8:30am - 9:45am

continued

Homework Assignments that Engage Students, Foster Creativity, and Teach Content

Mesilla (Capacity: 100) Hands-On Workshop • General Biology • JH HS

Here are some favorite assignments that often have students asking for more. Get a chance to try your own song writing, model building, puzzle solving, and advertisement writing as we think about biology content in a variety of ways. Handouts will be provided.

 Susan Plati, Brookline HS, Brookline, MA

Organelle of the Day

Nambe (Capacity: 40) Hands-On Workshop • General Biology • GA

Learn and practice a new approach to microscopes to learn about cell structure. Student and teacher versions of all activities will be available.

 Whitney Hagins and Kenneth Bateman, Lexington HS, Lexington, MA

Model Building and Use in Teaching

Navajo (Capacity: 40) Demonstration • Instr.Strategies & Technologies • GA

Learn how to design, build, and use inexpensive, easy-to-make models that help students visualize organisms and concepts.

 Joan Bradley, The Ohio State University, Mansfield, OH

Genes vs. Jeans: Cracking the Code of Genetics

Pecos (Capacity: 75) Hands-On Workshop • Genetics • E JH

Engage students in the wonders of genetics using Skittles[®] to show mitosis and meiosis, code-breaking skills,

and real "jeans" to determine your genetic makeup.

 Camille Stegman and Connie Robertson, Virginia City Middle School, Virginia City, NV; Jennifer Willden, Hugh Gallagher Elementary, Virginia City, NV

Using Ecological Techniques To Simulate Natural Selection

Picuris (Capacity: 100) Hands-On Workshop • Evolution • HS 2C

Participants will use a predator/prey dynamic, the line intercept method for measuring plant cover, and the chisquare goodness-of-fit test to investigate natural selection.

 Paul Strode, Boulder HS, Boulder, CO; Tara Cardoza, University of Colorado, Boulder, CO

Do I Have To Go, Too? Student-Involved Parent Conferences

Ruidoso (Capacity: 80) Hands-On Workshop • Instr.Strategies & Technologies • HS

Step-by-step approach for developing effective student-involved parent conferences designed to stimulate student interest in their own progress as they tell their own academic story. This format can be adapted to nearly any parent-teacher conference setting and becomes a framework for improved communication between students, parents, and their teachers.

 Sandra Largen and Kathleen Luczynski, Downers Grove South HS, Downers Grove, IL

BIOZONE Student Workbooks & Presentation Media

Sandia (Capacity: 58) Exhibitor Demonstration • General Biology • HS 4C

BIOZONE's critically acclaimed biology student workbooks will be showcased by the author. Using highly visual content and a write-on format, students are able to efficiently explore key biological concepts. Biozone's new Presentation Media titles (Ecology, Health & Disease, Genetics & Evolution) will be demonstrated. FREE samples of the workbooks will be provided to those attending this session.

Richard Allan, BIOZONE, Hamilton, NZ

TGT-Cooperative Review

San Miguel (Capacity: 150) Hands-On Workshop • Instr.Strategies & Technologies • GA

- TGT is a strategy whereby academically heterogeneous study groups work cooperatively to master material, then "compete" in academically homogeneous groups to earn points for their study group. This interactive workshop will examine TGT and how it can be used for review and homework reinforcement.
- Meg O'Mahony, University of Toronto Schools, Toronto, ON

WOW Biology: Part V

Santa Ana (Capacity: 60) Hands-On Workshop • General Biology • JH HS

- Join the Mississippi Association of Biology Educators and the Jackson Public School District as they share some of their favorite science literacy and required lab activities.
- Madelene Loftin, Wingfield HS, Jackson, MS; Mary Branson, Callaway HS, Jackson, MS; Jammy Hemphill, Forest Hill HS, Jackson, MS

Forensic Biology: The Perfect Fit

Taos (Capacity: 100) Hands-On Workshop • General Biology • JH HS

One size doesn't fit all! Explore three options for incorporating motivational forensic activities. Meet the *National Science Education Standards* while awakening student interest. Activities and handouts will be available.

 Karen O'Neil, Pioneer Valley Regional School, Northfield, MA; Kate Dollard, Northampton HS, Northampton, MA

Teaching the History of Evolution

Tesuque (Capacity: 60) Paper • Evolution • HS GA

Come learn how the use of a historical perspective to teach evolution gives students an appreciation for the nature of science and an understanding of evolution's influence.

 Carolyn Bradley, University High School of Indiana, Carmel, IN

Virtual Dissection: The Best of the Best

Tijeras (Capacity: 45)

Demonstration • General Biology • HS

A pathologist takes you on a guided tour of the best virtual dissection software: *Digital Frog 2* and *DryLab Fetal Pig.* Borrow them **free** for your class.

 Nancy Harrison, Scripps Mercy Hospital Chula Vista, San Diego, CA

Biology, The Living Science: Buying into Standardized Achievement Tests and Having Fun

Zuni (Capacity: 50) Demonstration • General Biology • HS GA

Biology, the Living Science, addresses strategies for those who are most at risk. Both pedagogy and sample lessons will be presented that ensure all students succeed in biology.

 Christyna Laubach and Beverly Brunette, Lenox Middle and High School, Lenox, MA

8:30am - 10:00am

BIO-RAD Genes in a Bottle[™] Kit

Cimarron (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Can I see your DNA? The first step in many research applications is isolating the DNA sample. Introduce your students to molecular biology with their own DNA. In this hands-on workshop you will extract the DNA from your own cheek cells then watch it precipitate from solution as floating white strands. Collect and transfer the DNA strands to create a fashionable necklace. This simple procedure is used to extract DNA from many different organisms for a variety of real research applications. Bring only your imagination and take home your own DNA – in a necklace. Another BIO-RAD lab your students will never forget! Learn key background and how to prep the lab.

 Sherri Andrews, BIO-RAD, Hercules, CA

8:30am - 11:30am

Introduction to Biotechnology

Apache (Capacity: 45) Hands-On Workshop • Biotechnology • HS

New to biotechnology? Come learn the basic labs and practice the techniques taught in every beginning biotechnology course. Join us at any time during the workshop!

 Elizabeth Paine and Whitney Hagins, Carolina Biological Supply Company, Burlington, NC

8:30am - 4:00pm

Macroevolution: Evolution Above the Species Level

Brazos (Capacity: 200) Symposium • Evolution • GA

How do new species and higher taxa originate? How do major innovations, such as sexual reproduction; flowers; and insect, bird, and bat wings, evolve? Basic mechanisms of microevolution (evolutionary change below the species level, among populations and within species) can produce macroevolutionary change (the evolution of novel traits, of species, and of lineages) if given enough time. Macroevolutionary studies explore the evolutionary forces and events that generate the characteristic features of new taxa, the radiations of lineages and their extinctions, and the evolutionary patterns produced by physical processes (e.g., continental drift) on living and extinct organisms.

Presentations in this symposium will provide current information about macroevolutionary processes, the distinctions between and the interactions of micro- and macroevolution, the development and evolution of "key innovations" and major lineages of organisms, and the evidence for these processes. Classroom activities developed by BSCS will be integrated into the program so that educators can gain hands-on experience teaching about macroevolution and learn new ways to improve student understanding of the concept.

 Philip Gingerich, University of Michigan, Ann Arbor, MI; Nicole King, University of California, Berkeley, CA; Scott Hodges, University of California, Santa Barbara, CA; Jeff Levinton, State University of New York at Stony Brook, Stony Brook, NY; David Jablonski, University of Chicago, Chicago, IL; Nipam Patel, University of California, Berkley, CA

9:00am - 11:30am

BIO-RAD Crime Scene Investigator PCR Basics[™] Kit

Dona Ana (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Which human DNA sequences are used in crime scene investigations and why? In this workshop you will assume the role of crime scene investigator. You will learn which human DNA sequences are used by forensic scientists and how trace amounts of DNA can be used to identify a person. You will learn to use the polymerase chain reaction (PCR) and gel electrophoresis to identify which of a number of suspects can be exonerated – based on DNA evidence. This hands-on workshop teaches the basics of polymerase chain reaction (PCR), gel electrophoresis, and statistics of chance associated with modern DNA fingerprinting. Learn key background and how to prep the lab. Do exactly what your students will do.

 Stan Hitomi and Kirk Brown, BIO-RAD, Hercules, CA

10:00am - 11:15am

General Session

Kiva Auditorium

Alejandro Sánchez Alvarado University of Utah School of Medicine Salt Lake City, UT

Almost single-handedly, Alejandro Sánchez Alvarado has established a freshwater flatworm (an organism called *Schmidtea mediterranea*, or planaria) as a powerful new model system to study the molecular mechanics of regeneration. By identifying and characterizing regeneration at the molecular level, he hopes to gain a better understanding of how higher organisms, including humans, develop biologically. Alvarado is also Professor of Neurobiology and Anatomy at the University of Utah School of Medicine.

10:30am - Noon

BIO-RAD Genes in a Bottle[™] Kit

Cimarron (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Can I see your DNA? The first step in many research applications is isolating the DNA sample. Introduce your students to molecular biology with their own DNA. In this hands-on workshop you will extract the DNA from your own cheek cells, then watch it precipitate from solution as floating white strands. Collect and transfer the DNA strands to create a fashionable necklace. This simple procedure is used to extract DNA from many different organisms for a variety of real research applications. Bring only your imagination and take home your own DNA - in a necklace. Another BIO-RAD lab your students will never forget! Learn key background and how to prep the lab.

 Sherri Andrews, BIO-RAD, Hercules, CA

11:30am - 12:30pm

NABT Town Meeting

Kiva

Now is your chance to INTERACT with the NABT Board of Directors. Now is

the time to raise your questions and concerns and to hear those of your colleagues. Ideas are welcome as well.

12:30pm - 1:00pm

Educate, Motivate, and Stimulate with "Active Learning Segments" *Acoma* (Capacity: 71) Demonstration • Molecular & Cell Biology • 2C 4C

Active student participation is the catalyst of a successful collegiate experience. Our "Active Learning Segments" focus on the EMS principles of teaching: Educate, Motivate, and Stimulate.

 Cathy Donald-Whitney, Collin County Community College District
CPC, McKinney, TX; Mary Weis, Collin County Community College District - SCC, Plano, TX

The Little Worm that Could

Apache (Capacity: 60) Paper • Molecular & Cell Biology • 2C

Learn about the use of the nematode *C. elegans* for the purpose of characterizing a group of polysaccharides, glycosaminoglycans (GAGs), that are found in amyloidoses such as Alzheimer Disease.

 Carla Beeber, Kingsborough Community College, Brooklyn, NY

Using the Web To Teach Biology

Aztec (Capacity: 114) Demonstration • General Biology • HS

The Internet offers a powerful tool to biology teachers. This seminar will explore a variety of online resources available to the biology classroom.

 Jennifer Albanese, Salesianum School, Wilmington, DE

Biodiversity and Biological Filtering in a Southeast Swamp *Cochiti* (Capacity: 72)

Paper • Environment/Ecology • HS 4C

Research was conducted in order to establish the biodiversity in a unique swamp environment that is designed to purify water after primary and secondary treatment.

 Barry Thompson, Augusta State University, Augusta, GA; Lindsay Belcher, Edmund Burke Academy, Waynesboro, GA; Rhead Smart, Vantage Point Campus HS, Thornton, CO

High School Students' Mental Models of Zoos: Are Zoos Conservation Organizations?

Isleta (Capacity: 45) Paper • Environment/Ecology • HS 4C

Determining a student's ZOOIQ may help educators decide upon the level of information that needs to be disseminated for a zoo visit.

 Patricia Patrick, University of North Carolina, Greensboro, NC

Teaching Evolution in a Potentially Hostile Environment

Jemez (Capacity: 40) Paper • Evolution • HS 4C

> A presentation of research on the use of the creation/evolution continuum to effect changes in student attitudes about evolution. Other resources for teaching evolution will be reviewed.

 Mark Bland, University of Central Arkansas, Conway, AR

Effects of the *NSES* on Attitudes Toward Science in Middle School Girls

Laguna (Capacity: 45)

Paper • Gender/Multicultural Issues • JH GA

Explore the results of a study on middle school girls' attitudes toward science in classrooms where teachers implement the *National Science Education Standards*.

 Carolyn Hayes, Central Indiana Educational Service Center, Indianapolis, IN

Engaging Each Student in Large Lectures with Wireless Student Response Units

Nambe (Capacity: 40)

Paper • Instr.Strategies & Technologies • 2C 4C

Participants will use remote "clickers" as they discuss this interactive technology and describe its impact on student attitudes and content acquisition in six biology courses.

 Ralph Preszler, Angus Dawe, Charles Shuster, and Michele Shuster, New Mexico State University, Las Cruces, NM

Using Emotional Intelligence as a Basis for Classroom Management

Sandia (Capacity: 50)

Paper • Instr.Strategies & Technologies • JH HS

Quantitative and qualitative data will be presented to demonstrate the effectiveness of using emotional intelligence strategies to manage negative student behavior.

 Susan Sernoffsky, Manchester HS, Manchester, CT

Classroom Discussions: Getting Your Students To Actively Think During Class

Santa Domingo (Capacity: 50) Demonstration • Instr.Strategies & Technologies • HS

Learn effective techniques/strategies to lead a better classroom discussion and

help your students learn more.

 Julie Baylor, Barrington HS, Barrington, IL

The Biology Talent Show: The "Do-Re-Mi" of Life on Display *Tesuque* (Capacity: 60)

Paper • General Biology • 2C 4C

An overview of a unique program in a biology setting: examples of the types of projects performed and produced by students and faculty in relation to topics studied.

 Fardad Firooznia, Lion Technology Inc., Lafayette, NJ

Why Should a Science Teacher Visit Japan?

Tijeras (Capacity: 45) Paper • Teacher Prep/Professional Development • JH GA

Come and find out how you can experience science teaching in a Japanese school with the Japan Fulbright Memorial Fund Master Teachers Program.

 Shauneen Giudice, Delmar Middle and Senior HS, Salisbury, MD

1:00pm - 2:30pm

BIO-RAD ELISA Immuno ExplorerTM Kit

Dona Ana (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Biology's magic bullet? Unleash nature's tool kit and the power of antibody specificity to explore health science and immunology. In this hands-on workshop you will perform an ELISA (enzymelinked immunosorbent assay), a real world antibody-based assay used to diagnose HIV/AIDS or bird flu, and to detect the molecular markers of cancer, pregnancy, and drug use. Germs spread via human contact, water, food, and the air – whether they emerge naturally or through acts of aggression. Learn to simulate a disease outbreak in your classroom and use ELISA to detect and track it. For biology, physiology, anatomy, and

health science courses. Learn key background and how to prep the lab

 Stan Hitomi and Kirk Brown, BIO-RAD, Hercules, CA

1:00pm - 3:30pm

BIO-RAD pGLO[™] Bacterial Transformation and Green Fluorescent Protein Purification Kits

Cimarron (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Genetic engineering has led to a phenomenal explosion of new health treatments, agricultural applications, and environmental solutions. In this handson workshop create your own genetically modified organisms and designer proteins and explore the mechanisms of gene expressions and genetic selection. Transform bacteria with bioluminescent jellyfish gene that codes for the Green Fluorescent Protein (GFP); then purify GFP from transformed bacteria using a key process in biomanufacturing, chromatography! Learn key background and how to prep the lab. (AP Biology Lab 6)

 Sherri Andrews, BIO-RAD, Hercules, CA

1:15pm - 2:30pm

Mass Extinctions and Global Climate Change: Integrating the Nature of Science and Biology Acoma (Capacity: 71)

Paper • General Biology • HS 4C

An examination of global climate change and the nature of science can provide biology teachers with a vast amount of resources.

 Paul Narguizian, California State University, Los Angeles, CA

1:15pm - 2:30pm

continued

Bird Flu Knocking on the Door: Molecular Stories from the CBM

Aztec (Capacity: 114) Hands-On Workshop • Molecular & Cell Biology • HS 2C

The hemagglutinin protein functions as an amazing molecular machine to initiate influenza virus infection. What's this got to do with an avian flu pandemic?

 Karen Deboer, Waukesha, WI;
Donna LaFlamme, St. Dominic School, Brookfield, WI

Question First; Answer Last

Cochiti (Capacity: 72) Hands-On Workshop • Curr. Development/Supervision • HS

Allowing students to ask standardsinspired questions and develop inquiry activities of their own, before direct instruction provides them with the answers, and improves student performance.

 Ann Marie Wellhouse, River Valley HS, Campo, CA

The Crittercam

Galisteo (Capacity: 100) Hands-On Workshop • Oceanography/ Marine Biology • HS

The "Crittercam," as featured on national television, is a unique tool that has enhanced behavioral research of marine mammals and birds, sharks, and sea turtles.

 Mike Heithaus, Holt, Rinehart and Winston, Austin, TX

Buccal Smear Gram Stain: Gateway to Cytology

Isleta (Capacity: 47) Hands-On Workshop • General Biology • JH HS

One of the first skills students learn in studying cells is the difference between prokaryotes and eukaryotes. This lab activity allows students to simultaneously examine cells of both types from a familiar source: their own mouth.

 William Anderson, Unionville HS, Kennett Square, PA; Sandra Litvin, C.F. Patton MS, Kennett Square, PA

Put Some Energy into Teaching Glycolysis!

Jemez (Capacity: 40) Demonstration • General Biology • HS 2C

Want a new and energetic way of teaching glycolysis? Tired of students blocking out all the chemistry? Make it fun, exciting, and loud in a way they won't soon forget. Handouts provided.

 Mary Dettman, Seminole Community College, Sanford, FL

Epidemiology, ELISA, and HIV

La Cienega (Capacity: 90) Hands-On Workshop • Molecular & Cell Biology • HS

Participate in an infectious disease outbreak, then perform an enzyme linked immunosorbent assay (ELISA) and learn how this powerful technique is used as a diagnostic and research tool.

 Gen Nelson, Germantown Friends School, Philadelphia, PA; Scott MacClintic, The Loomis Chaffee School, Windsor, CT

Population Growth and Sustainability: Have Your Students Do the Math

Laguna (Capacity: 45) Hands-On Workshop • Environment/ Ecology • HS 4C

Using guided inquiry, students calculate and discover relationships among growth rate variables and apply this knowledge to predict growth trends for developed and developing countries.

 John Rastovac, Loyola University Chicago, Chicago, IL

The Brain-Friendly Biology Classroom

Mesilla (Capacity: 100) Hands-On Workshop • General Biology • JH HS Learn fun ways to incorporate current brain research into your classroom using activities and strategies intended to help energize your students while boosting student learning and retention.

 Tobi McMillan, Texas Tech University-HHMI, Lubbock, TX; Marianne Dobrovolny, Roosevelt HS, Lubbock, TX

It Takes a College! Cooperating with Adjuncts for Safer Instruction *Nambe* (Capacity: 40)

Paper • Curr. Development/ Supervision • 2G • • • ED

Supervision • 2C **LED Containing** college faculties are often sharply divided between full time and adjunct. That makes our efforts toward better and safer instruction difficult. We'll introduce a new approach and materials to help every college faculty member build safe and sensible classroom environments.

Juliana Texley, Palm Beach
Community College, Boca Raton, FL

Real World Learning Objects in Science, Math, Language Arts, and Technology

Navajo (Capacity: 40) Symposium • Teacher Prep/ Professional Development • 2C 4C

Experience firsthand the power of real world learning objects (RWLOs) to transform teaching and learning through effective technology-based instruction. These concise core instructional activities use real time data. telecollaborative learning, and primary source materials to improve student engagement. Through U.S. Department of Education funding under the PT3 Pathways project, faculty are currently developing and incorporating RWLOs into their preservice courses. Come find out how to utilize RWLOs from the Pathways RWLO Library in your classes.

 Becky Kapley, Cuyahoga Community College, Parma, OH; Sarah Mallory, La Grange College, La Grange, GA

The Seven Daughters of Eve

Pecos (Capacity: 75) Hands-On Workshop • Genetics • HS

A "novel" idea has been kicked around for several years between the Science Department and the English Department. Let's really do some cross-curricula instruction. History and English do this. Math and Science do this. But Science and English?

 Christine McOmber and Mary Ann Eiserman, Lake Zurich HS, Lake Zurich, IL

Modeling Life, Making Connections Between Living Organisms and Biology Class Content

Picuris (Capacity: 100) Hands-On Workshop • General Biology • JH HS

Learn how to help students conceptually understand the characteristics of living organisms and to connect biological concepts by constructing and modifying animal models.

 Austin Hitt, Coastal Carolina University, Conway, SC

mc square: Brain Science for Better Learning

Ruidoso (Capacity: 80) Hands-On Workshop • Instr-Strategies & Technologies • HS GA

The nic Square is an ipod-like device for students that improves concentration and reduces stress by stimulating adaptation of the brain. Come try this unique learning tool used in Asia for 10 years. There will be a raffle at the workshop.

 Linda Samuels, The Science of Learning Center, Winthrop, MA

Socratic Seminars in the Biology Classroom

San Miguel (Capacity: 150) Hands-On Workshop • Instr.Strategies & Technologies • HS 4C

Socratic seminars are question-driven, text-based discussions that are facilitated and structured. This session will Lawrence Wakeford, Brown University, Providence, RI

Middle School MicrobeWorld Activities

Santa Ana (Capacity: 60) Hands-On Workshop • General Biology • E JH

A hands-on workshop highlighting low tech, low cost microbiology activities for upper elementary and middle school students. Based upon the NABT publication, *MicrobeWorld Activities*.

 Diane Catron, Arden Trickey-Glassman, Lauren Asher, and Luke Reid-Grasso, Santa Fe Preparatory, Santa Fe, NM

AP Biology Teachers' Open Forum

Santa Domingo (Capacity: 50) Symposium • Instr.Strategies & Technologies • HS

Join other AP Biology teachers and the AP Biology Test Development Committee for a discussion of the 2006 exam, AP Audit, AP Biology Redesign, and other issues and concerns.

 Ron Balsamo, Villanova University, Villanova, PA; Mike Basham,
El Dorado HS, Placerville, CA; John Lepri and Robert Cannon, University of North Carolina,
Greensboro, NC; Carolyn Schofield-Bronston, Robert E. Lee HS, Tyler, TX; John McMillian, Central HS,
Philadelphia, PA; Eileen Gregory,
Rollins College, Winter Park, FL

Don't Toss the Lab Manual Out with the Bathwater: How To Incorporate Inquiry into Cookbook Labs

Tesuque (Capacity: 40) Hands-On Workshop • General Biology • HS 2C

Want to incorporate inquiry into labs without tossing the lab manual? Join us for an interactive session to change cookbook labs into inquiry-based investigations. Betsy Morgan, Kingwood College, Kingwood, TX

How To Make a School Nature Trail

Tijeras (Capacity: 45) Paper • Botany & Microbiology • GA

A step-by-step explanation of how we made our integrated botanical and geological nature trail. Learn how to write memorable interpretive signs. Free readability kit will be available.

 Jim Wandersee, Louisiana State University, Baton Rouge, LA; Renee Clary, Mississippi State University, Mississippi State, MS

Evolution in Action: Modeling Insecticide Resistance in Mosquitoes

Zuni (Capacity: 50) Hands-On Workshop • Molecular & Cell Biology • HS 4C

Enzyme specificity, silent mutation, natural selection, and competitive inhibition will be modeled in this molecular story from the CBM. CDs and model lending information will be provided.

 Margaret Franzen, Pellissippi State Technical Community College, Knoxville, TN; Lynda Jones, Catlin Gabel School, Portland, OR

2:45pm - 4:00pm

Inquiry-Based Experiments Using Red Flour Beetles

Acoma (Capacity: 71) Demonstration • Instr.Strategies & Technologies • JH HS

A description of inquiry-based experiments related to genetics, life cycles, and environmental science using red flour beetles. Participants will receive free strains.

– Peggy Brown, Newburg HS, Newburg, MO

2:45pm - 4:00pm

continued

AP Biology Share-A-Thon

Aztec (Capacity: 100) Hands-On Workshop • Teacher Prep/ Professional Development • HS

Do you teach AP Biology? Come share your ideas and suggestions and get new ones! New and veteran teachers welcome. Contributions will be compiled and shared.

 Jennifer Heck, The Agnes Irwin School, Rosemont, PA

Maintenance of Body Temperature: An Inquiry Laboratory for Introductory Biology

Cochiti (Capacity: 72)

Hands-On Workshop • Environment/ Ecology • 2C 4C

Join us to explore an inquiry lab exercise suitable for introductory biology courses. Participants will plan a project as if they were students.

 Janet Lanza, University of Arkansas, Little Rock, AR; Jim Winter, University of Arkansas, Little Rock, AR

See into the Eye: Exploratorium Based Human Perception Activities

Galisteo (Capacity: 100) Hands-On Workshop • Physiology • JH HS

Dissect your own eye with simple, safe, and effective hands-on (eyes-on) activities to get a better view on human eye physiology.

 Eric Muller, Exploratorium Teacher Institute, San Francisco, CA

A Scientific "Holistic" Approach to Nutrition and Health

Isleta (Capacity: 47) Paper • Human Health & Public Health • 2C 4C

Nutrition Health and Wellness is a new textbook edited with not only nursing and health science majors in mind but also edited for people who want to

learn the basics (including biology and some chemistry) about the food we eat and the fluids we drink.

 Abour Cherif and Bob Aron, DeVry University, Oakbrook Terrace, IL;
Dianne Jedlicka, The Art Institute of Chicago, Chicago, IL; Sujata Verma, Ivy Tech State College, Fort Wayne, IN; Frank Burrows, Pearson Custom Publishing, Olympia Fields, IL

NSBRI's Series: From Outer Space to Inner Space – Life Science That's Out of This World La Cienega (Capacity: 90) Hands-On Workshop • General Biology • E JH

The National Space Biomedical Research Institute funded by NASA has research on sleep, muscles and bone, nutrition, and cardiovascular systems with applications for the Earth-bound.

 Sonia Rahmati Clayton, Barbara Tharp, and Deanne Erdmann, Baylor College of Medicine, Houston, TX

Sickle Cell Anemia: Molecular Stories from the CBM

Laguna (Capacity: 45) Hands-On Workshop • Molecular & Cell Biology • HS 2C

Come learn about an innovative inquiry-based curriculum unit that uses physical models and other manipulative materials to explore sickle cell anemia, "the first molecular disease."

 Shannon Colton and Tim Herman, Milwaukee School of Engineering, Milwaukee, WI; Judy Weiss and Marisa Awodey Roberts, Whitefish Bay HS, Whitefish Bay, WI

The Family Tree Project

Mesilla (Capacity: 100) Hands-On Workshop • Genetics • JH HS

A two-week outside assignment designed to assess students understanding of Mendelian Genetics and allow students to experience scientific discovery with original data collection.

 Bill McWeeny, Adams School, Castine, ME

Microbial Activities in Biotechnology

Nambe (Capacity: 48) Hands-On Workshop • Biotechnology • JH HS

Stimulate inquiry activities through laboratory activities. Sophistication of activities is influenced by available materials, time, and teachers' comfort level. They are practical, using readily available local materials.

 John Fedors, Science Activities, Lincoln, CA

NEURO-PALOOZA!!!

Navajo (Capacity: 42) Hands-On Workshop • Physiology • GA

- How do drugs, disease, and more affect brain function and perception? Explore these questions and more with all new hands-on activities from the Exploratorium.
- Karen Kalumuck, Exploratorium, San Francisco, CA

Using Manipulative Materials To Teach Introductory Biology

Pecos (Capacity: 75) Hands-On Workshop • Instr.Strategies & Technologies • HS 2C

This session will provide rationale for and examples using manipulative materials to represent abstract biological concepts to improve student learning in Introductory Biology.

 Richard Grumbine, Landmark College, Putney, VT

WOW Biology: Part IV

Picuris (Capacity: 100) Hands-On Workshop • General Biology • JH HS

Join the Mississippi Association of Biology Educators and the Jackson Public School District as they share some of their favorite hands-on and inquiry-based activities.

 Shelia Smith, Jackson Public Schools, Jackson, MS; Docia Generette and Windy Walker, Bailey Magnet HS, Jackson, MS; Tammy Cox, Provine HS, Jackson, MS **Texas Tried and Tested: Volume 2** *Ruidoso* (Capacity: 80) Hands-On Workshop • General Biology • HS

Join us for another collection of handson classroom activities designed to engage and inspire at-risk students in biology and environmental science. CD-ROM will be provided to participants.

 Matt Wells, Eileen Newland and Saundra Coffey, Cy-Springs HS, Cypress, TX

Reinforcing Biological Concepts Through Models and Manipulatives

San Miguel (Capacity: 150) Hands-On Workshop • Instr.Strategies & Technologies • HS

In this make-and-take session, participants will construct several manipulatives and models to demonstrate concepts such as enzyme catalysis, operons, steroid hormones, and evolution.

- Debbie Richards, Bryan HS, Bryan, TX

Bio-Rhythms: Use a Song as a Hook: It's More Fun Than the Book

Sandia (Capacity: 50) Demonstration • Instr.Strategies & Technologies • HS 4C

Have more fun and cover material faster and better by using biology songs and raps!

 Arthur Siebens, Woodrow Wilson HS, Washington, DC

A Wild Rose Pot Pourri

Santa Ana (Capacity: 60) Hands-On Workshop • General Biology • HS

A group of teachers from Alberta providing their favorite activities and labs for differentiated instruction in high school biology classes.

 Kim Burley, Lindsay Thurber Comp HS, Red Deer, Alberta; Jayni Caldwell, Foothills Comp. HS, Okotoks, Alberta

Cell Energetics: Let it Pump You Up!

Santa Domingo (Capacity: 50) Demonstration • Molecular & Cell Biology • JH HS

Cell respiration and photosynthesis are among the hardest topics to teach in biology. Join us for some of our favorite activities and teaching tips to get your students "energized."

 Angelique Biehl, Portage Northern HS, Portage, MI; Lynda Smith, Lakeshore HS, Stevensville, MI; Cheryl Hach, Kalamazoo Math and Science Center, Kalamazoo, MI

Integrating Science and Math Through Inquiry

Taos (Capacity: 100) Hands-On Workshop • General Biology • JH HS

Explore simple hands-on activities that integrate science with math, and discuss methods to encourage studentinitiated inquiry. Curriculum materials will be provided.

 Elisa Palmer, Illinois State University, Normal, IL

Hands-on Inquiry Learning Through Forensic Science Zuni (Capacity: 50)

Paper • Biotechnology • JH HS

An inquiry learning unit on forensic biotechnology that can be based on

either actual DNA gels or digitally-generated gel results.

 Phillip Danielson and James Platt, Denver University, Denver, CO

3:00pm - 4:30pm

BIO-RAD ELISA Immuno ExplorerTM Kit

Dona Ana (Capacity: 75) Exhibitor Demonstration • Biotechnology • HS 4C

Biology's magic bullet? Unleash nature's tool kit and the power of antibody specificity to explore health science and immunology. In this hands-on workshop perform an ELISA (enzyme-linked immunosorbent assay), a real world antibody-based assay used to diagnose HIV/AIDS or bird flu, and to detect the molecular markers of cancer, pregnancy, and drug use. Germs spread via human contact, water, food, and the air – whether they emerge naturally or through acts of aggression. Learn to simulate a disease outbreak in your classroom and use ELISA to detect and track it. For biology, physiology, anatomy, and health science courses. Learn key background and how to prep the lab

 Stan Hitomi and Kirk Brown, BIO-RAD, Hercules, CA

6:00pm - 10:00pm

Annual Banquet

Sendero Ballroom (Hyatt)

This final event of the 2006 Conference promises to be unforgettable. CONNECT with friends and colleagues over cocktails and dinner. Then listen to a presentation from NABT's 2006 Distinguished Service Award recipient, Shirley Malcom, head of the Directorate for Education and Human Resources Programs of the AAAS. Growing up in the racist South, she learned all about adversity. Her mother's church was bombed three times. At the predominantly white University of Washington, she was one of few black students. Never having had access to lab equipment, she failed her first two chemistry quizzes. Fortunately, a sympathetic TA (also African American) tutored her and she passed her course. That experience helped shape a career (originally as a teacher) that has benefited thousands of people.

Past Presidents

2005–Rebecca E. Ross 2004–Betsy Ott 2003–Catherine Ueckert 2002–Brad Williamson 2001–Ann S. Lumsden 2000–Phil McCrea 1999–Richard D. Storey 1998–ViviannLee Ward 1997–Alan McCormack 1996–Elizabeth Carvellas 1995–Gordon E. Uno 1994–Barbara Schulz 1993–Ivo E. Lindauer 1992–Alton L. Biggs 1991–Joseph D. McInerney 1990–Nancy V. Ridenour 1989–John Penick 1988–Jane Abbott 1987–Donald S. Emmeluth 1986–George S. Zahrobsky 1985–Thomas R. Mertens 1984–Marjorie King 1983–Jane Butler Kahle 1982–Jerry Resnick 1981–Edward J. Kormondy 1980–Stanley D. Roth 1979–Manert Kennedy 1978–Glen E. Peterson 1977–Jack L. Carter 1976–Haven Kolb 1975–Thomas J. Cleaver 1974–Barbara K. Hopper 1973–Addison E. Lee 1972–Claude A. Welch

1971–H. Bentley Glass 1970–Robert E. Yager 1969–Burton E. Voss 1968–Jack Fishleder 1967–William V. Mayer 1966–Arnold B. Grobman 1965–L.S. McClung 1964–Ted F. Andrews 1963–Philip R. Fordyce 1962–Muriel Beuschlein 1961–Paul V. Webster 1960–Howard E. Weaver 1959–Paul Klinge 1958–Irene Hollenbeck 1957–John Breukelman 1956–John P. Harrold 1955–Brother H. Charles Severin 1954–Arthur J. Baker 1953–Leo F. Hadsall 1952–Harvey E. Stork 1951-Richard L. Weaver 1950–Betty L. Wheeler 1949–Ruth A. Dodge 1948–Howard A. Michaud 1947–E. Laurence Palmer 1946–Prevo L. Whitaker 1945–Helen Trowbridge 1944–Merle A. Russell 1943–Merle A. Russell 1942–Homer A. Stephens 1941–George W. Jeffers 1940–Malcolm D. Campbell 1939–Myrl C. Lichtenwalter

Distinguished Service Award Recipients

- 2006 Shirley Malcom, AAAS, Washington DC
- James A. Thompson, V.M.D., University of Wisconsin–Madison, Madison,
 WI; and Nina Leopold Bradley, Aldo Leopold Foundation, Baraboo, WI
- 2004 Barbara Bancroft, RN, MSN, PNP, CPP Associates, Inc., Chicago, IL
- 2003 Roberta Pagon, M.D., Children's Hospital & Regional Medical Center, Seattle, WA
- 2002 Thomas E. Lovejoy, The H. John Heinz III Center for Science, Economics and the Environment, Washington, DC
- 2001 E.O. Wilson, Harvard University, Cambridge, MA
- 2000 Roger and Deborah Fouts, Chimpanzee and Human Communication Institute, Ellensburg, WA
- 1999 Jack Horner, Museum of the Rockies, Bozeman, MT
- 1998 Dr. Leroy Hood, University of Washington, Seattle, WA
- 1997 Neal Lane, Director, National Science Foundation, Washington, DC; and Donald Kennedy, Stanford University, Palo Alto, CA
- 1996 Dr. Francis Collins, National Institutes of Health, Bethesda, MD
- 1995 Carl Djerassi, Stanford University, Palo Alto, CA
- 1994 Bruce Alberts, National Academy of Sciences, Washington, DC
- 1993 Nancy S. Wexler, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY
- 1992 Paul R. Ehrlich, Stanford University, Palo Alto, CA
- 1991 Stephen Jay Gould, Harvard University, Cambridge, MA
- 1990 Peter Raven, Missouri Botanical Garden, St. Louis, MO
- 1989 Stanley Cohen, Stanford University, Palo Alto, CA
- 1988 Lynn Margulis, University of Massachusetts, Boston, MA; and James D. Watson, Cold Spring Laboratory, Cold Spring Harbor, NY

Honorary Members

2006–Terry Hufford 2005–Randy Moore & Eugenie Scott 2004–John Penick 2003–Donald Emmeluth 2002–Leonard Blessing 2001–Gordon E. Uno 2000–Elizabeth Carvellas 1998–Ivo Lindauer 1997–Sam Rhine 1996–Kenneth S. House 1995–Joseph D. Novak 1994–Nancy V. Ridenour & Alton L. Biggs 1993–George S. Zahrobsky 1992–Jon R. Hendrix 1991-Robert E. Yager 1990–Jane Butler Kahle 1989–Joseph D. McInerney 1988–Thomas Mertens & Marjorie King 1987-Floyd Nordland 1986–Donald S. Dean

- 1985–Stanley Weinberg
- 1984–Jack Carter & Samuel Postlethwait

- 1983–Manert Kennedy
- 1982–Harold "Sandy" Wiper & Jerry P. Lightner
- 1981–Sophie Wolfe
- 1980–Sister M. Gabrielle, Ted F. Andrews & Sister Marian Catherine McGrann

1979–Ingrith Olsen

1978–John A. Moore

1977–Addison E. Lee

1976–Paul DeHart Hurd

1975–Garrett Hardin & Stanley E. Williamson

1974–H. Seymour Fowler

1973–William V. Mayer

1972–Chester A. Lawson, Paul E. Klinge & Robert L. Gantert

1969–Arnold B. Grobman

- 1965–John Breukelman, H. Bentley Glass, George W. Beadle, Paul B. Sears & Brother H. Charles Severin
- 1964–E. Laurence Palmer, Hermann J. Muller, Roger Tory Peterson, Oscar Riddle & Helen Irene Battle

NABT Board of Directors & Regional Coordinators

President: Toby Horn President-Elect: Patricia Waller Past President: Rebecca Ross Secretary/Treasurer: Brian Shmaefsky Director at Large: Pam Tabery Director at Large: Sharon Radford Director/Coordinator: John Moore Director/Coordinator: Louisa Stark Executive Director: Wayne Carley Region I: Eileen Roark

Region II: Sandra (Sandy) Latourelle Region III: John Moore Region IV: Susie Helwig Region V: Bobbie S. Hinson Region VI: Beth Walston Region VII: Sally Fenska Region VIII: Louisa Stark Region IX: John W. Fedors Region X: Meg O'Mahony

Exhibit Hall Floor Plan

ALBUQUERQUE CONVENTION CENTER

Exhibitors

A 🖔 indicates that this exhibitor is a proud sponsor of the NABT 2006 Conference.

A & D Weighing

Milpitas, CA

A & D, an ISO 9001 certified company, designs and manufactures a complete line of electronic balances, scales, moisture analyzers, weighing indicators, controllers, and viscometers for laboratory, education, and industrial applications. Founded in 1977, A & D is a multinational company with operations in Asia, Australia, Europe, and the United States.

Booth #210

ADInstruments

Colorado Springs, CO

ADInstruments specializes in PowerLab Data acquisition systems, Chart and Lab Tutor teaching software, transducers, and signal conditioners for life sciences.

Booth #502

Amazonia Expeditions

Peru

Amazonia Expeditions offers educational travel programs to the western Amazon lowland rainforest.

Booth #208

American Association for the Advancement of Science

Washington, DC

AAAS, the world's largest general scientific society, presents *The Evolution Dialogues*, a resource that explores evolutionary science, Christianity, and why the two need not conflict.

Booth #311

American Association for Lab Animal Science

Memphis, TN

AALAS provides accurate information about responsible laboratory animal care and use and the benefits of biomedical research to both people and animals. A great classroom resource: www.kids4research.org.

Booth #306

American Institute of Biological Sciences (AIBS) Washington, DC

The American Institute of Biological Sciences is a nonprofit scientific association dedicated to advancing biological research and education for the welfare of society. AIBS advances its mission through coalition activities in research, education, and public policy; publishing the peer-reviewed journal *BioScience* and the education Web site <u>ActionBioscience.org</u>, and other activities: <u>www.aibs.org</u>.

Booth #310

The American Physiological Society offers teachers print/multi-media/ online resources for K-12 science education, including summer research programs, inquiry-based classroom laboratory activities, and workshops.

Booth #303/305

American Society for Cell Biology Bethesda, MD

The American Society for Cell Biology is dedicated to the promotion of research and education in cell biology. The Society's booth provides copies of *CBE–Life Sciences Education, Exploring the Cell,* and career advice materials of interest to teachers and students.

Booth #307

American Society for Clinical Pathology

Chicago, IL

Get free brochures to introduce students to careers in pathology and laboratory medicine such as medical technology, molecular pathology, forensic pathology, histotechnology, cytotechnology, and more.

Booth #304

Ame Micr Wash

American Society for Microbiology Washington, DC

The ASM Education Board offers programs and resources in the microbiological sciences for students, early career scientists, and faculty. Available at the booth is information on careers in microbiology, research fellowships, curriculum materials, conferences and summer institutes. ASM Press, the book publishing division of ASM, will be exhibiting a selection of textbooks and general interest titles at the meeting. ASM Press offers a 10% discount on all orders placed at the meeting.

Booth #302

American Society of Plant Biologists

Rockville, MD

ASPB offers free materials, handouts, bookmarks, and baseball-type cards demonstrating the principles of plant biology and its relevance to everyday life for K-12 students.

Booth #324

Visit the Animalearn booth, where you will have the opportunity to examine some of the latest realistic animal models and innovative CD-ROMs featured in the Science Bank — our free alternative to dissection lending library!

Booth #407

Benjamin Cummings San Francisco, CA

As the foremost science publisher in higher education, Benjamin Cummings is dedicated to providing educators and students with the highest quality science textbooks and related resources. Our life science textbooks include such standard-bearing titles as *Biology, Seventh Edition*, by Neil Campbell and Jane Reece; *Biology: Concepts & Connections* by Campbell, Reece, Taylor, and Simon;

Exhibitors

and Human Anatomy by Martini, Timmons, and Tallitsch; as well as innovative new texts such as Essential Environment by Scott Brennan and Jay Withgott.

Booth #411

Bio Corporation

Alexandria, MN

Bio Corporation has all the highest quality preserved specimens, dissection equipment, and safety supplies you need at the lowest prices. We also offer a variety of educational movies, software CD-ROMs, anatomical charts, and 3D models. Compare our prices!

Booth #501

Bio-Rad Laboratories Hercules, CA

Best practices begin with the real thing. Bio-Rad's Biotechnology Explorer kits are real-world biotechnology activities aligned with multiple curriculum standards. Learn more: explorer.bio-rad.com.

Booth #406/408

BIOPAC Systems, Inc.

Santa Barbara, CA

Stop by for a demo of Biopac Student Lab or the NEW Biopac Science Labdata-acquisition systems that engage student minds and develop critical thinking skills.

Booth #125

Biotechnology Institute

Arlington, VA

The Biotechnology Institute welcomes teachers, students, and science educators to NABT 2006. Stop by our booth to learn about how to become a Biotechnology Teacher-Leader and participate in our professional development programs.

Booth #214

BIOZONE International Hamilton, NZ

See BIOZONE's critically acclaimed student workbooks for biology (grades 9-12) as well as our new Presentation Media (PowerPoint titles on CD-ROM). Attend one of our two workshops to receive FREE samples.

Booth #200

Blue Spruce Scientific Boulder, CO

Blue Spruce Scientific is an established supplier of biological products including preserved and living specimens, biology kits, microscopes, slides, lab equipment, anatomy models, and biotechnology.

Booth #504

Brooks/Cole, Thomson Belmont. CA

Thomson Brooks/Cole and Outernet have joined to offer a wide array of life/ environmental science texts and lab manuals for colleges and high schools.

Booth #508/510

BSCS develops innovative, inquirybased science curricula for grades K-college, provides professional development for educators and conducts research and evaluation studies.

Booth #108/110

Carolina Biological Supply Company Burlington, NC

Carolina Biological Supply Company serves the K-16 market with everything needed to equip a science laboratory or classroom. A complete catalog is free to educators.

Booth #207/209

Center for Biophotonics

University of California, Davis

Biophotonics uses light technologies to investigate living systems. Bring this exciting cutting-edge science into your biology, health, or integrated science class!

Table 1

Current Publishing Corp.

Rancho Santa Margarita, CA

Current Publishing Corp. publishes marine science educational programs and services. Its newest program, "Life on an Ocean," has been developed for high school students.

Booth #514

Earthwatch Institute

Maynard, MA

Earthwatch Institute offers the opportunity to work on global conservation research. Projects range in discipline from archaeology to zoology. No experience necessary. Educator fellowship available.

Booth #405

Ecology Project International Missoula, MT

Ecology Project International improves conservation and inspires science education through partnering students with scientists on field courses in the Galápagos Islands, Costa Rica, Mexico, and the USA.

Booth #205

EDVOTEK, Inc. Bethesda, MD

EDVOTEK, the Biotechnology Education Company, offers the most comprehensive array of biotechnology experiments, reagents, biologics, and injection-molded electrophoresis equipment. Call 1-800-EDVOTEK for a free catalog.

Booth #400

Environmental Health Perspectives/NIEHS

Research Triangle Park, NC

Environmental Health Perspectives Student Edition is a free online resource that pairs news articles from the number one environmental health journal in the world with exciting, engaging high school science lessons that cover the full spectrum of disciplines and science education standards. Visit us online at www.ehp online.org/science-ed/.

Booth #300

Examgen, Inc.

Syracuse, NY

Examgen is the leading publisher of test item banks with test generator for secondary schools. We support science, math, and social studies

Booth #507

Flinn Scientific Batavia, IL

Flinn Scientific Inc. is the leader in science and laboratory chemical safety. Flinn publishes the world renowned Flinn Catalog/Reference Manual. Flinn Scientific develops and offers a full line of chemistry, biology, physics, life science, earth science, physical science, and safety products for high schools and middle schools.

Booth #315

FOTODYNE, Incorporated Hartland, WI

Visit our booth and enter to win a free teaching kit! FOTODYNE offers durable biotechnology equipment and innovative teaching kits to bring molecular biology to the classroom. Electrophoresis equipment, digital imaging systems, supplies, and kits will be on display. You can also learn about our educational outreach partnerships and hands-on workshops: www.fotodyne.com.

Booth #410

Genisphere Inc. Hatfield, PA

Genisphere offers a hands-on wet lab simulation for DNA Chip assays that highlights the role of gene expression microarrays in disease detection and diagnosis.

Booth #124

Glencoe/McGraw-Hill Columbus, OH

Glencoe/McGraw-Hill is an established leader in curriculum development of life science/biology curriculums, which are supported with innovative technology that you can integrate for effective learning. Curricula available include those developed by the National Science Foundation.

Booth #500

Holbrook Global Field Expeditions Gainesville, FL

Holbrook Global Field Expeditions is committed to providing educators, students, and life-long learners field opportunities for hands-on, real life experiences through safe travel designed and commenced within the guidelines of sustainable eco-tourism in exotic destinations around the world. We invite educators to explore our programming through www.holbrooktravel.com or call us at 888-890-0632.

Booth #202

Kendall/Hunt Publishing Company Dubuque, IA

Kendall/Hunt Publishing offers a variety of K-college biology curricula, including programs by BSCS and Education Development Center, Inc.

Booth #100/102/104

La Suerte

Miami, FL

La Suerte and Ometepe Field Stations are dedicated to research, education, and conservation. Open to groups and individuals willing to learn in the natural rainforests!

Booth #118

LEGO Education

Pittsburgh

LEGO Education provides standardsbased, hands-on science, math, and technology curricula including robotics, simple machines, structures, energy, and physical science that engage and motivate students.

Booth #503

Leica Microsystems Bannockburn, IL

Leica Microsystems presents educational microscopes with superior optics. The DM E offers crisp, clear images and high durability. The new Leica E-Series StereoZoom® provides unique benefits such as dimmable LED illumination and direct image transfer. Leica ... Outstanding value for science teaching.

Booth #201/203

LSU/School Technology Resources

Baton Rouge, LA

LSU's Scope-On-A-Rope program is developing new applications for this technology. Your classes can see excellent live images, including microscopic samples, on a television or computer.

Booth #122

Motic Digital Microscopy Hong Kong

We provide all-inclusive digital microscopy products at very competitive prices to enhance both teaching and learning of science.

Booth #516

Nasco

Modesto, CA

This catalog lists equipment and supplies for general science, biology, chemistry, physical science, earth science, and technology education.

Includes many items developed by Nasco and sold only through our catalog. Specialty items include living and Nasco-guard preserved specimens. Special emphasis is placed on handson science investigations and safety in the classroom. Visit us on the Web at www.enasco.com.

Booth #404

National Center for Science Education

Oakland, CA

NCSE is the only organization in the country dedicated to supporting the teaching of science in the public schools.

Booth #309

National Evolutionary Synthesis Center Durham, NC

The National Evolutionary Synthesis Center (NESCent) is an interdisciplinary research institute that provides resources for teachers on the latest discoveries in evolutionary biology.

Booth #308

National Human Genome Research Institute

Bethesda, MD

The National Human Genome Research Institute supports genetic and genomic research, investigation into the ethical, legal, and social implications surrounding genetics research and educational outreach activities. Francis S. Collins, M.D., Ph.D., is the director.

Booth #119

Nati Hea Beth

National Institutes of Health Bethesda, MD

The Office of Science Education (OSE), along with 27 institutes that comprise the National Institutes of Health (NIH), develops and distributes free science education materials for K-12.

Booth #301

National Library of Medicine Bethesda, MD

A world of knowledge for the nation's health (<u>www.nlm.nih.gov</u>), NLM provides free access to Internet health information including PubMed (MEDLINE), Medline Plus (patient education), and <u>ClinicalTrials.gov</u>.

Booth #216

NeoSCI provides innovative products for teaching curriculum-based science topics to K-college students. We feature unique virtual software integrated with hands-on labs.

Booth #204

Nutrients for Life Foundation Washington, DC

The Nutrients for Life Foundation, a non-profit organization, aims to educate individuals about the impact plant nutrients have on our environment, our crops, our foods, and our health. Through a grant to BSCS, the foundation underwrote development of supplemental science curriculum materials for middle and high school students and teachers to improve understanding of soil science and plant nutrition.

Booth #505

PASCO Roseville, CA

PASCO offers award-winning probeware solutions and standards-based teaching materials for biology and environmental science that allow students to collect and analyze data in the classroom and in the field.

Booth #211

Pearson Prentice Hall Upper Saddle River, NJ

Pearson Prentice Hall offers a complete array of exciting educational products at the middle and high school levels. Research-based core curriculum textbooks, ancillaries, electronic media, and professional development programs provide you with the latest and most engaging teaching and learning materials available.

Booth #415/417

Prentice Hall Publishing Upper Saddle River, NJ

Prentice Hall welcomes you to NABT 2006. As a full service biology publisher, we have a wide variety of textbook offerings to meet the needs of your curriculum. Please stop by our booth to browse our titles and integrated media offerings. To view our online catalog, visit www.prenhall.com/biology.

Booth #515

Red Hill Studios

Larkspur, CA,

Red Hill Studios presents *BioInvestigators!*, a forensic biology game that challenges students to solve real world cases using DNA analysis. Try the demo!

Booth #509

Sargent Welch

Tonawanda, NY

Sargent-Welch is the single source for your science equipment needs. We are also the premier provider of classroom/science lab furniture and biotechnology support materials. Booth #114/116

Science Kit & Boreal Laboratories Tonawanda, NY

Science Kit provides educators the tools necessary to maximize teaching effectiveness in K-12 science. Our philosophy revolves around helping teachers make a world of difference.

Booth #115/117

SimBiotic Software

Ithaca, NY

We'll demonstrate *EcoBeaker*, *EvoBeaker*, and other innovative

computer programs for teaching college and secondary ecology, evolution, environmental science, neurobiology, and cell biology using interactive simulations.

Booth #414/416

Speak Easies

Santa Rosa, CA

Speak Easies produces standards-based magnetic teaching aids for the biology lesson. These colorful aids can guide the teacher's lecture or be actively used by students.

Booth #402

Teaching Magazine/Agent K-12 Bethesda, MD

Booth #121

Texas Instruments Dallas, TX

Texas Instruments educational technology, training, and curricular materials are designed to help increase student achievement in biology. Visit TI's booth or <u>education.ti.com</u>.

Booth #105/107

The College Board

New York, NY

The College Board's mission is to connect students to college success and opportunity. We are a not-for-profit membership organization committed to excellence and equity in education.

Booth #314

3D Molecular Designs & MSOE Center for Biomolecular Modeling Milwaukee, WI

3D Molecular Designs and Center for BioMolecular Modeling provide molecular models and professional development for educators including magnetic Water & DNA Kits and SMART Teams.

Booth #225

TOUCH OF LIFE TECHNOLOGIES

Aurora, CO

The VH Dissector correlates cross-sectional and 3-dimensional anatomy in an interactive environment. The easyto-use interface, presenting the complete male anatomy and the female pelvis, provides access by system, region, index search, or through directed lessons and lecture notes.

Booth #206

U.S. Department of Energy Genome Programs Oak Ridge, TN

The U.S. Department of Energy Genome Programs provides human and microbial genomics education materials for students and teachers including posters, primers, brochures, workbooks. Learn about genomic solutions to energy and environmental problems including biofuels.

Booth #317

US Micro-Optical Solutions presents a complete line of educational microscopes. The new student Forensic and Polarized microscope will be displayed. All offer high image quality, illumination, durability, comfort, and affordability. US Micro offers microscopes designed with features optimizing science education that last for years. Our exhibit staff will discuss any service or preventative maintenance questions you may have.

Booth #511

Vernier Software & Technology Beaverton, OR

Vernier is the leader in data-collection technology for biology and life science education. Stop by our booth to see some exciting new products developed just for you!

Booth #101/103

Virginia Commonwealth University Richmond, VA

Fifty free online biology videos with lesson plans available at <u>www.vcu.edu/</u> <u>lifesci/sosq</u>. Also week-long summer workshops in forensics and other life sciences in historic Richmond, <u>www.</u> vcu.edu/workshop.

Booth #215

Virtual Courseware Project

Los Angeles, CA

Mate fruit flies, measure geologic time, or experiment with evolution online! Learn about free inquiry-based simulation activities for enhancing your curriculum at <u>www.ScienceCourseware.</u> org.

Booth #316

Ward's Natural Science Rochester, NY

Ward's, unsurpassed in quality and service, offers biology teachers the most thorough and innovative product line. Stop by our exhibit to preview our biological specimens and products and experience the Wards difference.

Booth #109/111

Wiley Hoboken, NJ

Founded in 1807, John Wiley & Sons, Inc. is an independent global publisher of print and electronic products. Wiley specializes in scientific and technical books, journals, textbooks, and education materials for colleges and universities, and professional and consumer books and subscription services. Wiley's Internet site can be accessed at http://www.wiley.com.

Booth #401/403

A

Abrams, Joan 21, 22
Adams, Caroline
Adamson, Bob53
Albanese, Jennifer60
Allan, Richard
Almedia, Sylvia50
Anderson, Margery53
Anderson, William 62
Andrews, Sherri . 45, 50, 59, 60, 61
Aron, Bob
Asher, Lauren
Awodey Roberts, Marisa64
Azpell, Betty Jo45

B

Balsamo, Ron
Bancroft, Barb54
Barker, Cookie
Barker, Jean
Basham, Michael 29, 63
Bateman, Kenneth 6, 58
Baylor, Julie 54, 61
Beachly, Bill
Beck, Jason
Beeber, Carla 51, 60
Belcher, Lindsay60
Bell, Donald
Bell, Franklin 13, 53
Belzer, Sharolyn 6, 24, 33
Bergland, Mark
Bertino, Anthony
Biehl, Angelique65
Bielec, Barbara 6, 46
Biermann, Carol51
Biggs, Alton 25, 35
Binlkey, Steve 21, 27
Black, Suzanne57
Bland, Mark60
Bliss, TJ
Bohrer, Kelly 6, 27, 33
Boldyreff, Roman
Bombaugh, Ruth
Bradley, Carolyn59
Bradley, Joan
Brandner, Diane 40, 47
Branson, Mary58
Brickman, Peggy27
Brown, Kirk 45, 50, 59, 61, 65
Brown, Peggy63
Brunette, Beverly
Burley, Kim65
Burrows, Frank64
Burrowes, Patricia54
Burton, Stephen25

Bush, William.							.55
Byrnes, Cheri .							.30

С

Caldwell, Jayni65
Calhoun, Bruce7
Callahan, Tracy28
Cannon, Robert
Canote, Dorothy
Cardoza, Tara
Carlson Powell, Janet 40, 48
Caroll, Natalie
Carter, Todd
Castori, Pam
Catron, Diane 40, 47, 63
Cepeda, Linda25
Chakeres, Chris40
Chapman, Seri
Cheesman, Kerry 6, 27, 33
Cherif, Abour
Chirikijian, Jack
Chowning, Jeanne
Clark, Sandra54
Clary, Renee
Cleary Sadler, Kim27
Close, Pamela
Coffey, Saundra65
Colgan, Wes,53
Collins, Sandy46
Colton, Shannon64
Connors, Margaret,26
Cook, Bethany
Correiro, Elizabeth,
Cox, Laura
Cox, Tammy
Crane, Elizabeth29
Cronkite, Donald 12, 36
Cutler, Ann
Cynkar, Tom7, 8

D

Danielson, Philip65
Daugherty, Ellyn
Dawe, Angus
Dawson, George
Day, Judy
Deaver, Emily
Deboer, Karen62
Deichstetter, Peggy53
DeRosa, Donald
DeSaix, Jean 12, 27, 32
DeSalle, Robert
Desharnais, Bob34
Desy, Betsy
Dettman, Mary62

DeVos, Louis	48
Dixon, Kevin	36, 51
Dobrovolny, Marianne	62
Dollard, Kate	58
Donald-Whitney, Cathy	60
Donham, Paula	13,46
Dorsey-Mott, Nancy	25
Doty, David	6
Ducceschi, Laura	33
Duncan, Richard	46
DuPré, Mike	29
Dzwinel, Thomas	33

E

Easter, Carla
Easter, Helena27
Eckman Santisteban, Michelle . 50
Egnin, Marceline
Eiserman, Mary Ann63
Ellis, Cheryl
Ellis, Jane
Elsila, James6
Elwess, Nancy53
Emmanuel Adejare, Adedayo26
Enchou, Lui
Epel, David 6, 52
Erdmann, Deanne 34, 53, 64
Esprivalo Harrell, Pamela30

F

G

Gabric, Kathleen54
Gallo, Mark 37, 38
Gallucci, Kathy25
Gardner, April 40, 48, 54
Gedney, Clark
Generette, Docia64
Gingerich, Philip
Giudice, Shauneen 13, 61
Glass, Monica27
Glenn, David47

Graf, Karen
Green, Nicole
Gregory, Eileen
Grumbine, Richard64
Guilfoile, Patrick
Guimond, Pamela51
Gurley, Laine40
Guy, Candice
Guy, Kevin46

Η

Hach, Cheryl65
Hackney, Marcella
Hagins, Whitney6, 22, 58, 59
Haldeman, Janice27
Harding, Sarah
Harman, Pamela
Harrison, Carol
Harrison, Nancy
Hart. Peter
Haury, David
Haves, Carolyn
Heady, Judith
Heck, Jennifer
Heithaus, Mike
Helling, Sharon7
Hemingway, Claire
Hemphill, Jammy
Henk, Margaret
Herman, Tim 34, 64
Herricks, Susan
Heyden, Robin 28, 35, 52
Hilgert, Uwe 21, 30, 54
Hilvert, Christopher
Hinton, Juliana
Hitomi, Stan 45, 50, 59, 61, 65
Hitt, Austin
Hlodan, Oksana29
Hlousek-Radojcic, Alenka . 21, 22
Hodges, Scott
Hodin, Jason
Hoefnagels, Marielle
Hoehn, Janis40
Holt, Susan
Holtzclaw, Fred31
Holtzclaw, Theresa
Huebner, Wendy27
Hufford, Terry 12, 40, 53
Hunt, Vanessa
Hutton, Melinda25

Jablonski, David	56, 59
Jacobs-Sera, Deborah	31
Jaskot, Bunny	52
Jaslow, Jeffrey	25

K

Kaelin, Mark27
Kalumuck, Karen 47, 64
Kapley, Becky
Karl, Colleen
Katzman, Lauren
Keeler, Maggie
Kerschner, Tonya28
Kersten, Connie
Kessler, Dawn57
Keys, Rob
King, Nicole 56, 59
Klaus, Josh
Klein, Bill7
Klyczek, Karen
Knodle, Howard35
Krasner, Robert47
Krings, Steve
Kroen, William
Kryda, Cynthia40

L

LaFlamme, Donna62
Lai, Mei-Chun
Lamb, Ellen
Lamb, Ron
Lanza, Janet64
Largen, Sandra
Larson, Dave
Lassiter, Susan
Latourelle, Sandra 6, 53
Latza, Mike
Laubach, Christyna59
Lauffer, Dan
Lee, Kil-Jae
Lee-Bond, Sharon24
LeFever, Mary46
Leonard, Daniel
Leonard, William
Lepri, John
Lesniak, Daniel
Leventhal, Bruce
Levesque, Luci
Levine, Joseph 27, 30, 33, 39
Levinton, Jeff 56, 59
Liakakos, Alexis
Lillis, Elizabeth
Limson, Mel

Lindow, Mary26
Little, Mark
Litvin, Sandra
Loftin, Madelene
Lopez, Adrienne
Lord, Thomas 6, 24, 33
Luczynski, Kathleen58
Lumetta, Vincent45
Lundgren, Linda45

Μ

-		
	MacClintic, Scott	52
	Mackenzie, Ann Haley	25
	Mackta, Javne	52
	Malcom. Shirley 12. 6	55
	Maldonado, Tammy	30
	Mallory Sarah	52
	Marion Amy	26
	May Victoria	36
	Mayo Dave	34
	Mayowa Akinyele Abolaii	26
	McColm Mike	-0
	McCurdy Marlys	., 31
	McLaughlin Jacqueline	50
	McMillan Tobi	50
	McMillian John	52
	McOmbor Christing	53
	McWasser Bill	50
	Maltan Dah)+)=
	Menon Herma)))5
	Miller Heather	2)
	Miller Dam	<u> </u>
	Miller, Patti	. O
	Miller, Sandra)4 = 1
	Mitchell, Shelley.	21
	Monr, Mary	50
	Moldonado, lammy	34
	Molinaro, Marco.	21
	Monson, Nancy	$\frac{1}{2}$
	Moore, John	30
	Moore, Randy 12, 2	29
	Moore, Steven	
	Morales, Christopher Michael	50
	Morgan, Betsy.	53
	Morris, Amy	33
	Morris, Lee	28
	Mott, Inomas	22
	Mucz, Michael	25
	Muller, Eric	04 - 2
	Mulvinill, Charlotte 12, 5	5
	Mundy, Debbie	52
	Murray, Darrel)[
	Musante, Susan	20

Ν

Narguizi	an, Paul.						.61
Nazario,	Gladys .						.54

J

Program Participants

Ndella, Sylla48
Nelson, Gen
Newland, Eileen65
Newman, Cynthia
Neyland, Ray25
Nichols, Beth
Nolan Bertino, Patricia29
Nontanovan, Vasna7

0

Offerdahl, Erika7
Offner, Susan
Olds, Nancy
O'Mahony, Meg58
O'Neil, Karen
Opler, Annette
O'Rourke, Dennis53
Orvis, Kathryn
Ott, Betsy45

P

Paine, Elizabeth 22, 33, 59
Palko, Patricia25
Palmer, Elisa
Pankratz, Scott
Paquin, Louise
Patel, Nipam
Patrick, Patricia
Paulissen, Mark25
Peebles, Patsye
Pendley, Marilyn 39, 52, 55
Penick, John
Phillipson-Mower, Teddie 6, 33
Plati, Susan
Platt, James 25, 35, 65
Pohlschroder, Mecky57
Polsgrove, Pete 37, 46
Potter Wegner, Carol
Pressley, Elizabeth
Presson Ioelle 39
Preszler, Ralph 26, 50, 61

Q

Quiggle,	Paul						.34
Quinn, I	Dorot	hy .					.45

R

Radford, Sharon
Rahmati Clayton, Sonia 53, 64
Ramos, Nancy57
Randak, Steve
Rastovac, John
Redinger, Andrea
Reid-Grasso, Luke
Reiss, Michael24
Remedi, Bob

Richards, Debbie65
Roberts, Kyle
Robertson, Amber
Robertson, Connie
Rodriguez, Liliana 37, 49
Rogers, William
Romero, Chris
Romney, Carla
Roossinck, Carrie25
Rowan, Michael45
Royal, Brenda
Royal, Kimberly45
Russell, Connie
Ryan, Wendy

S

Samuels, Linda	63
Sánchez Alvarado, Alejand	lro60
Sax, Christina	27
Schmitt, Donna	40, 47
Schofield-Bronston, Caroly	m63
Schwartz, Lisa	47
Sernoffsky, Susan	61
Sharkey, Mick	32
Shelp, Phil	40
Shepard, Quintin	37, 55
Shuster, Charles	61
Shuster, Michele	26, 61
Siebens, Arthur	65
Simon, Eric	28
Sironen, Lynn	28
Smart, Rhead	60
Smith, Lynda	65
Smith, Rosemary	24
Smith, Shelia	64
Smucny, Darlene	27
Solon, Israel	29, 57
Staples, Kimberley	51
Stark, Eric	36
Stark, Louisa	28
Stegman, Camille	58
Strode, Paul	58
Suhan-Thomas, Michelle .	.37, 51
Sundrud, Bruce	53
Surmacz, Cynthia	36
Swartz, Sally	31
Swihart, Kristin	30, 34
Szaroleta, David	26

Т

Tabery, Pamela	.24
Talbot, Prue	.57
Tantillo, Erin	.54
Taylor, Sarah	.30
Texley, Juliana	.62
Tharp, Barbara 34, 50, 53,	64

Thompson, Barry	60
Thompson, Helen	8
Thomson, Norman 2	28, 34
Trickey-Glassman, Arden	63
Tunnicliffe, Sue Dale 2	24, 46

U

Ueckert, Catheri	ne
------------------	----

V

Vandiver, Kathleen	27
Verma, Sujata	54

W

Wakeford, Lawrence	.63
Wakeman, Pat	.46
Walker, Windy	.64
Wallace, Kyle	.46
Walsh, Brian	.46
Wandersee, James 34	, 63
Ward, Brad	.26
Warner, Kathleen	.27
Weiland, Jonathan	.30
Weintraub, Jory	.26
Weis, Mary	.60
Weiss, Judy	.64
Wellhouse, Ann Marie	.62
Wells, Matt	.65
Wieland, Christine	.32
Wilcox, David	.45
Willden, Jennifer	.58
Williams, Paul	.56
Williams, Vivian	.57
Williamson, Brad	.52
Winter, Carl	.30
Winter, Jim	.64
Wishart, Rick	.53
Wolslegel, Lynn	.28
Wright, Chrissa	.36
Wright, Michael	.21
Wuebbles, Don	.48
Wygoda, Mark	.25
Wysocki, Lois	.45
1 '	

Y

Yashon, Ronnee						.7,	28
Young, Janice							45

Ζ

Zanta, Carolyn	4
Zarnetske, John5	7
Zeller, Mike	9
Zinsmeister, Dorothy 37, 5	5

Index of Sessions by Subject

Bioethics

Creating a High School Bioethics Course45
Project BEGIN's Family Secrets: A Problem-Based Learning (PBL) Biotechnology Unit in Human Genetics and Bioethics29
Stem Cells in the Classroom: An Investigation Using Planaria31
The American Eugenics Movement and its Relevance Today54
The Science of Alcohol: What Every Kid Should Know Now!53
Using Law in the Biology Classroom28

Biotechnology

A Different Approach to a High School CSI Unit or In This Class You're Going To Think: Part II 54
BIO-RAD Crime Scene Investigator PCR Basics™ Kit59
BIO-RAD ELISA Immuno Explorer™ Kit61, 65
BIO-RAD Forensic DNA Fingerprinting Kit45
BIO-RAD Genes in a Bottle™ Kit
BIO-RAD GMO Investigator™ Kit 45
BIO-RAD pGLO™ Bacterial Trans- formation and Green Fluorescent Protein Purification Kits61
BIO-RAD Protein Profiler [™] Kit50
BIO-RAD Pv92 PCR Informatics™ Kit50
Biotechnology Basics
Biotechnology Infusion To Teach High School Science Concepts53
Biotechnology: From DNA to Product
Cooking Up Proteins and Sleuthing Scientists21
Designer Babies and Embryo Selection30
Do YOU Wanna Start a Biotech Program?

Gene Chips in Your Classroom: From Genes to Diseases54
Get the Inside View of a Biotech Company!28
Hands-on Inquiry Learning Through Forensic Science65
Introducing Biotechnology, the Science of Our Future, to Your Students 48
Introduction to Biotechnology 59
Introduction to Electrophoresis 22
It's Becoming a Small Nano World
Microbial Activities in Biotechnology64
Modeling Biotechnology in the Classroom34
One-Step ELISA–Detection of Bird Flu: A Quicker and Easier Immunology Lab40
Paper Microarrays: A Classroom Exercise
Pennington's Sweetie Pie and Wheelchair To Waltz (Parkinson's Disease and GDNF22
Run a Gel in 20 Minutes! And Other Quick Tips for Bringing Biotechnology into Your Classroom
The DNA Report Card™: New and Improved Classroom Human DNA Extraction for DNA Typing53 The Outreach Biotechnology Loaner Program51

Botany & Microbiology

Microorganisms and Their Roles in Biotechnology 37, 51 Discovering Microbes Part V - Let the Science Begin: Field-testing, Collaborating and Building How to Make a School Nature Trail Involving School Children in the Establishment of a Long-Term Plant Biodiversity Study of an Urban Testing Nature's Pharmacy: Bioassays for Herbal and Medicinal

Curr. Development/ Supervision

Environment/Ecology

A Vivid Simulation for Human
Population Growth
African Natural History46
Animating Global Warming
Section 103
Biodiversity and Biological Filtering in a Southeast Swamp 60
Building Learning Communities in Rural Areas
Burning Issues and Wildhorse Basin: Teaching Fire Ecology32
Comparing Biotic Indices: The Best Choice for Your Students and Your Stream
Don't Just Travel–Get Involved .27

Don't Leap to Conclusions: The Case of the Malformed Frog ... 30 Ecology and Evolution of Infectious Diseases: Understanding and Fighting Avian Flu and Other Effectiveness of an Environment Education Outreach Program: Audubon Adventures in Las Forestry Field Studies: A Paradigm for Resource Management.....47 Global Warming: Teaching the Science with Rigor and Relevance in an Ecological Context27 Global Warming? I'm Supposed To Know What That Is?.....28 High School Students: Mental Models of Zoos: Are Zoos Conservation Organizations? ... 60 How They See It: Student Projects Involving Reflection on the Hunter and Hunted–A Predation In Search of Polar Bears 28 Investigating Plant and Ecosystem Responses to Nitrogen Deposition and Global Warming51 Kingdoms in a Drop of Water: Diversity in the Environment . . 31 Maintenance of Body Temperature: An Inquiry Laboratory for Introductory Biology64 Phytoremediation Laboratory Activity - Phytoextraction of Heavy Metals by Indian Mustard 47 Population Growth and Sustainability: Have Your Students Streamwatch: Monitoring the Health of Your Adopted Stream or River 26 Take Them to The Field-How To Do Field Trips with Today's Technology to the Rescue: Providing Clean Water in a

Environmental Learning53

Evolution

A Plain English Map of the Human Chromosomes and a Universal Bringing Evo-Devo to the **Developing Classroom Inquires** into the Evolution, Selection and Adaptation for Hominid Educational Malpractice: Biology Teachers Who Teach Creationism Extreme Halophiles: From Survival Champs, to Models for Extraterrestrial Life, to Novel Antibiotics, to Classroom Teaching Models and Everything Else in Humans: Evolved or Intelligently Macroevolution: Evolution Above the Species Level..... 56, 59 Making Sense of the Biology Curriculum in the Light of Marooned in the Galapagos: A Scenario-Based Evolution Lesson Microfossils, Macrofossils and Dinosaurs: A Hands-On Fossil Dig Photodisk Assay Lab52 Selection for Ethanol Tolerance in Teaching Evolution in a Potentially Hostile Environment60

Teaching the History of Evolution
The Evolution of Complex
Structures
The Evolution/Creation Struggle: One School's Story26
Time To Abandon Darwin?30
Using Ecological Techniques To Simulate Natural Selection58
Variation in Human Pigmentation

Gender/Multicultural Issues

Effects of the NSES on Attitudes
Toward Science in Middle School
Girls
Factors Affecting the Educational
Success of Women50
Making the Connection in
Evolutionary and Ecological
Biology: Linking Graduate
Programs and Undergraduate
Students
Vicarious Travel in Teaching
Biology

General Biology

American Society for Cell	-
Biology	<i>(</i>
35+ Ways To Use Rubberstamps in the Biology Classroom57	7
A Retrospective on Teaching Biology46	5
A Seamless Biology Classroom: Integrating Lab and Lecture in Botany and Zoology54	ł
A Wild Rose Pot Pourri65	5
Addressing Earth Science Curriculum in the Life Science Classroom29)
An Enemy of the People: Increasing Interest in Biology 26	5
BioJeopardy, v. 4.0, or 30 Activities in 75 Minutes	s)
Biology–A Hands-On Approach to)

Differentiated Instruction40
Biology Best Bets: IX57
Biology, The Living Science: Buying into Standardized Achievement Test and Having Fun59
BIOZONE Student Workbooks & Presentation Media 35, 54, 58
Buccal Smear Gram Stain: Gateway to Cytology62
Canine Cladistics
Comparative Vertebrate Anatomy with Carolina's Perfect Solution [®] Species
Connections: Better Mathematics Through Biology
Critters in the Classroom II 27
Don't Toss the Lab Manual Out with the Bathwater–How To Incorporate Inquiry into Cookbook Labs63
Engaging Hands-On Research for Your High School Students Is Only a Click Away!
Explore the Digital Biology Classroom33
Favorite Labs of KABT46
FELINE ANATOMY with Carolina's Perfect Solution [®] 55
Fissures, Foramen, and Fossa: Skeletal Anatomy Darwin Style .31
Forensic Biology: The Perfect Fit 58
Glencoe Biology35
Homework Assignments that Engage Students, Foster Creativity and Teach Content
in the Online Non-Majors Biology Classroom26
Integrating Science and Math Through Inquiry65
Lab Science Course Design for Several Locations
Labs Alive!
LabTrack–Using Electronic Lab Notebooks in Lab51
Mass Extinctions and Global Climate Change: Integrating the Nature of Science and Biology . 61

Modeling Life, Making **Connections Between Living** Organisms and Biology Class Nourishing the Planet in the 21st NSBRI's Series: From Outer Space to Inner Space-Life Science That's Out of This World64 Nutritional Biochemistry and the Obesity/Diabetes Epidemic....45 Olympic Gold for the Biology Organelle of the Day58 PowerLab[®] and LabTutor Makes Life Science Laboratory Teaching Promoting Active Learning with Put Some Energy into Teaching Putting the Green Back in Biology with Carolina's Plant Materials. 21 Scientific Inquiry Through Plants: Bringing Scientists to the Science SQUID INK-UIRY: Inquiry-Based Invertebrate Anatomy Through Teaching from Controversy....39 Texas Tried and Tested: Volume 2 The Biology Talent Show: The "Do-Re-Mi" of Life on Display.....61 The Brain-Friendly Biology There's Fungus Among Us! Analyzing Fungicides in the Biology Laboratory.....53 Using Available Internet Data To Conduct Inquiry on Ecological Impacts of Climate and Using the Web To Teach Virtual Dissection: The Best of the

Middle School MicrobeWorld

Why Buy Expensive Models When
You Can Build Your Own?.....26WOW Biology IV64WOW Biology V58Writing for The American Biology
Teacher.....25

Genetics

DNA Necklaces and Double-Helix Models
Epidemic!
Genes vs. Jeans: Cracking the Code of Genetics58
GMO21
Mitochondrial DNA with Anastasia29
New Genetic Activities from Flinn Scientific
NHGRI Genetics Education Resources and Programs 31
Phagehunting in the Classroom31
The Family Tree Project64
The Seven Daughters of Eve 63
Why the Y Chromosome? A look at Male Lineage and Ancestry53

Human Health & Public Health

A Scientific Holistic Approach to Institution and Health64
Epidemiology: The Science of Public Health27
Public Health Issues: A Course for the Pre-College and College Curriculum47
The New Science of Addiction: Genetics and the Brain28
Youth Take Heart: An Activity- Based Curriculum To Prevent Cardiovascular Disease32

Instructional Strategies & Technologies

AP Biology Teachers' Open
Forum

Index of Sessions by Subject

Are Biology Foundations Courses Helpful To At-Risk Biology
Biology Curriculum Revisions:
Bio-Rhythms: Use a Song as a
Hook—It's More Fun Than the Book65
Building a Student-Centered Active Learning Environment Using Technology28
Classroom Discussions: Getting Your Students To Actively Think During Class61
Concept Mapping: Learning How To Make Them, Use Them, and Teach Them to Others40
Do I Have To Go, Too? Student- Involved Parent Conferences 58
Engaging Each Student in Large Lectures with Wireless Student Response Units61
Engaging Students with the Biological Patterns in Nature Through Mathematical Activities
Enhance Your Teaching with the WWW
Evaluating Inquiry Understanding: Moving to Higher Plateaus on Bloom's Taxonomy24
Forensic Biology for High School Students
Free Teaching Resources from the Howard Hughes Medical
From My Experience: The Multiple Testing Initiative, A Review of Software and Technology26
Imagine if Biology Was Made Real in High School50
Inquiry-Based Experiments Using Red Flour Beetles63
Is Your Distance Course Comparable to Your On-Campus Course?24
Issues and Internet in Classroom Activities
т. 1. т., 1 1. т. 1.1

Trail29
Linking Lab to Life
Making Molecules Real: The MSOE Model Lending Library.34
Making Science Fun for All Students! Instructional Strategies for Enhancing the Success of All Students
mc square: Brain Science for Better Learning63
Model Building and Use in Teaching58
Novel Ways To Explore Science in the Cinema52
Petrified Wood: It's Not Just for Geology Anymore!
Promoting Information Literacy Through Biological Research45
Publishing and Podcasting on the Tree of Life Web Project47
Reinforcing Biological Concepts Through Models and Manipulatives65
Socratic Seminars in the Biology Classroom63
Story Telling in the Secondary (Science) Classroom32
Teaching AP Biology Down the Stretch25
Teaching Biology, Museum Style56
Teaching Scientific Process in an Introductory Biology Course26
Teaching Strategy for College- Aged Students: Assessing Critical Thinking with a Constructivist Method24
TGT–Cooperative Review58
The Art of Question Writing40
The Case Study Method and Student Learning of Biological Concepts25
Tools for Success! Building a Foundation for Active Learning in Your Classroom35
Two Labs in One: Effects of Temperature and Life Cycle Stage on Metabolism in Mealworm
Beetles25

Molecular & Cell Biology

A Constructivist Approach
TUNEL Assay for the Detection of
Apoptosis in Cheek Cells35
Bird Flu Knocking on the Door:
Molecular Stories from the
CBM62
Case-Based Learning Using Free
Protein and DNA Simulations To
Analyze Cases Based on Genetic
Up!65
Current Topics in Cell Biology . 40
Educate, Motivate and Stimulate
Segments"
Epidemiology, ELISA and HIV. 62
Evolution in Action: Modeling
Insecticide Resistance in
Mosquitoes63
Gene Expression: Protein Synthesis Made Easy
Learning from Patients:
Developing Molecular Models of
Disease
Light and Life–Biophotonic
Inquiry Activities and
Programs
Making the Teaching of
Bioenergetics Interesting and
Modeling Cellular Processes Using
Protein Synthesis Set 27

Protein Structure: It's Not Origami –But Your Kids Can Learn How To Fold30
Sickle Cell Anemia: Molecular Stories from the CBM64
Student Conceptualization of DNA and the Effect of Laboratory Instruction25
The Little Worm That Could60

Oceanography/Marine Biology

Hawaii Marine Science Seminar.53
Inquiry-Based Investigations with Sea Urchins
Marine Science Mania!35
Multiple Impact Stomatopod Strikes Provide the Mechanical Properties of Striking Mechanism46
The Crittercam

Physiology

Anatomy and Physiology Activities Mile High Style II
Best Practices in Human Anatomy and Physiology40
Funatomy & Easyology 28
NEURO-PALOOZA!!!64
See into the Eye: Exploratorium- Based Human Perception Activities
Where Does the Drinking Water Go? Ideas of Some Elementary Children

Teacher Prep/Professional Development

A Collaborative Collaboration .32
AP Biology Share-A-Thon64
Assessing Professional Development Courses25
Case Study Teaching in Science: The Intimate Debate Technique33
Developing College Biology Lesson Plans Using Inquiry Methods33

Identifying and Developing

Conceptions of Living Versus Nonliving Things Among 2nd Juicy Secrets for Spicing Up Your Mentoring Laboratory Instructors in Inquiry-Based Methods.....27 Old Professor's Seminar in Anatomy and Physiology 53 Real World Learning Objects in Science, Math, Language Arts, and Replication and Protein Synthesis: Analysis and Comments About a Series of Common Misconceptions. 48 Sharing the Wealth: Publishing Reports on the Scholarship of Teaching and Learning25 Some of the Above: Writing Quality Multiple Choice Questions To Prepare Students for the AP Teacher Preparation for Higher Education: Learning To Implement the National Science Education Standards Through Teacher Professional Development and Student Science Achievement: The Biology Behind the 2006 AP Free Response Questions33 Using the Japanese Process of Lesson Study To Improve Instruction35 Using the Updated SAT Subjects Test in Biology as an Assessment Tool in an AP Vertical Teams Why Should a Science Teacher Visit Japan?.....61

Zoology

What's Inside? Students' Understanding About the Anatomy of Different Vertebrates and Themselves......24

T. rex Couldn't Jump. Or Could It?33

Index to Advertisers

AAAS83
Amazonia Expeditions 2
American Society for Clinical Pathology49
American Society for Microbiology23
ASM Press44
Bio Corporation
Bio-Rad Laboratories, Inc Cover 2
Carolina Biological1
Cold Spring Harbor Laboratory19
Current Publishing Corporation41
Holt, Rinehart & Winston, Inc11
Humane Society of the United States8
Kendall Hunt Publishing CoCover 3
National Institute on Drug Abuse41
PASCO Scientific43
PCRM84
Pearson Prentice HallCover 4
Thomson Brooks/Cole14
Vernier Software & Technology47
Ward's Natural Science

	Wednesday October 11	Thursday October 12	Friday October 13	Saturday October 14
Breakfast				
8:00am				
9:00am				
10:00am				
11:00am				
Noon				
1:00pm				
2:00pm				
3:00pm				
4:00pm				
Evening				

"This is an excellent book that all high school biology teachers should read!" HIGH SCHOOL BIOLOGY TEACHER, MARIETTA, GA

"I'm not a biologist and I'm not very informed about science, but I really liked the science in this." Сниксн мемвек, Washington, DC

This unique and extraordinary resource presents in plain language and in under 200 pages a new conversation on evolution and Chrisitianity:

- a description of the development of evolutionary theory from before Darwin to the present.
- the rich and complex historical interaction of evolution and Christianity.
- accounts of the nature of science and of Christian approaches to understanding.
- the history of life as revealed through the evolutionary sciences.

To order your copy:

Call 1-800-222-7809 Item Number: PMDS 06-3A Single copy: \$9.95 10 copies or more: \$5.00/each Plus shipping and handling

From AAAS Dialogue on Science, Ethics, and Religion **www.aaas.org/spp/dser**

Now Available! Call 1-800-222-7809

Portrait of a Frog at Home

The first interaction a student is likely to have with a frog is while brandishing a scalpel. There are better ways.

Today, advanced dissection simulation software:

- explores more intricacies than traditional dissection
- conveys the wonder of life without sacrificing it
- helps teachers impart respect for life and the environment

For more information about dissection alternatives, dissection alternatives loan programs, curriculum integration, or to order a FREE copy of Digital Frog 2[®], please visit www.DissectionAlternatives.org.

Help keep frogs in nature, not formaldehyde.

5100 Wisconsin Ave., NW, Suite 400 • Washington, DC 20016 • www.DissectionAlternatives.org

Blue People?

By Cathy Trost, Science 82, November 1982, pp.35-39.

What he got from Martin Fugate was dark blue skin. "It was almost purple," his father recalls.

Doctors were so astonished by the color of Benjy Stacy's skin that they raced him by ambulance from the maternity ward in the hospital near Hazard to a medical clinic in Lexington. Two days of tests produced no explanation for skin the color of a bruised plum...

©2007

We all learn best through stories. High school students are no different. *Insights in Biology's* unique storyline format grabs student interest and keeps it. Students pose questions and design and carry out investigations relevant to them.

Stop by our booth for more information. Or visit us online.

1-800-542-6657 www.kendallhunt.com

Read the whole story: www.kendallhunt.com/insightsinbiology

PUBLISHING COMPANY

Focus on the BIG Ideas

Enter for your chance to win

A Tropical Biology Scholarship at the

Organization for Tropical Studies in Costa Rica, courtesy of *Prentice Hall Biology* authors Ken Miller and Joe Levine.

Learn more about this short summer course and enter for a chance to win the scholarship trip. Stop by the Pearson Prentice Hall booth at NABT in Albuquerque or visit PHSchool.com/tropicalbiology

See you in Albuquerque!

with

- The Best Authors with Ken Miller and Joe Levine
 - Virtual Labs and Active Learning with Active Art
 - Online Testing and Remediation with Success Tracker[™]

Prentice Hall

 Powerful Presentations with the NEW PresentationEXPRESS™

Miller & Levine

Visit our Web sites at • PHSchool.com/biology

millerandlevine.com