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Abstract. The Cyc KB has a rich pre-existing ontology for representing 
common sense knowledge. To clarify and enforce its terms’ semantics and to 
improve inferential efficiency, the Cyc ontology contains substantial meta-level 
knowledge that provides definitional information about its terms, such as a type 
hierarchy. This paper introduces a method for converting that meta-knowledge 
into biases for ILP systems. The process has three stages. First, a “focal 
position” for the target predicate is selected, based on the induction goal. 
Second, the system determines type compatibility or conflicts among predicate 
argument positions, and creates a compact, efficient representation that allows 
for syntactic processing. Finally, mode declarations are generated, taking 
advantage of information generated during the first and second phases.  

1 Introduction 

Because of the general complexity of machine learning, the discipline has devoted 
significant attention to the use of inductive bias in improving algorithmic efficiency.  
Inductive logic programming (ILP) is in an interesting position on this topic because 
its declarative representations can be extended to include the representation of the ILP 
system itself, including the biases its algorithms employ. Tausend [1], [2], Nedellec et 
al. [3] have investigated the utility of declaratively representing biases as part of the 
background knowledge for ILP systems. They have noted that such representations 
allow for an explicit and modular representation of bias, such that biases used by 
different systems can be meaningfully compared and the settings of an individual 
system can be easily manipulated. McCreath [4], McCreath and Sharma [5], and 
DiMauro, et. al. [6] have begun the next phase of this work by developing algorithms 
for inducing type and mode biases from data. The implementation of these algorithms 
in pre-processors promises to reduce the burden on the human users of ILP systems.  
An alternative source for inductive biases is the language of the data, when that 
language is part of a larger ontology.  Using the knowledge contained in the Cyc 
knowledge base (KB) – a very large, non-domain-specific ontology of formalized 
knowledge – provides a novel approach to automating the generation of inductive 
biases. 

                                                        
∗ Distribution Statement A: Approved for public release; distribution is unlimited. 
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2 An Overview of the Cyc Project  

The Cyc project is an ambitious, decades-long effort to generate a store of 
common-sense knowledge that enables reasoning in a broad array of domains.  
Human knowledge engineers have so far constructed most of the knowledge base 
(KB).  However, one of the underlying premises of the Cyc project is that certain 
kinds of machine learning require the existence of a pre-existing body of knowledge 
into which new knowledge can be integrated (Lenat and Guha [7]).  So, the long-term 
goal of the project is to invest human effort in the creation of a necessary foundation 
for effective, future machine learning.  The goal of the research described in this 
paper is to begin the work of converting the existing knowledge into a basis for more 
effective automated learning.  Since the representational language of Cyc is an 
extension of first-order predicate logic, inductive logic programming is the natural fit 
for the type of machine learning that would eventually drive the growth of the 
knowledge base. 

The Cyc KB is represented using the language CycL, a LISP-like language that 
includes features like quantification over predicates and complete sentences, modal 
operators, and an extensive meta-language. All expressions are wrapped within 
parentheses and the leftmost entity within the parentheses being the predicate or 
function. Constants of the language are tagged with a prefixed '#$' and variables are 
composed of all capital letters and a prefixed '?'.  All aspects of the language are 
represented within CycL. So, logical connectives follow the same syntactic rules. The 
following Prolog clause (a translation of "For any birth event E in which some M 
plays the role of female parent and some C is the child born during E, then M is C's 
biological mother"): 

 

biologicalMother(C,M) :-                      
birthEvent(E), femaleParentActor(E,M), birthChild(E,C) 

 
would be represented in CycL as: 

 

(#$implies                                          
(#$and                                             
(#$isa ?BIRTH #$BirthEvent)                   
(#$femaleParentActor ?BIRTH ?MOTHER)             
(#$birthChild ?BIRTH ?CHILD))               
(#$biologicalMother ?CHILD ?MOTHER)).1 

 
The above example illustrates a significant feature of the Cyc ontology. First, 

classes are denoted with constant names, not predicates. This choice is based on 
certain requirements of ontological engineering. First, it allows for multiple instance-
to-class relations to be introduced into the vocabulary.  Thus, we can specialize the 
predicate to specific types of collection to more precise relations such as occupations, 

                                                        
1 When variables are unbound, the system assumes universal quantifiers with scope over the 

entire sentence. 
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ethnicities, and nationalities. Introducing these more specific relations increases the 
precision of the language and, as a consequence, allows for greater inferential 
efficiency because problems can be more narrowly defined.  Second, because there is 
a significant inferential cost to reasoning with unbound predicates and it is quite 
common quantify over classes, introducing classes as named entities allows rules to 
be written at the right level of generality without incurring a significant computational 
cost.   

The Cyc KB is structured using a hierarchical arrangement of microtheories.  
Microtheories represent contexts in which sentences are true.  Microtheories inherit 
content from other microtheories to which they are linked.  So, if MT1 is more general 
than MT2 than everything that is true in MT1 is also true in MT2.  This relationship 
among microtheories is transitive and reflexive, but not symmetric. Sentences that 
hold universally are those which are expressed in the "highest," most general 
microtheories, while sentences that are true in very limited contexts (i.e., the content 
of a person's testimony or a work of fiction) are represented in microtheories that are 
much "lower" in the hierarchy.  The great advantage of microtheories is that 
contradictory assertions can be represented within the KB without introducing formal 
contradictions because those assertions can be represented in microtheories that are 
not linked to one another.   

As of March 2005, the Cyc KB contains over 296,000 reified terms, including over 
55,000 classes, 198,000 individuals, and 22,000 relations (predicates and functions).  
These terms are linked by 3.3 million assertions.  The Cyc KB operates in conjunction 
with an inference engine, with deductive and abductive capabilities.  The inference 
engine is composed of more than 800 special-purpose reasoning modules, each of 
which handles a very specific type of query.  These modules range in complexity 
from the very simple (special index-lookup code for a specific predicate) to the 
extremely complex (modules for temporal reasoning).  The modules are interlinked 
via a blackboard system, which allows very general modules to handles cases for 
which more specific support does not exist; the final fall back is a general theorem 
prover.  This architecture allows for the addition of new modules as needed.   

An important aspect in the design of the system comes from the design of the 
ontology.  Specifically, because of the explosive growth of search spaces during 
deductive inferences with transformation, the ontology needs to be designed such that 
it can make inference more efficient. The choice not to represent classes with unary 
predicates is one illustration of this.  Another significant illustration of this point is the 
inclusion of definitional assertions on the elements of the ontology and the 
enforcement of the semantics represented by those assertions at different stages within 
the system.   The definitional assertions for predicates are used to constrain the values 
that the predicate's arguments can take (I will refer to these assertions content as 
"semantic meta-knowledge").  During the knowledge entry process, this enables the 
system to exclude assertions as "semantically ill-formed" and, thus, ensure the 
integrity of the content of the KB.  Thus, if #$biologicalMother can hold only 
between an animal and a female animal and female animal and integer are disjoint 
classes (i.e., they do not and cannot have any common instances), then an attempt to 
enter into the KB that someone's mother is the number 12 would be rejected.   

By preserving the integrity of the knowledge entered into the KB, these semantic 
restrictions maintain the correctness of the answers derived through deductive 
inference and spare inference the cost of checking for the satisfaction of constraints.   
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Another application of this knowledge is with abductive inference. Cyc 
implements abduction through hypothesizing entities or relations such that the 
hypothesized facts satisfy the antecedents of deductive implication rules.  The 
inference engine uses this knowledge about the meaning and proper usage of 
predicates to reject hypotheses that could never be true.  Thus, it will not hypothesize 
that an office building was destroyed because it was a meteor that burned up upon 
entering the atmosphere, because no office building is a meteorite.    

As a first step toward using the knowledge in the Cyc ontology and KB to enhance 
machine learning, we will be investigating the use of semantic meta-knowledge to 
provide inductive biases to ILP systems.  The next two sections of this paper discuss 
the declarative representation of bias used by ALEPH, and McCreath and Sharma’s 
[5] algorithm for learning modes and types from data. The remainder of the paper will 
provide more detail on one form of semantic meta-knowledge for predicates, discuss 
how to convert them into inductive biases, and discuss additional approaches for 
handling more complex cases. 

3 The Declarative Representation of Bias in ALEPH 

ALEPH is an implementation of the inverse entailment algorithm underlying the 
Progol system (Muggleton [8]).  We are interested in this formalism because it 
combines mode and type information and, so, offers a scheme that could be used 
among different ILP systems. The system represents mode and type biases using the 
predicate mode/2.2  The general form of these clauses is: 
 

mode(RecallNumber,pred(ModeType1,…,ModeTypen). 

 
RecallNumber is either the maximum number of successful calls to the predicate 
that appears in the second argument position, or an asterisk, meaning the predicate has 
unbounded indeterminacy. The number of instances of ModeTypei equals the arity 
of the predicate pred. If these mode types are simple, the expressions that will 
replace ModeTypei begin with a symbol designating the mode of the variables that 
will fill that argument position, followed by a name for the type constraint on that 
argument. In ALEPH, input variables are designated with a ‘+’, output variables are 
designated with a ‘-’, and constant arguments are designated with a ‘#.’3 For example, 
if the predicate addition/3 has all of its arguments constrained to integers and an 
expression of the form addition(X,Y,Z) means that Z is the sum of X and Y, 
then the following is an appropriate mode declaration for the predicate: 

mode(*,addition(+integer, +integer,-integer)). 

 

                                                        
2 This following description of ALEPH is based on the documentation available at: 

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html 
3 This paper will not discuss the creation of constants, but that is an important piece of future 

research.  
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This clause states that addition/3 has unbounded indeterminacy, that all of its 
arguments take instances of the same type, and that the first two arguments are input 
variables while the third argument is an output variable. It is important to note that the 
names given to the types are not used for type reasoning by ALEPH. So, no special 
significance attaches to the names used in the mode/2 statements.  

The mode settings contained in mode/2 clauses are used by ALEPH to constrain 
the set of hypotheses, by shaping the construction of the bottom clause from which 
the algorithm generalizes. The modes constrain the hypotheses’ variables in the 
following ways: 
 
• An input variable of a given type in a body literal must appear as an input variable 

of the same type in the head literal or as an output variable of the same type in an 
earlier body literal of that clause. 

• An output variable of a given type in the head literal must appear as an output 
variable of the same type in some body literal of that clause. 

• Any predicate’s arguments declared to be a constant of a given type, must take a 
ground instance of that type as a value in that argument. 
 

The user need not program the mode and type information. ALEPH includes an 
implementation of McCreath and Sharma’s (1995) algorithm for inferring mode and 
type constraints from the background knowledge and examples. 

4 McCreath and Sharma’s Algorithm: Bias Induction from Data 

4.1 The Algorithm 

McCreath and Sharma's [5] algorithm aims to induce meta-knowledge from only 
the data given to the system.  For determining mode biases, the algorithm initially 
assumes that all possible combinations of modes for a predicates' arguments are valid.  
It then works through the available data to find counter-examples.  When a counter-
example is found, the contradicted modes are eliminated.  Counter-examples are 
based on the assumption that modes represent functional dependencies.  So, a 
counter-example would involve the values for a set of input arguments being matched 
to different values for an associated output argument.   For example, this algorithm 
would originally assign the binary predicate p/2 the set of possible modes: 
p(+,+), p(+,-), p(-,+) and p(-,-).  If p(a,b) and p(a,c) were 
positive examples, then the mode setting p(+,-) would be eliminated from the set 
because the examples contradict the claim that the value of the second argument is a 
function of the first argument. 

For determining types, McCreath and Sharma's algorithm begins with the 
assumption that every argument of every predicate in the language of the learning 
problem is constrained to a different type.  As the algorithm processes the data, if the 
same value appears in two different argument positions, then the algorithm 
redistributes the type constraints and assigns the same type to the argument positions 
that shared that value.  For example, if we have two binary predicates p/2 and r/2, 
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then the algorithm would initially assign every argument a different type constraint:  
p(type1,type2) and r(type3,type4).  If p(a,a) and r(a,b) appeared 
within the examples, then the types would be modified to show that the same type can 
appear in both of p/2's arguments and in the first argument of r/2.  So, the revised 
types would be p(type1,type1) and r(type1,type4).    

4.2 Weaknesses of the Algorithm 

With any form of learning, there is the possibility of error; but there are two types 
of error to which McCreath and Sharma’s original algorithm and a modified version 
implemented within ALEPH are susceptible.  Both relate to type constraints. 
Excluding available type constraints reduces efficiency, while including too many 
type constrains puts too much of a restriction on the search space and, so, causes the 
system to miss legitimate hypotheses.   

McCreath and Sharma’s basic algorithm is susceptible to including too few type 
restrictions.  For instance, consider the following representation of a section of a 
family tree. 

father(abe,bob).                                
mother(abe,carol).                                
father(bob,david).                                 
father(carol,fred). 

In this example, Bob and Carol both appear in the first argument positions of 
father/2 clauses.  This causes the types on the second argument positions of 
mother/2 and father/2 to be merged, even though they should be constrained to 
disjoint types: female and male animals, respectively. So, in this situation, there 
would be only one type for all of the argument positions. 

ALEPH includes an alternative implementation of the algorithm that allows for the 
merging of types between argument positions based on the degree of overlap in the 
values for two different positions, where the degree of overlap is the proportion of 
values of one position that are also values for the second position.   This approach 
faces the problem of not recognizing that argument positions can be merged.  For 
instance, in the above example, because there is only one value that appears in both 
the second argument of mother and the first argument of father, a sufficiently high 
overlap threshold between those arguments would prevent them from being linked.  
Thus hypotheses that link mothers to their fathers could be missed. 
The Conversion Algorithm 
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5 Semantic Meta-Knowledge in Cyc 

5.1 Basic Meta-Knowledge for Predicates 

A first step in the addition of a new predicate to the Cyc ontology is the creation of 
definitional assertions that express the predicate’s meaning by setting constraints on 
its applicability. For example, the predicate #$hasHeadquartersInRegion 
relates an organization to the geographical region where that organization’s 
headquarters are located. If #$BMWInc denotes the Bayerische Motoren Werke 
corporation and #$CityOfMunich denotes the city of Munich, Germany one could 
assert: 

 

 (#$hasHeadquartersInRegion #$BMWInc #$CityOfMunich) 

 
To enforce the semantics of this predicate, a number of other assertions that constrain 
#$hasHeadquartersInRegion would be used. For example, #$arg1Isa 
and #$arg2Isa are, respectively, used to state that the first and second argument 
positions of a particular predicate must be instances of particular collections.4  In 
order to express that the first argument of #$hasHeadquartersInRegion must 
be an organization and second argument must be a geographical area, the following 
assertions would be made: 

(#$arg1Isa #$hasHeadquartersInRegion #$Organization) 

(#$arg2Isa #$hasHeadquartersInRegion 
#$GeographicalRegion) 

 
The effect of these two statements is that if a knowledge engineer tries to enter a new 
assertion using the predicate #$hasHeadquartersInRegion and the value of 
one of its arguments can be proved to not be an instance of the required type, then the 
semantic validation process would reject the assertion. 

Many predicates in the Cyc ontology take collections as values. The predicate 
#$argIsa can be used to state that a value must be a collection.  Additional 
assertions can further specify the collection. First, the predicate #$argGenl can be 
used to state that the value must be a sub-collection of some collection.  Alternatively, 
instead of #$Collection, #$argIsa could refer to a second-order collection – 
a collection whose instances are collections.  #$PersonTypeByPositionInOrg 
is a second-order collection whose instances are types of occupation that refer to 
organizations (e.g., #$PrimeMinister, #$ChiefExecutiveOffice). 
The predicate #$personHasPositionInOrg relates a person to a type of 

                                                        
4 The Web Ontology Language, OWL, based on its inheritance of certain portions of the 

Resource Description Framework, includes similar vocabulary for defining the properties of 
predicates.  The Cyc ontology includes a larger vocabulary with that function, but the 
particular process described here can be applied to OWL ontologies as well. 
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occupation and an organization.  The following definitional assertions hold of its 
second argument: 

 (#$arg2Isa #$positionOfPersonInOrg
 #$PersonTypeByPositionInOrg) 

 (#$arg2Genl #$positionOfPersonInOrg #$Person) 

 
So, although an instance of the collection #$PrimeMinister (e.g., Tony Blair) 
could fill the first argument of a #$positionOfPersonInOrg assertion, the 
appearance of the same value in the second argument position would not be 
semantically well-formed because the collection of individuals is disjoint with the 
collection of occupation types, #$PersonTypeByPositionInOrg.  

5.2 Representing the Determination 

The first step is the process is the representation of the problem, or determination.  
Specifically, there is the representation of the target predicate (i.e. the predicate for 
the head of learned clauses) and the set of predicates for the background knowledge 
(i.e., the predicates that could appear in the bodies of learned clauses). The Cyc 
ontology uses the function #$ILPDeterminationFn for denoting determinations.  
It is a binary function whose first argument position is the target predicate and whose 
second argument is the list of background predicates. In order for the target predicate 
to be considered a possible body predicate, it would need to be included in the list of 
predicates as well. 

For example, the following expression represents a determination that targets the 
predicate #$hasHeadquartersInRegion with the possible body predicates: 
#$residesInRegion, #$seniorExecutives, #$importantCompany, 
and #$positionOfPersonInOrg: 

 

(#$ILPDeterminationFn     
 #$hasHeadquartersInRegion    
 (#$TheList #$residesInRegion 
 #$seniorExecutives #$importantCompany
 #$positionOfPersonInOrg)) 

For simplicity’s sake, during the remainder of this section the term 
#$Determination01 will be used as a name for the determination denoted by the 
above expression.   

5.3 Deriving Types 

Given a specific determination, Cyc uses its semantic meta-knowledge and its type 
hierarchy to determine a more compact representation of the relevant type constraints. 
This more compact representation allows us to communicate information to ILP 
engines like ALEPH that do not do type reasoning when using inductive biases.  The 
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goal is to try to capture all and only the appropriate linkages among arguments, while 
minimizing the size of the representation.  Because of the size of the Cyc ontology 
and the different representational tasks of different predicates, they have type 
constraints at different levels of generality.  The basic strategy implemented here is to 
look for subsumption relations among argument constraints and then to use only the 
most specific types that are used as constraints. 

The first step in the process is to generate the set of collections that constrain the 
argument positions for the predicates in the determination. The set of these collections 
for  #$Determintion01 is: 

 

{#$Animal, #$PersonTypeByPositionInOrg #$Person, 
#$Organization, #$CommercialOrganization, 
#$GeographicalRegion} 

 
The next step is to reduce the set by eliminating any collections that have at least one 
sub-collection that is also element of the set. #$Person is a sub-collection of 
#$Animal and #$CommercialOrganization is a sub-collection of 
#$Organization.  So, #$Organization and #$Animal would be eliminated 
to produce the new set:  

 

{#$Person, #$PersonTypeByPositionInOrg 
#$CommercialOrganization, #$GeographicalRegion} 

 
For the remainder of this paper, any reference to a “relativized type” should be taken 
to refer to an element of this reduced set.  Given the original semantic meta-
knowledge about the predicates, knowledge of the subsumption and disjointness of 
collections, a set of rules are invoked that conclude to the predicate 
#$argIsaWRTSpec. (“argument is an instance of type with regard to 
determination”). This predicate is used to represent more focused type constraints for 
a predicate within the context of a given determination. For example, relative to the 
determination above, Cyc would infer 

 

(#$argIsaWRTSpec                
#$hasHeadquartersInRegion 1 #$CommercialOrganization 
#$Determination01) 

This statement states that, relative to #$Determination01, the first argument of 
the predicate #$hasHeadquartersInRegion should be treated as if it were 
constrained to #$CommercialOrganization. In cases where the reduced set 
contains several collections that are subsumed by the predicate’s original argument-
constraining collection, they are all represented with #$argIsaWRTSpec 
assertions for that predicate’s argument. 
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5.4 Deriving Modes 

 For certain predicates, modes are readily definable based on the content of the 
underlying relation.  For example, in the case of a predicate that relates a list to one of 
its members, a mode that requires the list value to be provided (i.e., an input) and the 
member value to be derived (i.e., an output) is more efficient than the inverse would 
be since the member value is a member of an unlimited number of possible lists. For 
the vast majority of predicates in the Cyc ontology, a similar judgment is not as 
readily available.  The issue is magnified by the fact that the choice of mode settings 
can greatly influence the behavior of the ILP system.   
As Cyc is an engineering project, the choice of how to proceed with establishing those 
connections occurs in the context of improving Cyc’s ability to answer questions. 
Specific applications of Cyc will likely focus on a central set of queries that share a 
common set of predicates, most of those predicates will be used to describe a small 
set of types of entities.  Assuming that induction will be geared to improving 
inference with regard to a particular topic, the current strategy for generating modes is 
to focus on one argument of the target predicate. We expect that this focal argument 
will be bound during a query. In practice, this binding would be the entity that is the 
topic of the question.  So, if we wanted to know information about commercial 
organizations, we would ask the following sort of query: 
 

 (#$hasHeadquartersInRegion #$BMWInc ?PLACE) 

Given that the focal type for these queries is #$Organization and that the first 
argument of #$hasHeadquartersInRegion is the only one constrained to 
#$Organization, we would include the following assertion to specify that the 
organization argument is focal for this determination: 

(#$focalArgumentOfDeterminationTarget     
#$Determination01 1) 

Once a focal argument has been designated, the following rules are used to 
determine the modes for the determination’s predicates:  
 
• The focal argument of the target predicate has an input mode. 
• If the target predicate has an input argument of relativized type T, and a predicate 

(either target or background) also has an argument of relativized type T, then that 
second argument has an input mode. 

• If the target predicate has an input argument of relativized type T1, a predicate 
(either target or body) has an argument of relativized type T1, and T1 and T2 are 
disjoint collections, then that second argument has an output mode. 5   
  

This algorithm utilizes the user-provided information of the focal argument for the 
target predicate in conjunction with semantic knowledge regarding all of the 
predicates in the determination to derive modes for each argument. 

                                                        
5 This is a rough reconstruction of the general pattern found in the data sets found in the archive 

at:  http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html. The 
development of more sophisticated algorithms is a topic for future research. 
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In CycL, the process concludes with the derivation of assertions represent the 
combination of the relativized type for a predicate’s arguments and that argument’s 
mode.  The predicates #$argIsaInputModeForDetermination and 
#$argIsaOutputModeForDetermination are used for this task.  In the case 
of #$Determination01, we have assumed a focal argument that is constrained to 
organizations.  Since organizations are disjoint with geographical regions, the system 
would draw the following conclusions for the predicate #$importantCompany, 
which relates a commercial organization to a geographical region in which it plays a 
significant economic role: 
 

(#$argIsaInputModeForDetermination
 #$importantCompany 
 #$CommercialOrganization 1
 #$Determination01)  

(#$argIsaOutputModeForDetermination 
 #$importantCompany  
 #$GeographicalRegion 2 
 #$Determination01) 

The first argument is an input mode because it shares the same relativized type as the 
focal argument, #$CommercialOrganization.  The second argument is an 
output mode because its relativized type, #$GeographicalRegion, is disjoint 
with the focal argument’s relativized type. 

5.5 More Complex Cases 

The method described above is most efficient in cases where the set of type 
constraints all involve disjointness and subsumption relationships. First, the 
subsumption allows us to minimize the number of collections that need to be 
considered.  So, we can send out a more compact representation to the ILP engine.  
Further, when two collections are disjoint, then there should be no relationship 
between two arguments that are constrained by those collections.  However, for any 
pair of collections that are chosen from the ontology, a significant chance exists that 
they are  neither disjoint nor does one subsume the other.  As of March 2005, the 
probability that two randomly selected collections from the Cyc KB are orthogonal is 
0.35. While such ‘orthogonal collections’ are a minority in the set of collections used 
for semantic constraints on predicates, they do occur.  For example, the second 
argument of #$father is constrained to #$MaleAnimal, while the first argument 
of #$rulerInDynasty is constrained to #$Monarch-HeadOfState.  Neither 
of these collections subsumes the other and they share instances.  Depending on the 
focal argument of the determination, the rules described might not return modes for 
such cases.  There are four solutions that present themselves for handling cases where 
this situation is violated.   

First, one could introduce a framework that allows for type conversions of 
individuals within the rules that govern the use of modes.  Such conversions would be 
made in the case of individuals that are instances of multiple collections.  A second 
strategy is the introduction of more general collections that subsume the orthogonal 
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collections to link the different argument.  Third, a more specific collection could be 
introduced that represents the intersection of the various orthogonal collections. 
Finally, temporally created specialized predicates could be introduced when 
communicating the background knowledge to ALEPH.  The new predicates would be 
specialized in the sense that their argument constraints be the intersection of the 
orthogonal collections.   This would establish subsumption relations and make them 
compatible with the simple algorithm described above.    

First, the “Casting” strategy is intended for cases where predicates are constrained 
by orthogonal collections and they have values that are instances of those orthogonal 
classes (e.g. a father who is a ruler in a dynasty).  The strategy focuses on type 
constraints of predicates, but also takes into account the fact that some entities will be 
instances of more than one collection.  So, if an argument is constrained to a 
particular type that is orthogonal to another predicates’ constraining type and the 
value of that argument is also an instance of the orthogonal collection, then that value 
should be used with the other predicate.  The principle cost of this strategy is a 
dramatic increase in the number of predicates in relation to the number of individuals 
that are instances of multiple collections.  In addition, since type conversion has to be 
bi-directional, there is the potential of catching ALEPH in a conceptual loop, as it 
oscillates back and forth between two facets of a term. 

Second, the “Type Generalization” strategy walks up the type hierarchy to find the 
least general collection that subsumes the orthogonal collections. From a strictly 
semantic perspective, the use of the more general types violates the meaning of the 
predicate. This violation translates into a decrease in the utility of type knowledge. 
Since fewer distinctions are being made, there is a weaker partitioning of the search 
space. In the degenerate case, all type knowledge is lost if the least general collection 
remains general enough to subsume all the argument constraints of all the predicates 
in the determination. 

Third, the “Type Specialization” strategy introduces more specific types that allow 
the system to maintain the semantic integrity of the predicates and the benefits that 
follow from the splitting up of the search space.  However, this strategy requires the 
generation of significantly more types and a proportionately larger group of mode 
statements that properly connect them to the predicates.  

Fourth, the “Predicate Specialization” strategy introduces more specific predicates. 
It requires creating more specialized predicates whose argument positions have 
significantly tighter constraints and then distributing the original data to the new 
predicates based on the types of their values.  Here, the problem of having multiple 
linkages to the same argument positions is eliminated because the examples will be 
partitioned based on the new predicates’ tighter semantics.  However, there are two 
problems with the approach.  First, the strategy increases the likelihood of the system 
returning over-fitted rules. If the invented predicate has a very small extent, the 
likelihood increases that it will satisfy some of the positive examples even though the 
more general predicate from which it was derived would not.  Alternatively, if the 
system’s evaluation function has a relatively high threshold for acceptability (e.g., its 
minimum number of positive examples covered), the split might be such that 
hypotheses with the new predicate falls beneath that threshold while a rule formed 
with the original predicate would be above it.     
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6 Conclusions and Future Research 

The next and most important stage in this work is the empirical investigation of the 
utility of this strategy for ILP systems.  Existing data sets need to be ontologized such 
that a system like ALEPH can be tested with ontologically derived settings versus 
hand-generated settings and the settings provided by other mode learning algorithms.     

In addition, our presentation has focused on only a subset of the types of semantic 
meta-knowledge that are available within the Cyc. Cyc contains a large amount of 
unexploited meta-knowledge, such as that expressed by #$interArgReln and 
#$interArgIsa. The former predicate is used to say that a particular binary 
relation must hold between the values of some predicate.  The latter predicate dictates 
that when an instance of one collection appears in one argument of a predicate, then 
an instance of a specified collection must appear in some other argument (e.g., a 
human child can only have a human as a parent).   

The content of the Cyc KB itself can also serve as a resource for generating 
inductive biases. It contains a large body of rules expressed as either implications or 
as ground assertions that can be expanded to implications via templates.  These rules 
could be used to divert the search away from known rules or hypotheses that are 
entailed by existing rules. Preliminary work has been done to convert rules into 
formats that use ALEPH’s pruning mechanism toward this end. 

Finally, we have introduced only a simple methodology for generating mode 
settings based on type constraints.  More sophisticated strategies for deriving modes 
from the focal type and the relationships among the type constraints of the 
determination should become available with further research. Given that the rules for 
generating modes are declaratively represented, representing the modes themselves 
and rules for interpreting them could lead to further rule-learning improvements. 
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