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The Three Crises in Mathematics:
Logicism, Intuitionism
and Formalisma

Crises in classical philosophy reveal doubts
about mathematical and philosophical criteria
for a satisfactory foundation for mathematics.

Ernst Snapper

The three schools, mentioned in the title, all tried to give
a firm foundation to mathematics. The three crises are the
failures of these schools to complete their tasks. This article
looks at these crises “through modern eyes,” using whatever
mathematics is available today and not just the mathemat-
ics which was available to the pioneers who created these
schools. Hence, this article does not approach the three
crises in a strictly historical way. This article also does not
discuss the large volume of current, technical mathematics
which has arisen out of the techniques introduced by the
three schools in question. One reason is that such a dis-
cussion would take a book and not a short article. Another
one is that all this technical mathematics has very little to
do with the philosophy of mathematics, and in this article
I want to stress those aspects of logicism, intuitionism, and
formalism which show clearly that these schools are founded
in philosophy.

Logicism
This school was started in about 1884 by the German phi-

losopher, logician and mathematician, Gottlob Frege (1848–
1925). The school was rediscovered about eighteen years
later by Bertrand Russell. Other early logicists were Peano
and Russell’s coauthor of Principia Mathematica, A. N.
Whitehead. The purpose of logicism was to show that clas-
sical mathematics is part of logic. If the logicists had been
able to carry out their program successfully, such questions as
“Why is classical mathematics free of contradictions?” would
have become “Why is logic free of contradictions?”. This
latter question is one on which philosophers have at least a
thorough handle and one may say in general that the success-
ful completion of the logicists’ program would have given
classical mathematics a firm foundation in terms of logic.

Clearly, in order to carry out this program of the logicists,
one must first, somehow, define what “classical mathematics”
is and what “logic” is. Otherwise, what are we supposed to
show is part of what? It is precisely at these two definitions
that we want to look through modern eyes, imagining that
the pioneers of logicism had all of present-day mathematics
available to them. We begin with classical mathematics.

In order to carry out their program, Russell and White-
head created Principia Mathematica [10] which was pub-
lished in 1910. (The first volume of this classic can be
bought for $3.45! Thank heaven, only modern books and
not the classics have become too expensive for the average
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reader.) Principia, as we will refer to Principia Mathemat-
ica, may be considered as a formal set theory. Although the
formalization was not entirely complete, Russell and White-
head thought that it was and planned to use it to show that
mathematics can be reduced to logic. They showed that all
classical mathematics, known in their time, can be derived
from set theory and hence from the axioms of Principia.
Consequently, what remained to be done, was to show that
all the axioms of Principia belong to logic. [[208]]

Of course, instead of Principia, one can use any other for-
mal set theory just as well. Since today the formal set theory
developed by Zermelo and Fraenkel (ZF) is so much better
known than Principia, we shall from now on refer to ZF in-
stead of Principia. ZF has only nine axioms and, although
several of them are actually axiom schemas, we shall refer to
all of them as “axioms.” The formulation of the logicists’
program now becomes: Show that all nine axioms of ZF be-
long to logic.

This formulation of logicism is based on the thesis that
classical mathematics can be defined as the set of theorems
which can be proved within ZF. This definition of classical
mathematics is far from perfect, as is discussed in [12]. How-
ever, the above formulation of logicism is satisfactory for the
purpose of showing that this school was not able to carry
out its program. We now turn to the definition of logic.

In order to understand logicism, it is very important to
see clearly what the logicists meant by “logic.” The reason is
that, whatever they meant, they certainly meant more than
classical logic. Nowadays, one can define classical logic as
consisting of all those theorems which can be proven in first
order languages (discussed below in the section on formal-
ism) without the use of nonlogical axioms. We are hence
restricting ourselves to first order logic and use the deduc-
tion rules and logical axioms of that logic. An example of
such a theorem is the law of the excluded middle which says
that, if p is a proposition, then either p or its negation ¬p is
true; in other words, the proposition p ∨ ¬p is always true
where ∨ is the usual symbol for the inclusive “or.”

If this definition of classical logic had also been the logi-
cists’ definition of logic, it would be a folly to think for even
one second that all of ZF can be reduced to logic. However,
the logicists’ definition was more extensive. They had a gen-
eral concept as to when a proposition belongs to logic, that
is, when a proposition should be called a “logical proposi-
tion.” They said: A logical proposition is a proposition which
has complete generality and is true in virtue of its form rather
than its content. Here, the word “proposition” is used as syn-
onymous with “theorem.”

For example, the above law of the excluded middle “p ∨

¬p” is a logical proposition. Namely, this law does not hold
because of any special content of the proposition p; it does
not matter whether p is a proposition of mathematics or
physics or what have you. On the contrary, this law holds
with “complete generality,” that is, for any proposition p

whatsoever. Why then does it hold? The logicists answer:
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“Because of its form.” Here they mean by form “syntactical
form,” the form of p ∨ ¬p being given by the two connec-
tives of everyday speech, the inclusive “or” and the negation
“not” (denoted by ∨ and ¬, respectively).

On the one hand, it is not difficult to argue that all the-
orems of classical logic, as defined above, are logical propo-
sitions in the sense of logicism. On the other hand, there is
no a priori reason to believe that there could not be logical
propositions which lie outside of classical logic. This is why
we said that the logicists’ definition of logic is more extensive
than the definition of classical logic. And now the logicists’
task becomes clearer: It consists in showing that all nine ax-
ioms of ZF are logical propositions in the sense of logicism.

The only way to assess the success or failure of logicism in
carrying out this task is by going through all nine axioms of
ZF and determining for each of them whether it falls under
the logicists’ concept of a logical proposition. This would
take a separate article and would be of interest only to read-
ers who are thoroughly familiar with ZF. Hence, instead, we
simply state that at least two of these axioms, namely, the ax-
iom of infinity and the axiom of choice, cannot possibly be
considered as logical propositions. For example, the axiom
of infinity says that there exist infinite sets. Why do we ac-
cept this axiom as being true? The reason is that everyone is
familiar with so many infinite sets, say, the set of the natural
numbers or the set of points in Euclidean 3-space. Hence,
we accept this axiom on grounds of our everyday experience
with sets, and this clearly shows that we accept it in virtue
of its content and not in virtue of its syntactical form. In
general, when an axiom claims the existence of objects with
which we are familiar on grounds of our common everyday
experience, it is pretty certain that this axiom is not a logical
proposition in the sense of logicism. [[209]]

And here then is the first crisis in mathematics: Since at
least two out of the nine axioms of ZF are not logical propo-
sitions in the sense of logicism, it is fair to say that this school
failed by about 20% in its effort to give mathematics a firm
foundation. However, logicism has been of the greatest im-
portance for the development of modern mathematical logic.
In fact, it was logicism which started mathematical logic in
a serious way. The two quantifiers, the “for all” quantifier ∀

and the “there exists” quantifier ∃ were introduced into logic

by Frege [5], and the influence of Principia on the develop-
ment of mathematical logic is history.

It is important to realize that logicism is founded in phi-
losophy. For example, when the logicists tell us what they
mean by a logical proposition (above), they use philosoph-
ical and not mathematical language. They have to use philo-
sophical language for that purpose since mathematics simply
cannot handle definitions of so wide a scope.

The philosophy of logicism is sometimes said to be based
on the philosophical school cailed “realism.” In medieval
philosophy “realism” stood for the Platonic doctrine that ab-
stract entities have an existence independent of the human
mind. Mathematics is, of course, full of abstract entities such
as numbers, functions, sets, etc., and according to Plato all
such entities exist outside our mind. The mind can discover
them but does not create them. This doctrine has the ad-
vantage that one can accept such a concept as “set” without
worrying about how the mind can construct a set. Accord-
ing to realism, sets are there for us to discover, not to be con-
structed, and the same holds for all other abstract entities. In
short, realism allows us to accept many more abstract entities
in mathematics than a philosophy which had limited us to
accepting only those entities the human mind can construct.
Russell was a realist and accepted the abstract entities which
occur in classical mathematics without questioning whether
our own minds can construct them. This is the fundamental
difference between logicism and intuitionism, since in intu-
itionism abstract entities are admitted only if they are man
made.

Excellent expositions of logicism can be found in Russell’s
writing, for example [9], [10] and [11]. [[210]]

Intuitionism
This school was begun about 1908 by the Dutch mathe-

matician, L. E. J. Brouwer (1881–1966). The intuitionists
went about the foundations of mathematics in a radically
different way from the logicists. The logicists never thought
that there was anything wrong with classical mathematics;
they simply wanted to show that classical mathematics is part
of logic. The intuitionists, on the contrary, felt that there was
plenty wrong with classical mathematics.

By 1908, several paradoxes had arisen in Cantor’s set the-
ory. Here, the word “paradox” is used as synonymous with
“contradiction.” Georg Cantor created set theory, starting
around 1870, and he did his work “naively,” meaning non-
axiomatically. Consequently, he formed sets with such aban-
don that he himself, Russell and others found several para-
doxes within his theory. The logicists considered these para-
doxes as common errors, caused by erring mathematicians
and not by a faulty mathematics. The intuitionists, on the
other hand, considered these paradoxes as clear indications
that classical mathematics itself is far from perfect. They felt
that mathematics had to be rebuilt from the bottom on up.

The “bottom,” that is, the beginning of mathematics for
the intuitionists, is their explanation of what the natural
numbers 1, 2, 3, . . . are. (Observe that we do not include
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the number zero among the natural numbers.) According to
intuitionistic philosophy, all human beings have a primor-
dial intuition for the natural numbers within them. This
means in the first place that we have an immediate certainty
as to what is meant by the number 1 and, secondly, that the
mental process which goes into the formation of the num-
ber 1 can be repeated. When we do repeat it, we obtain the
concept of the number 2; when we repeat it again, the con-
cept of the number 3; in this way, human beings can con-
struct any finite initial segment 1, 2, . . . , n for any natural
number n. This mental construction of one natural number
after the other would never have been possible if we did not
have an awareness of time within us. “After” refers to time
and Brouwer agrees with the philosopher Immanuel Kant
(1724–1804) that human beings have an immediate aware-
ness of time. Kant used the word “intuition” for “immediate
awareness” and this is where the name “intuitionism” comes
from. (See Chapter IV of [4] for more information about
this intuitionistic concept of natural numbers.)

It is important to observe that the intuitionistic construc-
tion of natural numbers allows one to construct only arbi-
trarily long finite initial segments 1, 2, . . . , n. It does not
allow us to construct that whole closed set of all the natural
numbers which is so familiar from classical mathematics. It
is equally important to observe that this construction is both
“inductive” and “effective.” It is inductive in the sense that,
if one wants to construct, say, the number 3, one has to go
through all the mental steps of first constructing the 1, then
the 2, and finally the 3; one cannot just grab the number 3
out of the sky. It is effective in the sense that, once the con-
struction of a natural number has been finished, that natural
number has been constructed in its entirety. It stands before
us as a completely finished mental construct, ready for our
study of it. When someone says, “I have finished the mental
construction of the number 3,” it is like a bricklayer saying,
“I have finished that wall,” which he can say only after he
has laid every stone in place.

We now turn to the intuitionistic definition of mathe-
matics. According to intuitionistic philosophy, mathemat-
ics should be defined as a mental activity and not as a set of
theorems (as was done above in the section on logicism). It
is the activity which consists in carrying out, one after the
other, those mental constructions which are inductive and
effective in the sense in which the intuitionistic construc-
tion of the natural numbers is inductive and effective. Intu-
itionism maintains that human beings are able to recognize
whether a given mental construction has these two proper-
ties. We shall refer to a mental construction which has these
two properties as a construct and hence the intuitionistic
definition of mathematics says: Mathematics is the mental
activity which consists in carrying out constructs one after the
other.

A major consequence of this definition is that all of intu-
itionistic mathematics is effective or “constructive” as one
usually says. We shall use the adjective “constructive” as
synonymous with “effective” from now on. Namely, every

construct is constructive, and intuitionistic mathematics is
nothing but carrying out constructs over and over. For in-
stance, if a real number [[211]] r occurs in an intuitionistic
proof or theorem, it never occurs there merely on grounds
of an existence proof. It occurs there because it has been
constructed from top to bottom. This implies for example
that each decimal place in the decimal expansion of r can
in principle be computed. In short, all intuitionistic proofs,
theorems, definitions, etc., are entirely constructive.

Another major consequence of the intuitionistic defini-
tion of mathematics is that mathematics cannot be reduced
to any other science such as, for instance, logic. This def-
inition comprises too many mental processes for such a re-
duction. And here, then, we see a radical difference between
logicism and intuitionism. In fact, the intuitionistic attitude
toward logic is precisely the opposite from the logicists’ at-
titude: According to the intuitionists, whatever valid logical
processes there are, they are all constructs; hence, the valid
part of classical logic is part of mathematics! Any law of
classical logic which is not composed of constructs is for the
intuitionist a meaningless combination of words. It was, of
course, shocking that the classical law of the excluded middle
turned out to be such a meaningless combination of words.
This implies that this law cannot be used indiscriminately
in intuitionistic mathematics; it can often be used, but not
always.

Once the intuitionistic definition of mathematics has
been understood and accepted, all there remains to be done
is to do mathematics the intuitionistic way. Indeed, the in-
tuitionists have developed intuitionistic arithmetic, algebra,
analysis, set theory, etc. However, in each of these branches
of mathematics, there occur classical theorems which are not
composed of constructs and, hence, are meaningless combi-
nations of words for the intuitionists. Consequently, one
cannot say that the intuitionists have reconstructed all of
classical mathematics. This does not bother the intuitionists
since whatever parts of classical mathematics they cannot ob-
tain are meaningless for them anyway. Intuitionism does not
have as its purpose the justification of classical mathematics.
Its purpose is to give a valid definition of mathematics and
then to “wait and see” what mathematics comes out of it.
Whatever classical mathematics cannot be done intuitionis-
tically simply is not mathematics for the intuitionist. We
observe here another fundamental difference between logi-
cism and intuitionism: The logicists wanted to justify all of
classical mathematics. (An excellent introduction to the ac-
tual techniques of intuitionism is [8].)

Let us now ask how successful the intuitionistic school
has been in giving us a good foundation for mathematics,
acceptable to the majority of mathematicians. Again, there
is a sharp difference between the way this question has to
be answered in the present case and in the case of logicism.
Even hard-nosed logicists have to admit that their school so
far has failed to give mathematics a firm foundation by about
20%. However, a hard-nosed intuitionist has every right in
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the world to claim that intuitionism has given mathematics
an entirely satisfactory foundation. There is the meaning-
ful definition of intuitionistic mathematics, discussed above;
there is the intuitionistic philosophy which tells us why con-
structs can never give rise to contradictions and, hence, that
intuitionistic mathematics is free of contradictions. In fact,
not only this problem (of freedom from contradiction) but
all other problems of a foundational nature as well receive
perfectly satisfactory solutions in intuitionism.

Yet if one looks at intuitionism from the outside, namely,
from the viewpoint of the classical mathematician, one has
to say that intuitionism has failed to give mathematics an
adequate foundation. In fact, the mathematical community
has almost universally rejected intuitionism. Why has the
mathematical community done this, in spite of the many
very attractive features of intuitionism, some of which have
just been mentioned?

One reason is that classical mathematicians flatly refuse to
do away with the many beautiful theorems that are meaning-
less combinations of words for the intuitionists. An example
is the Brouwer fixed point theorem of topology which the
intuitionists reject because the fixed point cannot be con-
structed, but can only be shown to exist on grounds of an
existence proof. This, by the way, is the same Brouwer who
created intuitionism; he is equally famous for his work in
(nonintuitionistic) topology.

A second reason comes from theorems which can be
proven both classically and intuitionistically. It often hap-
pens that the classical proof of such a theorem is short, ele-
gant, and devilishly [[212]] clever, but not constructive. The
intuitionists will of course reject such a proof and replace it
by their own constructive proof of the same theorem. How-
ever, this constructive proof frequently turns out to be about
ten times as long as the classical proof and often seems, at
least to the classical mathematician, to have lost all of its
elegance. An example is the fundamental theorem of alge-
bra which in classical mathematics is proved in a bout half
a page, but takes about ten pages of proof in intuitionistic
mathematics. Again, classical mathematicians refuse to be-
lieve that their clever proofs are meaningless whenever such
proofs are not constructive.

Finally, there are the theorems which hold in intuitionism
but are false in classical mathematics. An example is the intu-
itionistic theorem which says that every real-valued function
which is defined for all real numbers is continuous. This
theorem is not as strange as it sounds since it depends on
the intuitionistic concept of a function: A real-valued func-
tion f is defined in intuitionism for all real numbers only if,
for every real number r whose intuitionistic construction has
been completed, the real number f (r) can be constructed.
Any obviously discontinuous function a classical mathemati-
cian may mention does not satisfy this constructive criterion.
Even so, theorems such as this one seem so far out to classi-
cal mathematicians that they reject any mathematics which
accepts them.

These three reasons for the rejection of intuitionism by

classical mathematicians are neither rational nor scientific.
Nor are they pragmatic reasons, based on a conviction that
classical mathematics is better for applications to physics or
other sciences than is intuitionism. They are all emotional
reasons, grounded in a deep sense as to what mathematics is
all about. (If one of the readers knows of a truly scientific re-
jection of intuitionism, the author would be grateful to hear
about it.) We now have the second crisis in mathematics
in front of us: It consists in the failure of the intuitionistic
school to make intuitionism acceptable to at least the major-
ity of mathematicians.

It is important to realize that, like logicism, intuitionism
is rooted in philosophy. When, for instance, the intuition-
ists state their definition of mathematics, given earlier, they
use strictly philosophical and not mathematical language. It
would, in fact, be quite impossible for them to use mathe-
matics for such a definition. The mental activity which is
mathematics can be defined in philosophical terms but this
definition must, by necessity, use some terms which do not
belong to the activity it is trying to define.

Just as logicism is related to realism, intuitionism is re-
lated to the philosophy called “conceptualism.” This is the
philosophy which maintains that abstract entities exist only
insofar as they are constructed by the human mind. This
is very much the attitude of intuitionism which holds that
the abstract entities which occur in mathematics, whether
sequences or order-relations or what have you, are all men-
tal constructions. This is precisely why one does not find
in intuitionism the staggering collection of abstract entities
which occur in classical mathematics and hence in logicism.
The contrast between logicism and intuitionism is very sim-
ilar to the contrast between realism and conceptualism.

A very good way to get into intuitionism is by studying
[8], Chapter IV of [4], [2] and [13], in this order.

Formalism

This school was created in about 1910 by the German
mathematician David Hilbert (1862–1943). True, one
might say that there were already formalists in the nine-
teenth century since Frege argued against them in the second
volume of his Grundgesetze der Arithmetik (see the book by
Geach and Black under [5], pages 182–233); the first vol-
ume of the Grundgesetze appeared in 1893 and the second
one in 1903. Nevertheless, the modern concept of formal-
ism, which includes finitary reasoning, must be credited to
Hilbert. Since modern books and courses in mathematical
logic usually deal with formalism, this school is much bet-
ter known today than either logicism or intuitionism. We
will hence discuss only the highlights of formalism and begin
by asking, “What is it that we formalize when we formalize
something?” [[213]]

The answer is that we formalize some given axiomatized
theory. One should guard against confusing axiomatization
and formalization. Euclid axiomatized geometry in about
300 B.C., but formalization started only about 2200 years
later with the logicists and formalists. Examples of axioma-
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tized theories are Euclidean plane geometry with the usual
Euclidean axioms, arithmetic with the Peano axioms, ZF
with its nine axioms, etc. The next question is: “How do
we formalize a given axiomatized theory?”

Suppose then that some axiomatized theory T is given.
Restricting ourselves to first order logic, “to formalize T ”
means to choose an appropriate first order language for T .
The vocabulary of a first order language consists of five items,
four of which are always the same and are not dependent on
the given theory T . These four items are the following: (1)
A list of denumerably many variables—who can talk about
mathematics without using variables? (2) Symbols for the
connectives of everyday speech, say ¬ for “not,” ∧ for “and,”
∨ for the inclusive “or,” → for “if then,” and ↔ for “if and
only if ”—who can talk about anything at all without using
connectives? (3) The equality sign = ; again, no one can
talk about mathematics without using this sign. (4) The two
quantifiers, the “for all” quantifier ∀ and the “there exist”
quantifier ∃ ; the first one is used to say such things as “all
complex numbers have a square root,” the second one to say
things like “there exist irrational numbers.” One can do with-
out some of the above symbols, but there is no reason to go
into that. Instead, we turn to the fifth item.

Since T is an axiomatized theory, it has so called “un-
defined terms.” One has to choose an appropriate symbol
for every undefined term of T and these symbols make up
the fifth item. For [[214]] instance, among the undefined
terms of plane Euclidean geometry, occur “point,” “line,”
and “incidence,” and for each one of them an appropriate
symbol must be entered into the vocabulary of the first or-
der language. Among the undefined terms of arithmetic oc-
cur “zero,” “addition,” and “multiplication,” and the sym-
bols one chooses for them are of course 0, +, and ×, respec-
tively. The easiest theory of all to formalize is ZF since this
theory has only one undefined term, namely, the member-
ship relation. One chooses, of course, the usual symbol ∈ for
that relation. These symbols, one for each undefined term of
the axiomatized theory T , are often called the “parameters”
of the first order language and hence the parameters make
up the fifth item.

Since the parameters are the only symbols in the vocab-
ulary of a first order language which depend on the given
axiomatized theory T , one formalizes T simply by choos-
ing these parameters. Once this choice has been made, the
whole theory T has been completely formalized. One can
now express in the resulting first order language L not only
all axioms, definitions, and theorems of T , but more! One
can also express in L all axioms of classical logic and, con-
sequently, also all proofs one uses to prove theorems of T .
In short, one can now proceed entirely within L, that is,
entirely “formally.”

But now a third question presents itself: “Why in the
world would anyone want to formalize a given axiomatized
theory?” After all, Euclid never saw a need to formalize his
axiomatized geometry. It is important to ask this question,
since even the great Peano had mistaken ideas about the real
purpose of formalization. He published one of his most im-
portant discoveries in differential equations in a formalized
language (very similar to a first order language) with the re-
sult that nobody read it until some charitable soul translated
the article into common German.

Let us now try to answer the third question. If mathe-
maticians do technical research in a certain branch of math-
ematics, say, plane Euclidean geometry, they are interested
in discovering and proving the important theorems of the
branch of mathematics. For that kind of technical work,
formalization is usually not only no help but a definite hin-
drance. If, however, one asks such foundational questions
as, for instance, “Why is this branch of mathematics free of
contradictions?”, then formalization is not just a help but an
absolute necessity.

It was really Hilbert’s stroke of genius to understand that
formalization is the proper technique to tackle such founda-
tional questions. What he taught us can be put roughly as
follows. Suppose that T is an axiomatized theory which has
been formalized in terms of the first order language L. This
language has such a precise syntax that it itself can be stud-
ied as a mathematical object. One can ask for instance: “Can
one possibly run into contradictions if one proceeds entirely
formally within L, using only the axioms of T and those of
classical logic, all of which have been expressed in L?” If one
can prove mathematically that the answer to this question is
“no,” one has there a mathematical proof that the theory T

is free of contradictions!

This is basically what the famous “Hilbert program” was
all about. The idea was to formalize the various branches
of mathematics and then to prove mathematically that each
one of them is free of contradictions. In fact if, by means
of this technique, the formalists could have just shown that
ZF is free of contradictions, they would thereby already have
shown that all of classical mathematics is free of contradic-
tions, since classical mathematics can be done axiomatically
in terms of the nine axioms of ZF. In short, the formalists
tried to create a mathematical technique by means of which
one could prove that mathematics is free of contradictions.
This was the original purpose of formalism.
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It is interesting to observe that both logicists and formal-
ists formalized the various branches of mathematics, but for
entirely different reasons. The logicists wanted to use such
a formalization to show that the branch of mathematics in
question belongs to logic; the formalists wanted to use it to
prove mathematically that that branch is free of contradic-
tions. Since both schools “formalized,” they are sometimes
confused.

Did the formalists complete their program successfully?
No! In 1931, Kurt Gödel showed in [6] that formalization
cannot be considered as a mathematical technique by means
of which one [[215]] can prove that mathematics is free of
contradictions. The theorem in that paper which rang the
death bell for the Hilbert program concerns axiomatized the-
ories which are free of contradictions and whose axioms are
strong enough so that arithmetic can be done in terms of
them. Examples of theories whose axioms are that strong
are, of course, Peano arithmetic and ZF. Suppose now that
T is such a theory and that T has been formalized by means
of the first order language L. Then Gödel’s theorem says, in
nontechnical language, “No sentence of L which can be in-
terpreted as asserting that T is free of contradictions can be
proven formally within the language L.” Although the in-
terpretation of this theorem is somewhat controversial, most
mathematicians have concluded from it that the Hilbert pro-
gram cannot be carried out: Mathematics is not able to prove
its own freedom of contradictions. Here, then, is the third
crisis in mathematics.

Of course, the tremendous importance of the formalist
school for present-day mathematics is well known. It was in
this school that modern mathematical logic and its various
offshoots, such as model theory, recursive function theory,
etc., really came into bloom.

Formalism, as logicism and intuitionism, is founded in
philosophy, but the philosophical roots of formalism are
somewhat more hidden than those of the other two schools.
One can find them, though, by reflecting a little on the
Hilbert program.

Let again T be an axiomatized theory which has been for-
malized in terms of the first order language L. In carrying
out Hilbert’s program, one has to talk about the language L

as one object, and while doing this, one is not talking within
that safe language L itself. On the contrary, one is talk-
ing about L in ordinary, everyday language, be it English or
French or what have you. While using our natural language
and not the formal language L, there is of course every dan-
ger that contradictions, in fact, any kind of error, may slip in.
Hilbert said that the way to avoid this danger is by making
absolutely certain that, while one is talking in one’s natural
language about L, one uses only reasonings which are abso-
lutely safe and beyond any kind of suspicion. He called such
reasonings “finitary reasonings,” but had, of course, to give
a definition of them. The most explicit definition of finitary
reasoning known to the author was given by the French for-
malist Herbrand ([7]. the footnote on page 622). It says, if
we replace “"intuitionistic” by “finitary”:

By a finitary argument we understand an argument satisfying the
following conditions: In it we never consider anything but a given
finite number of objects and of functions; these functions are well
defined, their definition allowing the computation of their values in
a univocal way; we never state that an object exists without giving
the means of constructing it; we never consider the totality of all
the objects x of an infinite collection; and when we say that an
argument (or a theorem) is true for all these x, we mean that, for
each x taken by itself, it is possible to repeat the general argument
in question, which should be considered to be merely the prototype
of these particular arguments.

Observe that this definition uses philosophical and not
mathematical language. Even so, no one can claim to un-
derstand the Hilbert program without an understanding of
what finitary reasoning amounts to. The philosophical roots
of formalism come out into the open when the formalists
define what they mean by finitary reasoning.

We have already compared logicism with realism, and in-
tuitionism with conceptualism. The philosophy which is
closest to formalism is “nominalism.” This is the philoso-
phy which claims that abstract entities have no existence of
any kind, neither outside the human mind as maintained
by realism, nor as mental constructions within the human
mind as maintained by conceptualism. For nominalism, ab-
stract entities are mere vocal utterances or written lines, mere
names. This is where the word “nominalism” comes from,
since in Latin nominalis means “belonging to a name.” Sim-
ilarly, when formalists try to prove that a certain axiomatized
theory T is free of contradictions, they do not study the ab-
stract entities which occur in T but, instead, study that first
order language L which was used to formalize T . That is,
they study how one can form sentences in L by the proper
use of the vocabulary of L; how certain of these sentences
can be proven by the proper use of those special sentences of
L which were singled out as [[216]] axioms; and, in partic-
ular, they try to show that no sentence of L can be proven
and disproven at the same time, since they would thereby
have established that the original theory T is free of contra-
dictions. The important point is that this whole study of L

is a strictly syntactical study, since no meanings or abstract
entities are associated with the sentences of L. This language
is investigated by considering the sentences of L as meaning-
less expressions which are manipulated according to explicit,
syntactical rules, just as the pieces of a chess game are mean-
ingless figures which are pushed around according to the
rules of the game. For the strict formalist “to do mathemat-
ics” is “to manipulate the meaningless symbols of a first order
language according to explicit, syntactical rules.” Hence, the
strict formalist does not work with abstract entities, such as
infinite series or cardinals, but only with their meaningless
names which are the appropriate expressions in a first order
language. Both formalists and nominalists avoid the direct
use of abstract entities, and this is why formalism should be
compared with nominalism.

The fact that logicism, intuitionism, and formalism cor-
respond to realism, conceptualism, and nominalism, respec-
tively, was brought to light in Quine’s article, “On What
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There Is” ([1], pages 183–196). Formalism can be learned
from any modern book in mathematical logic, for instance
[3].

Epilogue

Where do the three crises in mathematics leave us? They
leave us without a firm foundation for mathematics. Af-
ter Gödel’s paper [6] appeared in 1931, mathematicians on
the whole threw up their hands in frustration and turned
away from the philosophy of mathematics. Nevertheless,
the influence of the three schools discussed in this article has
remained strong, since they have given us much new and
beautiful mathematics. This mathematics concerns mainly
set theory, intuitionism and its various constructivist mod-
ifications, and mathematical logic with its many offshoots.
However, although this kind of mathematics is often referred
to as “foundations of mathematics,” one cannot claim to be
advancing the philosophy of mathematics just because one is
working in one of these areas. Modern mathematical logic,
set theory, and intuitionism with its modifications are nowa-
days technical branches of mathematics, just as algebra or
analysis, and unless we return directly to the philosophy of
mathematics, we cannot expect to find a firm foundation
for our science. It is evident that such a foundation is not
necessary for technical mathematical research, but there are
still those among us who yearn for it. The author believes
that the key to the foundations of mathematics lies hidden
somewhere among the philosophical roots of logicism, intu-
itionism, and formalism and this is why he has uncovered
these roots, three times over.

Excellent literature on the foundations of mathematics is
contained in [1] and [7].
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