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A New Method for the Evaluation of Electric Conductivity
in Metalsy}

By S. F. EDwARDS
Department of Mathematical Physics, University of Birmingham

[Received May 23, 1958]

ApsTRACT
A method is developed which allows the evaluation of the closed formal
expressions for electrical conductivity which have recently been developed
by several authors. The case of a random set of scatterers is treated in
detail and the formal solution made to yield directly the solution to the
Boltzmann equation. A brief mention of the application of this method to
liquids and alloys is made.

§ 1. INTRODUCTION
RECENTLY it has been realized by several workers (Nakano 1956, Kubo
1956, Kohn and Luttinger 1957, Greenwood 1958), that the electric
conductivity in, say, a metal can be written down in a closed formal
expression, without going through the intermediate form of deriving a
transport equation, and moreover these closed forms are exact. The
usual derivation of a transport equation (cf. Peierls 1955) is rather limited
in its applicability and cannot in any simple way be extended to the cases
of alloys and liquids etc., and moreover, even where it is usually used, it
is not at all clear (see e.g. Peierls 1955, p. 123) that there are not temperature
dependent corrections which would entirely invalidate the usual solution.
Now the formal exact solutions avoid all this, but carry the difficulty
that they are still in a rather abstract form, and it is not clear how they
are to be evaluated. This paper is concerned with the evaluation of
these formulae, and will show that they can readily give the same result
as the usual transport equation where the latter has been assumed to be
correct, and thus dispose of the possibility of temperature dependent
corrections. The use of the exact formulation in new problems will only
be very briefly mentioned in this paper, and since the present object is
only to illustrate the method, the simplest problem, that of the conductivity
of electrons scattered by a random set of scattering centres, will be
discussed.
§ 2. FORMULATION OF THE PROBLEM

The starting point will be the formula of Greenwood and Peierls, which
states that the conductivity tensor is given by

g,"=-—27re2ﬁva"vmn"S(En—E’m)a—%f—, e Y,
n,m n

1 Communicated by Professor R. E. Peierls, C.B.E., F.R.S.
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On & New Method for the Evaluation of Electric Conductivity in Metals 1021

where v,,,# is the matrix element of velocity, f the electron distribution
function, and the 8 function is to be understood in the sense that the
limit E,—~E,, is taken after the system is considered so large that always
there are many levels between £, and Z,. This form as it stands is not
suitable for computation, so it is rearranged by first writing it out in full :

A2 g o, *
= = 1 [ al) 5 [t 2y )

Introduce units so that (2m/%42)~Y2=1, then

3 vuntrmn’= = (57) 3 [[ [ 32 thnWha ) 51 Mt}
x 8(x" —y)8(y’ —x) d%x d3y d3x’ d3y’. B )]
Now Dyu(@)g,(2')0(E—~E,) is a Green function, the solution of the
hqmoggneous Schrodinger equation. If the Sehrodinger equation for
is
/ (H=EW=0 . . . . . . . . @&
and the Green functions @,, G_ are given by
(H-—EB+ie)G (x,2')=8(x—2)
(H—E —ie)Q_(z,2')=8(x—a') } ®)

where € is an infinitesimal quantity used to define the contour defining
the G, G_, then

G 7) = S, @ ) E =B, +ie . . . . (8)
G5, %)= Sha@W @ BBy —ie) . . . . . (])

From these the sum and the difference can be made
G~ G =2m3 (), * (' )O(E - E,)

=20 . . . .. ... .. ()
G.,. +G_ = 27”’Pz¢‘n(x)¢n*(x')(E - En)_l
=il . . . . 9

P standing for prineipal part.
In the absence of potentials these functions are just

(47,.1.)—1 ei\/(Er)’ (w)—l e~ (Er)’ 5(47,.2,')—1 sin \/(ET),
#{4m%r)~1 cos v/ (Br), (r=|X =Xp, .. .. (10)

assuming that one already is dealing with an infinite system, i.e., a
continuum of energy so that the sums over » become integrals. So if @
is used for the difference of G, and G_, (8) the sine like function, and also

Sher: “chap01” — 2004/9/11 — 13:06 — page 12 — #3
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1022 S. F. Edwards on a New Method

we now specialize to the case of a diagonal o, we have

o= g(S"Te) 3 [[[] @ w)i20,)@6n(w 412y,

% 8(E, — Ep)(0f[0E,)8(x' —y)oly’ —@) Pa Py diz’ d%y’ . (11)
where G, (z,2’) is G(E,;z,2’). The problem now is to find G and f in the
presence of the scattering potential, and finally to average o over all
configurations of this potentialt. It is convenient to express this in the
following way: the Schridinger equation is now

(V2-E tie+ V(x)G, (,2)=8(—2'), . . . (12)
where
Vx)=ux—-X,) . . . . . . . (13}

X, being the positions of the scattering centres, and u the potential they
exert on the electron. It is convenient to use the Fourier transform of
this potential, defining

p=Xe e, L (14)

L2

V()= J u(k)e"p ¥ d%. . . . . . . (15)

Now if the X, are random, it can be shown by standard probability theory
that the distribution function for the p’s is

Plp)=texp| - [[ Rk ipsy @k @)
_ j J J’ j QK, by m)pupyprpen Ak 4% d¥LdPm, — .. ] ’
R(k,j) = N-38(k + ) + O(N %)
Qs jy Iy m)=N-3 (2_{1> [8(k+ j+ 1+ m)—335(k+)5(1 + m)] +O(N-3)

perm

(16)
where N is the total number of scatterers, and ¢ the normalization to give
total probability unity. When N is large, this can be used with ¥ running
over the whole continuum of % space. So we reach the final formula

o= %(i";_"s) [+ [ €P((06, @208, @G w1108,

x 8(E, — B, )of/0E,)8(x—y')8(y — ') ddx d3y d®x’ d®y’ I dp, dp, *. (17)
This form has the great advantage that it is essentially the same form as
that of electrons interacting with the quantized electromagnetic field,
and so techniques for evaluating it are already in existence. Moreover,
there are none of the divergence problems of electrodynamics here and the
various approximate techniques of electrodynamics can be applied with
confidence.

+The meaning of the averaging is discussed in detail by Kohn and
Luttinger (1957).
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§ 3. EvaLvaTion

The essential difference between (1) and (17) is that the averaging over
the scatterers can be carried out before the integrations over coordinates
and allows manipulations which are meaningless when applied to (1).
Although one can, on the basis of (17), derive integral equations for the
average of G(z,2’), G(y,y’), it is simplest to consider the perturbation
expansion of the (s, from which the structure of the integral will become
clear. However, one should emphasize that there is no need to approach
the evaluation by a perturbation approach and the results to be obtained
below can be got directly.

Consider firstly a simpler problem, that of obtaining the average of
just one G alone. This is the difference of the averages of G, and G_,
which are more convenient to consider. Now in perturbation theory one
can write, using G@ for the p-independent functions (10),

G (z,2) =G, O, 2')— ” G, O, y)u(k) e*vp *G Oy, z') d®y d3k

+[[[[ 6.9y e, 20,9y, 2yu(l) o *G., 0%, )

xd¥ydizdkd¥+ ... . . . (18)
Upon averaging, using brackets for average value
=0 . . . ..o L. s s (1
pyy=Nok+j) . . . . . . . . ... (20
(pkpiplpm)=N223(k+i)5(|+ m)+ No(k+j+14+m) . . (21)
perm

and so on, neglecting terms relatively of order N-1. This can be obtained
directly of course, without using the expansion (16). This gives

(G+(x, $I)> = G_,_(“)(a:, It’) _I:J'J’J‘ NG+(0)((U, y) eik(Y-z)uZ(k)

x @ Oy, 2)0, O o )Py Pz + .... . . (22)

This is conveniently expressed in diagrams, which are slightly different
from those of electrodynamics. Consider G(z,2') before averaging, draw
a full line for every G, and a dotted line for every up. Then the expansion
of G(z,x') is written

snm amar

e o o dew

+. oo (23)
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1024 S. F. Edwards on a New Method

The averaging process joins the loose dotted line ends up, and places the
value NV at a join of two, N at a join of four, and so on. Mark these joins
by a large dot. Then the average appears as

R
.o ..®-.
: (e)
.. Y X
R S ! 1
R i v
- : i 2 ¥ ] see
) + ) +
N
A i @)

These diagrams can readily be labelled in configuration or momentum
space

el ST S ST
. " ’-’ q b
’ ' . «
i , : H (25)
X y z X/ P P-q P

the dot having significance only when diagrams like the last in eqn. (24)
appear which incidentally has no analogue in electrodynamicst, which
is effectively the case of IV infinite. Now concentrate attention upon the
series

-+ : B + :" H P4 (26)

This is a simple expansion of the series

(G+<°>“(p>—N f G#@(q)u*(p—q)dsqyl' e

In electrodynamic language the @, is Sy, the dotted line the vertex T,
the dot the photon Green function Dg.
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for the Bvaluation of Eleciric Conductivity in Metals 1025
Since G, ©(q) = (27)~%(¢%— E + te)~* the integral can be written

1P [ GL0np -0 Pyt 7 [a - Byelp-0) da. ()
If now u is taken as isotropie so that 42 is u?(p2+ ¢ — 2pq cos ) this can be
written as 4 +¢B, where 4, B are real

A=}NPJ (®— B)y\w?(p®+q®—2pqoosf)d®qy . . . (29)

B=(2r)"%aN | 8(¢*— E)u*(p*+q2—2pgcosO)d’q. . . (30)
)

These can be expanded as series in p?—F so that this approximation to
{G')~1 ig in the form

(p*—F +iet+a,+ib + (p2—E)(ag+1b)+ ...) . . . (31)
where

@, =}em) NP [ (¢~ By (B + ¢~ 207/ (B) cos 0)3(p* ~ B) g dp  (32)

by= N+/E(87)- f sinBd9u(2B(l —cos0)). . . . . . . . (33)

%2 is in fact the differential scattering probability in Born approximation,
wo(6) = (472227 u?(2E(1 — cos §))

by = (2m)-8+/(BYAN j sinfwy(8)ds. . . . . (34)

A rather more refined treatment is to expand not in terms of p2—F but
p2—E +a, +1tb, an important step in electrodynamics where only @, — E is
defined, but here it makes little odds as we are anyway taking all the a’s
to be small, and the effect of the terms a,, b, etc. will come out very small.
So it has been found that this series summed gives effectively a complex
displacement of the energy E

(G E)=G(E+8E) . . . . . . . (35
where (B +3E) 2= (B +ay +1ib;)12
o /B +(ay+ib,)[24/B
=B +i0. . . . . . . . . (36)

So in configuration space

(G y=(4ar)te=v@E¥=Tr  _ (37)
(cf. Bardeen 1956). If this calculation had been performed for G_ the
result would have been

(G )= (dmr)tetvE¥-Lr . . (38)

Now consider to what extent one can take the forms (26), (37) as

adequate approximations to the whole series. Consider first those terms
containing one dot only, in particular the series

. . 1,
. . ’ .

4 i R (39)
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This series is in fact building up the exact scattering of one electron by
one scattering centre, instead of its first Born approximation, and if
instead of taking the unit

in the series (26) one took all one dot diagrams one would just replace
the Born approximation scattering by the true differential scattering
cross section in (34), w(f). This can be important in strong interaction,
and this way of looking at it will be valuable if one can think of the
electron in strong interaction with the scattering centres one at a time,
as is usually considered to be the case. In a dense system, however, the
electron interacts with many centres at once, and one cannot disentangle
the scattering with one centre from that of all the others, i.e. the other
terms to be discussed below. Henceforward these diagrams will be
ignored except inasmuch as the differential scattering cross section can be
understood as the true one rather than Born approximation. Now turn
to the other terms in (24), in particular, say, (8) and (e¢). The electrical
conductivity based on the approximate sum (31) and further calculations
to be given below comes out to be of order I'%, i.e. inversely with the
square of the interaction. Terms like (8), (¢) and the higher terms, if
included, give a series in the interaction, but do not alter the first term
which will still dominate the calculation. To see this it is perhaps
simplest to look at G, in configuration space. The series which has been
considered so far (26) amounts to

(4arr)y LV EN-TT = (4 ) LV E (L 4 Ly + §L%2+ . . ) (40)
where L=iyVE ~+/E)-T. . . . . . . . (41)
The inclusion of terms like (8), (¢) etc. adds in terms so that in first order Lr
is corrected by a constant, in second order L% is corrected by a term
in 7, and so on, always a power of r less in any order, so that summing on
the basis of (31) one has

(GLy=(4nr)LeWVE-TDr(1 4 kr+kr2+...) . . . (42)

and, as will appear below, this affects the conductivity by second and
higher terms in %?

e~ O +0()+0(MY+0(TH+ ... . . . (43)

Thus (37) is a good basis for the evaluation of (G,) and hence, of
course, {G).

To summarize in a rather formal way the above discussion, consider
the identity

G4l 2')= 6,9, 2) - [[ 6,9, y) (k) & Oy, =) diy d%

+{[[] 6.9.9) eugap & Oy (i) 676 e,
xBydedkdy. . . . . . . . . . . . (44)
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Then
(G(z,7))=0,9(z,z) ~ j j 6,0z, ) evu(i)(p, )G, O(y, z') d¥ &%

+ [[[] 6.9, 9) 110 (80w, 2t oG, )

xBydzdd . . . . . . . . . . . (45)
=69, 2)+ [[[[ @9 ypigu(j) e +6, 0, 2)
X {pup)G(2,2")) dPy d3z d*k d% Y ()]
= 0,0, ')~ J J GO, y)2(y, 2)(G (2, 2") ydPy d%, . (47)
which defines 2(y,z). Then symbolically
(GO 1 +SKE)=8. . . . . . . (48)

The discussion above has shown that when the interaction is weak, an
evaluation of £ by perturbation theory is adequate. So far all the
discussion has concerned (G,), but (17) involves the evaluation of
(G,'Q,'of[0E ), and the two G’s and the f will interfere. The dependence
of f upon the p’s in the averaging does not affect the answer in its leading
term, so it is ignored for the present. Since the problem is already being
considered for an infinitely large conductor the distinction between » and
m can be dropped at this stage. Consider at first the quantity
(G(x,2")(y,y’)). In terms of the diagrams, this consists of two full
lines, with dotted lines leaving and entering both, in particular, in
addition to the types of series (24) one also has types

1

® ¢ ° o« @
: H =y
(a) (b) (c)
Rt (49)

- Ali" * . \ v

- L 4 ¢
P :
Z kY H z

(f)

(d) (e)

Types (d), (f) clearly belong to the same category as those of (24, A) and
will be considered no further. Also disregard type (e) which is an jnter-
ference between type (x) and (B), and corresponds to the Lamb shift in
electrodynamics: it can readily be found to be small when the interaction
is weak. Of the remainder, types (@), (b) are again the first two of a simple
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series analogous to (B), (y) of (24). Assuming then that terms like (a),
(b) do not interfere with terms like (B), (y) one has the equation for (GG):

(G, v )y, y')) = (G, =) ) (F(y,¥'))
+N_[ J' J ((z, 2) Y Gy, w) yu2(k)

x e EW(Q(z, 2"\ (w,y') ) d*k d32dP*w, . (50)
or in the spirit of (48) the exact equation can be written symbolically in
terms of a generalized ‘ interaction > I

(@@ =(FNH+@HIKeF) . . . . (6])
and as in (48), by explicit calculation of the errors, one finds that I can be

evaluated by perturbation theory if the interaction is weak. The first
approximation, the sum of (a), (b) . . ., is then (51) with

I(a,ﬁ)=NJd8ku=(k)efk<¢—’>. R (-0}

The quantity required has 2’ =y, y' ==z, so let A be (GG) in this case.
Then if A is written in momentum space, the quantity required in (17) is,
where (Q is the total volume,

QJp.qA(p,q)d“pd"q S . ... 83)
where (52) becomes, putting
(EPIXH-p))=g(®) . . . . . . (54
A Q) =g(pI(p—a) + N [ gp)i(p—-s)A(s,q)d’s. . . (55)
Let jp.qA(p,q)d3q=K(p) B (1))
then
K(p)=p*9(p)+N j g(py(p—s)p-qA(s,q)dsd’qy . . . (87)

= p%(p)+2xN J g(p)u?(p® + 82 — 2ps cos 0) cos fsin

x K (8)s2dsdb. e e (568)
The fact that p.q=pgcosb,, effectively contributes pgcosd,, is seen
by writing all the quantities concerned in spherical harmonics, or perhaps

simpler by considering the series of which (52) is the sum, consisting of
terms like

P w1 " : 7 q
: : : '
ep-w  @p-n + ¢ @p-s @®p-q
: H H
- Pow
P -n 'y -q
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The integration over q with cosf,, leaves a cosf,, for the s integration,
and so right through the diagram, which is in effect (58).
Now g(p), apart from the displacement I' is just a funetion with
=+/E or more accurately p=+/E’. K(p) has essentially this same
feature, so to the accuracy that has been used so far, the solution of (58)

can be written down at once

. -1
K(p)=p%(p) I:l —2=N j u2(2E (1 — cos 0)) cos fsin BJ q(8)82 ds:l . (59)

The integral of K can be nbtained by contour integration or by the
discussion below in equ .nions (64)—(66).

J-K‘(p)dap=-l¥,,1;—;‘ C e . ... (60)
=%"(r-r")-1 .. (8
where
I"=(Sw)—lNﬁ,J.ua(2E'(l—cosﬁ))sinOcosBdB .. (62)
or in the notation of (34)
IV = §(2m)~SNF j cosfsinOwy(0)ds. . . . . (63)

It is perhaps useful to look at (60) in configuration space. Without
scattering the conductivity is

o= = (%82)(2”)4ZJ mn\/E’r Sm‘/Ez(af/aE)d"‘f (64)

This diverges at large distances where the integral over r looks like

~j°°dr.

When the scattering is introduced, the term sin4/(E)r is replaced by
sin4/(E'yre”T” and also the averaging process introduces the cross
term el'" giving altogether, at large distances,

Je—zﬂ‘—l""dr Y (35))

o=Qe(12.2(T=T"). . . . . . . (66)

This, of course, is the usual answer (cf. Peierls 1955, eqns. (6.16),
(6.20)); Peierls w is our Nw/Q, in particular for free electrons where
of/0F is approximately a & function at the Fermi surface, so integration
over the Fermi surface gives the final result

a=e9-n,(4mns J 'w(B)(l—cosB)sianB)_l L. (e

where n, is the density of electrons, and n, the density of the scatterers.
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The dependence of f upon the configuration of scatterers can be
expressed by expanding it in a power series in the density of scatterers
and adding in the terms so produced. These corrections are of the same
order as those in (43), and since they are well defined at 7'=0, do not
involve the temperature in any critical form.

It is worth remarking that in averaging over all configurations, one
includes those configurations for which the conductivity is infinite, for
example an ordered lattice system. The method of calculating presented
here automatically gives these configurations negligible weight, but a
rigorous treatment would require a more careful treatment.

§ 4. DiscussioN

It has been shown that the exact formal solution of the equation of
motion can be evaluated to give the usual solution of the Boltzmann
transport equation, and within the framework of weak interaction it is
quite easy to write down higher order corrections, though of course these
rapidly become very numerous. Of more interest is the possibility of
evaluating formula (11) in cases where perturbation theory is not
applicable. An example, which is still far from being the most general
state of affairs but is of physical interest, is the case when the distribution
of scatterers (which may be lattice vibrations, etc.) is known through a
partition function, and the electrons still interact weakly with the
scattering centres. This is a model of a liquid or an alloy. For a liquid,
eqns. (20), (21) and so on, are not satisfied, and the averages can only be
found from the partition function. If it could be assumed to & reasonable
degree of approximation that

Guorppnty=SFR=DP(=m) . . . . (69)

where
Fk-j)={pp*) - . . . . « . (69)
then one could immediately write down the conductivity by replacing
Jw(ﬂ)(l—cos())sin()df) N ( ()
by
J F(2E(1 —cos )yw(f)(1~cosf)sinfdd . . . (71)

in (67). Since one is dealing with smooth averages this approximation
may be adequate for this problem, even if it is not so for the theory of
liquids as a whole. In general, however, the conductivity will involve not
only the two body correlation function F, which is available experimentally,
but the whole partition function, which at present is not available. There
are models available for alloys, however, in particular for super lattice
forming alloys and this problem is being considered further. Methods
are in existence for evaluation of formulae like (17) in cases where
perturbation methods are inapplicable, but a discussion of these will be
left until they have been successfully applied,
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