
NEW SETS WITH LARGE BORSUK NUMBERS

AICKE HINRICHS AND CHRISTIAN RICHTER

Abstract. We construct finite sets in Rn, n ≥ 298, which cannot be par-
titioned into n + 11 parts of smaller diameter thus decreasing the smallest
dimension in which Borsuk’s conjecture is known to be false.

1. Introduction and notation

Borsuk’s famous conjecture stated in [1] asks whether every bounded set in Rn

can be partitioned into at most n+1 sets of smaller diameter. Believed by many to
be true for some decades, but proved only for d ≤ 3, see [8, 4], it came as a surprise
when Kahn and Kalai [6] constructed finite sets showing the contrary.

The Borsuk number b(M) of a bounded set M in Rn containing at least two
points is the smallest positive integer m such that M can be partitioned into m
sets of smaller diameter. Let also b(n) be the maximal b(M) where M ranges over
all finite subsets of Rn containing at least two points. The result of Kahn and Kalai
states that b(n) ≥ 1.1

√
n for large n, and that Borsuk’s conjecture b(n) ≤ n+1 fails

already for n = 1325. Improvements on the least dimension n with b(n) > n+1 were
obtained by Nilli (n = 946, [7]), Raigorodski (n = 561, [10]), Weißbach (n = 560,
[13]), the first author (n = 323, [5]), and Pikhurko (n = 321, [9]). A nice recent
survey on Borsuk’s problem and related questions is [12].

In fact, it is known that b(n) > n + 1 for all n ≥ 321, see [11, 5, 9]. Here we
show that this is even true for n ≥ 298.

Theorem 1. For n ≥ 298, there exists a finite set in the unit sphere in Rn which
cannot be partitioned into n + 11 sets of smaller diameter.

As usual, given x, y ∈ Rd, the euclidian norm of x and the inner product of x
and y are denoted by ‖x‖ and 〈x, y〉, respectively. We write M⊥ for the linear
space of all points orthogonal to a set M ⊂ Rd. The standard unit vectors in Rd

are denoted by e1, . . . , ed.

We now recall and introduce some definitions from the theory of spherical codes.
We mainly use notations as can be found in [2]. Ωd is the unit sphere in Rd. Given
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C1, C2 ⊂ Ωd, we let 〈C1, C2〉 := {〈x1, x2〉 : x1 ∈ C1 and x2 ∈ C2}. If S ⊂ [−1, 1),
a set C ⊂ Ωd is called S-code if 〈C, C〉 ⊂ S ∪ {1}. The largest cardinality of an
S-code in Ωd is denoted by A(d, S).

We also need the following definition. If T ⊂ [−1, 1], we set

A(d, S, T ) = max{|C1|+ |C2| : C1, C2 are S-codes in Ωd with 〈C1, C2〉 ⊂ T}.
Here |C| is the cardinality of the set C. Given a set S of real numbers and another
real number c, we let

cS = {cs : s ∈ S} and c + S = {c + s : s ∈ S}.
Naturally, S + c = c + S and S

c = 1
cS.

The proof of Theorem 1 will be based on the following result, which we recall
from [5].

Theorem 2. Let S be a finite subset of [−1, 1), d ∈ N, n = d(d + 3)/2, and define
α = max S ∩ [−1, 0) and β = min S ∩ [0, 1). If α + β < 0, then

b(n− 1) A(d, S \ {α, β}) ≥ A(d, S).

Later on we shall exploit the following detail.

Remark 1. The proof of Theorem 2 gives a finite subset M of the sphere Ωn ∩
{(ξi)n

i=1 :
∑d

i=1 ξi = (1−α−β)−
1
2 } in an (n−1)-dimensional affine subspace of Rn

with b(M)A(d, S \ {α, β}) ≥ A(d, S). Furthermore, two points x, y ∈ M represent
the diameter of M if and only if 〈x, y〉 = −αβ

1−α−β , provided that A(d, S \ {α, β}) <

A(d, S).

The remainder of the paper is organized as follows. In the next section, we prove
some results which allow the reduction of cardinality estimates of certain spherical
codes to lower dimensions by carefully studying the geometry of the involved codes.
In Section 3, we estimate some concrete cardinalities of codes relevant for our
purposes via the nowadays well established linear algebra methods, which appear
in almost every estimate on Borsuk numbers obtained by now. Finally, in Section 4
we put the things together to show that an appropriate embedding of a finite set in
Ω23 is a counterexample to Borsuk’s conjecture in R298. As in [5], we use vectors of
minimal length in a lattice, here it is the laminated lattice Λ23, see [2]. This set may
be alternatively obtained as the subset of the vectors of minimal length in the Leech
lattice used in [5] which have equal first and second coordinates. The only relevant
parameters for our purposes are its size (93150) and that, after normalization, it is
a {−1, 0,± 1

2 ,± 1
4}-code in Ω23.

2. Reductions for cardinality estimates of codes

The next three propositions can be used to reduce cardinality estimates of spheri-
cal codes to lower dimensions or to smaller sets of admissible scalar products. These
reductions become possible by studying the geometry of the involved codes. To
avoid trivial cases, we always assume throughout the rest of the paper that d ≥ 2.
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Proposition 1. Let S ⊂ [−1, 1) be such that −1 ∈ S and S ∩ (−S) = {a,−a} with
0 < a < 1. Define

S =
S − a2

1− a2
∩ [−1, 1) and T =

S + a2

1− a2
∩ [−1, 1].

Then
A(d, S) = max{A(d, S \ {−1}), 2 + A(d− 1, S, T )}.

Proof. A(d, S \ {−1}) ≤ A(d, S) is trivial.

If C1 and C2 are S-codes in Ωd−1 with 〈C1, C2〉 ⊂ T , we define D1, D2 ⊂ Ωd by

D1 =
√

1− a2 C1 × {a} and D2 =
√

1− a2 C2 × {−a}.
Then

〈Di, Di〉 \ {1} = (1− a2)(〈Ci, Ci〉 \ {1}) + a2 ⊂ (1− a2)S + a2 ⊂ S

for i = 1, 2. Moreover,

〈D1, D2〉 = (1− a2)〈C1, C2〉 − a2 ⊂ (1− a2)T − a2 ⊂ S.

Hence altogether D1 ∪D2 ∪ {ed,−ed} is an S-code in Ωd, which implies that

2 + |C1|+ |C2| = 2 + |D1|+ |D2| ≤ A(d, S).

We are left to show that

A(d, S) ≤ max{A(d, S \ {−1}), 2 + A(d− 1, S, T )}.
To this end, choose a maximal S-code C in Ωd, i.e. |C| = A(d, S). If C does
not contain an antipodal pair {x,−x} then C is actually an (S \ {−1})-code and
|C| ≤ A(d, S \ {−1}). So we may finally assume that there is x ∈ C such that also
−x ∈ C. This implies that 〈x, y〉 ∈ {−a, a} for all y ∈ C \ {x,−x}.

Let us now define

D1 =
{

y − ax√
1− a2

: y ∈ C and 〈x, y〉 = a

}

and

D2 =
{

y + ax√
1− a2

: y ∈ C and 〈x, y〉 = −a

}
.

Then D1, D2 ⊂ Ωd ∩ {x}⊥ which we may identify with Ωd−1. Moreover,

〈Di, Di〉 =
〈C, C〉 − a2

1− a2
for i = 1, 2 and 〈D1, D2〉 =

〈C,C〉+ a2

1− a2
.

So we find that 〈Di, Di〉 ⊂ S ∪ {1} for i = 1, 2 and 〈D1, D2〉 ⊂ T , which implies
that |D1|+ |D2| ≤ A(d− 1, S, T ). Thus we finally arrive at

A(d, S) = |C| = 2 + |D1|+ |D2| ≤ 2 + A(d− 1, S, T ),

which finishes the proof. ¤
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Proposition 2. Let S ⊂ [−1, 1) and T ⊂ [−1, 1] be such that 1 ∈ T and S∩T = {a}
with |a| < 1. Define

S =
S − a2

1− a2
∩ [−1, 1) and T =

T − a2

1− a2
∩ [−1, 1].

Then
A(d, S, T ) = max{A(d, S, T \ {1}), 2 + A(d− 1, S, T )}.

Proof. A(d, S, T \ {1}) ≤ A(d, S, T ) is trivial.

If C1 and C2 are S-codes in Ωd−1 with 〈C1, C2〉 ⊂ T , we define D1, D2 ⊂ Ωd by

D1 =
√

1− a2 C1 × {a} and D2 =
√

1− a2 C2 × {a}.
Then

〈Di, Di〉 \ {1} = (1− a2)(〈Ci, Ci〉 \ {1}) + a2 ⊂ (1− a2)S + a2 ⊂ S

for i = 1, 2. So D1 ∪ {ed} and D2 ∪ {ed} are S-codes in Ωd. Moreover,

〈D1, D2〉 = (1− a2)〈C1, C2〉+ a2 ⊂ (1− a2)T + a2 ⊂ T.

Also, 〈x, ed〉 = 〈ed, y〉 = a for all x ∈ D1 and y ∈ D2. Hence altogether 〈D1 ∪
{ed}, D2 ∪ {ed}〉 ⊂ T , which implies that

2 + |C1|+ |C2| = 2 + |D1|+ |D2| ≤ A(d, S, T ).

We are left to show that

A(d, S, T ) ≤ max{A(d, S, T \ {1}), 2 + A(d− 1, S, T )}.
To this end, let C1, C2 be S-codes in Ωd such that 〈C1, C2〉 ⊂ T and A(d, S, T ) =
|C1|+ |C2|. If C1∩C2 = ∅, then 〈C1, C2〉 ⊂ T \{1}, so |C1|+ |C2| ≤ A(d, S, T \{1}).
Hence we may assume that there is x ∈ C1 ∩ C2. It follows that, for any y ∈
(C1 ∪ C2) \ {x},

〈x, y〉 ∈ S ∩ T = {a}.
So 〈x, y〉 = a for all y ∈ (C1 ∪ C2) \ {x}.

Let us now define

D1 =
{

y − ax√
1− a2

: y ∈ C1 \ {x}
}

and D2 =
{

z − ax√
1− a2

: z ∈ C2 \ {x}
}

.

Then D1, D2 ⊂ Ωd ∩ {x}⊥ which we may identify with Ωd−1. Moreover,

〈Di, Di〉 =
〈Ci, Ci〉 − a2

1− a2
for i = 1, 2 and 〈D1, D2〉 =

〈C1, C2〉 − a2

1− a2
.

So we find that D1 and D2 are S-codes in Ωd−1 and 〈D1, D2〉 ⊂ T , which implies
that |D1|+ |D2| ≤ A(d− 1, S, T ). Thus we finally arrive at

A(d, S, T ) = |C1|+ |C2| = 2 + |D1|+ |D2| ≤ 2 + A(d− 1, S, T ),

which finishes the proof. ¤
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Proposition 3. Let S ⊂ [−1, 1) and T ⊂ [−1, 1] be such that −1 ∈ T and S ∩
(−T ) = {a} with |a| < 1. Define

S =
S − a2

1− a2
∩ [−1, 1) and T =

T + a2

1− a2
∩ [−1, 1].

Then
A(d, S, T ) = max{A(d, S, T \ {−1}), 2 + A(d− 1, S, T )}.

Proof. A(d, S, T \ {−1}) ≤ A(d, S, T ) is trivial.

If C1 and C2 are S-codes in Ωd−1 with 〈C1, C2〉 ⊂ T , we define D1, D2 ⊂ Ωd by

D1 =
√

1− a2 C1 × {a} and D2 =
√

1− a2 C2 × {−a}.
Then

〈Di, Di〉 \ {1} = (1− a2)(〈Ci, Ci〉 \ {1}) + a2 ⊂ (1− a2)S + a2 ⊂ S

for i = 1, 2. So D1 ∪ {ed} and D2 ∪ {−ed} are S-codes in Ωd. Moreover,

〈D1, D2〉 = (1− a2)〈C1, C2〉 − a2 ⊂ (1− a2)T − a2 ⊂ T.

Also, 〈x,−ed〉 = 〈ed, y〉 = −a for all x ∈ D1 and y ∈ D2. Hence altogether
〈D1 ∪ {ed}, D2 ∪ {−ed}〉 ⊂ T , which implies that

2 + |C1|+ |C2| = 2 + |D1|+ |D2| ≤ A(d, S, T ).

We are left to show that

A(d, S, T ) ≤ max{A(d, S, T \ {−1}), 2 + A(d− 1, S, T )}.
To this end, let C1, C2 be S-codes in Ωd, such that 〈C1, C2〉 ⊂ T and A(d, S, T ) =
|C1| + |C2|. If C1 ∩ (−C2) = ∅, then 〈C1, C2〉 ⊂ T \ {−1}, so |C1| + |C2| ≤
A(d, S, T \ {−1}). Hence we may assume that there is x ∈ C1 with −x ∈ C2. It
follows that, for any y ∈ C1 \ {x},

〈x, y〉 ∈ S ∩ (−T ) = {a}.
So 〈x, y〉 = a for all y ∈ C1 \ {x}. Similarly, 〈x, z〉 = −a for all z ∈ C2 \ {−x}.

Let us now define

D1 =
{

y − ax√
1− a2

: y ∈ C1 \ {x}
}

and D2 =
{

z + ax√
1− a2

: z ∈ C2 \ {−x}
}

.

Then D1, D2 ⊂ Ωd ∩ {x}⊥ which we may identify with Ωd−1. Moreover,

〈Di, Di〉 =
〈Ci, Ci〉 − a2

1− a2
for i = 1, 2 and 〈D1, D2〉 =

〈C1, C2〉+ a2

1− a2
.

So we find that D1 and D2 are S-codes in Ωd−1 and 〈D1, D2〉 ⊂ T , which implies
that |D1|+ |D2| ≤ A(d− 1, S, T ). Thus we finally arrive at

A(d, S, T ) = |C1|+ |C2| = 2 + |D1|+ |D2| ≤ 2 + A(d− 1, S, T ),

which finishes the proof. ¤
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3. Application of the linear algebra method

Proposition 4. A(d, {− 1
2 , 1

4 , 1
2}) ≤ d(d+3)

2 .

Proof. Let C be a {− 1
2 , 1

4 , 1
2}-code in Ωd. For every c ∈ C, we consider the

polynomial Pc : Rd → R, Pc(x) = (2〈x, c〉 − 1)(4〈x, c〉 − 1). The proposition
will be proved once it is shown that the set {Pc : c ∈ C} ∪ {1} consists of lin-
early independent functions. Indeed, all these functions belong to the (d+1)(d+2)

2 -
dimensional space of polynomials of total degree at most 2 in d indeterminates.
Then |C|+1 ≤ (d+1)(d+2)

2 = d(d+3)
2 +1, which shows that A(d, {− 1

2 , 1
4 , 1

2}) ≤ d(d+3)
2 .

Assume that

(1)
∑

c∈C

λcPc + λ1 = 0.

The quadratic part of this expression is
∑

c∈C 8λc〈·, c〉2 = 0. Summation over the
unit vectors ei and using that

∑d
i=1〈ei, c〉2 = ‖c‖2 = 1 yields

∑
c∈C λc = 0. Now

evaluation of the constant part of (1) gives λ1 = −∑
c∈C λc = 0. Substituting

f ∈ C in (1) then leads to

(2)
∑

c∈C

λcPc(f) = 0 for all f ∈ C.

Let A = (Pc(f))c,f∈C be the matrix of this homogenous system of linear equa-
tions for λc, c ∈ C. Since Pc(f) ≡ δc,f mod 2, we find for the determinant of that
system that det(A) ≡ 1 mod 2. So the determinant cannot vanish, and the only
solution of (2) is the trivial solution, showing the independence of the functions in
question. ¤

4. Conclusion

To simplify our still complex presentation of the example, we use the following
two easy lemmas.

Lemma 5. Let S ⊂ [−1, 1) and T ⊂ [−1, 1]. Then

(i) if S ∩ T = {−1} and 1 ∈ T then A(d, S, T ) = max{4, A(d, S, T \ {1})}.
(ii) if T ∩ (−T ) = ∅ then A(d, S, T ) = max{A(d, S), A(d, S \ {−1}, T )}.

Proof. In both cases, let C1 and C2 be S-codes in Ωd, such that 〈C1, C2〉 ⊂ T and
A(d, S, T ) = |C1|+ |C2|.

To prove (i) note that if C1 ∩ C2 = ∅ then 〈C1, C2〉 ⊂ T \ {1}. If there exists
x ∈ C1 ∩ C2 then any y ∈ (C1 ∪ C2) \ {x} satisfies 〈x, y〉 ∈ S ∩ T = {−1}. So
C1 ∪ C2 ⊂ {x,−x} and |C1|+ |C2| ≤ 4.

To verify (ii) observe that if neither C1 nor C2 contains an antipodal pair {x,−x}
then they are actually (S \ {−1})-codes, hence |C1| + |C2| ≤ A(d, S \ {−1}, T ). If
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x ∈ C1 ∩ (−C1), say, then C2 = ∅ by T ∩ (−T ) = ∅. Thus C2 is empty and
|C1|+ |C2| = |C1| ≤ A(d, S). ¤
Lemma 6. For S ⊂ [−1, 1), T ⊂ [−1, 1], and a ∈ (0, 1), we have

A(d, S) ≤ A(d + 1, (1− a)S + a)

and
A(d, S, T ) ≤ A(d + 1, ((1− a)S + a) ∪ ((1− a)T − a)).

Proof. If C is an S-code in Ωd, then
√

1− aC × {√a} is a ((1 − a)S + a)-code
in Ωd+1. This proves the first inequality. For the second inequality, given S-codes
C1, C2 in Ωd with 〈C1, C2〉 ⊂ T , let

C = (
√

1− aC1 × {
√

a}) ∪ (
√

1− aC2 × {−
√

a}).
Then C is indeed a (((1− a)S + a) ∪ ((1− a)T − a))-code in Ωd+1. ¤

We are also going to use the next estimate.

Proposition 7. For all a, b ∈ [−1, 1) and c ∈ [−1, 1],

A(d, {a, b}, {c}) ≤ d(d + 3)
2

.

Proof. First, we recall the general estimate on cardinalities of 2-distance sets in
spheres from [3] which states that

(3) A(d, {a, b}) ≤ d(d + 3)
2

for all a, b ∈ [−1, 1) and d ≥ 1.

Let now C, D be {a, b}-codes in Ωd such that 〈x, y〉 = c for all x ∈ C and y ∈ D
and |C| + |D| = A(d, {a, b}, {c}). If C or D is empty, (3) immediately implies the
claimed inequality. If C is a singleton, then D is contained in the intersection of
Ωd with a sphere centered at the point in C. Hence D is either a singleton itself or
lies in a sphere in a proper affine subspace. In the latter case, (3) gives that

|C|+ |D| ≤ 1 +
(d− 1)(d + 2)

2
≤ d(d + 3)

2
.

If |D| = 1, we trivially have that |C| + |D| = 2 ≤ d(d+3)
2 . The same argument

applies if D is a singleton.

Finally, we assume that both C and D contain at least 2 points. The affine hull
of a set in Rd is the intersection of all affine subspaces containing it. Let E,F be
the affine hulls of C, D, respectively. Since all points in D have the same distance
to all points in C, the affine subspaces E and F are orthogonal to each other. If
the dimension of E is k, the dimension of F is at most d − k. The cardinality
assumption on C and D implies that k ≥ 1 and d − k ≥ 1. Since C and D are
2-distance sets in spheres in E and F , the inequality (3) now yields

|C| ≤ k(k + 3)
2

and |D| ≤ (d− k)(d− k + 3)
2

.

It is an elementary exercise to check that this gives

|C|+ |D| ≤ d(d + 3)
2

,
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thus proving the proposition. ¤

Let now C be the set of normalized vectors of minimal length in the Leech lattice
which are orthogonal to a fixed vector of minimal length in that lattice. Then C is
a {−1, 0,± 1

2 ,± 1
4}-code of cardinality 93150 in a unit sphere in dimension 23, see

[2, ch. 14.4].

We are going to apply Theorem 2 with d = 23, n = 299, and S = {−1, 0,± 1
2 ,± 1

4}.
The code C shows that A(23, S) ≥ 93150. To estimate A(23, {−1,− 1

2 , 1
4 , 1

2}), we
prove the following result, which is the main technical part of the present paper
using all the previously established methods.

Proposition 8. A(d, {−1,− 1
2 , 1

4 , 1
2}) ≤ d2+3d+4

2 .

Proof. The proof for d ≥ 8 is outlined in Figure 1. Here a dashed arrow means
that the expression in the box at the arrowhead is not smaller than the expression
in the box at the root of the arrow. Continuous arrows mean that the expression
at the root is equal to the maximum of the expressions at the arrowheads. Finally,
close to the arrow is the name of the theorem which has to be applied to prove the
corresponding inequality or equality. If 2 ≤ d ≤ 7 some of the reduction steps are
obviously to be dropped. The details for the verification of the inequality in this
case are left to the attentive reader. ¤

Now the crucial estimate
b(298) ≥ 310

is a consequence of Theorem 2, since A(23, S) ≥ 93150 as above and

A(23, S \ {− 1
4 , 0}) = A(23, {−1,− 1

2 , 1
4 , 1

2}) ≤ 301

by Proposition 8.

According to Remark 1, the estimate b(M) ≥ 310 is realized by a finite set
M which is contained in the intersection of Ω299 with the 298-dimensional affine
subspace {(ξi)299i=1 :

∑23
i=1 ξi = ( 5

4 )−
1
2 }. Moreover, ‖x− y‖ = diam(M) if and only if

〈x, y〉 = 0. This yields diam(M) =
√

2. Clearly, after rescaling we find a finite set
K ⊂ Ω298 with b(K) ≥ 310 and diam(K) >

√
2. Now inductive application of the

following lemma shows that

b(n) ≥ n + 12 for all n ≥ 298,

thus completing the proof of Theorem 1. A related method of the transfer of codes
with large Borsuk number into higher dimensions is used in [11].

Lemma 9. Let K ⊂ Ωn−1 be a set with diam(K) ≥ √
2. Then there exists L ⊂ Ωn

with diam(L) ≥ √
2 and b(L) ≥ b(K) + 1. If K is finite then L can be assumed to

be finite, too.

Proof. Let δ = diam(K). We put K ′ = 2
√

δ2−1
δ2 K × { 2−δ2

δ2 } and L = K ′ ∪ {en}.
One easily checks that L ⊂ Ωn and that ‖en − x‖ = 2

√
δ2−1
δ = diam(K ′) for all

x ∈ K ′. Thus diam(L) = diam(K ′) = 2
√

1− 1
δ2 ≥

√
2, since δ ≥ √

2. Moreover,
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Figure 1. Structure of the proof
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dA

dA

4
1a

3
1a

4
1a

every partition of L into sets of smaller diameter splits into the singleton {en} and
a corresponding partition of K ′. Hence b(L) = b(K ′) + 1 = b(K) + 1. ¤
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Remark 2. Using the same method for the set C of all vectors of minimal norm in
the Leech lattice, we obtain A(24, {−1,− 1

2 , 1
4 , 1

2}) ≤ 326 and consequently b(323 +
k) ≥ 603 + k for all k ≥ 0 improving also Theorem 1 in [5].
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