elemenope., User Guide

john joseph roets

August 5, 2006

Version 1.1
For Release With elemenope Version 5.1

(©MMVI john joseph roets and createTank, llc.

Contents

1 Introduction

1.1 Intent of This Guide
1.2 What Is elemenope? e
1.3 History e
1.4 Features
1.5 Goals of elemenope

2 Architectural Features

2.1 Abstraction of Connectivity
2.2 Functional Abstraction (Business Logic Abstraction)
2.3 Transport Abstraction L
2.4 Payload Abstraction
2.5 Abstraction of Synchrony Lo
2.6 Fault Tolerant Messaging
3 Interfaces
3.1 Operation
3.2 Connectivity Interfaces L L
3.2.1 Connector e e
3.2.2 Broker e
3.2.3 Dispatcher
4 Business Logic (Operation) Implementation
4.1 Execute Method
4.2 Methods Inherited From ElemenopeComponent
4.2.1 SetConfigurationAttributes Method
4.2.2 SetComponents Method
4.2.3 ReleaseComponents Method

N O Ut Ut gt N

co co Q@

CONTENTS

5 Configuration

5.1

5.2
5.3

Al

A2

A3
A4
A5

B FAQ

elemenope Standard Configuration
5.1.1 elemenope Standard Configuration System Contract
5.1.2 elemenope Configuration File Structure
5.1.3 Main Configuration
5.1.4 User Configuration
5.1.5 Operation Configuration
5.1.6 Service Configuration
5.1.7 Standardized Ingest & Default Service/Operation Configuration

5.1.8 Dispatcher Failover [DFo| Configuration
elemenope Spring Framework Configuration
elemenope Application Server Integration

Cookbook

Service Configuration Examples
A.1.1 Direct Call Service Transport Protocol
A.1.2 Java Message Service [JMS]o
A1.3 XML-RPC Web Service
A.14 SOAP Web Service
A.1.5 Native IBM MQSeries/WebsphereMQ
A.1.6 Mainframe Connectivity Classes
Usage of BPM Operation Implementations
A.2.1 ElemenopeAsyncBpmChainOperation
A.2.2 ElemenopeProcessListOperation
A.2.3 ElemenopeProcessChainOperation
A.2.4 FElemenopeBpmListOperation
A.2.5 ElemenopeBpmChainOperation
A.2.6 ElemenopeBpmPayload.java
Generic Ingest Operation
elemenope Standard Configuration Maintenance Loop
Spring Framework Configuration and Integration Within elemenope

C Resources

C.1
C.2
C.3
C4
C.5

Internet Site L
Email Discussion Lists o
Online FAQ e
Spring Framework oL Lo
createTank Support for elemenope

24
24
24
27
27
28
29
30
31
31
33
34

36
36
36
37
38
43
45
47
47
47
49
50
51
52
53
53
54
55

57

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

5.1
5.2
5.3

Functional Abstraction L 9
Functional Abstraction in elemenope 9
Transport Abstraction 11
Payload Abstraction Doppelganger Extension Generation Phase 13
Payload Abstraction Doppelganger Extension Usage Phase 13
Payload Abstraction with RosettaType. 15
Synchronous to Asynchronous Dispatcher Failover 17
elemenope Standard Configuration Flowchart 26
Simple Dispatcher Failover o000 32
Dispatcher Failover Chain 33

Listings

4.1 Operation execute() example 21
4.2 Operation setConfigurationAttributes() example 22
4.3 Operation setComponents() example 23
4.4 Operation releaseComponents() example 23
5.1 <initializationGroup> configuration example 27
5.2 <main> configuration example L. 28
5.3 <user> configuration example o0 28
5.4 <operations> configuration example 29
5.5 <services> configuration example Lo 30
5.6 dispatcher failover configuration example 31
5.7 ElemenopeStartupServlet web.xml configuration example 35
A.1 Direct Call Service Transport Protocol Configuration Example 36
A.2 JMS Service Transport Protocol Configuration Example 37
A.3 XML-RPC Server Service Transport Protocol Configuration Example . .. 39
A.4 XML-RPC Client Service Transport Protocol Configuration Example 40
A.5 Enterprise XML-RPC Configuration Example 41
A.6 web.xml XML-RPC Servlet Configuration Example 43
A.7 SOAP Service Transport Protocol Configuration Example 44
A.8 MQSeries/WebsphereMQ Service Transport Protocol Configuration Example 46
A.9 ElemenopeAsyncBpmChainOperation Configuration Example 48
A.10 ElemenopeProcessListOperation Configuration Example 49
A.11 ElemenopeProcessChainOperation Configuration Example 50
A.12 ElemenopeBpmListOperation Configuration Example 51
A.13 ElemenopeBpmChainOperation Configuration Example 52
A.14 IngestFileSystemOperation Configuration Example 53
A.15 Example Implementation of Maintain Method 55
A.16 Very Simple Configuration Bean Example 55
A.17 Very Simple Spring Configuration Example 56

Chapter 1

Introduction

1.1 Intent of This Guide

This guide is intended to be read by software architects and developers looking to use the
elemenope framework for efficient application development.

1.2 What Is elemenope?

elemenope is a Service Oriented Architecture [SOA], Enterprise Application Integration
[EAT], and general messaging framework.

elemenope may also be considered to be an application toolkit, as it contains nearly
everything one needs to develop a complete application.

elemenope is a Framework Framework. It is the basis for more than one major Frame-
work which has a requirement for a SOA. elemenope makes it easy for a Framework to add
SOA capabilities to its feature set.

“elemenope” is pronounced L-M-N-O-P or more specifically \”el-em-en-O-'pE\. An
audio sample of the proper pronunciation can be found here:
http://elemenope.org/audio/elemenope.wav

elemenope implements several advanced software architecture concepts.

1.3 History

elemenope has been in development since 1999. It and some of its precursors are currently
in production use within several organizations large and small.

elemenope started as a manner in which to simplify the process of integrating legacy
enterprise systems with new development.

elemenope was at its inception SOA, long before Service Oriented Architecture was
coined or marketed as a buzzword.

CHAPTER 1. INTRODUCTION 6

elemenope has served over the years as a proving grounds for several advanced software
architecture concepts. These concepts were put to tangible use within elemenope and have
proven successful in multiple implementations in a variety of industries.

elemenope was released as Free and Open Source Software [FOSS] in 2003. Originally
licensed under the GNU Public License [GPL], the Apache License Version 2.0 was added

as an additional licensing option in 2006.

1.4 Features

e Architectural Features

— Abstraction of transport/protocol connectivity — Abstraction of connectivity is-
sues promotes ability to integrate new software with legacy applications through
simplification of connections (see §2.1).

— Functional logic (business logic) abstraction — ability to separate business logic
implementation code from the service protocol implementation which is calling
it (see §2.2).

— Transport/protocol abstraction — ability to change service transport protocol
in configuration file with no change to business logic implementation code (see
§2.3).

— Payload abstraction — The ability to send a payload (the object sent to the
Operation) without regard to what protocol might be in use (see §2.4).

— Synchrony abstraction — the proposed ability to generically call a Service/Oper-
ation without regard to whether the target service is configured as a Synchronous
or Asynchronous protocol (see §2.5).

— Fault Tolerant Messaging — the ability to transparently failover a call or request
from one service transport protocol to another upon failure with no changes to
the functional code or business logic implementation (see §2.6).

e SOA built into core
e Simplification of Application Architecture

e Powerful separation of Service (transport) from Operation (functional) implementa-
tions

e Massive decoupling of an enterprise’s components through standardized communica-
tions interfaces.

e Platform for simplified software development on top of an extremely advanced archi-
tectural environment.

CHAPTER 1. INTRODUCTION 7

1.5

Fully developed application toolkit

Simplified creation of large scale multi-platform application for messaging or trans-
action processing.

Simplification of the architecture of large enterprise systems through standardization
of functional components and message pathways.

Simplified tracing of problems and collection of metrics at multiple levels, as every
unit of application functionality implements the same interface, and all requests follow
a similar path.

Architected at a much higher level than most other SOA implementations to be trans-
port and protocol agnostic, and to concentrate on providing multiple architectural
abstractions.

EAT components for integration of mainframe application
Current implementations of service transport protocol sets:

— Java Message Service [JMS]

SOAP Web Services

XML-RPC Web Services

Direct Call

Native IBM MQSeries (WebSphereMQ)

— Built-in mainframe connectivity classes for use when connecting to a mainframe
running IBM MQSeries with the IMS Adapter or IMS Bridge

Goals of elemenope

Abstraction of connectivity within an enterprise application

Ease incorporation of detailed knowledge from subject matter experts
Implementation of multiple transports

Transport agnostic business logic implementation

Ability to configure and reconfigure service transport protocol and services
Simplification of Enterprise Application Architecture

Powerful and extensible SOA through separation of Service from Operation

Chapter 2

Architectural Features

2.1 Abstraction of Connectivity

Connectivity abstraction is the ability to connect to various components or services through
any of the implemented protocols with changes to the standard elemenope configuration
file —i.e. without code changes or additions. Connectivity abstraction is achieved through
the service transport protocol implementations.

This is one of the simplest architectural features offered by the elemenope Framework.
It was also the first feature developed into elemenope. This feature offers a great savings
of time for new projects, as connectivity to various systems is built in, allowing developers
to spend valuable time on implementation of business logic, the real goal of their project.

2.2 Functional Abstraction (Business Logic Abstraction)

Functional Abstraction or Business Logic Abstraction is the ability to separate business
logic implementation code from the service protocol implementation which is calling it (Fig.
2.1). Business logic abstraction is achieved in elemenope through the implementation of
the Operation interface (Fig. 2.2).

This architectural feature allows the user to implement the business logic in a manner
generic to its execution. This separation also tends to simplify the code, as no connectivity
details or other extraneous code need enter into the picture. It is often the case that
Subject Matter Experts [SME] with little coding experience may implement the sometimes
complex business logic, as the Operation interface execute () method is extremely simple,
and can tend to provide for procedural programming within, for those not accustomed
or comfortable with Object Oriented [OO] Programming. We have taken advantage of
this aspect of the Operation interface on many projects where the team may not have
been made up of highly skilled Java or OO savvy developers. An application’s Operation
implementations may be as simple or as complex as required.

CHAPTER 2. ARCHITECTURAL FEATURES

_'Business Logic .
Implementations

Business

Business

Business
LogicC | -

Figure 2.1: Functional Abstraction

~ Dperation Group

Operation

-

Figure 2.2: Functional Abstraction in elemenope

CHAPTER 2. ARCHITECTURAL FEATURES 10

Another aspect of the Operation interface is its lending to a customized business logic
hierarchy. That is, when a project has many separate business logic Operation implemen-
tations which often are required to conduct similar processing, logging, or etc., a team may
create an OO hierarchy which handles said processing in an abstract parent Operation
implementation.

2.3 Transport Abstraction

Transport Abstraction is the ability to change service transport protocol implementations
in the elemenope configuration file with no change to business logic implementation code.
Transport abstraction is achieved through the use of standardized connectivity interfaces
within elemenope for all service transport protocol implementations (see Fig. 2.3).

This architectural feature offers great benefit to users of elemenope, as an organization
may lower risks involved with regard to technologies and service protocols deployed. The
organization may determine at a later date that a different protocol is required. This
may then be changed at runtime via a configuration file. The originally deployed service
transport protocol might also be augmented with another service implementation in a
differing protocol, configured to offer the same business logic implementations or a subset
thereof.

This architectural feature also allows alternative environments (e.g. development or
testing) to simplify deployment configuration without change to the business logic imple-
mentation code.

CHAPTER 2. ARCHITECTURAL FEATURES

Service
Configuration A

Application

Service
Configuration B

Application

11

. Transport Protocol

Senvice

Configuration 1D

e

ServiceA

—

s

SenviceB

S —

_ 0

ServiceC

Senviced

—

.

ServiceB

—

s

ServiceC

Do

Configured

Direct Call
Implementation

Direct Call
Implementation

Direct Call
Implementation

Direct Call
Implementation

JMS
Implementation

XML-RPC
Implementation

Application calls Service by name only
Mo consideration for protocol configured

Figure 2.3: Transport Abstraction

CHAPTER 2. ARCHITECTURAL FEATURES 12

2.4 Payload Abstraction

Payload abstraction is the ability to send a payload (the request object sent to a Service)
without regard to what protocol might be configured.

This architectural feature is made necessary due to the novel characteristic of the ele-
menope Framework that it is capable of switching protocols at runtime through the use of
a configuration file!. The fact that different protocols allow different data types led to a
problem in the past of payload definition in real systems. That is, a system would either
need to determine at design time all possible service protocol implementations that might
be used by their application for all time, or a payload would need to be designed with
“least common denominator” data types. For example, the Direct Call Service Protocol
implementation allows any Java type to be sent. The JMS Service Protocol implementa-
tion only allows a subset of these types. The XML-RPC Service Protocol implementation
allows an even more limited subset of Java types. In order to switch from one protocol to
another, the payload design must implement only the simplest types which all protocols
will accept without error, or use Payload Abstraction.

Payload abstraction is achieved within elemenope in one of the following manners:

Doppelganger extension Doppelganger is an extension to the elemenope Framework
which requires an XML schema definition for the payload. This schema is used to
dynamically generate Java classes (see Fig. 2.4) which may be used to marshall
data to XML and back. The payload is the generated XML. In this manner, all
protocols (at least all protocols implemented at this time) may pass the marshalled
XML without error. The Services and their configured Operation implementations
only ever see the objects of the classes generated by Doppelganger (see Fig. 2.5).
Doppelganger uses the Castor Project Open Source data binding framework. The
Castor Project may be found at: http://www.castor.org/

!This capability is termed “Transport Abstraction” — see §2.3

CHAPTER 2. ARCHITECTURAL FEATURES

Doppelganger Lamerrmonee e
Extension
“xaenerates - Generated Classes
Class Name .
: Attribute '
| UserPayloadClass | ----"| attribute
S':ﬂ?:idn .| Attribute A
i : .
PO ! .AttrlbuleB -~-._| Class Name
. ey Attribute
A . LAttribute

Class Name
Attribute
Attribute

Figure 2.4: Payload Abstraction Doppelganger Extension Generation Phase

Application ’
7} Populates -~ Generated Classes
Class Name | -
: Altribute
(2) Sends ‘[UserPayloadClass | - - -~ Attribute
4 AttributeA,

AttributeB [~~-._| Class Name
. . Attribute
Y. Altribute

-

Class Name
Attribute
Attribute

(3) Service Dispatcher
Marshalls to XML

(4] Service Broker
| Unmarshalls to POJO Service

Doppelganger
Extension

Figure 2.5: Payload Abstraction Doppelganger Extension Usage Phase

CHAPTER 2. ARCHITECTURAL FEATURES 14

RosettaType RosettaType is a project which defines a generic data structure and several
protocol and language specific RosettaEngines. These RosettakEngines translate an
instantiated object of any given data type to the RosettaType structure and back to
the original object, i.e. from POJO?to RosettaType and back to POJO (see Fig. 2.6).
RosettaType provides the most efficient mechanism for payload abstraction, as the
RosettaEngine implementation in use for a particular protocol will only translate or
“roll out” datatypes which are not supported in that protocol. All other datatypes
within the generic payload will be left as-is for simple passage. The RosettaType
implementation is not complete. Multiple protocols have been implemented, and are
currently being reviewed. When integrated into the elemenope Framework, each ser-
vice protocol implementation will gain a class extended from the base implementation
to handle the RosettaType functionality. This extension of the base implementation
class will allow a user to utilize the simpler form of the service protocol implemen-
tation, and only utilize the RosettaType form if needed. RosettaType is maintained
by createTank. The RosettaType project is Free and Open Source [FOSS].

When completely implemented, the RosettaType will likely be the preferred method
for payload abstraction, as it offers the most natural form, not requiring any design fore-
thought.

2POJO — Plain Ol Java Object

CHAPTER 2. ARCHITECTURAL FEATURES

UserDefinedPavloadClass
Application (1) Populates POJO —=| AttributeA
AttributeB

(2} Sends POJO

Frotocol
Specitic
AosettaType
Payload
(3] Service Dispatcher
Translates to RosettaType

(4) Service Broker
Translates 1o POJO

RosettaType
Engine
Implementation

Service

Figure 2.6: Payload Abstraction with RosettaType

CHAPTER 2. ARCHITECTURAL FEATURES 16

2.5 Abstraction of Synchrony

Abstraction of Synchrony is the proposed ability to generically call a Service/Operation
without regard to whether the target service is configured as a Synchronous or Asyn-
chronous protocol. The user may then call all services and expect a reply which may be
utilized generically.

This architectural feature is only partially realized in the current system, in the form
of the ElemenopeDispatchResponse object which is returned on all Dispatcher calls. It is
a goal of the elemenope team to further abstract synchrony. More research and discussion
is required in this area.

2.6 Fault Tolerant Messaging

Fault Tolerant Messaging or Failover Abstraction is the ability to transparently “failover”
a call or request from one service transport protocol to another upon failure with no
changes to the functional code or business logic implementation. This ability to “failover”
is achieved via Dispatcher Failover [DFo] configuration. The framework has the ability
to configure multiple nested failover chains. A typical use of the DFo functionality is the
failover from a synchronous service transport protocol to an asynchronous service transport
protocol. For instance, when an XML-RPC service is down, the messages may be failed
over to an asynchronous JMS queue implementation for processing when the service is
available (Fig. 2.7).

CHAPTER 2. ARCHITECTURAL FEATURES

Service A
Operation |
v\synchmnnus
Call
Service B
. Operation |

Request Fails

Failover occurs x
en route to Service C Service C

Operation
navailable'
When Service C /“v

is again available

Fallower
Qe

Figure 2.7: Synchronous to Asynchronous Dispatcher Failover

Chapter 3

Interfaces

3.1 Operation

The Operation is the single, simple Interface within elemenope for functional abstraction.
Implementation of this Interface may be as simple or complex as required.

e Purely procedural in the case of simple functionality requirements, or limited Subject
Matter Expert [SME] coding capabilities.

e Object Oriented [OO] Programming and the full power of Enterprise Java where
complex modeling is needed.

The Operation Interface consists of a single method'execute() which takes an plain
Object argument, and returns a plain Object. All processing which this Operation imple-
ments should take place within (or be called from within) this method.

3.2 Connectivity Interfaces

The implementation of the following elemenope standard Interfaces make up a service
transport protocol implementation. Service transport protocol implementations may or
may not implement these Interfaces in the same manner. For instance, some implemen-
tations may share the same Connector implementation for both client and server, whilst
others may implement two separate Connector classes. Full details of Service Transport
Protocol implementation is beyond the scope of the elemenope User Guide. The informa-
tion provided within this section is a high level description of Interfaces appropriate to the
needs of the elemenope user. More information concerning implementation of a service

LAn Operation implementation will actually implement more than this method, as Operation itself
extends the Interface ElemenopeComponent, which requires implementation of three configuration specific
methods. For more information, see Chapter 4: Operation Implementation.

18

CHAPTER 3. INTERFACES 19

transport protocol may be found within the elemenope source code (RTFC!), or within the
upcoming elemenope Developer Guide (when it becomes available :)).

3.2.1 Connector

The Connector usually holds the connectivity information or attributes and the connection
itself (if there is one) for the service transport protocol. The Connector sometimes provides
a manner in which said connectivity information or attributes may be provided to the
Broker and/or Dispatcher.

3.2.2 Broker

The Broker implements the receipt functionality for the service transport protocol. This
consists of receiving a message generically and routing it to the proper Operation imple-
mentation (Operations are configured in the elemenope configuration file to be available to
a given service)

3.2.3 Dispatcher

The Dispatcher implements the transmission functionality for the service transport proto-
col. It is through this interface that a user may generically call other services as a client.
The user’s Operation implementation will call the service’s operation by name and the
actual Dispatcher implementation to be called is configured and changeable at runtime.

Chapter 4

Business Logic (Operation)
Implementation

This chapter will illustrate the manner in which an Operation may be implemented.

4.1 Execute Method

The execute() method within all Operation implementations must be coded to be reen-
trant!, as the user must assume that the elemenope Framework may execute the code
within this method with multiple threads.

The primary method which the non-abstract Operation implementation must imple-
ment is the execute () method (listing 4.1). This method is called once per service oper-
ation request.

'reentrant - can be safely called recursively or from multiple tasks [definition taken from http://en.
wikipedia.org/wiki/Reentrant].

20

CHAPTER 4. BUSINESS LOGIC (OPERATION) IMPLEMENTATION 21

public Object execute(Object object)

{

x this is a sample execute method implementation

* if this were a real implementation, standard type
x checking should be performed before casting

x the passed Object to the wuser defined type.

*/
UserDefinedPayload payload = (UserDefinedPayload)object ;
String payloadAttribute = payload.getAttributeX ();

// do something with this attribute
String result = "This_is_.the_passed_attribute:.” 4+ payloadAttribute;

return result;

Listing 4.1: Operation execute() example

In the example (listing 4.1), the payload is passed, cast to the proper payload type,
processed, and the processed result is returned.

The payload class is defined by the user, and may be any Java Object. A common
practice is to use a Map implementation class (e.g. HashMap or Hashtable) as the payload
class, and refer to it throughout the application code as a Map interface. This allows one
to easily add attributes to the payload as the application grows.

4.2 Methods Inherited From ElemenopeComponent

Three methods inherited from the ElemenopeComponent Interface must also be imple-
mented: setConfigurationAttributes(), setComponents(), and releaseComponents ().
Each of these methods is called only once at the initialization (or shutdown) of the ele-
menope Framework?.

4.2.1 SetConfigurationAttributes Method

The setConfigurationAttributes () method provides a user the ability to pass properties
or settings to the Operation implementation from the configuration file (listing 4.2). It
accepts a Map argument, which contains any values encoded in the XML attributes of

2Each method is called only once per instantiated Operation class. That is, if a user configures a partic-
ular Operation implementation class in two Operation Groups within the configuration file, the elemenope
Framework will instantiate two separate instances of the class, and thus call each of the said methods once
per class.

CHAPTER 4. BUSINESS LOGIC (OPERATION) IMPLEMENTATION 22

the operation node corresponding to this Operation instantiation within the elemenope
configuration file. Anything may be done with these values.

public void setConfigurationAttributes(Map atts) throws ElemenopeException

{
/*
* extract any special attributes required from the
x configuration file Operation attributes
*/
String databaseName = atts.get(”databaseName”);
/%
x alternatively , one might use the entire
x Map as a properties table ...
*/
this.props = new Properties(atts);
}

Listing 4.2: Operation setConfigurationAttributes() example

4.2.2 SetComponents Method

The setComponents() method provides the user access to all other components instanti-
ated within the elemenope Framework (listing 4.3). It accepts an ElemenopeComponents
object as an argument. The ElemenopeComponents class provides multiple convenience
methods for accessing all Elemenope standard components and user components within
the system. This method is called after all elemenope Framework initialization is com-
plete, yet before connections and Services are “started”. Typically, an Operation will
extract needed components and store them within a class level variable, for use within the
execute () method.

CHAPTER 4. BUSINESS LOGIC (OPERATION) IMPLEMENTATION 23

public void setComponents(ElemenopeComponents components)

{
/*
x some implementations may store the full components
x reference for future use...

*/

this.components = components;

/*
x alternatively , one might only extract that which is needed
x (this is better practice than that above)...

*/

this.dispatcherA = components. getDispatcher (” dispatcherA”);

Listing 4.3: Operation setComponents() example

4.2.3 ReleaseComponents Method

The releaseComponents() method provides the user the ability to clean up or release
system resources that might have been consumed in the setup of this Operation (listing
4.4). Tt accepts a void argument. This method is called from within the elemenope
standard initialization shutdown process.

public void releaseComponents ()

{

/%

* close a database connection ...
*/

conn. close ();

conn = null;

Ve

x close an open file ...

*/

file . close ();

file = null;

Listing 4.4: Operation releaseComponents() example

Chapter 5

Configuration

This chapter provides the user with descriptions and requirements for configuration of the
elemenope Framework.

5.1 elemenope Standard Configuration

The elemenope standard configuration consists of the configuration of all elemenope base
components from the elemenope.xml configuration file. This configuration has been the
basis of the initialization of the framework since its beginning. Only recently have the
user components been open to simplified configuration utilizing the Spring Framework (see
§5.2).

5.1.1 elemenope Standard Configuration System Contract

elemenope has a standard configuration system contract, which defines the order and man-
ner in which components are initialized. The order of initialization procedures follows as
such...

1. Initialize General Settings — initialize items within the <main> node of the config-
uration file.

e The maintenance interval is set — This value determines how many milliseconds
will pass before each iteration of the elemenope maintenance cycle.

e The default Service and Operation names are set (if any) — If set, this default
Service will be called requesting this default Operation once per each itera-
tion of the elemenope maintenance cycle. This allows an application to call an
Operation implementation periodically (e.g. maintenance, ingestion, or other
processing code).

2. Initialize Operations — all configured Operations will be instantiated and initialized.

24

CHAPTER 5. CONFIGURATION 25

3. Initialize Services — for each configured Service, do the following...

(a) Initialize Service Connectors
(b) Initialize Service Broker (if any)

(c) Initialize Service Dispatcher (if any)
4. Initialize User Components
5. Initialize Spring Framework (if configured)

6. Propagate Components — All objects within the framework (including the user de-
fined components) will be checked recursively (all Collections and Maps will be re-
cursed). All objects which implement the ElemenopeComponent Interface will have
their setComponents (ElemenopeComponents) method called with the fully popu-
lated ElemenopeComponents object.

7. Start Services

CHAPTER 5. CONFIGURATION 26

ElemenopeComponen
setConfigurationAttributes()
method called here

Initialize

St General Settings

i

Initialize
Operations
Initialize
/—> Gannectar
Initialize Services Initialize
(For Each Broxer
Configured {if an
Service) +
Initialize
I ™ Dispatcher
Initialize User ﬂh‘ =

Components

i

Initialize: Spring
Framework)]
if configured ElemenopeCompanent
setComponents() method
called here

Propagate
Components

i

Stap
Sgsntfllggg - (Initialization
— Complete

Figure 5.1: elemenope Standard Configuration Flowchart

CHAPTER 5. CONFIGURATION 27

5.1.2 elemenope Configuration File Structure

The elemenope standard configuration file is elemenope.xml. Within this file, the root node
is <elemenope>. There may be one or more <initializationGroup> nodes defined therein.
Each <initializationGroup> node will contain the following sections...

e main
® user
e operations

e services
<elemenope>

<initializationGroup name="exampleConfig”>
<main

/>

<user

/>
<operations>
<./0perations>
<services>

</services>
</initializationGroup>

</elemenope>

Listing 5.1: <initializationGroup> configuration example

5.1.3 Main Configuration

The “main” section defines three attributes...

1. The maintenance interval is set — This value determines how many milliseconds will
pass before each iteration of the elemenope maintenance cycle.

CHAPTER 5. CONFIGURATION 28

2. The default Service name — The name of the Service called at each iteration of the
maintenance cycle (see §5.1.7).

3. The default Operation name — The name of the Operation called at each iteration
of the maintenance cycle (see §5.1.7).

<main
maintenancelnterval="30000"
defaultService="exampleService”
defaultOperation="exampleOperation”

/>

Listing 5.2: <main> configuration example

5.1.4 User Configuration

The “user” section defines one attribute, the Spring Framework configuration file name.
For more details on the use of this configuration, please see §5.2.

<user
springConfigurationFile="conf/spring.xml”
/>

Listing 5.3: <user> configuration example

CHAPTER 5. CONFIGURATION 29

5.1.5 Operation Configuration

The configuration of one or more Operations is fairly straightforward. Within the <operations>
section, multiple <operationGroup> sections may be defined, each containing one or more
<operation> configurations. Each Broker configuration will be assigned an operationGroup
attribute, which will contain the configured Operations which that Broker may call upon
request.

<operations>
<operationGroup name="example”>
<operation
name="operationl”
class="your.package.name. OperationExamplel”
/>
<operation
name="operation2”
class="your.package.name. OperationExample2”
key="optional .property.value.for._your_operation”
/>
</operationGroup>
</operations>

Listing 5.4: <operations> configuration example

All XML attributes contained within the operation node(s) are passed completely in-
tact as a Map to the respective Operation’s setComponents() method. In the above ex-
ample (listing 5.4), the second Operation configuration “operation2” contains an undefined
XML attribute “key”. This attribute (along with all others defined [including “name” and
“class”]) is passed as a key/value pair within a Map to the Operation’s setComponents ()
method at initialization. In this manner, a user may pass configuration parameters to their
Operation implementations.

CHAPTER 5. CONFIGURATION 30

5.1.6 Service Configuration

The configuration of a service has been greatly simplified as of elemenope version 5.0.
Within the <initializationGroup> section, a <services> section is defined which may con-
tain one or more <service> sections (see listing 5.5). Each <service> section must contain
a <connector> section and either one or both of a <broker> and <dispatcher> section.
The elemenope standard configuration requires a minimum set of attributes for each Inter-
face within a service transport protocol. Each service transport protocol implementation
will define its own attributes in addition to the minimum. For service transport protocol
specific configuration examples, please see §A.1.

<services>
<service
name="testService”
>
<connector
class="com. createtank .elemenope.transports.DirectCallConnector”
/>
<broker
class="com. createtank.elemenope.transports.DirectCallBroker”
operationGroup="example”
/>
<dispatcher
class="com. createtank .elemenope.transports.DirectCallDispatcher”
/>

</service>
</services>

Listing 5.5: <services> configuration example

The elemenope standard configuration minimum definition of each section is as follows...

Connector

Must contain a class attribute. This is the class which will be instantiated by the frame-
work. This class must implement the Connector interface.

Broker

Must contain a class attribute and an operationGroup attribute. The class is that which
will be instantiated by the framework. This class must implement the Broker interface.

The operationGroup attribute determines which configured operationGroup will be
assigned to this Broker. Only those Operations defined within that named operationGroup
will be accessible to this Broker for client requests.

CHAPTER 5. CONFIGURATION 31

Dispatcher

Must contain a class attribute. This is the class which will be instantiated by the frame-
work. This class must implement the Dispatcher interface.

5.1.7 Standardized Ingest & Default Service/Operation Configuration

A common need for applications is to ingest data from the filesystem or other resource. One
may utilize the <main> section attributes to do this by calling a user defined Operation
on every iteration of the elemenope maintenance cycle.

There are plans to implement multiple ingest operations to generically ingest filesystem
and possibly POP/IMAP resources.

5.1.8 Dispatcher Failover [DFo] Configuration

The configuration of Dispatcher Failover [DFo| consists of the addition of the “failoverList”
attribute to the <dispatcher> node within the <service> configuration section. This at-
tribute should be set to a comma-delimited list of the Dispatchers to which the message
should be passed upon failure. The Dispatchers should be referred to by service name. Ser-
vice name(s) placed into the DFo list must be defined within the same initializationGroup
to be recognized (see listing 5.6).

<dispatcher
class="com. createtank .elemenope.transports.DirectCallDispatcher”
failoverList="DFO1,DF02”

/>

Listing 5.6: dispatcher failover configuration example

CHAPTER 5. CONFIGURATION

Dispatcher

Example

Failowver

Faihl:"wer
R —

Request Faills —— %

Dispatcher
DFOH

—

Dispatcher
DFO2

Queued
Asynchionous

EE——

Figure 5.2: Simple Dispatcher Failover

32

Failover may be configured in a much more complex manner with Dispatcher Failover
chaining. This is nothing more than the failover of a failover in a chain as long as a user

may need (Fig. 5.3).

CHAPTER 5. CONFIGURATION 33

Dispatcher Request Fails ————%

Example

Failover

Dispatcher
DFO1

—

Request Fails —X

Failover
Dispatcher

DFO2
S —

Request Fails —X

Failover

Request Fails —X

Failover
\‘—.___._.—-O

Figure 5.3: Dispatcher Failover Chain

5.2 elemenope Spring Framework Configuration

The configured Spring Framework configuration file (see User Configuration §5.1.4) is read
as a FileSystemXmlApplicationContext.' The user must create one or more bean classes
which will contain any or all configuration properties for the user’s application. The Spring
Framework will then populate this class or classes with the values from within the Spring
Framework configuration file. The elemenope Framework then stores the instantiated and
populated bean or beans within the ElemenopeComponents object for the elemenope ini-
tialization group. The user may then access any of these beans from within the framework
via two static methods of the Elemenope class. The first, getSpringBeanFactory() ac-
cepts the ElemenopeComponents object within which the Spring Framework was invoked,
and returns the Spring Framework BeanFactory object, with which a user may do any
Spring Framework specific activities wished. The second, getSpringBean (), accepts again
the ElemenopeComponents object within which the Spring Framework was invoked, and
the bean name or id from within the Spring configuration file, and returns the user’s actual
bean as instantiated and populated.

!FileSystemXmlApplicationContext is a Spring Framework specific class. For more information about
the Spring Framework, please visit http://www.springframework.org/.

CHAPTER 5. CONFIGURATION 34

A further point in the configuration of elemenope utilizing the Spring Framework, is
the ability of the user to access any or all components (elemenope and user components)
configured in the application from within the Spring Framework user bean by simply imple-
menting the ElemenopeComponent Interface in said bean. That is, if the Spring Framework
user bean implements the ElemenopeComponent Interface, its setComponents() method
will be called and passed the fully populated ElemenopeComponents at framework initial-
ization.

Please note that Spring Framework configuration is only available for elemenope version
5.0 and above.

5.3 elemenope Application Server Integration

elemenope may be integrated into a web application or Enterprise Java application via the
ElemenopeStartupServlet, a Java Servlet implementation which configures one or more
elemenope initialization groups configured within a standard elemenope.xml configuration
file. The configuration of this Servlet resides within a web application’s web.xml file.

ElemenopeStartupServlet Attributes

configClass The implementation of the ElemenopeConfiguration Interface
to use. This will likely always be ElemenopeStandardConfiguration or
a subclass.

configFile The file to use for a configuration file.

initializationGroupX The name of each individual initializationGroup to
configure (named within the configured configFile). Multiple initializa-
tionGroups may be listed, each with a new <init-param>, and each with
a differing <param-name>. However, the <param-name> for each must
begin with the string “initializationGroup”. Please see the example in
listing 5.7.

log4jConfigFile The Log4j configuration file.

logdjWatchlInterval The cyclical interval after which Log4j will check the
Log4j configuration file for changes, incorporating any changes which have
been made.

CHAPTER 5. CONFIGURATION 35

<servlet>
<servlet —name>elemenope</servlet —name>

<servlet —class>
com. createtank .elemenope. ElemenopeStartupServlet

</servlet —class>

<init —param>
<param—name>configClass</param—name>
<param—value>com. createtank . elemenope. ElemenopeStandardConfiguration</param—val

</init —param>

<init —param>
<param—name>configFile</param—name>
<param—value>/opt/elemenope/conf/elemenope . xml</param—value>

</init —param>

<init —param>
<param-—name>initializationGroup1</param—name>
<param—value>initGroupExamplel</param—value>

</init —param>

<init —param>
<param—name>initialization Group2</param—name>
<param—value>initGroupExample2</param—value>

</init —param>

<init —param>
<param—name>log4jConfigFile</param—name>
<param—value>/opt/elemenope/conf/elemenope.logdj. properties</param—value>

</init —param>

<init —param>
<param—name>log4jWatchInterval</param—name>
<param—value>15000</param—value>

</init —param>

<load—on—startup>1</load —on—startup>

</servlet>

Listing 5.7: ElemenopeStartupServlet web.xml configuration example

Appendix A

Cookbook

This chapter provides one with multiple examples of configuration and implementation
examples.

A.1 Service Configuration Examples

A.1.1 Direct Call Service Transport Protocol

The Direct Call Service Transport Protocol implementation is the simplest implementation
in elemenope. Configuration consists of the minimum required attributes for each of the
Connector, Broker, and Dispatcher. In the example (listing A.1), all “class” attributes
must be as shown, while the service “name” may be any string, and operationGroup may
be the name of any operationGroup configured within the same initializationGroup.

<service
name="directCallService”
>
<connector
class="com. createtank .elemenope.transports. DirectCallConnector”
/>

<broker
class="com. createtank.elemenope.transports.DirectCallBroker”
operationGroup="exampleOperations”

/>

<dispatcher
class="com. createtank .elemenope.transports.DirectCallDispatcher”

/>

</service>

Listing A.1: Direct Call Service Transport Protocol Configuration Example

36

APPENDIX A. COOKBOOK 37

A.1.2 Java Message Service [JMS]

The JMS Service Transport Protocol implementation is one of the oldest implementations
in elemenope. Configuration consists of the minimum required attributes for each of the
Connector, Broker, and Dispatcher plus JMS specific elements. In the example below
(listing A.2), all “class” attributes must be as shown, while the service “name” may be any
string, and operationGroup may be the name of any operationGroup configured within the
same initializationGroup. A description of the JMS specific attributes follows...

<service
name="jmsService”
>
<connector
class="com. createtank .elemenope. transports.JmsQueueConnector”
connectionFactory="ConnectionFactory”
initialContextFactory="org.jnp.interfaces.NamingContextFactory”
providerURL="1ocalhost:1099”
urlPackagePrefixes="org. jboss.naming”

/>

<broker
class="com. createtank . elemenope. transports.JmsQueueBroker”
operationGroup="exampleOperations”
queueName="queue /queueName”
sessionAcknowledgementMode="AUTO”
sessionCount="5"
messageGuidedBpmEnabled="true”

/>

<dispatcher
class="com.createtank .elemenope.transports.JmsQueueDispatcher”
queueName="queue /queueName”

/>

</service>
Listing A.2: JMS Service Transport Protocol Configuration Example

JMS Connector Attributes

All JMS specific Connector attributes are JMS provider specific. That is, each
JMS provider or application server will require its own specific attributes for
connectivity. The example attributes (listing A.2) are for connectivity to the
JBoss application server JMS provider.

connectionFactory The connection factory class used by the JMS provider
implementation.

APPENDIX A. COOKBOOK 38

initialContextFactory The initial context factory used for JNDI lookup by
the JMS provider implementation.

providerURL The URL for connection to the JMS server.

JMS Broker Attributes

queueName The JMS queue name upon which messages will be received for
this Service.

sessionAcknowledgementMode The JMS acknowledgement mode for this
queue. Available values are CLIENT for manual client acknowledgement,
DUPS_OK for “at least once delivery”, and AUTO for automatic acknowl-
edgement of messages.! AUTO is the default value.

sessionCount The number of JMS sessions (threads) assigned to “listen” to
this queue.

messageGuidedBpmEnabled Whether this Broker is capable of handling
BPM attributes for guiding a message through a BPM process list.

JMS Dispatcher Attributes

queueName The JMS queue name to which messages will be sent for this
Service.

Please note that an actual implementation might or might not contain both a Broker and
Dispatcher configuration. For more generic Service configuration information, see §5.1.6.

A.1.3 XML-RPC Web Service

XML-RPC is a clean and simple web services or remote procedure call specification (see
http://www.xmlrpc.com/). elemenope utilizes the Apache XML-RPC implementation
(http://ws.apache.org/xmlrpc/) for the XML-RPC service transport protocol imple-
mentation. The XML-RPC service transport protocol implementations utilize separate
Connector implementations for server and client.

elemenope has multiple sets of XML-RPC implementations.

e Simple XML-RPC implementation — Very simple configuration and implementa-
tions.
e Simple elemenope specific implementation — For use in connectivity with another

instance of elemenope only.

'For a formal definition of these options, see the Message Acknowledgment section of the JMS Specifi-
cation (http://java.sun.com/products/jms/docs.html)

APPENDIX A. COOKBOOK 39

e Enterprise level XML-RPC Servlet receipt functionality implementation — for stan-
dard XML-RPC connectivity within a Servlet container or application server.

e Enterprise level XML-RPC receipt functionality implementation — For standard
XML-RPC connectivity within a standalone elemenope instance (elemenope version
5.1 and later).

The elemenope Team recommends the use of either of the enterprise level implemen-
tations in a production or other critical environment for receipt functionality. The simple
implementation clients may be safely used for transmission or Dispatcher functionality in
these environments. The simple implementations of receipt or Broker functionality are
intended for use in test, development, or other non-critical uses.

Simple XML-RPC implementations

The elemenope specific implementation serializes the payload to send it to an XML-RPC
service running also on elemenope, where the payload is de-serialized before routing to
the Operation called. Both ends of this process must configure for the use of the ele-
menope specific classes. The only difference in configuration between the standard and
the elemenope (serialized payload) types is the Broker and Dispatcher classes used. For
the standard type, use Xm1RpcBroker and XmlRpcDispatcher. For the elemenope specific
type, use XmlRpcElemenopeBroker and XmlRpcElemenopeDispatcher. These Broker im-
plementations are not intended for production use in the “real world”. For multi-threaded
implementations ready for production use, please see the section Enterprise Level XML-
RPC Implementations in the following pages.

<service
name="xmlRpcServerService”
>
<connector
class="com. createtank .elemenope.transports.XmlRpcServerConnector”
acceptList="192.168.1.27
denyList="192.168.1.3"
paranoid="true”

port="9000"

/>

<broker
class="com. createtank .elemenope. transports.XmlRpcBroker”
operationGroup="exampleOperations”

/>

</service>

Listing A.3: XML-RPC Server Service Transport Protocol Configuration Example

APPENDIX A. COOKBOOK 40

<service
name="xmlRpcClientService”
>
<connector
class="com. createtank .elemenope. transports.XmlRpcClientConnector”
url="http://localhost:9000”

/>
<dispatcher
class="com. createtank .elemenope. transports.XmlRpcDispatcher”

webServiceTarget="xmlRpcServerService”

/>

</service>

Listing A.4: XML-RPC Client Service Transport Protocol Configuration Example

XML-RPC Server Connector Attributes

acceptList A list of IP addresses from which requests are accepted by the
XML-RPC server. May contain * as a wildcard character (e.g. “192.168.1.%7).

denyList A list of IP addresses from which requests are denied by the XML-
RPC server. May contain * as a wildcard character (e.g. “192.168.1.%”)

paranoid Switch to turn on or off accept and deny client filtering.
port Port to which the XML-RPC server will listen.

XML-RPC Client Connector Attributes

url Address to which the client will connect.

XML-RPC Broker Attributes

Minimum standard configuration for simple XML-RPC Broker.

XML-RPC Dispatcher Attributes

webServiceTarget The Service name of the target XML-RPC service (or
Broker).

Enterprise Level XML-RPC implementations

For enterprise level XML-RPC Service usage, such as one needs within a production envi-
ronment, elemenope provides two implementations: a Jetty HT'TP Server based Connector
and Broker (XmlRpcEnterpriseConnector and XmlRpcEnterpriseBroker) and a Servlet
based Broker (XmlRpcServletBroker).

APPENDIX A. COOKBOOK 41

Enterprise XML-RPC Implementations — Embedded Jetty HTTP Server Im-
plementation

The Jetty HT'TP Server based implementation (XmlRpcEnterpriseConnector and
XmlRpcEnterpriseBroker) is available as of elemenope version 5.1 and later. This im-
plementation allows a much simpler configuration than its predecessor, the XML-RPC
Servlet Broker. The configuration is contained entirely within the standard elemenope . xml
configuration file. This implementation also allows simplified deployment, as the imple-
mentation may run within the same JVM as non-XML-RPC services. To date, this is
the recommended enterprise XML-RPC receipt implementation. Multiple Brokers may be
configured within this implementation, each handling a different XML-RPC web service.
Thus, under a single URL (or context path), multiple XML-RPC web services may be
configured. Each Broker configured must be configured with a different webServiceName
attribute for this to work (see the section Enterprise XML-RPC Broker Attributes below
for details).

<service
name="xmlRpcEnterpriseService”
>
<connector
class="com. createtank .elemenope.transports.XmlRpcEnterpriseConnector”
host="1localhost”
port="9000"
minThreads="5"
maxThreads="20"
maxIdleTime="60000"

/>

<broker
class="com. createtank.elemenope.transports.XmlRpcEnterpriseBroker”
operationGroup="exampleOperations”
webServiceName="xmIRpcWebServicel”

/>

<broker
class="com. createtank.elemenope.transports.XmlRpcEnterpriseBroker”
operationGroup="exampleOperations”
webServiceName="xmIRpcWebService2”

/>

</service>
Listing A.5: Enterprise XML-RPC Configuration Example

APPENDIX A. COOKBOOK 42

Enterprise XML-RPC Connector Attributes

host Hostname for service HT'TP listener.
e required: no
e default: localhost
port Port for service HT'TP listener.
e required: YES
e default: none
minThreads Minimum number of threads for embedded Jetty HT'TP server.
e required: no
e default: 1
maxThreads Maximum number of threads for embedded Jetty HTTP server.
e required: no
e default: 10
maxldleTime Number of milliseconds for embedded Jetty HTTP server lis-
tener to wait before closing and restarting listener.
e required: no

o default: 60000 (60 seconds)

Enterprise XML-RPC Broker Attributes

webServiceName The name of the XML-RPC web service. If this attribute
is provided, the XML-RPC service will be available at the following URL:
(http://hostname:port/serviceName/webServiceName.operationName).
If this attribute is not provided, the XML-RPC service will be available at
the following URL: (http://hostname:port/serviceName/serviceName.
operationName).

e required: no
o default: serviceName

Enterprise XML-RPC — Servlet Broker Implementation

The Servlet implementation may run within a Servlet container (e.g. Jakarta Tomcat),
and benefit from the threading capabilities therein. This implementation is not configured
in the same manner as normal services, (i.e. within the elemenope.xml configuration file).
This implementation must be used alongside the ElemenopeStartupServlet within a web
application. The configuration of this implementation must also point to an initialization
group which is configured by the ElemenopeStartupServlet. The configuration of this
implementation resides within the said web application’s web.xml file. More information
on the proper configuration of the ElemenopeStartupServlet may be found within §5.3.

APPENDIX A. COOKBOOK 43

<servlet>
<servlet —-name>xmlRpcService</servlet —name>
<servlet —class>
com.createtank .elemenope. transports. XmlRpcServletBroker
</servlet —class>
<init —param>
<param—name>serviceName</param—name>
<param—value>exampleService</param—value>
</init —param>
<init —param>
<param—name>initializationGroup</param—name>
<param—value>examplelnitializationGroup</param—value>
</init —param>
<init —param>
<param—name>operation(}roup</param—name>
<param—value>exampleOperations</param—value>
</init —param>
<load—on—startup>1</load—on—startup>
</servlet>

Listing A.6: web.xml XML-RPC Servlet Configuration Example

A.1.4 SOAP Web Service

SOAP is a web services protocol for exchanging XML based messages (see http://en.
wikipedia.org/wiki/S0AP). elemenope utilizes the Apache Axis implementation (http:
//ws.apache.org/axis/) for the Soap service transport protocol implementation. This
implementation only supports client connectivity. Server connectivity must be implemented
separately within an Apache Axis based web application. There is an extension to el-
emenope available (elemenope SOAP extension) which will automatically create SOAP
service implementation classes. This extension is not available within the elemenope-core
FOSS distribution. The use of this extension is beyond the scope of this document. For
more information, contact createTank at elemenope@createtank.com.
elemenope has two sets of SOAP Dispatcher implementations:

e SoapDispatcher — Configured and called in the manner of all Dispatcher imple-
mentations, with operationType and payload arguments.

e SoapMethodDispatcher — Configured with only one operation in mind. This method
still takes the standard Dispatcher Interface arguments of operationType and pay-
load, however, only the configured operation will be called.

APPENDIX A. COOKBOOK 44

<service
name="soapClientService”
>
<connector
class="com. createtank .elemenope.transports.SoapClientConnector”
serviceNS="http://soapinterop.org/”
serviceName="soapService”
wsdlLocation="wsdl/example . wsdl”
/>
<dispatcher
class="com. createtank .elemenope. transports.SoapDispatcher”
url="http://localhost:9000”
/>
</service>
<service
name="soapClientMethodService”
>
<connector
class="com.createtank .elemenope.transports.SoapClientConnector”
serviceNS="http://soapinterop.org/”
serviceName="soapService”
wsdlLocation="wsdl/example . wsdl”
/>
<dispatcher
class="com.createtank .elemenope.transports.SoapMethodDispatcher”
operationNS="http://soapinterop.org/”
operationName="exampleMethod”
url="http://localhost:9000”
/>

</service>

Listing A.7: SOAP Service Transport Protocol Configuration Example

APPENDIX A. COOKBOOK 45

SOAP Client Connector Attributes

serviceNNS The Service namespace
serviceName The Service name

wsdlLocation The location within the filesystem of the WSDL file for this
Service

SOAP Dispatcher Attributes

url Address to which the client will connect

SOAP Method Dispatcher Attributes

url Address to which the client will connect
operationName The Operation name

operationNS The Operation namespace

A.1.5 Native IBM MQSeries/WebsphereMQ

The elemenope Native IBM MQSeries/ WebsphereM(Q EAT extension is a JMS implemen-
tation for direct connectivity to MQSeries/WebSphereMQ, with added MQSeries/Web-
SphereM Q@ specific capability. This extension allows connectivity without JNDI lookup.
The extension allows JMS connectivity with non-JMS targets and sources. The exten-
sion provides mainframe (IMS Bridge) connectivity to the elemenope framework. This
section provides an overview of configuration of the elemenope MQSeries/WebSphereMQ
extension. This extension is not available within the elemenope-core FOSS distribution.
Detailed descriptions of the configuration and meanings of particular settings are beyond
the scope of this document.

MQSeries/WebSphereMQ Connector Attributes

queueManager The MQSeries/WebSphereMQ queue manager
queueName The MQSeries/WebSphereMQ queue name

jmsTarget Whether the target queue is read by the receiver as a JMS queue
(Boolean)

imsBridgeTarget Whether the target queue is an IMS Bridge target on a
mainframe (Boolean)

transportType MQSeries specific connectivity...

”

e If transportType is ”client” or ”tcpip” (case-insensitive) will connect

in client mode

APPENDIX A. COOKBOOK 46

<service
name="mqService”
>

<connector
class="com. createtank .elemenope. extensions. mqseries.transports.MQSeriesConnecto
queueManager="QVIEXAMPLE”
queueName="exampleQueue”
jmsTarget="false”
imsBridgeTarget="false”
transportType="BIND”

/>

<broker
class="com. createtank .elemenope. extensions.mqseries. transports.MQSeriesBroker”
operationGroup="exampleOperations”
queueName="exampleQueue”
sessionAcknowledgementMode="AUTO”
sessionCount="5"

/>

<dispatcher
class="com. createtank .elemenope. extensions. mqseries.transports. MQSeriesDispatch
queueName="exampleQueue”

/>

</service>
Listing A.8: MQSeries/WebsphereMQ Service Transport Protocol Configuration Example

APPENDIX A. COOKBOOK 47

e If transportType setting is null or empty ["”] will default to bindings
mode

e If transportType is anything else, will default to bindings mode

Attributes within Broker and Dispatcher configurations are standard JMS configuration
attributes, and as such documented within §A.1.2 and listing A.2.

A.1.6 Mainframe Connectivity Classes

The mainframe connectivity classes provided with the MQSeries/ WebsphereMQ EAT Ex-
tension allow communication of particular IMS specific parameters to the mainframe sys-
tem. This extension allows the user to easily build an IMS capable message within their
elemenope Framework application. This extension is not available within the elemenope-
core FOSS distribution. Detailed discussion of the extension is beyond the scope of this
document.

A.2 Usage of BPM Operation Implementations

elemenope provides multiple Operation implementations which allow for process control
or Business Process Management [BPM] control of processing. The BPM Operations are
implementations of the Operation interface, and as such, require no special consideration
for configuration. A common practice is to configure a BPM Service with a Broker (of
whatever service transport protocol) which is assigned an operationGroup within which
one or more BPM Operations is configured. Combination of the implementations described
below should account for nearly any commonly needed process structure.

A.2.1 ElemenopeAsyncBpmChainOperation

This is the most advanced BPM Operation implementation. It allows asynchronous service
transport protocol implementations to conduct BPM operations. Currently only the JMS
service transport protocol implementation is capable of utilizing the functionality of this
BPM Operation implementation. Please note that the configuration of the JMS Broker
must set the messageGuidedBpmEnabled XML attribute to “true” in order for the Broker
to properly handle the configured BPM Operation (see §A.1.2).

ElemenopeAsyncBpmChainOperation Attributes

operationList The list of operations which the BPM is to execute. This list
is comma-delimited with no spaces. Fach entry in the list is in the form
of service:operation.

APPENDIX A. COOKBOOK 48

<operations>
<operationGroup name="bpmOperations”>
<operation
name="bpmExample”
class="com. createtank .elemenope.bpm. ElemenopeAsyncBpmChainOperation”
operationList="exampleServiceA:exampleOne ,exampleServiceB:exampleTwo”
/>
</operationGroup>
<operationGroup name="exampleOperationsServiceA”>
<operation
class="org.elemenope.examples.operations . ExampleOperation”
name="exampleOne”
/>
</operationGroup>
<operationGroup name="exampleOperationsServiceB”>
<operation
class="org.elemenope.examples.operations.OperationTest”
name="exampleTwo”
/>
</operationGroup>
</operations>

Listing A.9: ElemenopeAsyncBpmChainOperation Configuration Example

APPENDIX A. COOKBOOK 49

A.2.2 ElemenopeProcessListOperation

This is a very simple implementation which allows only operations within the configured
operationGroup to be a part of the process list. It returns a List of all responses from all
Operations configured in the operationList.

<operations>
<operationGroup name="bpmOperations”>
<operation
name="bpmExample”
class="com. createtank .elemenope.bpm. ElemenopeProcessListOperation’
operationGroup="exampleOperations”
operationList="exampleOne ,exampleTwo ,exampleThree”

i

/>
</operationGroup>
<operationGroup name="exampleOperations”>
<operation
name="exampleOne”
class="org.elemenope.examples.operations. ExampleOperation”
/>
<operation
name="exampleTwo”
class="org.elemenope.examples.operations.OperationTest”
/>
<operation
name="exampleThree”
class="org.elemenope.examples.operations . ExampleOperation”
/>
</operationGroup>
</operations>

Listing A.10: ElemenopeProcessListOperation Configuration Example

ElemenopeProcessListOperation Attributes

operationGroup The operationGroup which contains all operations config-
ured in the operationList attribute.

operationList The list of operations which the BPM is to execute. This list
is comma-delimited with no spaces. Each entry in the list is a configured
operation name from within the configured operationGroup.

APPENDIX A. COOKBOOK 50

A.2.3 ElemenopeProcessChainOperation

This is a very simple implementation which allows only operations within the configured
operationGroup to be a part of the process chain. It returns a single response from all
Operations configured. Each Operation within the operationList passes its return value to
the next Operation in the list as its input value.

<operations>
<operationGroup name="bpmOperations”>
<operation
name="bpmExample”
class="com. createtank .elemenope.bpm. ElemenopeProcessChainOperation”
operationGroup="exampleOperations”
operationList="exampleOne ,exampleTwo,exampleThree”
/>
</operationGroup>
<operationGroup name="exampleOperations”>
<operation
name="exampleOne”
class="org.elemenope.examples.operations . ExampleOperation”
/>
<operation
name="exampleTwo”
class="org.elemenope.examples.operations.OperationTest”
/>
<operation
name="exampleThree”
class="org.elemenope.examples.operations. ExampleOperation”
/>
</operationGroup>
</operations>

Listing A.11: ElemenopeProcessChainOperation Configuration Example

ElemenopeProcessChainOperation Attributes

operationGroup The operationGroup which contains all operations config-
ured in the operationList attribute.

operationList The list of operations which the BPM is to execute. This list
is comma-delimited with no spaces. Each entry in the list is a configured
operation name from within the configured operationGroup.

APPENDIX A. COOKBOOK 51

A.2.4 ElemenopeBpmListOperation

This BPM Operation implementation allows configuration of a process list which spans
multiple services. Like the other “list” implementations, it returns a List of all responses
from all Operations configured in the operationList.

<operations>
<operationGroup name="bpmOperations”>
<operation

name="bpmExample”

class="com. createtank .elemenope.bpm. ElemenopeBpmListOperation’

operationList="exampleServiceA:exampleOne ,
exampleServiceB:exampleTwo ,
exampleServiceB:exampleThree”

i

/>
</operationGroup>
<operationGroup name="exampleOperationsServiceA”>
<operation
name="exampleOne”
class="org.elemenope.examples.operations . ExampleOperation”
/>
</operationGroup>
<operationGroup name="exampleOperationsServiceB”>
<operation
name="exampleTwo”
class="org.elemenope.examples.operations.OperationTest”
/>
<operation
name="exampleThree”
class="org.elemenope.examples.operations. ExampleOperation”
/>
</operationGroup>
</operations>

Listing A.12: ElemenopeBpmListOperation Configuration Example

ElemenopeBpmListOperation Attributes

operationList The list of operations which the BPM is to execute. This list
is comma-delimited with no spaces. Each entry in the list is in the form
of service:operation.

APPENDIX A. COOKBOOK 52

A.2.5 ElemenopeBpmChainOperation

This BPM Operation implementation allows configuration of a process chain which spans
multiple services. Like the other “chain” implementations, it returns a single response from
all Operations configured. Each Operation within the operationList passes its return value
to the next Operation in the list as its input value.

<operations>
<operationGroup name="bpmOperations”>
<operation
name="bpmExample”
class="com. createtank .elemenope.bpm. ElemenopeBpmChainOperation”
operationList="exampleServiceA:exampleOne ,
exampleServiceB:exampleTwo ,
exampleServiceB:exampleThree”
/>
</operationGroup>
<operationGroup name="exampleOperationsServiceA”>
<operation
class="org.elemenope.examples.operations . ExampleOperation”
name="exampleOne”
/>
</operationGroup>
<operationGroup name="exampleOperationsServiceB”>
<operation
class="org.elemenope.examples.operations.OperationTest”
name="exampleTwo”
/>
<operation
class="org.elemenope.examples.operations.ExampleOperation”
name="exampleThree”
/>
</operationGroup>
</operations>

Listing A.13: ElemenopeBpmChainOperation Configuration Example

ElemenopeBpmChainOperation Attributes

operationList The list of operations which the BPM is to execute. This list
is comma-delimited with no spaces. Each entry in the list is in the form
of service:operation.

APPENDIX A. COOKBOOK 53

A.2.6 ElemenopeBpmPayload.java

Interface for payloads which will contain attributes affecting the JMS/Asynchronous prop-
erties for the BPM. To use, one’s payload object should implement this interface, and
subsequently store the desired message attributes (e.g. priority) in the payload itself. The
JMS/Async BPM framework will check for implementation of this interface. If the pay-
load object has implemented this interface, the BPM framework will set the corresponding
values on the message.

A.3 Generic Ingest Operation

As of elemenope version 5.1, a generic file ingestion Operation is included in the elemenope
Framework (IngestFilesystemOperation). This Operation is a standard Operation im-
plementation, and as such may be configured for use within any service. It is intended for
use within the defaultService/defaultOperation configuration. Any service transport pro-
tocol implemenation may be used for the default service, with access to an operationGroup
within which this Operation is configured. This Operation ignores any payload sent (in-
deed, the defaultService/defaultOperation call passes a null payload).

<operations>
<operationGroup name="ingestOperations”>
<operation
name="ingestOperation”
class="com. createtank.elemenope.operations.IngestFilesystemOperatio
path="/tmp/ingest /”
stagingArea=" /tmp/ingest /staging/”
filenameOnly="1{"
deleteFile="true”
archivePath="/tmp/ingest /archive/”
fileFilterExtensions=".txt ,.qwe, png”
/>
</operationGroup>
</operations>

Listing A.14: IngestFileSystemOperation Configuration Example

IngestFilesystemOperation Attributes

path Ingest path
e required: YES (must be a directory)

e default: none

APPENDIX A. COOKBOOK 54

stagingArea Directory where files will be placed during process of ingestion

e required: YES (must be a directory)
e default: none
filenameOnly Boolean switch to configure whether the operation returns only
the filename, or the entire file as a byte array.
e required: no
o default: FALSE
deleteFile Boolean switch to configure whether the operation will delete the
file after ingestion (only used when filenameOnly is set to FALSE, i.e.
when the entire file is returned)
e required: no
o default: FALSE
archivePath Directory where files will be placed after staging, but prior to
ingest (file will be renamed to filename-yyyyMMdd-hhmmssSSS) (must
be a directory)
e required: no
e default: empty (no archival)
fileFilterExtensions Comma-delimited list of extensions of files which are to
be ingested
e required: no
e default: empty (no file filtering [all files are accepted))

e note: Operation only checks whether the file ends with the config-
ured letters (case-insensitive) — there is no requirement for number
of letters or “dot” seperator.

A.4 elemenope Standard Configuration Maintenance Loop

Prior to the 5.0 release of elemenope, users needing configuration parameters and/or
cyclical processing integrated into the elemenope Framework were required to extend the
ElemenopeStandardConfiguration class. The user would simply override the userInit (),
userShutdown(), and maintain() methods, implementing whatever functionality was
needed therein. The maintain() method is often put to particular good use as a method
to ingest or process data periodically, as it is available to the system.

APPENDIX A. COOKBOOK Y)

public void maintain ()

// call the standard implementation to pause the necessary configured milliseco
super () ;

// check for availability of new files here...

/o

Listing A.15: Example Implementation of Maintain Method

A.5 Spring Framework Configuration and Integration Within
elemenope

Subsequent to the 5.0 release of elemenope, users are enabled to utilize the power of the
Spring Framework to handle configurations and integrate Spring Framework capabilities
into their elemenope applications. For detailed use, please refer to §5.2. For a very simple
example see listings A.16 and A.17.

public class ExampleConfiguration {
private String configAttOne;
private String configAttTwo;
private int configAttThree;
public void setConfigAttOne(String configAttOne) {
this.configAttOne = configAttOne;
}

public void setConfigAttTwo (String configAttTwo) {
this.configAttTwo = configAttTwo;
}

public void setConfigAttThree(int configAttThree) {
this.configAttThree = configAttThree;
}

// more here. ..

Listing A.16: Very Simple Configuration Bean Example

APPENDIX A. COOKBOOK

<beans>
<bean id="exampleBeanConfig”
class="your.package. ExampleConfiguration”

>
<property name="configAttOne” value="valuel” />
<property name="configAttTwo” value="value2” />
<property name="configAttThree” value="value3” />

</bean>

Listing A.17: Very Simple Spring Configuration Example

56

Appendix B

FAQ

To ask a question not addressed here, please email us at elemenope@createtank.com

What does the elemenope Framework offer me? Transport abstraction, functional
abstraction, payload abstraction, fault tolerant messaging, and transport protocol
implementations out of the box.

Who might use elemenope and why? The following roles might use elemenope:

e An integration team or engineer working to connect disparate systems in a
manner that lends clean and simple future expansion.

e An engineer or team creating a new application or system, interested in simpli-
fied maintenance, and possible future distribution of components without code
changes.

What is transport abstraction, and how does elemenope handle it? Transport ab-
straction:

e Provides nearly unlimited scalability, as components may be connected in unex-
pected ways at a later date with no changes to code. For example, a team could
connect a system entirely via direct call transports on a single machine, and
when load or functionality increases in the future, can move to a completely dis-
tributed system by changing the configuration to use JMS (e.g. WebSphereMQ),
JBossMQ, ActiveMQ), etc.) on multiple machines, without any change in code.
Additions and changes to a single configuration XML file are all that are needed
to do this.

e clemenope is open source, free software [GPL and Apache License Version 2.0,
and a team may therefore implement their own Connectivity classes (Connector,
Broker, and Dispatcher interfaces) in order to implement an entirely new proto-
col which will also work transparently with all other elemenope interfaces. This

57

APPENDIX B. FAQ o8

frees up organizations to do anything that they need to do with their systems.
For example, an organization might have a need to connect via CORBA with
legacy applications (CORBA is not currently implemented w/in elemenope).
They may do this fairly easily, implementing the elemenope connectivity inter-
faces. These new connectivity implementation objects may then be referred to
w/in the XML configuration file, and the new protocol may be used transpar-
ently within the elemenope framework.

What transport protocols does elemenope implement? elemenope currently imple-
ments the following service transports:

Java Message Service [JMS]

SOAP Web Services (SOAP extension)

XML-RPC Web Services

Direct Call

Native IBM MQSeries (WebSphereMQ) (MQSeries extension)

Mainframe connectivity classes (MQSeries extension)

AN A e

What is functional (business logic) abstraction, and how does elemenope handle it?
Functional or business logic abstraction:

e Allows subject matter experts to write simple code without knowledge of the
transport protocol to be employed. This means that one need not know how
specifically to connect to MQSeries via JMS, or how to connect to a mainframe,
but rather knowledge of the processing to be done.

e Provides uniformity of functional code w/in a project or integration effort. This
helps in logging, metrics gathering, and problem tracing, as all operations w/in
a system pass through the same or very similar processing paths.

e Provides ability to dynamically change the combinations of functional code units
exposed as services under different transport protocols. This allows a systems
engr. for example to open certain defined operations under SOAP, certain others
under XML-RPC, and all operations under local direct call connectivity.

What is payload abstraction, and how does elemenope handle it? Payload abstrac-
tion provides the ability to send either XML or Java Objects (or even other payload
types) over the elemenope framework transparently. For example, one might define
an Operation class (the functional unit) which expects a particular Java Object. An-
other application written in Python might have a need to call it with XML data
which validates to a common XML schema [XSD]. the doppelganger extension to ele-
menope allows this to work transparently, as the XML is automatically unmarshalled
to a Java Object as expected, and the processing occurs with no complaint. This can

APPENDIX B. FAQ 99

also work in the opposite direction, that is, a Transaction which expects XML, but
receives a Java Object may also process data as normal, because the doppelganger
extension will automatically convert the Java object to the expected XML format.

How does elemenope implement Fault Tolerant messaging? Within elemenope, dis-
patcher Failover [DFO] provides ability to transparently failover from one transport
protocol to another upon failure with no changes to the functional code or business
logic. For example, If a direct call connection is preferred, but for some reason the
direct call interface is down or throws an exception, elemenope may easily be config-
ured to provide transparent failover. That is, when an application or user makes the
call, elemenope will first attempt the direct call interface, and detecting failure, will
automatically and transparently failover to a JMS queue, to be picked up whenever
the other machine or service is available, thus persisting an important request.

Is there an email list to which I can subscribe for announcements and discussion?
Yes there is. It is the elemenope-discuss list. More details and subscription informa-
tion can be found at: http://elemenope.org/mailman/listinfo/elemenope-discuss_
elemenope.org

This is a fairly low traffic email list, consisting mostly of announcements, with occa-
sional questions from elemenope users.

Is there a tutorial or HOWTO document available to start using the elemenope framework?
Currently, there is not a document available. It is on our todo list, but has yet to
materialize. There are two documents available, which are greatly out of date, and
should certainly be avoided. Currently, it is best to direct any pertinent questions to
elemenope@createtank.com

I’m looking for a way to communicate using a variety of protocols - is this elemenope?
The elemenope framework was designed to handle using and switching transport pro-
tocols transparently.

Does elemenope support point to point (PTP) and publish subscribe (PUB/SUB) messaging?
elemenope implements JMS Queue connector sets for simple PTP messaging, and a
higher level publish connector set which allows easier use of PUB/SUB within some
message oriented middleware (MOM) providers. Specific JMS Topic connector sets
are planned, but no date has been set for these.

How does one pronounce “elemenope”? elemenope is pronounced L-M-N-O-P or more
specifically \”el-em-en-O-"pE\

An audio sample of the proper pronunciation can be found here:
http://elemenope.org/audio/elemenope.wav

APPENDIX B. FAQ 60

Can I legally use elemenope on my project? elemenope is released under a dual li-
cense. Users may utilize the framework under the GNU General Public License [GPL]
or under the Apache License Version 2.0. If there are any questions or concerns about
the legality of its use, please contact createTank at elemenope@createtank.com.

Appendix C

Resources

C.1 Internet Site

The main site for downloads and disemination of information concerning the elemenope
SOA/EAI Framework is http://elemenope.org
C.2 Email Discussion Lists

For user discussion of elemenope, please use the elemenope-discuss list. More details and
subscription information can be found at: http://elemenope.org/mailman/listinfo/
elemenope-discuss_elemenope.org. This is a fairly low traffic email list, consisting
mostly of announcements, with occasional questions from elemenope users.

C.3 Online FAQ

The online version of the elemenope FAQ may be found at http://createtank.com/wiki/
index.php?7ElemenopeFaq

C.4 Spring Framework

More detailed and very useful information regarding the Spring Framework may be found
at the home of the Spring Framework: http://www.springframework.org/

C.5 createTank Support for elemenope

createTank provides complete commercial support for elemenope. More information may
be obtained via email at elemenope@createtank.com

61

