
  

  
Abstract— This paper concerns performance and 

accuracy limitations in the analysis of high-volume, 
high-dimension data within anomaly detection and 
analysis systems. We introduce an adaptive, machine-
learning approach that ensures greater throughput 
(requires less computational resources) and 
progressively improved accuracy in the detection of and 
derivation of knowledge about atypical activity among 
very large data sets in dynamic computing (and other) 
environments.  

 
Index Terms— adaptive systems, anomaly analysis, 

intrusion detection, kernel classifiers, machine learning. 
 

I. INTRODUCTION 
MERGING mathematical approaches designed to 
enable automated adaptivity of an anomaly analysis 
baseline have proven limited in their ability to 

deliver the accuracy, performance or reliability required 
of mission-critical applications [6], [7], [11]-[15]. This 
paper introduces an approach and algorithm designed to 
overcome specific and fundamental limitations in 
anomaly detection and analysis systems.  
 

The design of this algorithm is based on three 
successive interrelated extreme principles. 

1. The first of these three principles is a well 
known least squares method with specified 
weights, which enables the center of a training 
sample to be determined.  

2. The second is a natural enhancement of the 
least squares method that enables the training 
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sample center and related weights to be 
determined adaptively.  

3. The third one – universal extreme principle 
detects the scaling factor for the decision rule.  

 
Thus we describe an adaptive approach that identifies 

atypical events, calculates the extent of each event’s 
deviation, and derives details regarding how the 
variables within the analytic model contributed to an 
event’s deviation. The solution generates progressively 
improved output even when applied to complex models 
and very large data sets (i.e. gigabytes/terabytes) on 
standard Intel and SUN platforms. The solution has 
been applied to various types of security-related data 
(i.e. firewall, application, intrusion detection system, 
security information management, etc. Practical 
examples of the algorithm implementation are 
mentioned at the end of this article. 
 

The approach, however, is applicable to a wide 
variety of challenges wherein the derivation of 
knowledge regarding atypical activity represents value, 
e.g. fraud detection, policy/regulatory compliance, 
equity/futures/currency trading, process optimization, 
marketing, homeland defense, etc.  

II. PROBLEM DESCRIPTION 
 Consider an input space – a set Ω, which elements 
are called events, and its finite subset X, which is a 
training sample. The problem under consideration is to 
construct a learning machine that can assess how 
“typical” or “untypical” an event is from the input space 
Ω, with respect to the events of the training sample. To 
make it more precise, a membership function  
 

]1,0[: →Ωw  
 

on the input space should be defined in such a way that 
it has a greater value on more “typical” events with 
respect to the training sample, and a less value on less 
“typical”. In other words, – a structure of a fuzzy set 
should be defined on Ω, i.e., the membership degree 

)(xw  for all the events Ω∈x  should be specified [1, 
ch. 1.2]. 
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III. SYMMETRIC NON-NEGATIVE KERNEL 
The described above problem is an unsupervised 

learning problem [2, ch. 1] since we don’t have any 
expert assessment of membership degrees of the events 
from the training sample. We’ll apply a well-known 
technical approach, which was worked out in the 1960th 
[3]. In contemporary literature this approach is called 
kernel trick [2, ch. 2.3], [4, ch. 3]. Namely, – create a 
mapping of the input space Ω to a Euclidian space H of 
a sufficiently high dimension: 

 
H→Ω:ϕ . 

 
The space H is called a feature space. For determinacy 
– let H be an infinite-dimensional Hilbert space. Thus 
events are mapped to the points of an infinite 
dimensional feature space. 
 

The mapping ϕ  itself has no particular importance. 
What is really important though is that this map induces 
a symmetric non-negative definite function  

 
1: Rk →Ω×Ω , 

 
that is called a kernel and is represented by the 
following formula 
 

)(),(),( yxyxk ϕϕ= , 

 
where ⋅⋅,  is the inner product of the feature space H. 

Hence from the very start we can talk just about 
consideration for a symmetric non-negative definite 
kernel k. This kernel totally defines all the metric 
relations on the input space, i.e. we can measure both 
the distance ),( yxρ  between any two events x and y: 
 

( ) ),(),(2),()()(),( 2 yykyxkxxkyxyx +−=−= ϕϕρ  
 

and the value of the angle ( )yx,∠  between them: 
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A particular choice of one or an other kernel is 

dictated by specific application domain where the 
problem in hand has arisen, and could vary significantly 
(see for example [2], [4], [5]). Below we will elaborate 
on this choice to be made, and consider a fixed 
symmetric non-negative definite kernel k. 

IV. LEAST SQUARES METHOD 
From geometrical point of view the following 

approach to solution of the problem under consideration 
looks quite natural: 

• to find the “center” c of the training sample X 
in the feature space H, 

• to estimate the membership degree of an event 
x as an inverse variation to the squared 
distance of it’s image Hx ∈)(ϕ to that 
“center”.  

Thus the decision rule will be  
 

( )2)(
)(

cxa
axw

−+
=

ϕ
,                  (1) 

 

where a is a fixed positive number, playing a role of а 
scaling coefficient. To be unambiguous, we’ll consider 
the training sample with N events, 

{ }N
iixX 1== , 

where N is a positive integer number. Let us assume the 
weight coefficient iw  to be fixed for each event ix  of 
the training sample and use the least squares method for 
detecting of the “center” c. Namely, choose such a point 
 

Hc ∈   
 
as the “center” of the training sample that delivers 
minimum to the quadratic functional 
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The value of this functional is a weighted sum of the 
squared distances of the event’s images in feature space 
to the “center” c. Since 
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the functional ( )cJ 0  has the unique extremum at the 
point  
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V.  ADAPTIVE CHOICE OF WEIGHT COEFFICIENTS 
In the previous section it was described how to find 

explicitly a solution of the learning problem, set in 
section II by means of the least squares method. One 
disadvantage of the described method is a necessity of 
an a priori definition of the weight coefficient for each 
event of the training sample. Constructing an adaptive 
(with respect to the training sample) procedure of 
finding the weight coefficients can eliminate this 
disadvantage. To implement such a construction we will 
impose on each event ix  of the training sample an 
additional condition, based on a coincidence of each 
weight coefficient iw  with the membership degree of 

the corresponding event ix , i=1,…, N, i.e.,  
 

)( ii xww = . 
 

Therefore simultaneously for all i=1,…, N the 
conditions 
 

( )2)( cxa
awi −+

=
ϕ

 

 
must be met, where c is defined by expression (2). 
Reducing these conditions and expression (2) to 
common denominator, we obtain the following 
equations: 
 

( )( ) 0)( 2 =−−+ acxawi ϕ ,  

( ) 0)(
1
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i
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It’s easy to see that the left parts of the obtained 
equalities coincide with partial derivatives 
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of the functional  
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(cmp. to [6]). Thus to solve the learning problem set in 
section II it’s sufficient to find an extreme point 
( )Nwwc ,...,, 1 , that delivers minimum to the functional 

( )NwwcJ ,...,, 11 .  

VI.  ADAPTIVE CHOICE OF SCALING COEFFICIENT 
The previous section describes how the extreme 

principle is used to solve the problem set in section II. 
Namely, – both the “center” c and the weight 

coefficients Nww ,...,1  (of the training sample) were 
simultaneously detected. Subsequently – section V 
describes how to deal with one of the main 
disadvantages of the least squares method described in 
section IV. The mentioned disadvantage is caused by 
the necessity of an a priori definition of the weight 
coefficient for each event of the training sample. 
However the necessity to a priori define a positive 
scaling coefficient a still remains. In the current section 
we describe an enhancement of the learning algorithm 
that solves the latter, and allows to automatically adapt 
the scaling coefficient a to the training sample. It 
becomes possible by virtue of choosing the scaling 
coefficient from the condition that provides for the 
highest resolution of decision rule (1). In other words, – 
due to it’s selection utilizing a condition of maximal 
width for the range of training sample events’ 
membership degrees.  

 
Define the minimal and maximal distances of the 

events from the learning sample to the “center” c – put 
 

( ) ( )2
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It’s possible to show that for Rr <<0 , the value 

rRa =  
is the unique positive value of the scaling coefficient 
that maximizes the range of the corresponding 
membership degrees of events from the training sample. 
The corresponding range is the segment 
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This maximal segment is centered with respect to 
2
1  

and has a width of 

rR
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+
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Thus in order to construct the adaptive (with respect 

to the training sample) scaling coefficient a – one 
should find the extreme point of the range for the 
training sample events’ membership degrees. The 
corresponding coefficient is 

 
( ) ( ) ( )2

,...,1

2
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ϕϕ .  (3) 

 
Putting this formula into the right part of the functional 

( )NwwcJ ,...,, 11  definition, – we obtain the following 
functional: 
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Minimum point ( )Nwwc ,...,, 1  of this functional, being 
inserted into expression (2), gives us a solution of the 
problem set in section II: the decision rule (1) is the 
corresponding membership function. 

 

VII.  EXPERIMENTS, APPLICATIONS AND COMMERCIAL 
IMPLEMENTATIONS 

In case of Gaussian kernel, the functional 
( )NwwcJ ,...,, 11  described in section V was considered 

in [6]. Verses this article, which is a natural extension of 
the least squares method, – approach taken in [6] is 
mainly based on ideas of SVM clusterization [8]. In the 
article [6] an experimental comparison of the SVM 
algorithm and the learning method, based on finding 
extreme of the functional ( )NwwcJ ,...,, 11 , was 
elaborated on. The LIBSVM [9] instruments and EPA-
HTTP [10] data were utilized. Article [6] favors 
approach based on minimization of the functional 

( )NwwcJ ,...,, 11 . However, the author has neither 
pointed to a specific value for the scaling coefficient a 
used nor provided an elaboration on any constructive 
reasons of its choice. 
 

A number of applications using the learning 
algorithms based on minimization of the functional 

( )NwwcJ ,...,, 11 , are known at the moment: 
• evaluation of events in Data Mining [6],  
• detection of certain network intrusions [11], 
• spam protection [12].   

But, as it was already mentioned above, the essential 
prior disadvantage for practical implementations of the 
learning algorithm, based on minimization of the 
functional ( )NwwcJ ,...,, 11 , was the necessity to a 
priori specify the scaling coefficient a for decision rule 
(1). 
 

The adaptive learning algorithm suggested in this 
article is based on minimization of the functional 

( )NwwcJ ,...,, 12  and is free from that disadvantage. 
Indeed – now, after finding the minimum 
( )Nwwc ,...,, 1  of the functional ( )NwwcJ ,...,, 12 , the 
scaling coefficient a for decision rule (1) is computed 
automatically in accordance with expression (3). 
Moreover, since the choice of the scaling coefficient is 
based on the condition of the highest possible resolution 
of the rule (1), the suggested learning algorithm delivers 
the decision rule with the widest possible range of 
membership degrees. 

 
 On basis of the suggested adaptive algorithm, an 
effective concept of learning was designed for a wide 
range of input spaces. This concept was successfully 
implemented in several commercial software products, 
in particular: 

• Adaptive Security Engine: The formal 
commercial manifestation of the algorithms 
presented in this paper and others, and 
universal tool for data analysis [14]. 

• Adaptive Security Analyzer Pro: Security 
Data Analysis application [15]. 

• Anomaly Analyzer: Anomaly Analysis 
component of Quest Software data collection 
and reporting application, Intrust, licensed 
from PWI, Inc./Privacyware [16]. 

VIII. ANOMALY AND INTRUSION DETECTION EXAMPLES 
Two examples of applying the approach, based on 

minimization of the functional ( )NwwcJ ,...,, 12 , are 
given below. 

 
Example 1. The approach was used to create a 

training baseline for events collected into a database by 
Quest Software InTrust application. Typical events 
were represented by sets of monitored web-resources 
accessed from inside the organization (ISA WebProxy 
access).  

 
In this case the input space Ω is represented by a set 

of multi-variable network events. Each events in a set 
has variables including DATE_TIME, SITE accessed 
(Web Resource), HOUR of the Day when SITE is 
accessed, Day of Week when Site is accessed, 
Transferred Bytes, Received bytes, Operation, and 
others. 

 
Detecting anomalies among Web resource requests is 

of interest to System/Security administrators responsible 
for the detection of security breaches, policy 
incompliance, misuse of System resources, vulnerability 
detection and other threats. 

 
During the designated ‘training period’, Anomaly 

Analyzer (the commercial manifestation of the 
algorithmic approaches discussed in this paper) 
calculates a set of ‘typical’ events (a baseline). Some 
elements of the training sample include: 

 



  

 
 
In practical use on large sets of actual data gathered 

from the networks, Anomaly Analyzer detected several 
events that represent ‘unusual activity’ for Web 
PROXY models. The table below indicates the event’s 
deviation (metrics) value and the combination of 
variables that most influenced the event’s classification. 
The most unusual events appear on top and are 
represented by a lower metrics value (0.145006197). In 
the sample below, Anomaly Analyzer indicates that the 
Day, resource accessed, and the volume of transferred 
bytes variables contributed most to the event’s deviation 
from normal. 

 

 
 
These events deviate measurably and significantly from 
the baseline established by Anomaly Analyzer. In this 
example, the deviations could represent a violation of 
system use policy. Anomaly Analyzer provides the 
security administrator an ability to detect this activity 
without the necessity of an explicit pre-configured 
rules-based mechanism. It provides security, 
compliance and system assurance practitioners with a 
more comprehensive capability to review large volumes 
of data and more effectively pinpoint and address 
potential system threats.  
 

Example 2. In this case, anomaly analysis was 
performed using the Adaptive Security Analyzer on a 
database of Web Server (Microsoft IIS) events. 
Elements of ‘input space Ω’ have similar variables to 
Web Proxy example: DATE-TIME, Day of Week, Web 
PAGE (Site) requested, Processing Time, Transferred 
Bytes, Operation, and others.  
 

For this example, the “Typical set of training sample 
events” included: 

 

 
 
From the data in the table above, it is clear that access to 
SharePoint portal is ‘typical’ for this organization. Once 
other actual events were compared to the training 
sample, Adaptive Security Analyzer indicated that the 
following events most deviated from the normal 
baseline. 
 

 
 

The most unusual events (metrics value 0.112251081) 
represent a well known web server exploit. The 
algorithm enabled the detection and anomaly 
calculation to be performed on a dual-processor 3.2 
GHZ server within a period less than 1.5 hour. The size 
of the database queried was over 50 Gigabytes. 

IX. CONCLUSION 
Adaptive, machine-learning approaches, such as 

those described herein can help improve and expand the 
value of anomaly intelligence applications (for 
enterprise security and other challenges). 

 
The approach presented herein is an alternative to 

many common methods of support vector machines 
algorithms. It was conceived and implemented to enable 
the analysis of anomalous events to be performed 
adaptively, and with progressively improved accuracy 
and performance.  
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