

Fast acquisition GPS receivers

Heinz Mathis

University of Applied Sciences Rapperswil, Switzerland

Preview

Motivation for fast acquisition schemes first new receiver: post-correlation FFT second new receiver: AFSR Conclusions

Motivation

Search space of acquisition task is huge

>example: 2046 code positions (half-chip)

±5kHz Doppler uncertainty

±30kHz frequency offset (20ppm)

resolution better than 250Hz (for 1ms I&D)

ast-acquisition algorithms

- >massive parallelism
- FFT approach (software receiver)

>post-correlation FFT

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

Sensitivity losses

windowing effect (affects larger freq.)
 bin spreading (affects off-grid freq.)
 code phase uncertainty

Loss combining

Ioss expressed in dB → additive effect independent stochastic effects → convolution of pdfs

Loss distributions (dB)

Detection task Neyman-Pearson Test: maximize p_d , given p_{FA} P_{FA} is tail of Rayleigh distribution P_{d} is tail of Rice distribution approximated by Gaussian distribution

simple detector

probability of detection

$$p_{d,1} = \int_{-\infty}^{\infty} p_L(l) Q\left(\frac{\vartheta_1 - 10^{(r+l)/20}}{\sigma}\right) dl$$

false-alarm probability

$$p_{\mathrm{FA},1} = \int_{\vartheta_1}^{\infty} p_r(x) dx = \exp\left(-\frac{\vartheta_1^2}{2\sigma^2}
ight)$$

Detection strategies

One-level strategy

>Two-level strategy

Three-level strategy

Simulation results

real-time results, FPGA / ARM7

Advantages of AFSR

➢A-GPS reduces frequency dimension → code dimension remains ➢ tracking is easier than acquisition at low SNR

LFSR (linear feedback shift register)

AFSR (analog feedback shift register)

Synchronization using AFSR

25

Adaptation to GPS

Iow SNR of -20dB and below

Gold sequences consist of two m-sequences → table-lookup structure

2004, Biel, 12/10/04

Feedback function (requirements, criteria

- >XOR functions for inputs \in {0,1}
- Synchronization performance
- Simple to build
- >theoretical justification

Feedback function used

2004, Biel, 12/10/04

Baseband processing

Simulation results

ncreasing the detection probability

re-run AFSR with same data

re-run AFSR with new register values

re-run AFSR with new input data

$$P(n) = 1 - (1-p)^n$$

Hardware demonstrator

Measurement results

2004, Biel, 12/10/04

Conclusions

Two promising new acquisition GPS receivers have been presented:

Post-correlation FFT is computationally efficient

two-level detection strategy is superior to one-level detection (1dB gain)

AFSR is feasible alternative to brute-force correlation and provides very fast acquisition