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Next-Generation 
Web Searches 
for Visual Content

M
ajor search engines such as Hotbot
(http://www.hotbot.com) help us find
text on the Web, but typically have few
or no capabilities for finding visual
media. Yet many Web users—such as

magazine editors or professional Web site designers—
need to find images using just a few global features.
With hundreds of millions of sites to search through,1

and 73 percent of the Web devoted to images, finding
exactly the image you need can be a daunting task.

My colleagues and I developed a prototype system
called ImageScape (http://skynet.liacs.nl) to find visual
media over intranets and the Web. The system inte-
grates technologies such as vector-quantization-based
compression of the image database and k-d trees for
fast searching over high-dimensional spaces. Image-
Scape allows queries for images using

• keywords,
• semantic icons, and
• user-drawn sketches.

Keyword queries offer perhaps the most intuitive query
method because they directly relate to the user’s vocab-
ulary. Further, HTML provides the ALT field to spec-
ify descriptive text. For example, in the following
HTML tag, the image of a whale is referenced by the
filename, whale.jpg, and the ALT text.

<IMG SRC=“whale.jpg” ALT=“A   
Humpback Whale”>

However, images frequently lack descriptive text,
which eliminates the possibility of text-based search-
ing. In this situation, only content-based methods—

those that directly use an image’s pictorial informa-
tion—are feasible.

PICTORIAL-CONTENT-BASED QUERIES
In the early to mid-1990s, IBM’s highly influential

QBIC2 system conducted visual searches for similar
images on picture databases. This paradigm, shown in
Figure 1, displays an initial set of images. The user selects
an image, then the search engine ranks the database
images by similarity to the selected image with respect to
color, texture, shape, or all of these criteria, as Figure 2
shows. This approach requires minimal specialized
knowledge from the user, a significant advantage.

Web media search engines such as Webseek,3

PicToSeek,4 and ImageRover5 use the query-by-simi-
lar-images paradigm. However, they differ in how they
find the initial set of images. In particular, Webseek
and ImageRover use text queries to narrow the initial
set of images, and PicToSeek asks the user to supply an
initial image.

As with any query paradigm, query by similar image
has its share of problems. First, it does not let the user
run searches based on only part of an image. Suppose,
for example, the image content contains a person on
a beach underneath a sunset. When the user clicks on
the image, the system doesn’t know whether the user
wants to focus on the person, the beach, or the sun-
set. Further, the current generation of query-by-simi-
lar-image systems uses feature vectors based on global
color schemes, texture, and shape. Unfortunately,
images that have the same global features can have dif-
ferent picture content. Using local features can over-
come this problem and help detect visual concepts such
as faces and beaches.

In contrast, ImageScape does not touch upon the
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query-by-similar-images paradigm. It focuses on tech-
niques for learning visual concepts so that it can use
the query-by-icons paradigm. In this paradigm, the
user places the icons on a canvas in the position where
they should appear in the goal image. Doing so allows
the user to explicitly create a query for images of peo-
ple under a sky, for example. In this context, the data-
base images must be preprocessed for the locations of
the available object or concept associated with each
icon. The system then returns those database images
most similar to the content of objects and concepts
specified in the iconic user query. The query-by-icons
paradigm has the advantages that users can make a
query using their own vocabulary and they can spec-

ify the importance of local pictorial features.
We also investigated the query-by-sketch paradigm.

In this paradigm, the user creates a query by drawing
a rough sketch of the goal image, with the assumption
that the sketch will correspond to the object edges and
contours. The system then returns the database images
with shapes that most closely resemble the user sketch.
Sketch queries thus allow the user to directly specify
which part of the image is important. Making effective
sketch-based queries requires a robust shape matcher.

IMAGESCAPE SYSTEM OVERVIEW
In the ImageScape system, we chose to focus on text

and visual media because they are the Web’s domi-
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Query types Matching method Results

Text: Type a text description of the main
features of the desired image.

Enter keyword: automobile

Find database images
that have text
annotations that are
similar to the query
keywords.

Similar image: Click on an image that
has characteristics similar to the
desired image.

Find color, texture, and
shape of clicked image
and rank database
images by feature
similarity.

Sketch: Draw or sketch the main
features of the image.

Icons: Place representative icons on a
canvas where major image features
should be located.

Compare the user sketch
to the computer’s sketch
of each database image
and return the most
similar database images.

Return images that have
preclassified database
image features at similar
locations to the query.

Figure 1. Text and image search paradigms.
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nant media. Figure 3 shows the system overview,
including the relationships between server, client, and
the Web. Continuously sending agents to the Web, the
ImageScape system retrieves text, image, and video
information.

When ImageScape brings an image to the server,
pattern recognition algorithms detect features such as
faces, sand, water, and so on, that pertain to the
semantic icons and computer sketches. The analysis
module creates a thumbnail, a low-resolution copy of
the image requiring minimal storage space, and stores
the feature vectors in an optimized representation for
searching. When a user sends an image query from a
Web-based Java browser or client program to the
server, the matcher module compares the sketches or
semantic icons to the feature database and sends the
best-ranked images back to the browser. The primary
modules consist of

• vector-quantization-based database compression,
• sketch queries and computer-generated sketches

from images,
• visual-concept detection,
• matching of the icons or sketches with the data-

base images, and
• Java client connection to the host server for visual

query input and processing and the collection and
indexing of the media from the Web.

WEB-BASED MEDIA COLLECTION, 
INDEXING, AND STORAGE

We can visualize the Web as a graph in which the
nodes are Web sites and the edges are hyperlinks at
those sites. ImageScape’s search procedure performs a
priority-based breadth-first search on the hyperlinks
found from an initial set of Web sites. The priority is
proportional to the site’s rate of change and query rate.

Query Results

Query Results

Using texture to find images
that are similar to the orange
flowers. In this case, all of the
resulting pictures have flowers.

Using color to find images
that are similar to the fire
image. Although the color
distribution in the resulting
images is the same, the content
of the images (fire, sunset,
and tree) varies considerably.

Measuring similarity is difficult because each
person may have a different subjective
opinion of image similarity. For example, are
the pair of green apples more similar to the
red apple because the objects are apples? Or
are the green apples more similar to the
yellow peppers because both images contain
two objects located diagonally from each
other? Or are the green apples more similar
to the grapes because both are fruit and
both are green? If people have a difficult
time deciding on similar images, how will
we design computer programs to give reliable
indicators of similarity?

Figure 2. Examples of similar-image-based queries.



Sites that are more likely to have changed since the
last visit receive greater priority for a revisit. Further,
sites that appear more frequently in the query results
also receive greater priority. The Robot Exclusion
Protocol also constrains Web searches by specifying
the directories the robot can download.

When the robot downloads the images, the system
reduces them to thumbnails and stores them in a com-
pressed vector quantization-based database. The sys-
tem stores similar image blocks with pointers instead
of copies.

Storing the media in a compressed database offers
the dual advantages of lower storage costs and faster
reads from magnetic storage devices. The feature vec-
tors used for indexing the images are stored in k-d
trees.6 These trees are binary-tree representations of
the feature space that have a near-logarithmic search
performance for finding nearest neighbors or similar
images in high-dimensional spaces.

SKETCH QUERIES
Our sketch search engine compresses the user sketch

at the Java client, sends it to the shape-matching
engine, decompresses it, then compares it to each
image in the database based on shape similarity.
Consequently, the most similar database images are
returned to the Java client at the Web browser. The
prevalent question is how to measure the shape simi-
larity between the user sketch and a database image.
Our starting point for shape comparison was the the-
ory of invariant moments.7 We derived the moment
invariants from shape-statistical moments by nor-
malizing first by the centroid and then by the shape
area. Moment invariants have proven useful in two-
dimensional shape recognition and can be imple-
mented in real time. However, they can be sensitive to
small changes in the shape contour, which we refer to
as the local-shape-matching problem.

To solve this problem, we turned to the theory of
active contours.8 Specifically, an active contour is a
spline that deforms to fit the particular image based on
internal and external forces. The internal forces of the
active contour hold the active contour together (elas-
ticity forces) and keep it smooth (bending forces). The
external forces guide the active contour toward image
features such as high-intensity gradients or edges. The
optimal contour position is computed to minimize
total energy. The deformation energy is the total
energy required to move the active contour from its
initial position to its final position. We use the defor-
mation energy to measure the shape similarity
between closely matching shapes.

In summary, we split the shape-matching process
into two parts: We address global shape-matching with
moment invariants and measure local shape-matching
by elastic deformation energy, as Figure 4 shows.
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Figure 3. A diagram of ImageScape, a multimedia Web search engine.

Global shape matching using moment invariants

Local shape matching using the elastic deformation energy

The deformation energy (ED) is the energy required to
deform the user sketch to the edges of the database image

Image database

User sketch

v(s) = spline based contour

ED = ∫ EINT + EEXT

EINT  = elastic and bending forces of the contour, v(s)
        = α(s) | dv(s)/ds |2 + β(s) | d2v(s)/ds2 |2

EEXT  = attraction to image edges
        = - | ∇  ID(x,y)|

Figure 4. The process of matching a user sketch to the database images.
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Figure 5 shows examples of sketch queries and
results for the letter V and for a question mark sym-
bol. The results for the V show a variety of database
images with roughly similar shapes. For the question
mark symbol sketch, the query found several differ-
ent question mark symbols.

LEARNING VISUAL CONCEPTS 
AND SEMANTIC QUERIES

Visual-concept detection is essential for the
ImageScape search engine because it lets the computer
understand our notion of an object or concept. For
example, to find an image with a beach under a blue
sky, most systems require the user to translate the con-
cept of beach to a particular color and texture. In our
system, the user has access to icons that represent con-
cepts such as blue sky and beach. ImageScape can
place these icons spatially on a canvas to create a query
for a beach under a blue sky.

Rosalind Picard9 reported promising results in clas-
sifying blocks in an image into “at a glance” categories,
which people can classify without logically analyzing
the content. Picard’s method exploits the strengths of
multiple feature models. More recently, Aditya Vailaya,
Anil Jain, and Hong Jiang Zhang10 reported success in
classifying images as city versus landscape. They found
that the edge direction features are effective because
city images typically have long lines along the buildings
and streets. Natural scenes can be separated because
the edges typically curve or consist of short lines from
the contours of hills, trees, or grass. Regarding object
detection, the recent surge in face recognition research
has motivated the development of robust methods for
face detection in complex scenery. These methods use
techniques such as positive and negative face clusters,
neural networks, and information theory.11

As an example of human face detection, we use a
method that finds human faces in complex back-
grounds, then we extend the method to include color,
texture, and shape. The Kullback relative information
is generally regarded as one of the canonical methods
of measuring discriminatory power—how effectively a

feature discriminates between two classes. Specifically,
we formulated the problem as discriminating between
the classes of face and nonface as Figure 6 shows and
used the Kullback relative information to measure the
class separation, which is the distance between the
classes in feature space.

For each pixel, we calculate the Kullback relative
information based on the class intensity distributions.
The brighter pixels have greater relative information or
class separation. The greater the class separation, the
easier it is to discriminate between classes. In Figure 6,
the image on the right shows that the eye regions have
greater discriminatory power than the nose region.

Detecting the faces begins by passing a window over
multiple scales—copies of the image at different res-
olutions—and classifying the window’s contents as
face or nonface. We perform the classification by using
a minimum distance classifier in the feature space
defined by the most discriminatory features found
from the Kullback relative information.

GENERALIZING TO MULTIPLE MODELS
In face detection, we used pixels, which have the

greatest class separation or discriminatory power.
Instead of finding the pixels that maximize the class
separation, we found the color, texture, and shape fea-
tures that maximize class separation and minimize the
correlation between features. We define this set of fea-
tures as a discriminatory model. Note that minimizing
correlation between features is important because the
minimum distance classifier assumes that the features
are independent. In summary, we define the visual
learning algorithm shown in Figure 7 as follows:

1. Assume that there are M scalar features, each of
which has been normalized to 0 to 255.

2. Measure the distribution of the positive examples
F[x, y], x = 1 to M; y = 0 to 255.

3. Measure the distribution of the negative examples
G[z, y], z = 1 to M; y = 0 to 255.

4. Calculate the Kullback relative information, K[x]
from F and G.

(a) (b) (c) (d)

Figure 5. User sketches for (a) the letter V and (c) the question mark symbol. Using shape similarity, the shape matching
engine returned the images in (b) for the V and the images in (d) for the question mark symbol.



5. Calculate the correlation between features, C[x,z]
from F and G.

6. Define the N most informative features as the N
features that maximize the Kullback relative infor-
mation and minimize the correlation between fea-
tures. This set of features is the discriminatory
model, Dm[u], u = 1 to N.

7. Use Dm in a minimum-distance classifier.

For each object we want to detect, we collect a large
set of positive and negative examples. We then mea-

sure a variety of texture, color, and shape features and
calculate the Kullback relative information for each
one. The candidate features for the system include the
texture, color, and shape information from every
pixel, as Figure 7 shows.

For the texture models, we use texture distribution
models such as LBP, LBP/C, Grad. Mag., XDiff,
YDiff,12 and Trigrams, which are a variant of LBP on
the edge image. Texture distribution methods repre-
sent a complex texture by measuring the frequency
with which a set of atomic textures appears in the
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Eyes/nose templates
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Nose area

Kullback relative
information

Kullback relative
information image

Nonface templates
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Figure 6. Finding discriminant features. First, we compile a large set of normalized positive (eyes and nose templates) and
negative (nonface templates) examples, which comprise two classes: face and nonface. From these examples, we find the dis-
tribution of intensity for each pixel in each class.

Minimum-distance classifier

Best discriminatory model
where we maximize between-
class separation and minimize
between-feature correlation

Measure discriminatory power based
on the Kullback relative information

Measure distributions of
positive and negative examples

Negative
examples

Positive
examples

Texture distributions and projections
Trigrams, LBP/C, Grad. Mag, XDiff, YDiff

Shape
Invariant moments, snakes, Fourier desc.

Color
RGB, HSV

Figure 7. Selecting the best discriminatory model of N features from texture, color, and shape features.
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image. For shape comparison, we use the features
derived from active contours or snakes,8 invariant
moments, and Fourier descriptors.

We place these features into a feature vector, which
we then use in a minimum-distance classifier to deter-
mine whether or not the search engine detects the
visual concept. In the icon queries in Figure 8, the
objects’ locations are found beforehand, then the
matches are ranked by the average sum of squared dis-
tance of the query objects to the objects in the data-
base images.

Images dominate the Web’s content, but the search
systems for finding them have yet to mature. Most
Web content is not indexed. Commercial and aca-

demic institutions are working on new paradigms for
visual search that include searching by icons, sketches,
and similar images. These paradigms have the poten-
tial to bring the majority of Web information to any
individual with a browser.

Each of the query paradigms we describe has asso-
ciated issues, however. The query-by-similar-image
paradigm requires minimal user knowledge, but does
not let the user specify particular aspects of the pic-
ture to be found. Sketch- and icon-based query meth-
ods show promise, but require more research to find
the leading algorithms’ breaking points. Researchers
also must address performance aspects such as effi-
ciency and accuracy so that we can make objective
comparisons between visual information retrieval sys-
tems. Meanwhile, ours is the only Web search engine
that allows both sketch- and icon-based queries.
Future research will focus on the fusion of multiple
visual learning techniques such as neural networks

and decision trees, combining them toward improving
visual-concept detection accuracy. ❖
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