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Abstract. Progress was made in the understanding of object-
oriented (O-O) design through the introduction of patterns of
design and architecture. Few works, however, offer methods of
precise specification for O-O design.

This article provides a well-defined ontology and an under-
lying framework for the formal specification of O-O design:
(1) We observe key design motifs in O-O design and archi-
tectures. (2) We provide a computational model in mathemat-
ical logic suitable for the discussion in O-O design. (3) We
use our conceptual toolkit to analyze and compare proposed
formalisms.
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1. Introduction

Architectural specifications provide software with “a
unifying or coherent form or structure” (Perry and
Wolf, 1992). Coherence is most effectively achieved
through formal manifestations, allowing for unambigu-
ous and verifiable representation of the architectural
specifications.

Various formalisms and Architecture Description
Languages (ADLs) (Medvidovic and Taylor, 1997)
were proposed for this purpose, each of which de-
rives from an established formal theory. For example,
Allen and Garlan extend CSP (Hoare, 1985) in WRIGHT

(Allen and Garlan, 1997); Dean and Cordy (1995) use
typed, directed multigraphs; and Abowd, Allen, and
Garlan (1993) chose Z (Spivey, 1989) as the underly-
ing theory. Other formalisms rely on Statecharts (Harel,
1987) and Petri Nets (Petri, 1962).

In contrast, techniques idiosyncratic to the object-
oriented programming (OOP) paradigm, such as in-
heritance and dynamic binding (Craig, 1999), induce
regularities of a unique nature. Consequently, O-O
systems deviate considerably from other systems in
their architectures. We would expect the architec-

tural specifications of O-O systems to reflect their
idiosyncrasies.

Unfortunately, architectural formalisms largely ig-
nore the O-O idiosyncrasies. Few works (Section 4)
recognized the elementary building blocks of design
and architecture patterns. As a result of this oversight,
any attempt to use formalisms for the specification of
O-O architectures is destined to neglect key regularities
in their organization.

Only naturally, coherent specifications warrant
the recognition of the underlying abstractions of the
paradigm (Odenthal and Quibeldey-Cirkel, 1997). This
is equally true for O-O programs. Hence, we observe
primitives (“building blocks”) in O-O design, such as
the inheritance class hierarchies (Definition IV) and
clans (Definition V), which reflect the mechanisms that
underlie the paradigm’s idiosyncrasies (inheritance
and dynamic binding, respectively.)

1.1. Patterns
More than any other form of documentation, software
patterns (Coplien and Schmidt, 1995; Vlissides,
Coplien, and Kerth, 1996; Martin, Riehle and
Buschmann, 1997; Schmidt et al., 2000), in particular
design patterns, proved effective in capturing recurring
motifs in O-O software architecture. Each article of
these catalogues addresses a distinct “design pattern”,
documented in a structured format, and distinguished
by a name which carries its intent. Patterns capture
abstractions that facilitate communicating problems
and solutions. It is safe to argue that the best insight
into the regularities of O-O design is provided by the
patterns literature.

Yet the genre suffers from a few shortcomings, most
prominent appear to be the following:

1. Ambiguity. The informal and ultimately fuzzy
descriptions puzzle patterns’ users and cause
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substantial confusion. Even the very pattern writers
demonstrate disagreement over their “true mean-
ing” (e.g., pattern discussion1 and gang-of-four-
patterns2).

Debates that frequent patterns’ users include the
following:

� Instance-of (Definition III): Whether a particular
implementation conforms to a certain pattern;

� Refinement (Definition VII): Whether one pattern
is a special case of another.

2. Unstructured knowledge. With the growth in the
number of patterns published, the accumulation of
information is evolving into an unstructured mass
which lacks effective means of indexing.

Clearly, these two problems result from the use
of imprecise means of specification, such as verbal
descriptions, class diagrams, and concrete exam-
ples. This problem can be alleviated by providing
formal specifications, which may allow for unam-
biguous specifications, enable reasoning about the
relationships between patterns (e.g., refinement), and
promote the structuring of the rapidly growing body
of patterns.

1.2. Intent
This article introduces the following contributions:

1. Define an ontology that serves as a frame of refer-
ence for the discussion in the essential concepts of
O-O design. In particular:

� Observe the building blocks of O-O design,
namely, a small set of rudimentary elements that
can be used to represent effectively the “design”
of many programs;

� Provide precise definitions for intuitive terms used
with reference to O-O patterns, such as pattern a
is a special case of pattern b.

2. Analyse declarative formalisms for the specification
of O-O design patterns. In particular:

� Reconcile formalisms proposed by translating
sample expressions to a unifying framework;

� Provide criteria for assessing the properties of
prospective specification languages (e.g., expres-
siveness and completeness).

1.2.1. A terminological note. Our use of the term
pattern diverges from its use within the patterns com-
munity. Inspired by the work of Christopher Alexander
(Alexander et al., 1977, Alexander, 1979), a “pattern”
is a prescription for solving a category of problems in
a specific manner. This prescription is intended for the
dissemination of specialized knowledge and to create
an instrumental vocabulary.

At the same time, many use “pattern” (particularly
with reference to design patterns) as a shorthand for
a specific segment of the respective article, which fo-
cuses primarily is the architectural abstraction mani-
fested in the solution part of the pattern (also microar-
chitecture, lattice (Eden, 1998), and leitmotif (Eden,
2000)). We adhere to the second practice.

1.2.2. A methodological note. We employ symbolic
logic as means for precise specification and reasoning.
Yet, as in other scientific disciplines where the subject
of the statements made (verbal descriptions of patterns)
is informal, there is no rigorous way to prove the cor-
rectness of some of the statements we make. These
claims can only be treated as approximations for some
“natural phenomena” (Popper, 1969). As in standard
scientific practice, we may only demonstrate evidence
that support our hypotheses.

2. Setting the Scene

In this section, we provide a foundation for a formal
discourse in O-O design.

2.1. Semantics
Programmers are aware of the conceptual model that
accompanies every O-O program: A universe inhabited
by classes, operations, attributes, and relations among
them. Some of these relations are explicitly expressed
as syntactic, built-in constructions of some program-
ming languages, such as inheritance, member-of, and
so forth.

There is a lot to be gained by making this conceptual
“stage” into an explicit logic structure. Many unsub-
stantiated claims, such as this pattern is just a special
case of another, become straightforward facts in this
structure.

We propose to render this structure explicit exactly
like any other mathematical structure, such as algebraic
band, boolean algebra, or geometry of points and lines.
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The crux of our contribution is, to start with, in recog-
nising the participants, their essential collaborations,
and the suitable way of manifesting them. This practice
is not entirely unlike distinguishing the participants in
geometric discourse—points and lines, and the primary
relations—point x is in line y. Finally, we consider the
“staging”. In the geometric context, for instance, we
ask whether the relation line x is parallel to line y is el-
ementary, or whether it is deduced from other relations.
Similarly we ask whether lines are atomic entities, or
perhaps should be represented as sets of points, namely,
as more elaborated constructs.

The framework we propose incorporates classes and
methods as its atomic entities and relations such as
class d inherit from class b, method f is defined in
class c, and method f creates instances of class c, as
the ground relations amongst them.

In our discussion, a program3 is abstracted to a
simplified representation in mathematical logic called
design model (Definition 1). Example 1 demonstrates
how a simple Java program translates to a design model.
Extract 1 gives the class diagram of the same program.

In comparison, object notations (e.g., UML (Booch,
Jacobson, and Rumbaugh, 1999), OMT (Rumbaugh
et al., 1991), Booch (1994), OPEN (Firesmith, Graham,
and Henderson-Sellers, 1998)), more specifically class
diagrams, were used in the specification of design
patterns. Class diagrams and other diagrams in ob-
ject notations, however, are clearly inadequate repre-
sentation as they only incorporate constant symbols
(such as Decorator and Decorator::Draw()
in Extract 1.) Architectural specification, however,
specify a set of programs indirectly through their

Extract 1. OMT diagram of a segment of the DECORATOR (Gamma
et al., 1994) pattern.

properties (Perry and Wolf, 1992). The absence of vari-
able symbols is a one of the major shortcomings of class
diagrams. Furthermore, some information about the
pattern can only be conveyed using informal “notes”.

In the framework we propose, both methods and
classes are represented as “primitive” elements. Hence,
the Design Model (Definition I) of a program consists
only of “ground entities” and of “ground relations”,
just as a structure in mathematical logic.

For example, the association between class
Decorator and methodDraw therein is represented
using the DefinedIn relation as follows:

DefinedIn (Draw,Decorator) (1)

Example 1. Program vs. its model.

abstract class Decorator {
abstract void Draw();

}
class BorderDecorator
extends Decorator

{
void Draw() {

Decorator.Draw(); //...
}
int BorderWidth;

}

The model of this program consists of the following:

Ground Entities (“participants”)
Decorator, BorderDecorator, int of
type “class”, and BorderDecorator.Draw,
Decorator.Draw of type “method”.

Relations (“collaborations”)
DefinedIn (Decorator.Draw,Decorator)
DefinedIn (BorderDecorator.Draw,
BorderDecorator)

Inherit (BorderDecorator,Decorator)
Reference (BorderDecorator,int)
Invoke (BorderDecorator.Draw,
Decorator.Draw)

Abstract (Decorator)
Abstract (Decorator.Draw)
ReturnType (Decorator.Draw,void)
ReturnType (BorderDecorator.Draw,
void)

Similarly, the relation Reference represents the asso-
ciation between class BorderDecorator and the
type int of its attribute as follows:

Reference (BorderDecorator,int) (2)
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The simplification of programs into design models
is an essential step towards the abstraction that is nec-
essary at the architectural level.

In the following definition, the term object language
refers to the language used for writing source code.
For instance, the object language used in Example 1 is
JavaTM (Gosling, Joy, and Bracha, 2000).

Definition 1 (Design model). Let us denote L as the
object language, T = {F, C} as a set of participant
types, and R = {Inherit, Abstract, . . .} as a set of re-
lation symbols. We assume a mapping function M
such that for each program p in L, participantsM(p)
is a set of ground entities, each of a type in T, and
collaborationsM(p) is a set of n-tuples of entities in
participantsM(p), such that each tuple belongs to a
relation in R.

We define M = M(p) as the design model of p
according to M (in short: “the model of p”) as the
structure arising from the ground entities in parti-
cipantsM(p) and the relations in collaborationsM(p).

Further discussion in composition of the sets T and
R appears in Section 3.

Definition 1 gives rise to a well-defined universe of
design models, which we denote P . Being abstractions
rather than actual programs, an unbounded number of
programs are effectively treated as equivalent. Thus,
from this point in this article, we disregard “programs”
in their original sense and use the term with reference
to their abstraction. As we do not refer directly to pro-
grams in their original representation, we do not see a
difficulty in using this alias.

2.1.1. Static vs. dynamic models. Regardless the
choice of object language, static and dynamic con-
ceptual models stand at the heart of the sys-
tem’s design and they exist throughout its lifecycle.
Similarly, design patterns determine both structural
(namely, static) and behavioural (namely, dynamic)
properties.

We focus our discussion on the static model for
various reasons. The static components and their cor-
relations are the ingredients of the system’s struc-
ture and serve as a scaffold that delineates its
behaviour. Static properties are far easier to specify,
prove or refute, and most importantly, to comprehend.
If indeed the primary reason for the continuous soft-
ware crisis (Gibbs, 1994) is lack of abstraction, then

there is enough room to improve the structural picture
of software systems.

Also, the elements of O-O architecture we observed
(listed in Section 3) support the view that, predomi-
nantly, design patterns characterize static attributes of
this universe. Many of the patterns that appear “dy-
namic” (“behavioural” patterns, as characterized in
Gamma et al. (1994)) actually describe a configura-
tion in the static model. By studying leitmotifs of the
“behavioural” patterns, one recognizes that, essentially,
the behaviour manifested in these abstractions can be
expressed through static relations. The examples pro-
vided in Section 4 illustrate this observation. Additional
examples are provided in Eden (2000).

Finally, OOP is distinguished by inheritance, an en-
tirely static abstraction mechanism. This is true not
only for statically, strongly typed languages, but also
for dynamically typed OOP languages. The graph of
inheritance relations is predominant in the character-
ization of the topology of O-O libraries. Moreover,
the organisation of classes, methods, and their re-
lations, is the “stage” on which the dynamic mani-
festation of the program takes place, where classes
materialise as objects, and methods take the form of
messages.

2.2. Syntax
We use higher order predicate calculus in our dis-
cussion. Constant names appear in fixed type-
face and variables in italics. We designate the do-
main of methods by F, and the domain of classes by
C. Given a set S, we use P(S) to denote the power set
of S.

Variables should not be confused with constants;
thus,

Draw ∈ F (3)

Factories: P(C) (4)

expression (3) indicates that the symbol Draw
represents a specific method (“function member”),
while (4) declares a variable that ranges over sets of
classes.

As established by the “principle of least constraint”
(Perry and Wolf, 1992), architectural specifications
should not constrain the implementations unnecessar-
ily. This is a desired property of both design patterns
and architectural styles, as each specifies a set of de-
sired properties rather that detailing a concrete solution
(i.e., a program.)
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We conclude that O-O architectural specifications
can be expressed as constraints on properties of par-
ticipants and relations (Definition 1) and formulated
in higher-order logic. This conclusion leads to the
following definition:

Definition 2 (Pattern). A pattern is defined as a
formula ϕ(x1, . . . , xn), where x1, . . . , xn are free vari-
ables in ϕ. We say that x1, . . . , xn are the participants,
and that the relations in ϕ are the collaborations, that
the pattern dictates.

Naturally, Definition 2 is too broad. It offers, how-
ever, a baseline for a formal discussion in specifications
of patterns in different formal languages. In conjunc-
tion with Definition 1, it allows for the formal defini-
tion of other useful intuitions, such as an instance of
a pattern (Definition 3) and refinement of a pattern
(Definition 7).

2.3. Reasoning
A significant advantage to the use of a formal frame-
work is in the ability to apply rigorous inference rules
so as to allow reasoning with the specifications and
derive conclusions on their properties.

We can demonstrate simple reasoning by using vari-
ables to rephrase the intuitive distinction between the
pattern π , an instance of π (an implementation of π ),
and a program that contains an instance of π .

The following definition formulates the distinction
between a pattern and an instance of a pattern:

Definition 3 (Instance of a pattern). Let ϕ(x1, . . . , xn)
be a pattern. Let M designate a model containing the
n-tuple of ground entities: (a1, . . . , an). Let A be the
consistent assignment of a1, . . . , an to the free variables
x1, . . . , xn in ϕ. If the result of assignment A in ϕ is
true in M then we say that (a1, . . . , an) is an instance
of ϕ in the context of A (also M contains an instance
of ϕ).

Similarly, we say that a model M is satisfies ϕ if
there exists some assignment A such that M is an
instance of ϕ in the context of A.

To illustrates Definition 2, consider the following
trivial “pattern”:

Invoke ( f1, f2) (5)

It is easy to show that the model in Example 1 sat-
isfies (5). To prove this, consider the assignment of

BorderDecorator.Draw to f1 and of Deco-
rator.Draw to f2. If we apply this assignment, we
get:

Invoke (BorderDecorator.Draw,

Decorator.Draw) (6)

which is true in Example 1.

Corollary 1. From Definition 1 and Definition 2 we
conclude that each pattern (regardless the specification
language used) specifies a subset of P .

3. The Building Blocks
of O-O Architecture

In this section, we observe the elements of O-O archi-
tecture, which we refer to as rudiments, and illustrated
them using examples from (Gamma et al., 1994). The
discussion is broken down along the distinction be-
tween participants and collaborations as the elements
of patterns (Gamma et al., 1994).

3.1. Participants
This section is dedicated to abstractions that represent
elementary and composite participants.

3.1.1. Rudiment A: Ground entities. The predomi-
nant agents in O-O software, as well as the partici-
pants of every single pattern in Gamma et al. (1994),
are classes, methods, and objects. Since we focus in
static specifications, we will only discuss the first two.
Formula (7) illustrates a declaration of the participants
in Example 1:

Decorator,BorderDecorator,int∈ C

Decorator.Draw,
BorderDecorator.Draw ∈ F (7)

We regard classes and methods as atomic (“prim-
itive”) elements, or ground entities. Their properties,
e.g., the arguments of a method, data members of a
class, and so forth, are expressed through relations
(Rudiment E).

3.1.2. Rudiment B: Higher-order entities. Most
often, participants appear in unbounded sets consisting
of elements of a uniform type, namely, either classes or
methods. Uniform sets of participants playing a specific
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role (e.g., “creators”, “visitors”, “products”, etc.) are
omnipresent in design patterns. Numerous examples
appear in every pattern.

Higher order sets (i.e., uniform sets of uniform
sets) are also omnipresent. Higher order sets are also
uniform in the sense that their elements are of uniform
type and order. Consider, for example, the participants
in the ABSTRACT FACTORY pattern: products is a set
of sets of classes, while factory methods is a set of
sets of methods. Similarly, observe the set of sets
of visit (elementi ) methods of the VISITOR pattern.
Formally:

Definition 4 (Higher-dimension entity).

(i) A ground entity is said to have dimension 0;
(ii) A set that comprises classes (methods) of di-

mension d − 1 is called a a class (method) of
dimension d;

For example, we can refer to the set of Visitor classes
as a class of dimension 1, and to the set of Visit methods
as a method of dimension 2.

3.1.3. Rudiment C: Clans. Dynamic binding, the
mechanism for the dynamic selection of a method, is
fundamental to OOP. It is enabled by a combination of
inheritance and shared signatures. A clan is the static
manifestation of the “family” of methods that share a
particular dispatch table. Formally:

Definition 5 (Clan). W say that method F is a clan in
class C iff the following conditions hold:

(i) All methods in F share the same signature;
(ii) Each method in F is defined in a different class

in C .

A formulation of Definition 5 in predicate calculus,
which uses the relations SameSignature and DefinedIn
can be found in Eden (2000). Observe that a clan is
always defined with relation to a given set of classes,
not as an isolated property.

Clans are ubiquitous and occur wherever dy-
namic binding is used. The following are examples
of clans: the set of visit (elementi ) methods of the
VISITOR pattern; the set of create (producti ) of the
ABSTRACT FACTORY; the set of the update methods of
the OBSERVER pattern; the set of ConcreteAlgorithms
of the STRATEGY pattern; and so forth. In fact, every
time inheritance is used there is a very high chance that
dynamic binding is also present.

Observe another common construction: A set of
clans T such that every clan F ∈ T is defined in class
C . This abstraction is termed tribe and it can be found
in almost every pattern (Eden, 2000).

3.1.4. Rudiment D: Hierarchies. Inheritance is also
fundamental to OOP, and inheritance class hierarchies
occur in every O-O program. Most dominant, how-
ever, is a particular construction that consists of a
single inheritance hierarchy. A 1-dimensional class is
termed hierarchy if it contains an abstract (“root”) class
from which all other ground classes inherit (possibly
indirectly).

In the following definition, R+ designates the
transitive closure of (one or more) occurrences of the
relation R.

Definition 6 (Hierarchy). A 1-dimension class h is a
hierarchy if the following condition holds:

∃ root ∈ h • Abstract (root) ∧
∀ cls ∈h • Inherit+(cls, root)) (8)

Observe also the occurrences of sets of hierarchies,
e.g., the set of product hierarchies in the ABSTRACT

FACTORY (Extract 4).
Almost every pattern in Gamma et al. (1994) con-

tains one or more hierarchies. For example: The
set of concrete-observers with the abstract observer
(OBSERVER pattern); the set of concrete-products
with the abstract product (FACTORY METHOD pat-
tern); and the set concrete-commands with the ab-
stract Command (COMMAND pattern). Henceforth, the
term hierarchy is used only in the sense defined
above.

3.2. Collaborations
In this section, we observe key regularities in the cor-
relations among the patterns’ participants.

3.2.1. Rudiment E: Ground Relations. We identify a
small group of ground relations which, as illustrated in
Eden, Hirshfeld, and Yehudai (1999), is sufficient to ac-
count for most types of collaborations that occur among
ground entities in the GoF patterns. Principal relations
are listed in Table 1. Example 1 illustrated how ground
relations model correlations among the elements of a
program.
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Table 1. Intuitive interpretations for ground relations

Abstract: F ∪ C

Indicates whether the entity is abstract (In Eiffel: deferred)
Assign: F × C × C

Indicates that a reference from one class to the other is assigned
within the body of a given method.

Create: F × C

Indicates that the body of the method contains an expression
whose evaluation creates an instance of the class. Such
expressions include, for example:

new int number; (Java)
int numbers[2]; (C++)
if (string("A") == s) (C++)
!INTEGER! num.make; (Eiffel)

DefinedIn: F × C

Indicates that the method is a member in the class

Forward: F × F

Forward ( f, g) means that f invokes g with the additional requi-
rement that the actual arguments in the invocation expression
are the formal arguments of f . Such a method in C++ will
look as follows:

void TCPConnection::ActiveOpen(int t)
{ state->ActiveOpen(t); }

Invoke: F × F

Invoke ( f, g) indicates that f “may invoke” g, namely, that
within the body of method f there is an expression whose eva-
luation invokes g. Note that we ignore the control flow

Inherit: C × C

Indicates that the class on the left inherits from the class on
the right

Reference [-To-Many]: C × C

Indicates that class on the left defines an attribute [multiple
attributes] whose type is specified by the class on the right

ReturnType: F × C

Indicates the return type of a method

SameSignature: F × F

Indicates that the two functions have the same name and formal
arguments.

3.2.2. Rudiment F: Bijections. Consider the follow-
ing quote from the specification of the PROXY (Gamma
et al., 1994, p. 270): “each proxy operation ... forwards
the request to the subject.” It implies that for every
method p in class Proxy there is exactly one method
s in class Subject such that Forward (p, s). In other
words, the relation Forward is a bijective function be-
tween the sets.

It is particularly interesting to observe bijections in
higher-dimensional entities. Consider, for example, the
relation which occurs in the ABSTRACT FACTORY be-
tween the set of clans create (producti ) (namely, a clan
for each product), denoted FactoryMethods, and the set

of “product” hierarchies, which we denote Products.
Their collaboration is described as follows: “Abstract-
Factory ... defines a different operation for each kind
of product it can produce.” (Gamma et al., 1994, p. 87)
This description implies that Create is a bijection
between FactoryMethods, which is a 2-dimensional
method, and Products, a 2-dimensional class.

Bijections exist in almost every pattern of the GoF
catalogue, as demonstrated in Eden (2000).

4. Specification Languages

Mathematical logic provides numerous formalisms
for deliberating algebraic constructs such as the one
proposed in Definition I, from first order predi-
cate calculus to higher order languages, which af-
ford the representation of higher order sets, functions,
and relations. Different publications present different
views on the suitable formalism for the representa-
tion of patterns. Below we discuss a selection of these
languages.

Observe that the publications discussed provide one
or two examples each, and, with the exception of
LEPUS, do not provide a complete semantic specifica-
tion. This greatly limits the scope of our analysis. Thus,
this section focuses on examples rather than complete
definitions. We hope more comprehensive results can
be obtained in the future.

4.1. DisCo
Defined as an extension of temporal logic of ac-
tions (Lamport, 1994), DisCo (Mikkonen, 1998) con-
sists of constructions that express the composition of
classes and the semantics of methods. Although the
temporal logic-based formalism focuses on dynamic
specifications, many specifications clearly map to our
static framework. Consider for example Extract 2, the

class Subject={Data}
class Observer={Data}
relation (0..1)·Attached·(*):

Subject × Observer

Attach (s:Subject; o:Observer):

¬ s·Attached·o
→ s· Attached·o

Extract 2. OBSERVER in DisCo (Mikkonen, 1998).
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specification of the OBSERVER pattern (Gamma et al.,
1994). It describes the relationships between three
classes and defines the semantics of one method in
terms of pre- and postconditions. Despite the seemingly
“dynamic” nature of this specification, formula (9)
demonstrates how we can rephrase it in terms of static
relations.

Subject, Observer, Data : C (9)
Attach : F

Reference (Subject, Data)
Reference (Observer, Data)
Assign (Attach, Subject, Observer)

4.2. Constraint diagrams
Described as a precise visual specifications language
combined with elements in UML (Booch, Jacobson,
and Rumbaugh, 1999), constraint diagrams (Lauder
and Kent, 1998) are a visual representation of first or-
der set-theoretic relations. Extract 3 depicts the “role
model” of the ABSTRACT FACTORY pattern.

Rather than repeating here the interpretation of
Extract 3, we both explain it and demonstrate how
it translates to our static framework in a single
formula.

AbsFactory, AbsProduct : C (10)

∀ ConcFactory, ConcProduct •
Inherit+(ConcFactory, AbsFactory) ∧
Inherit+(ConcProduct, AbsProduct) ⇒

∃ fm : F •
DefinedIn (fm, ConcFactory) ∧
Create (fm, ConcProduct)

Extract 3. “Role Diagram” of the ABSTRACT FACTORY.

Factories : H

Products : P(H)

FMs : P(S)

Create↔ (FMs⊗Factories,Products)

ReturnType↔ (FMs⊗Factories,Products)

Extract 4. ABSTRACT FACTORY in LEPUS.

4.3. LEPUS
LEPUS (Eden, 2000) is a language for the specification
of O-O software architecture. Consider for example
the symbolic specification of the ABSTRACT FACTORY in
LEPUS, which appears in Extract 4. The interpretation
of Extract 4 is as follows:

1. H is the domain of hierarchies, so that Factories is
a hierarchy variable and Products ranges over sets
of hierarchies.

2. S is a domain of all “signatures” of methods. Thus,
FMs is a variable which represents the set of signa-
tures of the factory methods.

3. The expression FMs ⊗ Factories incorporates the
selection operator ⊗ and yields all methods defined
in (a class in) Factories whose signature is in FMs,
namely, the set of factory-method clans.

4. The abbreviation R↔(V, W ) represents a bijection
(Rudiment F) between the sets V, W . Thus, the two
statements below the dividing line indicate that for
every factory method fm there is a product p such
that is Create( fm,p) and ReturnType( fm,p).

These examples demonstrate how the framework we
propose sheds light on the difference between various
formalisms.

In addition to the results analysed above, following
is a short overview of other results that were reported
in literature.

4.4. Design patterns’ formalisms
Formal Languages for the specification of design pat-
terns are described in several publications. Helm,
Holland and Gangopadhyay (1990) defined “Con-
tracts”, an extension to first order logic with represen-
tations for function calls, assignments, and an ordering
relation between them. The “behavioural composi-
tions” described do not address structural relations but
only behavioural characterizations.
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4.5. Tool support
Florijn, Meijers, and van Winsen (1997) propose a tool
that supports the application of design patterns. They
use the “Fragments Model” for the representation of
patterns, a graph with labelled arcs, whose nodes stand
for the participants in the pattern, and its arcs describe
the roles of the connecting nodes. Predominantly, the
patterns’ wizard (Eden, Gil, and Yehudai, 1997) sup-
ports the application of patterns through their represen-
tation as metaprogramming algorithms, namely, by the
sequence of steps in their application. Other tools sup-
porting the application of design patterns are described
in Pal (1995), Budinsky et al. (1996), Quintessoft
Engineering (1997), Brown (1996), Alencar et al.
(1999), Kramer and Prechelt (1996), Bosch (1996),
and O’Cinnéide and Nixon (1999), most of which
are reviewed in Eden, Hirshfeld, and Yehudai
(1999).

4.6. Ground relations
Other works have observed “elementary” relations
between entities. Keller et al. (1999) list Call Ac-
tions and Create Actions (corresponding to Invoke
and Create relations of Table 1, respectively) among
the information their reverse engineering environment
maintains for the representation of O-O programs, as
well as information on the relations between classes
(e.g., Inheritance, Reference). Chiba (1995) describes
a metaprogramming environment for manipulating
C++ programs whose features are classified under
Function Invocation and Object Creation, among other
features.

5. Relations Among Patterns

This section discusses relations among patterns as sug-
gested by informal means and offers precise definitions
for these terms by means of the framework defined
so far.

5.1. Refinement
Two articles (Agerbo and Cornils, 1998; Vlissides,
1997), describe one pattern as a “refinement” of
another, meaning that one is a special case of the other.
Cargill (1996) describes “categories of patterns,”
where one category “refines” the other. Kim and
Benner (1996) describe the push and pull models as
“refinements of the OBSERVER pattern” (Gamma et al.,

1994). Similarly, Rohnert (1996) describes “special-
izations of the PROXY pattern,” such as CACHE PROXY

and PROTECTION PROXY. The following definition
formalises this intuition:

Definition 7 (Refinement). We say that pattern ρ

refines pattern π , written as: ρ |= π , iff for every
assignment A that satisfies ρ in some model M, A
also satisfies π in M.

By Definition 7, refinement is equivalent to semantic
entailment (Huth and Ryan, 2000). Thus, we may con-
clude that whenever our specification language allows
for a proof theory and a complete and sound relation
�L, then the refinement relation ρ |= π holds if and
only if ρ �L π holds.

The difficulty in handling refinement in the lack of
a formal theory is well demonstrated in a classic ex-
ample (Vlissides, 1997). The article reports a debate
between the authors of the OBSERVER pattern (Gamma
et al., 1994), which could not agree whether it is
indeed refined by the MULTICAST (a pattern proposed by
J. Vlissides). Eden, Gil, Hirshfeld, and Yehudai (1998),
show how the debate can be resolved using LEPUS
(Section 4).

5.2. Projection
In simple terms, projection is obtained by replacing a
uniform set of participants X with a single participant
x of the same type. Formally:
Definition 8 (Projection). A projection of the free
variable X : P(T) in ϕ(X ) is a formula ϕ(x) resulting
in the consistent replacement of X with x : T in ϕ.

We say that ϕ(X ) is an abstraction of x in ϕ(x).

Example 2 illustrates this definition:

Example 2 (Projection). Extract 4 gives the definition
of the ABSTRACT FACTORY pattern in LEPUS. The spec-
ification of the FACTORY METHOD is obtained merely
by modifying the dimension of two variables in the
ABSTRACT FACTORY as follows:

ABSTRACT FACTORY

FACTORY METHOD Description

Products: P(H) Products: H A hierarchy vs. a set
of hierarchies

FMs: P(S) FMs: S A signature vs. a set
of signatures
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6. Comparative Criteria

With the increase in the popularity of design patterns,
we expect that even more formalisms should arise.
The purpose of this section is to define properties that
can be used as criteria in comparing between such
formalisms.

We maintain that shorter expressions contribute to a
clearer language. The concision criterion allows us to
judge the relative “shortness” of expressions.

In the following definition, L,L1 and L2 designate
specification languages, � is a set of patterns, ϕπ is
the expression of pattern π in L, and c is a numeric
constant.

Definition 9 (Concision). Let us assume a metric
function that measures the length of expressions in L1

and L2:

Len : L1 ∪L2 → N

Let ϕ1 and ϕ2 be specifications in L1,L2, respectively.
We say that ϕ1 is more concise than ϕ2 iff

Len(ϕ1) < Len(ϕ2)

We say that L is c-concise with respect to � iff for
every π in �, the following is true:

Len(ϕπ ) < c

Naturally, different formalisms give rise to different
subsets of P , and thus may or may not account
for subsets of interest. Yet the question whether a
certain formula expresses an informal description is
difficult to answer conclusively exactly because the
contemporary means of specification are ambiguous.
As a step towards measuring their capacity we define
expressiveness by means of the rudiments made in
Section 3:

Definition 10 (Expressiveness). We say that a speci-
fication language L is expressive if it incorporates the
rudiments listed in Section 3, namely:

� participants of any dimension (Definition 4)
� ground and set relations (Rudiment E and

Rudiment F)
� clans (Definition 5)
� hierarchies (Definition 6)

Observe that, while different formalisms may in-
terpret ‘class’ and ‘method’ differently, Definition 10
does not depend on these variations. And justly so,
as architectural specifications need not be affected by
these variations.

7. Future Directions

We observe several directions of future research:

7.1. Compactness
Definition 10 is satisfied by any language that assimi-
lates the rudiments of Section 3, such as higher order
logic.4 Observe, however, the risk of getting a speci-
fication language that is “too expressive” or too large,
meaning that it incorporates many more expressions
than necessary.5 For example, an architectural spec-
ification language is not expected to account for the
following sets of programs:

� The set of programs that guarantee liveness
� The set of programs that can be written in the JavaTM

programming language
� The set of programs that the do not terminate

A “leaner” language is better because of the follow-
ing reasons, among others:

1. Clarity. Excessive number of possible expressions
increases the “complexity” of the specification lan-
guage and makes it difficult for its users to under-
stand it and to use it.

2. Reasoning. The properties of “simpler” and
smaller languages can be reasoned upon more
easily.

3. Discovery. Semi-automation of a “discovery” pro-
cess, namely, the search for “new patterns” in
programs, may become more feasible by reduc-
ing the set of candidate patterns. By restrict-
ing the specification language and constraining its
search, a tool is more likely to create meaningful
results.

4. Abstraction. As abstractions, patterns depict only
essentials and eliminate irrelevant details. Elimi-
nation of details is expected to lead to a smaller
language.

To summarize, compactness has the intuitive mean-
ing of the property which characterizes languages
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with fewer “unreasonable” patterns. It would be use-
ful to convey the idea of “unreasonable” patterns
by providing a measurement for compactness at this
point.

Dynamic specifications. Despite the achievement in
specification through static properties, our framework
does not allow the expression of certain behavioural
conditions. Formalisms that may be of use are Tem-
poral Logic of Actions (Lamport, 1994), as in Mikko-
nen (1998), and Abstract State Machines (Gurevich,
1994).

Applying the criteria. Once complete definitions and
a sufficient number of examples are provided for pro-
posed formalisms, our analysis can be improved in
many ways. An interesting result can be achieved by
applying the criteria suggested so as to compare sample
specifications.

8. Conclusions and Summary

We present a formal framework for the discussion in
O-O software architecture by observing elementary and
composite abstractions in its specification and by of-
fering a logic model for representing and deliberating
these abstractions. We have demonstrated how exam-
ples in various pattern specification languages map to
our framework. We have used our framework to define
informal concepts in formal terms. Finally, we offered
means for comparing the properties of architectural
formalism.
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Notes

1. pattern-discussion. Mailing list: http://
hillside.net/patterns/Listss.html

2. gang-of-four-patterns. Mailing list: http://
hillside.net/

3. For the purpose of this article, “program” is any text that is con-
sidered well-formed by the rules of the respective programming
language.

4. A construction of these elements in higher order logic appears in
Eden, Hirshfeld, and Yehudai (1999).

5. UML is an example that comes to mind.
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