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Learjet 24 
 

 

Summary: 

Stability includes how an aircraft responds to changes in its position such as 

angle of attack, slip or bank. Control refers to the ability to initiate and sustain 

changes in same parameters. That has to be recognised the character of an aircraft 

opposite to change of its position for a securefull flight. 

In this project, not only longitudinal stability of Learjet 24 business jet is 

investigated but also given some information about it. Some supported materials 

and computer languages / softwares used to do job such as Mathematica and 

MatLab.  

 

There is a conclusion part at the last chapter to see the summary of results 

added to conclusion. Have a good read! 
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1. Basic Information for Learjet 24 Aircraft 

1.1 History 

Mention the phrase “private jet” to the average person and one word 

immediately pops into mind: Lear. Since its first flight in 1963, William P. Lear Sr.'s 

innovative aircraft, built to replicate the performance and amenities of a 

commercial airliner, has been tantamount with executive business travel.  

One of the inventors of the 8-track audio tape, the holder of 150 aviation-

related patents and a high school drop-out, Lear abandoned his retirement in 

Switzerland to establish the Swiss American Aircraft Company (SAAC). In 1959, 

SAAC began work on Lear's latest invention—a private luxurious jet aircraft with 

the flexibility to fly passengers and freight in and out of small airports around the 

world. Lear undertook his bold gamble without the benefit of a market survey to 

evaluate the consumer demand for such an aircraft, relying instead on pure 

intuition. 

  Inspired by a single-seat Swiss strike fighter aircraft, the FFA P-16 (flown as 

a prototype in April 1955 but never put into production), Lear recruited a group of 

Swiss aircraft designers and engineers to transform the fighter's wing and basic 

airframe design into the cornerstone of a revolutionary aircraft—originally 

designated as the SAAC-23 but soon renamed as the Learjet 23 Continental. 

  Problems with suppliers and production tooling in Switzerland compelled 

Lear to shift assembly of the new aircraft to Wichita, Kansas (under the new name 

of Lear Jet Industries), where the prototype Learjet 23 made its first flight on 

October 7, 1963, from Wichita's Mid-Continent Airport, nine months after work had 

begun on the project. The original Learjet accumulated 194 hours of flight time in 

167 test flights until it was destroyed in June 1964 when it crashed at takeoff with 

a Federal Aviation Administration pilot at the controls. The cause of the accident 

was determined to be pilot error—retraction of the jet's lift spoilers was 

overlooked. However, a second prototype Learjet 23 soon received formal FAA 

certification on July 31, 1964. 
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The Learjet 23 became the first small jet aircraft to enter mass production 

as well as the first to be developed and financed by a single individual. Chemical 

and Industrial Corporation of Cincinnati, Ohio, took delivery of the first production 

Learjet on October 13, 1964, one year after its initial flight.  

  The undisputed marketing success of the Learjet 23 spurred development of 

a new aircraft with improved low-speed handling characteristics, coupled with 

increased range, size, and speed. Approximately 105 Learjet 23s were built from 

1963 to 1966 until replaced by the improved Model 24 (the 150th Learjet built), 

which made its debut in March 1966. 

1.2 Properties of Learjet 24 

The all-metal fuselage of the Learjet 24 was a flush-riveted semi-

monocoque design. It was equipped with wingtip fuel tanks that added 364 extra 

gallons (1,378 liters) of fuel capacity and featured the added attraction of a "T-tail" 

configuration.  

 

  Figure 1.1: Sheme of Learjet 24 
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The high cruising altitude and long endurance flight capability of the Learjet 

also made it an ideal aircraft for target towing, photo-surveying, and high-altitude 

mapping. A number of foreign Air Forces, including Bolivia, Ecuador, Argentina, 

Mexico, Peru, and Yugoslavia, modified the corporate jet for military missions. 

 

Picture 1.1: A Learjet 24 

  The Learjet, both as a technological innovation and a commercial success, is 

widely recognized as a trailblazer in the business jet industry. Few products, before 

or since, enjoy its instant name recognition. 

General Characteristics of Learjet 24 

• Cabin Height (Feet) 4.3 

• Cabin Width (Feet) 4.9 

• Cabin Length (Feet) 9 

• Cabin Volume (Cubic Feet) 192 

• Door Height (Feet) 4.2 

• Door Width (Feet) 3 

• Baggage Volume Internal (Cubic Feet) 40 

• Baggage Volume External (Cubic Feet) n/a 

• Seats - Executive 5 

• Maximum Take-off Weight (lbs) 13500 

• Maximum Landing Weight (lbs) 11880 

• Basic Operating Weight w/crew (lbs) 7830 

• Usable Fuel (lbs) 5628 

• Payload with Full Fuel (lbs) 342 
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• Maximum Payload (lbs) 3570 

• Range - Seats Full (nm) 850 

• Maximum Range (nm) 1100 

• Balance Field Length (feet) 4300 

• Landing Distance (Factored) (feet) 5325 

• Rate of Climb - ALL Engines (feet p/min) 6800 

• Rate of Climb - One Engine Out (feet p/min) 2100 

• Max Cruise Speed (ktas) 475 

• Normal Cruise Speed (ktas) 439 

• Long Range Cruise Speed (ktas) 410 

• Service Ceiling at Maximum Weight (feet) 45000 

• One Engine Inoperative Service Ceiling at Maximum Weight (feet) 28500 

• Number of Engines 2 

• Engine Model CJ610-6 

• Engine Manufacturer General Electric 

• Hover In Ground Effect (feet) n/a 

• Hover Out of Ground Effect (feet) n/a 

 

Table 1.1: General Characteristics for Learjet 24 

 

Table 1.2: Non-dimensional Coefficients for Learjet 24  
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2. Introduction to Stability and Control 

 

When it is talked about a flight with an aircraft; it includes many topics as a 

subset of broad range of challenging topics. Because an aircraft is not a rigid body 

and also uses some natural forces to lift in atmosphere. To fly securely, is a 

complex job and not very simple. It is really important to obtain information and 

use in all design phases about; aerodynamic performance, engines, structural 

issues, vehicle’s dynamic and its control, and all issues contained by Flight 

Mechanics.  

 

Also a vehicle design envelops all of these more basic issues. It involves 

integrating knowledge in each of the four subject areas in order to synthesize a 

complete vehicle which satisfies prescribed performance requirements.  

This topic is also referred to as flight mechanics. Flight mechanics comprises three 

major subtopics such as; Performance, Stability and control, Aeroelasticity. 

 

As sum up, each of these subtopics is studied individually although they are 

combined to each other. While studying aircraft performance, it is directly related 

via the parameters like range, take-off and landing distance, and trajectory 

planning (mission profile) for a given aircraft. This involves determining the forces 

necessary to achieve a given path of motion, assuming that these desired forces 

can be generated. As a result, one typically models the aircraft as a point mass 

subject to three “control” forces: Lift, Side force, and Thrust.  

 

While studying stability and control, lift and side forces are not true control 

forces. Actually, these forces are outcome of the aircraft’s guidance referring to the 

air flow. For instance, the vehicle must attack with an angle to provide a lift force. 

Stability and control, researches how the vehicle’s orientation, or attitude changes 

with moments generated by the control surfaces typically generated by the pilot or 

another systems attached to control. Moreover, control relates to a pilot’s 

interaction with the aircraft and observes, how effective the various actuators are 

at forcing the aircraft into a desired motion and how much effort is required of the 

pilot to generate the necessary actuator commands? 
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When discussing flight of atmospheric vehicles, the term “stability” refers to 

a property of a special class of motion known as steady motion. For a vehicle in 

steady motion, all components of translational and angular velocity are constant. A 

special case of steady motion is equilibrium flight, in which the vehicle acceleration 

is zero. Note that these two definitions are distinct. Steady, wings-level flight at 

constant altitude is equilibrium flight. A horizontal turn at constant radius and 

velocity is not equilibrium flight; the constant yaw rate turn requires a constant 

centripetal acceleration. Both flight conditions are steady motions, however. 

Stability (or instability) is a property corresponding to a steady motion.  

 

3. Longitudinal Stability  

 
3.1 Introduction  

Longitudinal stability refers to stability around the lateral axis. It is also 

called pitch stability. Longitudinal stability depends on the location of the center of 

gravity (c of g.) This is the most important thing to realize as a pilot. If the aircraft 

is loaded within the approved c of g envelope it will have positive static longitudinal 

stability. That is critical, because an aircraft with negative longitudinal stability 

would be impossible to fly for more than a few moments.  It would require 

tremendous concentration  to avoid over controlling such an aircraft.  

Figure 3.1: Longitudinal Stability 

Just as with directional 

stability, longitudinal stability 

depends on the weather 

veining. The only complication 

is that for most aircraft there 

are two wings producing lift 

affecting the longitudinal 

stability, whereas the 

directional stability depended only upon one wing, the fin. 
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Additionally, longitudinal stability is compromised by the fact that the main 

wing must be close to the c of g since net lift must act opposite to weight. 

Conversely directional stability was easier to achieve because the fin was placed 

well behind the c of g and was not required to produce any force under normal 

flight conditions. 

Figure 3.2: Longitudinal Stability Effects over 

Aircraft 

From the above you can easily 

guess that the stabilizer must be a major 

contributor to longitudinal stability. This is 

in fact the case. Most aircraft would be 

completely unstable without the horizontal 

stabilizer. The stabilizer provides the 

same function in longitudinal stability as 

the fin does in directional stability. When 

the angle of attack changes it tends to 

pitch the aircraft back to its original angle 

of attack. The main wing, on the other hand, may be stable, or unstable, 

depending on the exact location of the CG. 

3.2 Obtaining the Dimensional Parameters 

Table 1.2 shows that, it is obtained non-dimensional parameters forthe Learjet 24 

from the references. However, it will be used the dimensional parameters for it. So 

it has to be calculated by the formulas taken from references. It is used 

Matematica software to obtain them, as showed below: 

Xu = −
q̄ ∗ S

m ∗ U1
∗HCDu + 2 ∗ CD1L

  = -0.0193527 

XTu =
q̄ ∗ S

m ∗ U1
∗HCTxu + 2 ∗ CTx1L

  = -0.000339521 
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Xα =
q̄ ∗ S

m
∗ H−CDα + CL1L

   = 8.42805 

Xδe = −
q̄ ∗ S

m
∗ CDδe

    = 0 

Zu = −
q̄ ∗ S

m ∗ U1
∗HCLu + 2 ∗ CL1L

  = -0.138072 

Zα = −
q̄ ∗ S

m
∗ HCLα + 2 ∗ CD1L

   = -452.586 

Zα� = −
q̄ ∗ S ∗ c̄

2 ∗ m ∗ U1
∗ CLα�

    = -0.871438 

Zq = −
q̄ ∗ S ∗ c̄

2 ∗ m ∗ U1
∗ CLq

    = -1.86171 

Zδe = −
q̄ ∗ S

m
∗ CLδe

    = -35.2446 

Mu =
q̄ ∗ S ∗ c̄

Iyy∗ U1
∗ HCMu + 2 ∗ CM1L

  = 0.000851323 

MTu =
q̄ ∗ S ∗ c̄

Iyy ∗ U1
∗ HCMTu + 2 ∗ CMT1L

  = 0 

Mα =
q̄ ∗ S ∗ c̄

Iyy
∗ CMα

    = -7.37723 

MTα =
q̄ ∗ S ∗ c̄

Iyy
∗ CMTα

    = 0 

Mα� =
q̄ ∗ S ∗ c̄2

Iyy ∗ 2 ∗ U1
∗ CMα�

    = -0.399271 
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Mq =
q̄ ∗ S ∗ c̄2

Iyy ∗ 2 ∗ U1
∗ CMq

     = -0.923686 

Mδe =
q̄ ∗ S ∗ c̄

Iyy
∗ CMδe

    = -14.2934 

3.2 Obtaining the Linearized Equation of Motion (EoM) in 
Laplace Form 

 

For the EOM of aircraft, it is necessary to use power of Laplace Transforms.  

 

(Eq. 3.1)  

 

EOM have 5 aircraft motion variables: u, θ, α, w, q, δe however there are only 3 

equations. It is necessary to reduce down the variables number. It will be used the 

dynamic equations of kinematic relation and the approximation for angle of attack,  

α to reduce to the three motion variables of α, u, θ.  

 

q qθ θ= =& &&&  

1 1

1

w
w U w U

U
α α α≈ → = ⇒ = &&  

 

Therefore, aircraft motion variables are reduced to α, u and θ. These should 

be thought of as the outputs of system of differential equations. With zero initial 

conditions, the Laplace transform of Eq.3.1 yields:  

 

1( ) ( ) cos ( ) ( ) ( ) ( )
u eu T e

su s g s X u s X u s X s X s
α δ

θ α δ= − Θ + + + +  

1 1 1( ) ( ) ( ) sin ( ) ( ) ( ) ( ) ( )
eu q e

sU s U s s g s Z U s Z s Z s s Z s s Z s
α α δ

α θ θ α α θ δ− = − Θ + + + + +
&

 

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
u eu T T q e

s s M u s M u s M s M s M s s M s s M s
αα α δ

θ α α α θ δ= + + + + + +
&
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Combining terms yields 

 

1( ) ( ) ( ) ( ) cos ( )
e ue u T

X s s X X u s X s g s
δ α
δ α θ= − − − + Θ  

1 1 1( ) ( ) [( ) ] ( ) [ ( ) sin ] ( )
e e u q

Z s Z u s U Z s Z s Z U s g s
δ α α
δ α= − + − − + − − + Θ Θ

&
 

2( ) ( ) ( ) ( ) ( ) ( ) ( )
e ue u T T q

M s M M u s M s M M s s M s s
αδ α α

δ α θ= − − − + + + +
&

 

 

 
δe ( elevator deflection) terms oved to the left side, because δe is common 

forcing function ( or input) for each of the three differential equations. In matrix 

form, this yields:  

 

 

i
k
jjjjj
Hs−Xu −XTuL −Xα gcosΘ 1

−Zu @s HU1−Zα�L−ZαD @−HZq +U1L s +gsinΘ 1D
−HMu+ MTuL −@Mα� s + Mα + MTαD Hs2− Mq sL

y
{
zzzzz 
i
k
jjjjj
u HsL
α HsL
θ HsL

y
{
zzzzz =

i
k
jjjjj
Xδe
Zδe
Mδe

y
{
zzzzz δe HsL

 

 

 

In terms of transfer functions  

 

i
k
jjjjj
Hs−Xu−XTuL −Xα gcosΘ1

−Zu @s HU1−Zα�L−ZαD @−HZq+U1L s+gsinΘ1D
−HMu+ MTuL −@Mα� s+ Mα+MTαD Hs2−Mq sL

y
{
zzzzz 
i

k

jjjjjjjjjjj

u HsL
δe HsL
α HsL
δe HsL
θ HsL
δe HsL

y

{

zzzzzzzzzzz
=
i
k
jjjjj
Xδe
Zδe
Mδe

y
{
zzzzz
  

They can be written as below with applying Cramer Rule: 
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u  HsL
δe  HsL =

DetAi
k
jjjjjj
Xδe

− Xα g

Zδe
Hs ∗ U1 − ZαL − U1 s

Mδe
− HMα

� s + MαL s2 − Mq s

y
{
zzzzzzE

DetAik
jjjjj

Hs − Xu − XT u
L −Xα g

− Zu Hs ∗ U1 − ZαL −U1 s

− HMu + MT u
L −HMα

� s + MαL s2 − Mq s

y
{
zzzzzE

  

(Eq. 3.2a) 

 

α HsL
δe HsL =

DetAi
k
jjjjjj
Hs − Xu − XTu

L Xδe g

−Zu Zδe −U1 s

−HMu + MTu
L Mδe s2 − Mq  s

y
{
zzzzzzE

DetAik
jjjjj
Hs − Xu − XTu

L −Xα g

−Zu Hs ∗ U1 − ZαL −U1 s

−HMu + MTu
L −HMα

� s + MαL s2 − Mq s

y
{
zzzzzE

 

 

(Eq. 3.2b) 

 

θ HsL
δe HsL =

DetAik
jjjjj
Hs − Xu − XTu

L −Xα Xδe

−Zu Hs ∗ U1 − ZαL Zδe

−HMu + MTu
L −HMα

� s + MαL Mδe

y
{
zzzzzE

DetAik
jjjjj
Hs − Xu − XTu

L −Xα g

−Zu Hs ∗ U1 − ZαL −U1 s

−HMu + MTu
L −HMα

� s + MαL s2 − Mq s

y
{
zzzzzE

 

(Eq. 3.2c) 

 

Table 3.1: Transfer Functions 

 

The characteristic equation is;  Hs2 + 2 ζSP ωNSP s + ωNSP
2L Hs2 + 2 ζPH ωNPH s + ωNPH

2L
= 0 
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3.3 Obtaining the Transfer Functions and Natural Frequencies 
 

( )

( )e

u s

sδ
 Using the Equation 3.2a, it is found:  

199768.+ 229678.s− 297.043s
2

45.1686+ 122.884s+5426.41s2 + 1361.64s3+ 677.871s4  

 

In simplified form  

 

−
0.4382H−774.084+ sL H0.868796+ sL

H0.00837566+0.0206935s+ s2L H7.95556+ 1.988s+ s2L  

 

( )

( )
e

s

s

α

δ
 Using the Equation 3.2b, it is found: 

−64.4613− 190.671s− 9683.25s
2
− 35.2446s

3

45.1686+ 122.884s+5426.41s2 + 1361.64s3+ 677.871s4  

 

In simplified form  

 

−
0.051993H274.725+ sL H0.00665746+ 0.019668s+ s

2L

H0.00837566+0.0206935s+ s2L H7.95556+ 1.988s+ s2L  

 

( )

( )
e

s

s

θ

δ
 Using the Equation 3.2c, it is found: 

−139.155− 6399.5s− 9675.s
2

45.1686+ 122.884s+5426.41s2 + 1361.64s3+ 677.871s4  

 

In simplified form  

 

−
14.2726H0.0225107+ sL H0.638937+ sL

H0.00837566+0.0206935s+ s2L H7.95556+ 1.988s+ s2L  
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Hs2 + 2 ζSP ωNSP s + ωNSP
2L Hs2 + 2 ζPH ωNPH s + ωNPH

2L= 0 

 

ωNSP =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7.955557384078312`   = 2.82056 

 

ωNPH =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
0.008375658050738992`

  = 0.0915186 

 

 

ζSP =
1.988003267288063`

2 ωNSP    = 0.352413 

 

 

ζPH =
0.020693521017890276`

2 ωNPH   = 0.113056 

 

 

 

3.4  Short Period Approximation 
 
3.4.1  Obtaining the formulas for Short Period Approximation 

 
It must be looked at a two degree of freedom approximation to gain inside 

into the stability parameters and derivatives that influence the dynamic 

characteristics of the short period mode. This is a solution in which the motion is 

constrained to two motion variables rather than three. Recalling discussion on the 

short period mode, it is maden the simplifying assumption that u remains constant 

and can be removed from above equations. With this assumption and the 

elimination of the x force equation (which is assumed to have a negligible affect if 

u is approximately constant), it is retained z force equation and the Pitching 

Moment equation along with the motion variables  α and θ.  

 

ikjj
@s HU1−Zα�L−ZαD @−HZq+U1L s+gsinΘ 1D
−@Mα� s+ Mα+MTαD Hs2−Mq sL y{zz J

α HsL
θ HsLN=JZδeMδe

N δe HsL
 

 

It is assumed that:   because they are small enough to be 

negligible when compared with others. So; the new form of matrix is: 
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J sU1−Zα U1 s

−@Mα� s + MαD s2 − Mq s
N Jα HsL

θ HsLN =J Zδe
Mδe

N δe HsL
  

 

The characteristic equation is: 

HsU1−ZαL Is2− Mq sM −HU1 sL H−@Mα� s+ MαDL =0
 

Via Cramer Rule; the transfer functions α(s) / δe(s)  and θ(s)/ δe(s)  are: 

 

α HsL
δe HsL =

Zδe s+ HMδe U1 −Mq ZδeL
U1 Js2 − JMq+ Zα

U1
+ Mα�N s+ J Zα Mq

U1
− MαNN

 

(Eq. 3.3a) 

 

θ HsL
δe HsL =

HU1 Mδe +Zδe Mα�L s+ HMα Zδe−Zα MδeL
sU1 Js2 −JMq+ Zα

U1
+ Mα�N s+ J Zα Mq

U1
− MαNN

 

(Eq. 3.3b) 

Table 3.2: Transfer Functions for Short Period Approximation 

Natural Frequency and Damping Ratio can be approximated as: 

 

ωnSP�
�$%%%%%%%%%%%%%%%%%%%%Zα Mq

U1
− Mα

                             

ζSP��
−JMq+ Zα

U1
+ Mα�N

2 ωnSP  

 

3.4.2  Obtaining the numerical results for Short Period Approximation 

 

( )

( )
e

s

s

α

δ
 Using the Equation 3.3a, it is found:  

−9709.17− 35.2446s

677H7.99473+ 1.99147s+s2L  
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In simplified form      

 

−14.3415− 0.05206s

7.99473+ 1.99147s+s2  

 

( )

( )
e

s

s

θ

δ
 Using the Equation 3.3b, it is found: 

−6208.98− 9662.54s

677sH7.99473+ 1.99147s+s2L  

 

In simplified form  

 

−9.17132− 14.2726s

sH7.99473+ 1.99147s+s2L  

 

Characteristic Equation; 

HsU1−ZαL Is2− Mq sM −HU1 sL H−@Mα� s+ MαDL =0
 

677H7.37723+ 0.399271sL s+ H452.586+677sL H0.923686s+ s
2
L= 0 

In simplified form 

sH5412.43+ 1348.23s+ 677.s
2
L = 0  

 

Short Period Natural Frequency: 

 

ωnSP�
�$%%%%%%%%%%%%%%%%%%%%Zα Mq

U1
− Mα

 = 2.82749 
 

Short Period Damping Ratio: 

 

ζSP��
−JMq+ Zα

U1
+ Mα�N

2 ωnSP = 0.352162 
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3.5  Phugoid Approximation 
 

3.5.1 Obtaining the formulas for Phugoid Approximation 

 

For the Phugoid approximation, it is assumed α is constant with u and θ (or 

q) as the motion variables. It can be eliminated the α(s) terms and the moment 

equation to yield two equations with two motion variables. 

 

JHs−Xu −XTuL gcosΘ 1

−Zu @−HZq +U1L s +gsinΘ 1D N Ju HsL
θ HsLN =JXδe

Zδe
N δe HsL

 

 

It is assumed that 
Xζe = Zq =Θ1��0  and then the new form of equation comes 

to: 

JHs−Xu −XTuL g

−Zu U1 s
N Ju HsL

θ HsLN =J 0

Zδe
N δe HsL

 

The characteristic equation becomes  

−U1 
ikjjs2− HXu+ XTuL s− Zu

U1
 g
y{zz =0

 

 

 

u HsL
δe HsL =

DetAikjj
Xδe g∗Cos@θ1D
Zδe H−HZq+ U1L s+g∗Sin@θ1DL y{zzE

DetAikjj
Hs−Xu − XTuL g∗Cos@θ1D

−Zu H−HZq+ U1L s+g∗Sin@θ1DL y{zzE  

(Eq. 3.4a) 

 

θ HsL
δe HsL =

DetAikjj
Hs−Xu − XTuL Xδe

−Zu Zδe

y{zzE
DetAikjj

Hs−Xu − XTuL g∗Cos@θ1D
−Zu H−HZq+ U1L s+g∗Sin@θ1DL y{zzE  

(Eq. 3.4b) 

 

Table 3.3: Transfer Functions for Phugoid Approximation 
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3.5.2 Obtaining the numerical results for Phugoid Approximation 

 

( )

( )
e

u s

sδ
 Using the Equation 3.4a, it is found:  

1133.96

−4.44233−13.295s− 675.138s2  

( )

( )
e

s

s

θ

δ
 Using the Equation 3.3b, it is found: 

−0.694045− 35.2446s

−4.44233−13.295s− 675.138s2  

 

Characteristic equation 

 

−U1 Js2 − HXu + XTuL s −
Zu

U1
 gN

 
 

−677H0.00656179+ 0.0196922s+s
2
L  

 

In simplified form 

 

−4.44233− 13.3316s−677.s
2

 
 

Phugoid Natural Frequency: 

 

ωnPH�
�$%%%%%%%%%%%%%−Zu g

U1  = 0.0810049 
 
Phugoid Damping Ratio: 

 

ζPH��
−HXu− XTuL

2 ωnPH  = 0.117358 
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4. BODE DIAGRAMS 

The Bode Diagrams created via Matlab (See Appendix A for codes) are listed 

below: 

 

 

Figure 4.1: Bode Diagram of transfer function, u(s) / δe(s) 
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Figure 4.2: Bode Diagram of transfer function, α (s) / δe(s) 
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Figure 4.3:  Bode Diagram of transfer function θ(s)/ δe(s) 
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Figure 4.4: Bode Diagram of α(s) / δe(s) Using Short Period Approximation 
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Figure 4.5: Bode Diagram of  θ(s)/ δe(s)  Using Short Period Approximation 
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Figure 4.6:  Bode Diagram of   u(s)/ δe(s) Using Phugoid Period Approximation 
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Figure 4.7:  Bode Diagram of   θ(s)/ δe(s)  Using Phugoid Period Approximation 
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Figure 4.8:   Transient Response Diagram of u(s) / δe(s)  
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Figure 4.9:   Transient Response Diagram of α(s) / δe(s)
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Figure 4.10:   Transient Response Diagram of   θ(s)/ δe(s) 
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5. Conclusion 

 

The short period mode is characterized by complex conjugate roots with a 

moderate to relatively high damping ratio and relatively high natural frequency and 

damped frequency. It is easily demonstrated by first trimming the aircraft and then 

disturbing it from trim with a forward aft neutral pitch.  

 

The phugoid mode is characterized by complex conjugate roots with a 

relatively low damping ratio and neutral damped frequency (long period). It is 

demonstrated by trimming the aircraft in level flight, and then inputting aft.  

 

It is also worthwhile to plot the short period and phugoid roots.  

 

The short period roots are further out from the origin and have a higher 

damping ratio than the phugoid roots.  
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A. Appendix #1 – Matlab Codes 

 

 

Statements: 
 
g=tf([-297.043,229678,199768],[677.871,1361.64,5426.41,122.884,45.1686]); 
 
g2=tf([-35.2446,-9683.25,-190.671,-64.4613],[677.871,1361.64,5426.41,122.884,45.1686]); 
 
g3=tf([-9675.1,-6399.5,-139.155],[677.871,1361.64,5426.41,122.884,45.1686]); 
 
h1=tf([-0.05206,-14.3415],[1,1.99147,7.99473]) 
 
h2=tf([-14.2726,-9.17132],[1,1.99147,7.99473,0]); 
 
f1=tf([1133.96],[-675.138,-13.295,-4.44233]) 
 
f2=tf([-35.2446,-0.694045],[-675.138,-13.295,-4.44233]) 
 

 

Plotting: 
 
bode(g2,{0.01,10}) 
 
bode(g,{0.01,10}) 
 
bode(g3,{0.01,100}) 
 
bode(h1,{0.01,10}) 
 
bode(h2,{0.01,10}) 
 
bode(f1,{0.01,10}) 
 
bode(f2,{0.01,10}) 
 
impulse(g) 
 
impulse(g2) 
 
impulse(g3) 

 

 


