not use the original value of A.Q1

void reduce(struct form *A, mpz_t root, mpz_t N)

{

mpz_t temp;

mpz_init(temp);

mpz_sub((*A).b,root,(*A).P);

mpz_fdiv_q((*A).b,(*A).b,(*A).Q0);

mpz_addmul((*A).P,(*A).b,(*A).Q0);

mpz_mul(temp,(*A).P,(*A).P);

mpz_sub((*A).Q1,N,temp);

mpz_cdiv_q((*A).Q1,(*A).Q1,(*A).Q0);

while(!goodForm((*A),root))

cFracStep(A,root);

mpz_clear(temp);

}

//Given the last 2 steps in either the denominator or the numerater of the continued fraction convergent

//and b, calculates the next value and shifts R forward one step.

void approx(mpz_t R[2], mpz_t b)

{

mpz_addmul(R[0],b,R[1]);

mpz_swap(R[0],R[1]);

}

//Extended gcd algorithm. Computes d = gcd(x,y,z) and ax+by+cz = d.

void Xgcd3(mpz_t d,mpz_t a, mpz_t b, mpz_t c, mpz_t x, mpz_t y, mpz_t z)
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{

mpz_t d_xy,a_xy;

mpz_init(d_xy);

mpz_init(a_xy);

mpz_gcdext(d_xy,a,b,x,y);

mpz_gcdext(d,a_xy,c,d_xy,z);

mpz_mul(a,a,a_xy);

mpz_mul(b,b,a_xy);

mpz_clear(d_xy);

mpz_clear(a_xy);

}

//Sets res = A*B, composition of quadratic forms.

void compose(struct form *res, struct form A, struct form B, mpz_t root,mpz_t N)

{

mpz_t temp1,temp2,m,u,v,w;

mpz_init(m);

mpz_init(u);

mpz_init(v);

mpz_init(w);

mpz_init(temp1);

mpz_init(temp2);

mpz_add(temp1,A.P,B.P);

Xgcd3(m,u,v,w,A.Q0,B.Q0,temp1);

mpz_mul(temp1,A.Q0,B.P);

mpz_mul(temp1,temp1,u);

mpz_mul(temp2,A.P,B.Q0);

mpz_mul(temp2,temp2,v);

mpz_add(temp1,temp1,temp2);

mpz_set(temp2,N);

mpz_addmul(temp2,A.P,B.P);

mpz_mul(temp2,temp2,w);

mpz_add(temp1,temp1,temp2);

mpz_cdiv_q((*res).P,temp1,m);
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mpz_mul(temp1,A.Q0,B.Q0);

mpz_mul(temp2,m,m);

mpz_cdiv_q((*res).Q0,temp1,temp2);

reduce(res,root,N);

mpz_clear(m);

mpz_clear(u);

mpz_clear(v);

mpz_clear(w);

mpz_clear(temp1);

mpz_clear(temp2);

}

B.2 Fast Return Functions

FastReturn was the name Shanks gave to the variation that used composition to test a

perfect square quickly. This program provides the function that does this.

/* FastReturn.h

Used by SQUFOF to test whether a number is square and use saved quadratic forms to quickly find if a square

//form provides a factorization of N.

*/

#include "gmp.h"

#include<math.h>

int subIsSquare(mpz_t N, mpz_t root, int digit, mpz_t a)

{

mpz_t testN,newa,B;

mpz_init_set(testN,N);

mpz_submul(testN,a,a);

if(!mpz_sgn(testN))

{

mpz_set(root,a);

mpz_clear(testN);

return 1;
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}

if(mpz_sgn(testN)<0)

{

mpz_clear(testN);

return 0;

}

if(mpz_tstbit(testN,3*digit))

{

mpz_clear(testN);

return 0;

}

int b = mpz_tstbit(testN,3*digit+1)+2*mpz_tstbit(testN,3*digit+2);

int testa = mpz_tstbit(a,0)+2*mpz_tstbit(a,1)+4*mpz_tstbit(a,2);

b = (b*testa)%4;

mpz_clear(testN); //

mpz_init_set_ui(B,b);

mpz_init(newa);

mpz_mul_2exp(B,B,3*digit);

mpz_add(newa,a,B);

int t = subIsSquare(N,root,digit+1,newa);

if(t)

{

mpz_clear(B);

mpz_clear(newa);

return 1;

}

b = b+4;

mpz_set_ui(B,b);

mpz_mul_2exp(B,B,3*digit);

mpz_add(newa,a,B);

t = subIsSquare(N,root,digit+1,newa);

mpz_clear(B);

mpz_clear(newa);

return t;

}
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int isSquare(mpz_t N,mpz_t root)

{

mpz_t lN;

mpz_t a;

int t;

int twos = 0;

double i;

mpz_init_set(lN,N);

while(!mpz_tstbit(lN,0))

{

twos++;

mpz_fdiv_q_2exp(lN,lN,1); //Fix this

}

if(twos%2)

return 0;

twos = twos/2;

mpz_init(a);

if(mpz_tstbit(lN,1)||mpz_tstbit(lN,2))

return 0;

for(i = 1; i<8; i=i+2)

{

mpz_set_d(a,i);

t = subIsSquare(lN,root,1,a);

if(t)

{

mpz_clear(a);

mpz_clear(lN);

mpz_mul_2exp(root,root,twos);

return 1;

}

}

mpz_clear(a);

mpz_clear(lN);

return 0;

}
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//Given that the first coefficient of A has sqrt = r and index i. saved[] is a list of previous forms

//such that saved[i] = F_{30*2^i}. root = sqrt(N), where N is the discriminant (the number being factored).

//tr is set to 1 if a factor is found.

int testF(struct form A,struct form saved[],int i,mpz_t r,mpz_t root,mpz_t N,int *tr)

{

struct form B,myA;

mpz_t BP,AP,d;

i = i/2;

int size = 24;

int os;

int pow = 503316480; //30*2^24

mpz_init_set(myA.Q0,A.Q0); mpz_init_set(myA.P,A.P); mpz_init_set(myA.Q1,A.Q1); mpz_init(myA.b);

reverse(&myA,root);

mpz_set(myA.Q0,r);

reduce(&myA,root,N);

while (size >= 0)

{

if(i>=pow)

{

i = i-pow;

compose(&myA,myA,saved[size],root,N);

}

size = size-1;

pow = pow/2;

}

mpz_init(B.Q0); mpz_init(B.P); mpz_init(B.Q1); mpz_init(B.b);

ftof(&B,myA);

reverse(&B,root);

mpz_init(d);

mpz_init_set_ui(BP,1);

mpz_init_set_ui(AP,1);

if(!mpz_cmp(myA.P,B.P))

{

mpz_gcd(d,myA.P,N);

mpz_clear(BP); mpz_clear(AP);
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mpz_clear(B.Q0); mpz_clear(B.P); mpz_clear(B.Q1); mpz_clear(B.b);

mpz_clear(myA.Q0); mpz_clear(myA.P); mpz_clear(myA.Q1); mpz_clear(myA.b);

if(mpz_cmp_ui(d,2)>0)

{

mpz_out_str(stdout,10,d);

mpz_clear(d);

(*tr) = 1;

return 1;

}

else

{

mpz_clear(d);

(*tr) = 0;

return 0;

}

}

os = 0;

while (mpz_cmp(myA.P,AP)&&mpz_cmp(B.P,BP))

{

mpz_set(AP,myA.P);

mpz_set(BP,B.P);

cFracStep(&myA,root);

cFracStep(&B,root);

os = os+1;

}

if (!mpz_cmp(myA.P,AP))

{

mpz_gcd(d,myA.Q0,N);

mpz_clear(BP); mpz_clear(AP);

mpz_clear(B.Q0); mpz_clear(B.P); mpz_clear(B.Q1); mpz_clear(B.b);

mpz_clear(myA.Q0); mpz_clear(myA.P); mpz_clear(myA.Q1); mpz_clear(myA.b);

if(mpz_cmp_ui(d,2)>0)

{

mpz_out_str(stdout,10,d);
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printf("\n");

mpz_clear(d);

(*tr)=1;

return 1;

}

else

{

mpz_clear(d);

(*tr)=0;

return 0;

}

}

if(!mpz_cmp(B.P,BP))

{

mpz_gcd(d,B.Q0,N);

mpz_clear(BP); mpz_clear(AP);

mpz_clear(B.Q0); mpz_clear(B.P); mpz_clear(B.Q1); mpz_clear(B.b);

mpz_clear(myA.Q0); mpz_clear(myA.P); mpz_clear(myA.Q1); mpz_clear(myA.b);

if(mpz_cmp_ui(d,2)>0)

{

mpz_out_str(stdout,10,d);

printf("\n");

mpz_clear(d);

(*tr)=1;

return 1;

}

else

{

mpz_clear(d);

(*tr)=0;

return 0;

}

}

mpz_clear(BP); mpz_clear(AP);

mpz_clear(B.Q0); mpz_clear(B.P); mpz_clear(B.Q1); mpz_clear(B.b);
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mpz_clear(myA.Q0); mpz_clear(myA.P); mpz_clear(myA.Q1); mpz_clear(myA.b);

return 0;

}

B.3 Segments Parallelization

This code, parSQUFOFsegs.c, uses segments to distribute the cycle of quadratic forms be-

tween multiple processors. It is designed for up to 64 processors, although it would be easy

to modify for a larger system or for distributed processing. It reads from standard output.

Each processor also records some basic information about the factors it finds to a file named

“1SXX.txt”, where “XX” is the two digit process number. At the end of the program, the

master compiles all output into the file “SegmentsData.txt”. It has several other options.

-n=x specifies that there will be x integers to factor. -d specifies that some basic informa-

tion should be output for each factor found. -D specifies that thorough information should

be provided about the progress of each processor to assist in debugging. -i specifies that the

computer should be interactive with the user

Thus, a standard format for the command would be:

mpirun -np 50 parSQUFOFsegs ¡numbers.txt -n=100 -d

which would use 50 processors to factor 100 integers from the file numbers.txt and output

basic information about each to the screen.

//parSQUFOFsegs.c

//MIDN 1/C Steve McMath

//April, 2005

#include "mpi.h"

#include <stdio.h>

#include "NumberTheory.h"

#include "/usr/local/include/gmp.h"

#include <time.h>

#include "FastReturn.h"



111

#include "gmpmpi_segments.h"

int main(int argc, char *argv[])

{

const int STOP = 10;

const int finished = 11;

const int segSize = 25;

const int Npass1 = 12;

const int Npass2 = 13;

char fname[9] = "1S00.txt";

int myrank,i,j,Ni,np,flag,done,tens,single;

mpz_t N,root,firstBack,factor;

struct form Start;

struct form back[segSize];

char *N_str;

int lengthN;

int dDi[3] = {0,0,0};

int maxNi = 100;

MPI_Status status;

time_t start,endt;

double dif;

FILE *OUT,*lastOUT,*IN;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &np);

//Idiot check

if((np < 2) || (np > 50))

{

MPI_Finalize();

return 0;

}

//Read in parameters from user.

for(i = 1; i<argc; i++)

{

if(argv[i][0] == ’-’)

{
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if(argv[i][1] == ’n’)

{

maxNi = 0;

for(j = 3; argv[i][j]!=NULL; j++)

{

maxNi = 10*maxNi+(argv[i][j]-’0’);

}

}

if(argv[i][1] == ’d’)

dDi[0] = 1;

if(argv[i][1] == ’D’)

{

dDi[0] = 1;

dDi[1] = 1;

}

if(argv[i][1] == ’i’)

dDi[2] = 1;

}

}

//Set 2 digits in filename to processor number.

fname[2] = ’0’+myrank/10;

fname[3] = ’0’+myrank%10;

OUT = fopen(fname,"w");

for(Ni=0; Ni < maxNi; Ni++)

{

fflush(OUT);

flag = 0;

done = 0;

mpz_init(N);

if(myrank==0) //Read in N and pass it to the other processors.

{

fprintf(OUT,"Starting %i\n",Ni);

mpz_inp_str(N,stdin,10);

lengthN = 1+mpz_sizeinbase(N,36);

N_str = malloc(lengthN*sizeof(char));

mpz_get_str(N_str,36,N);
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for(i = 1; i<np; i++)

{

MPI_Send(&lengthN,1,MPI_INT,i,Npass1,MPI_COMM_WORLD);

MPI_Send(N_str,lengthN,MPI_CHAR,i,Npass2,MPI_COMM_WORLD);

}

free(N_str);

time(&start);

}

else //Receive N from the master.

{

MPI_Recv(&lengthN,1,MPI_INT,0,Npass1,MPI_COMM_WORLD,&status);

N_str = malloc(lengthN*sizeof(char));

MPI_Recv(N_str,lengthN,MPI_CHAR,0,Npass2,MPI_COMM_WORLD,&status);

mpz_set_str(N,N_str,36);

free(N_str);

time(&start);

}

//Initialize memory and calculate first form.

mpz_init(root);

mpz_sqrt(root,N);

mpz_init_set_ui(Start.Q0,1);

mpz_init_set(Start.P,root);

mpz_init_set(Start.Q1,N);

mpz_submul(Start.Q1,root,root);

mpz_init(Start.b);

//Take 30 steps forward from the start.

mpz_init(firstBack);

for(i = 0; i<30; i++)

{

cFracStep(&(Start),root);

cFracStep(&(Start),root);

if(isSquare(Start.Q0,firstBack)&&testF(Start,back,Start,0,firstBack,root,N,&done,factor,dDi))

{

mpz_clear(root);

mpz_clear(Start.Q0);

mpz_clear(Start.P);

mpz_clear(Start.Q1);
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mpz_clear(Start.b);

mpz_clear(N);

MPI_Finalize();

return 0;

}

}

//Compute forms used by Fast Return.

for(i = 0; i<segSize; i++)

{

mpz_init_set(back[i].Q0,Start.Q0);

mpz_init_set(back[i].P,Start.P);

mpz_init_set(back[i].Q1,Start.Q1);

mpz_init(back[i].b);

compose(&Start,Start,Start,root,N);

}

if (myrank ==0)

{

int found[64];

MPI_Request waiting[64],stop[64];

struct segment Next;

struct form hIncrement,nextHstart;

for(i = 1; i<np; i++) //Receive messages from ready processors.

{

waiting[i] = 0;

MPI_Irecv(&found[i],1,MPI_INT,i,finished,MPI_COMM_WORLD,&waiting[i]);

}

//hIncrement is used as the first step before Fast Return.

mpz_init_set(hIncrement.Q0,back[segSize-1].Q0);

mpz_init_set(hIncrement.P,back[segSize-1].P);

mpz_init_set(hIncrement.Q1,back[segSize-1].Q1);

mpz_init(hIncrement.b);

//Next.start is the first form in the segment.

mpz_init_set(Next.start.Q0,back[0].Q0);

mpz_init_set(Next.start.P,back[0].P);

mpz_init_set(Next.start.Q1,back[0].Q1);
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mpz_init(Next.start.b);

//Next.end is the last form in the assigned segment.

mpz_init_set(Next.end.Q0,Start.Q0);

mpz_init_set(Next.end.P,Start.P);

mpz_init_set(Next.end.Q1,Start.Q1);

mpz_init(Next.end.b);

//halfStart is used in the first step before Fast Return.

mpz_init_set(Next.halfStart.Q0,back[0].Q0);

mpz_init_set(Next.halfStart.P,back[0].P);

mpz_init_set(Next.halfStart.Q1,back[0].Q1);

mpz_init(Next.halfStart.b);

mpz_init_set(nextHstart.Q0,hIncrement.Q0);

mpz_init_set(nextHstart.P,hIncrement.P);

mpz_init_set(nextHstart.Q1,hIncrement.Q1);

mpz_init(nextHstart.b);

//Records which segment this is.

Next.segnum = 0;

i = 1;

while(!done) //Checks for free processors, sends them a segment, then calculates the next.

{

if(i>=np)

i = 1;

flag = 0;

MPI_Test(&waiting[i],&flag,&status);

if(flag)

{

if(found[i])

{

if(dDi[1])

printf("Something found by rank %d\n",i);

done = found[i];

}

else

{

Send(Next,i);

if(dDi[1])
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printf("Segment %d given to rank %d\n",Next.segnum,i);

Next.segnum++;

MPI_Irecv(&found[i],1,MPI_INT,i,finished,MPI_COMM_WORLD,&waiting[i]);

ftof(&Next.start,Next.end);

ftof(&Next.halfStart,nextHstart);

compose(&nextHstart,nextHstart,hIncrement,root,N);

compose(&Next.end,nextHstart,nextHstart,root,N);

}

}

i++;

}

//Let all the processors know when one finds a factor.

for(i=1; i<np; i++)

MPI_Isend(&done,1,MPI_INT,i,STOP,MPI_COMM_WORLD,&stop[i]);

//Clear memory.

mpz_clear(hIncrement.Q0); mpz_clear(hIncrement.P); mpz_clear(hIncrement.Q1); mpz_clear(hIncrement.b);

mpz_clear(Next.start.Q0); mpz_clear(Next.start.P); mpz_clear(Next.start.Q1); mpz_clear(Next.start.b);

mpz_clear(Next.end.Q0); mpz_clear(Next.end.P); mpz_clear(Next.end.Q1); mpz_clear(Next.end.b);

mpz_clear(Next.halfStart.Q0); mpz_clear(Next.halfStart.P); mpz_clear(Next.halfStart.Q1);

mpz_clear(Next.halfStart.b);

mpz_clear(nextHstart.Q0); mpz_clear(nextHstart.P); mpz_clear(nextHstart.Q1); mpz_clear(nextHstart.b);

//Wait for all processors to get the message.

for(i=1; i<np; i++)

MPI_Wait(&waiting[i],&status);

}

else

{

struct segment Mine;

MPI_Request last;

MPI_Request ready;

long long int index;

int test=0,found = 0,end = 0;

//Initialize memory.

mpz_init(Mine.start.Q0); mpz_init(Mine.start.P); mpz_init(Mine.start.Q1); mpz_init(Mine.start.b);

mpz_init(Mine.end.Q0); mpz_init(Mine.end.P); mpz_init(Mine.end.Q1); mpz_init(Mine.end.b);

mpz_init(Mine.halfStart.Q0); mpz_init(Mine.halfStart.P); mpz_init(Mine.halfStart.Q1);



117

mpz_init(Mine.halfStart.b);

//Set up to receive the message when a processor finishes.

MPI_Irecv(&done,1,MPI_INT,0,STOP,MPI_COMM_WORLD,&last);

if(dDi[1])

printf("%d, done = %d recieved\n",myrank,done);

while((!flag)&&(!end)) //Each cycle through this loop receives a segment from master.

{

//Send ’ready’ to master.

MPI_Isend(&found,1,MPI_INT,0,finished,MPI_COMM_WORLD,&ready);

//Receive a segment.

Recv(&Mine);

if((Mine.segnum==(np-2))&&dDi[1])

{

time(&endt);

dif = difftime(endt,start);

printf("All processes started in %e seconds.\n",dif);

}

reduce(&Mine.start,root,N);

index = 0;

//Basic step. Checks for messages every cycle.

//Does Fast Return if it finds a square.

while(((!isSquare(Mine.start.Q0,firstBack))||(!testF(Mine.start,back,Mine.halfStart,index,firstBack,

root,N,&test,factor,dDi)))&&(!end))

{

cFracStep(&Mine.start,root);

cFracStep(&Mine.start,root);

//Check for Start

if((!mpz_cmp_ui(Mine.start.Q0,1))||(!mpz_cmp_ui(Mine.start.Q1,1)))

{

end = 1;

found = -1;

if(dDi[0])

printf("Start found in segment %d",Mine.segnum);

}
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//Check for end of segment.

if((!mpz_cmp(Mine.start.Q0,Mine.end.Q0))&&(!mpz_cmp(Mine.start.P,Mine.end.P)))

end = 1;

//Check for message.

MPI_Test(&last,&flag,&status);

if(flag)

{

if(done==1)

end = 1;

}

index++;

}

if(test)

{

found = 1;

end = 1;

time(&endt);

dif = difftime(endt,start);

if(dDi[0])

printf("%i, Rank %i, %e, %i, ",Ni,myrank,dif,Mine.segnum);

fprintf(OUT,"%i, Rank %i, %e, %i, ",Ni,myrank,dif,Mine.segnum);

mpz_out_str(stdout,10,factor);

printf("\n");

fprintf(OUT,"\n");

}

MPI_Test(&last,&flag,&status);

}

MPI_Isend(&found,1,MPI_INT,0,finished,MPI_COMM_WORLD,&ready);

mpz_clear(Mine.start.Q0); mpz_clear(Mine.start.P); mpz_clear(Mine.start.Q1); mpz_clear(Mine.start.b);

mpz_clear(Mine.end.Q0); mpz_clear(Mine.end.P); mpz_clear(Mine.end.Q1); mpz_clear(Mine.end.b);

mpz_clear(Mine.halfStart.Q0); mpz_clear(Mine.halfStart.P); mpz_clear(Mine.halfStart.Q1);

mpz_clear(Mine.halfStart.b);

}

time(&endt);

dif = difftime(endt,start);

if(dDi[1])

printf("Rank = %d: Done in %e sec\n",myrank,dif);
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//Clear memory used.

for(i=0; i<segSize; i++)

{

mpz_clear(back[i].Q0);

mpz_clear(back[i].P);

mpz_clear(back[i].Q1);

mpz_clear(back[i].b);

}

mpz_clear(Start.Q0);

mpz_clear(Start.P);

mpz_clear(Start.Q1);

mpz_clear(Start.b);

mpz_clear(N);

mpz_clear(root);

}

fclose(OUT);

if(myrank==0) //Compile the information from the different processors into a single file.

{

lastOUT = fopen("SegmentsData.txt","w");

for(i=0; i<np; i++)

{

tens = i/10;

fname[2] = ’0’+tens;

fname[3] = ’0’+i%10;

IN = fopen(fname,"r");

single = fgetc(IN);

do

{

fprintf(lastOUT,"%c",single);

single = fgetc(IN);

} while(single!=EOF);

fprintf(lastOUT,"\n");

fclose(IN);

fflush(lastOUT);
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}

fclose(lastOUT);

}

MPI_Finalize();

return 0;

}

B.3.1 Segments Communication Functions

This file, gmpmpi segments.h, is used by parSQUFOFsegs.c to send the data related to a

segment from the master processor to the other processors.

struct segment {

struct form start;

struct form end;

struct form halfStart;

int segnum;

};

void Send(struct segment A, int dest);

void Recv(struct segment *A);

//Determines the lengths of each intiger in base 36 and allocates space for them to be stored as integers. The

//lengths can be sent to the other processor to allocate space and be able to receive.

void form_type(struct segment A, char *A_str[6], int lengths[6])

{

int i;

lengths[0] = 1+mpz_sizeinbase(A.start.Q0,36);

lengths[1] = 1+mpz_sizeinbase(A.start.P,36);

lengths[2] = 1+mpz_sizeinbase(A.end.Q0,36);

lengths[3] = 1+mpz_sizeinbase(A.end.P,36);

lengths[4] = 1+mpz_sizeinbase(A.halfStart.Q0,36);

lengths[5] = 1+mpz_sizeinbase(A.halfStart.P,36);

for(i = 0; i<6; i= i+1)

{

A_str[i] = malloc(lengths[i]*sizeof(char));
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}

mpz_get_str(A_str[0],36,A.start.Q0);

mpz_get_str(A_str[1],36,A.start.P);

mpz_get_str(A_str[2],36,A.end.Q0);

mpz_get_str(A_str[3],36,A.end.P);

mpz_get_str(A_str[4],36,A.halfStart.Q0);

mpz_get_str(A_str[5],36,A.halfStart.P);

}

//allocates space for the lengths sent

void reform_type(char *A_str[6],int lengths[6])

{

int i;

for(i = 0; i<6; i++)

A_str[i] = malloc(lengths[i]*sizeof(char));

}

//After receiving the strings, converts them to mpz and stores them correctly.

void unpack(struct segment *A, char *A_str[6])

{

mpz_set_str((*A).start.Q0,A_str[0],36);

mpz_set_str((*A).start.P,A_str[1],36);

mpz_set_str((*A).end.Q0,A_str[2],36);

mpz_set_str((*A).end.P,A_str[3],36);

mpz_set_str((*A).halfStart.Q0,A_str[4],36);

mpz_set_str((*A).halfStart.P,A_str[5],36);

}

//Sends a segment A to processor #dest

void Send(struct segment A, int dest)

{

char *As[6];

int lengths[6];

const int tags[6] = {1,2,3,4,5,6};

const int extra = 7;

int i;

form_type(A,As,lengths);
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MPI_Send(&lengths[0],6,MPI_INT,dest,0,MPI_COMM_WORLD);

for(i = 0; i<6; i++)

MPI_Send(As[i],lengths[i],MPI_CHAR,dest,tags[i],MPI_COMM_WORLD);

MPI_Send(&(A.segnum),1,MPI_INT,dest,extra,MPI_COMM_WORLD);

for(i = 0; i<6; i++)

free(As[i]);

}

//Receive segment A from processor 0

void Recv(struct segment *A)

{

char *As[6];

int lengths[6];

const int tags[6] = {1,2,3,4,5,6};

int i;

MPI_Status halt;

const int extra = 7;

MPI_Recv(&lengths[0],6,MPI_INT,0,0,MPI_COMM_WORLD,&halt);

reform_type(As,lengths);

for(i = 0; i<6; i++)

MPI_Recv(As[i],lengths[i],MPI_CHAR,0,tags[i],MPI_COMM_WORLD,&halt);

unpack(A,As);

MPI_Recv(&((*A).segnum),1,MPI_INT,0,extra,MPI_COMM_WORLD,&halt);

for(i=0; i<6; i++)

free(As[i]);

}

B.4 Multipliers Parallelization

This code, parSQUFOFmults.c, uses different multipliers to distribute the factorization al-

gorithm between multiple processors. It is currently configured for up to 50 processors,

although it would be easy to modify it for a larger system or for distributed processing.

Commands, input, and output are the same as parSQUFOFsegs, except that the files are
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named “2SXX.txt” and the final file output is named “MultipliersData.txt”.

//parSQUFOFmults.c

//MIDN 1/C Stephen McMath

//May 2005

#include "mpi.h"

#include <stdio.h>

#include "NumberTheory.h"

#include "/usr/local/include/gmp.h"

#include <time.h>

#include "FastReturn.h"

#define NUMPROC 51 //Number of processors configured for.

//Single implementation of SQUFOF.

int SQUFOF(mpz_t N,mpz_t factor,int dDi[3]);

int main(int argc, char *argv[])

{

//Constants for sending message to stop working.

const int STOP[64] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63};

const int Npass1 = 12; //Constants for passing N from master to slaves.

const int Npass2 = 13;

int myrank,np,i,j,success;

int dDi[3] = {0,0,0}; //d for basic information. D for thorough debugging. i for interactive

int maxNi = 100; //Can also be changed by user.

mpz_t N, factor, temp;

char *N_str; //Used for passing N from the master.

int lengthN;

char fname[9] = "2S00.txt"; //Stores basic information from each processor.

MPI_Request stop[NUMPROC];

//Multiples chosen to minimize size of largest prime used and arranged in increasing order.

int mults[NUMPROC] = {1,2,3,5,6,7,10,11,13,14,15,21,22,26,30,33,35,39,42,55,65,66,70,77,78,91,105,110,130,

143,154,165,182,195,210,231,273,286,330,338,385,390,429,455,462,546,715,770,858,1155,2310};

MPI_Status status;

time_t start,endt;

double dif;

int Ni,tens;
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int single;

FILE *OUT;

FILE *IN, *lastOUT;

time(&start);

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &np);

//Idiot check

if((np < 2) || (np > NUMPROC))

{

MPI_Finalize();

return 0;

}

//Read in parameters from user.

for(i = 1; i<argc; i++)

{

if(argv[i][0] == ’-’)

{

if(argv[i][1] == ’n’)

{

maxNi = 0;

for(j = 3; argv[i][j]!=NULL; j++)

{

maxNi = 10*maxNi+(argv[i][j]-’0’);

}

}

if(argv[i][1] == ’d’)

dDi[0] = 1;

if(argv[i][1] == ’D’)

{

dDi[0] = 1;

dDi[1] = 1;

}

if(argv[i][1] == ’i’)

dDi[2] = 1;

}
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}

mpz_init(N);

//Set 2 digits in filename to processor number.

tens = myrank/10;

fname[2] = ’0’+tens;

fname[3] = ’0’+myrank%10;

OUT = fopen(fname,"w");

for(Ni=0; Ni<maxNi; Ni++)

{

fflush(OUT);

if(myrank==0) //Read in N and pass it to the other processors.

{

if(dDi[2]==1)

printf("N: \n");

mpz_inp_str(N,stdin,10);

lengthN = 1+mpz_sizeinbase(N,36);

N_str = malloc(lengthN*sizeof(char));

mpz_get_str(N_str,36,N);

for(i = 1; i<np; i++)

{

MPI_Send(&lengthN,1,MPI_INT,i,Npass1,MPI_COMM_WORLD);

MPI_Send(N_str,lengthN,MPI_CHAR,i,Npass2,MPI_COMM_WORLD);

}

free(N_str);

fprintf(OUT,"Starting Ni = %d\n",Ni);

time(&start);

}

else //Receive N from the master.

{

MPI_Recv(&lengthN,1,MPI_INT,0,Npass1,MPI_COMM_WORLD,&status);

N_str = malloc(lengthN*sizeof(char));

MPI_Recv(N_str,lengthN,MPI_CHAR,0,Npass2,MPI_COMM_WORLD,&status);

mpz_set_str(N,N_str,36);

free(N_str);
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time(&start);

}

//Each processor multiplies N by its multiple.

mpz_mul_ui(N,N,mults[myrank]);

if(dDi[1])

printf("Rank %d, *%d\n",myrank,mults[myrank]);

mpz_init(factor);

//Apply standard SQUFOF algorithm (with Fast Return) to the new N.

success = SQUFOF(N,factor,dDi);

if(success) //Output information according to user parameters.

{

mpz_init(temp);

mpz_gcd_ui(temp,factor,mults[myrank]);

mpz_fdiv_q(factor,factor,temp);

mpz_clear(temp);

if(dDi[1])

printf("Rank %d, success!\n",myrank);

time(&endt);

dif = difftime(endt,start);

fprintf(OUT,"%d, %d, %e, ",Ni,mults[myrank],dif);

if(dDi[0])

{

printf("Ni: %d, mult: %d, time: %e sec, factor: ",Ni,mults[myrank],dif);

mpz_out_str(stdout,10,factor);

printf("\n");

}

mpz_out_str(OUT,10,factor);

fprintf(OUT,"\n");

for(i = 0; i<np; i++) //Inform the other processors.

{

if(i!=myrank)

MPI_Isend(&success,1,MPI_INT,i,STOP[myrank],MPI_COMM_WORLD,&stop[i]);

}

for(i=0; i<np; i++) //Wait for each processor to receive the message.
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{

if(i!=myrank)

MPI_Wait(&stop[i],&status);

}

}

time(&endt);

if(dDi[1])

{

dif = difftime(endt,start);

printf("Rank %d, done in %e\n",myrank,dif);

}

if(myrank!=0) //Inform master when ready for next N.

MPI_Isend(&success,1,MPI_INT,0,-1,MPI_COMM_WORLD,&stop[0]);

else

{

for(i=1; i<np; i++)

MPI_Recv(&success,1,MPI_INT,i,-1,MPI_COMM_WORLD,&status);

}

}

mpz_clear(N);

mpz_clear(factor);

fclose(OUT);

if(myrank==0) //Compile the information from the different processors into a single file.

{

lastOUT = fopen("MultipliersData.txt","w");

for(i=0; i<np; i++)

{

tens = i/10;

fname[2] = ’0’+tens;

fname[3] = ’0’+i%10;

IN = fopen(fname,"r");

single = fgetc(IN);
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do

{

fprintf(lastOUT,"%c",single);

single = fgetc(IN);

} while(single!=EOF);

fprintf(lastOUT,"\n");

fclose(IN);

fflush(lastOUT);

}

fclose(lastOUT);

}

MPI_Finalize();

return 0;

}

//Only difference between this and the standard algorithm (with Fast Return) is the check for a message

//from another processor indicating completion.

int SQUFOF(mpz_t N, mpz_t factor, int dDi[3])

{

const int STOP[64] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63};

mpz_t root;

struct form A,firstA;

struct form saved[30];

mpz_t r;

int found[NUMPROC];

MPI_Request waiting[NUMPROC];

long long i;

int pow=30,size=0,success=0, stop=1000000000;

int np,myrank,flag=0,j,k;

MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &np);

for(i = 0; i<np; i++) //Prepare to receive messages from the other processes.

{

if(i!=myrank)

MPI_Irecv(&found[i],1,MPI_INT,i,STOP[i],MPI_COMM_WORLD,&waiting[i]);
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}

//Initialize memory and calculate first form.

mpz_init(root);

mpz_sqrt(root,N);

mpz_init_set_ui(A.Q0,1);

mpz_init_set(A.P,root);

mpz_init(A.Q1);

mpz_init(A.b);

mpz_init_set_ui(r,1);

reduce(&A,root,N);

mpz_init(firstA.Q0); mpz_init(firstA.P); mpz_init(firstA.Q1); mpz_init(firstA.b);

ftof(&firstA,A);

cFracStep(&A,root);

cFracStep(&A,root);

i = 0;

//This is the basic step in the algorithm.

//Searches the given segment for a square. Uses Fast Return to test any squares found.

//Checks each cycle for a message from another processor.

while(((!isSquare(A.Q0,r))||(!testF(A,saved,firstA,i,r,root,N,&success,factor,dDi)))&&(i<stop)&&(!flag))

{

if(i==pow)

{

mpz_init(saved[size].Q0); mpz_init(saved[size].P);

mpz_init(saved[size].Q1); mpz_init(saved[size].b);

ftof(&saved[size],A);

size = size+1;

pow = 2*pow;

}

cFracStep(&A,root);

cFracStep(&A,root);

if((!mpz_cmp_ui(A.Q0,1))||(!mpz_cmp_ui(A.Q1,1)))

i = stop;

i = i+1;

for(j = 0; (j<np)&&(!flag); j++)
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{

if(j!=myrank)

MPI_Test(&waiting[j],&flag,&status);

if(flag)

{

if(dDi[1])

printf("Rank %d flag by %d\n",myrank,j);

for(k=0; k<np; k++)

{

if((k!=j)&&(k!=myrank))

MPI_Cancel(&waiting[k]);

}

}

}

}

//Cancel unused communications.

for(j = 0; (j<np)&&(!flag); j++)

{

if(j!=myrank)

MPI_Test(&waiting[j],&flag,&status);

if(flag)

{

for(k=0; k<np; k++)

{

if((k!=j)&&(k!=myrank))

MPI_Cancel(&waiting[k]);

}

success = 0;

}

}

//Tell the other processors about the factor found.

if(success)

{

for(k = 0; k<np; k++)

{

if(k!=myrank)

MPI_Cancel(&waiting[k]);

}
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if(dDi[1])

printf("Found by rank %d\n",myrank);

}

//Clear memory used.

for(i = 0; i<size; i++)

{

mpz_clear(saved[i].Q0);

mpz_clear(saved[i].P);

mpz_clear(saved[i].Q1);

mpz_clear(saved[i].b);

}

mpz_clear(A.Q0);

mpz_clear(A.P);

mpz_clear(A.Q1);

mpz_clear(A.b);

mpz_clear(firstA.Q0);

mpz_clear(firstA.P);

mpz_clear(firstA.Q1);

mpz_clear(firstA.b);

mpz_clear(r);

return success;

}


