To the Graduate Council:

| am submitting herewith a dissertation written by Myles Brandon Bogner entitled
“Redizing ‘Consciousness In Software Agents.” | have examined the final copy of this
thesis for form and content and recommend that it be acceted in partial fulfillm ent of the
requirements for the degree of Doctor of Philosophy, with a mgor in Mathematicd
Sciences.

Stan Franklin, Ph.DMajor Professor

We have read this dissertation
and recommend its acceptance:

DinpankarDasguptaPh.D.

Art GraesserPh.D.

JonatharMaletic, Ph.D.

EdwardOrdman,Ph.D.

Accepted for the Council:

Linda L. Brinkley, Ph.D.
Vice Provost for Research
& Dean of the Graduate School

Realizing “Consciousness” In Software Agents

A Dissertation
Presented for the
Doctor of Philosophy
Degree

The University of Memphis

Myles Brandon Bogner

December, 1999

Copyright ©Myles Brandon Bogne1999
All rights reserved

DEDICATION

To RoseGreenbaum

For all of her struggles

ACKNOWLEDGMENTS

| would like to express thanks to my advisor, Dr. Stan Franklin, for his
willi ngnessto share his ideas and allow me to explore my own. Dr. Franklin has met
me many times on late Friday afternoors when all others have deserted the university.
Under his diredion | have thoroughly enjoyed pusuing my graduate degrees. | would
like to thank Dr. Jonathan Maletic, a @mmittee member and friend, for his
encouragement. Dr. Maletic's guidance significantly enhanced my knowledge of
software reuse. | would like to adknowledge Dr. Chip Ordman for histeadings. From
Dr. Ordman | learned many of the distributed computing tedhniques used in my reseach.
He and | have traceal through numerous paths on hs office dak board. | would like to
thank Dr. Art Graessr for sharing with me the ideas of cognitive modeling. Dr.
Graes®er made sure | stayed the course when testing my implementation. | would also
like to adknowledge Dr. Dipankar Dasgupta, for his asgstance and comments. | have
often paused in front of DiDasgupta’ffice door to read his postings.

| would like to thank the “Conscious’ Software Reseach Group for our inspiring
weekly medings. | would like to acknowledge the United States Navy’'s Office of Naval
Reseach and Personrel Reseach and Development Center for fundng this reseach

under grant NO0014-98-1-0332.

| would like to thank Michada, for her courage and suppat. | would like to
thank my sister, Alexis, for helping to hdd upthe St. Louis fort while | have been away.

Finally, I would like to thank my parents, who willingly continue to be wonderful guides.

ABSTRACT

Realizing “ Consciousness' In Sdtware Agents describes the first design and
implementation d Bernard Baas' globa workspacetheory. Globa workspacetheory is
a leading psychdogicd model of human consciousness The “Conscious’ Software
Reseach Group at the University of Memphis has labeled agents which implement this
theory as “conscious’ software ggents. As badkgroundmateria for the reader, this work
also dscusses agents, other existing cognitive achitedures, and current software reuse
methodology.

This dissertation describes in depth the “Conscious’ Agent framework (ConAg),
developed by thisauthor. ConAg is areusable software framework that carefully foll ows
software reuse methoddogy. ConAg provides a solid founcition for building
“conscious’ software ajents, and in particular, “consciousness’ within these agents. A
description d two agents built with ConAg are described, as well as the framework’s
structure. It is beyond this work’s sope to address whether or not agents built with
ConAgare sentient.

There ae severa motivators for this reseach. Firgt, it is hypothesized that a
global workspacegives a multi-agent system several advantages. For example, it offers
individual agents in the system a means of reauiting the system’s other agents to help
solve novel and ambiguous problems. Also, it gives a method for attentional focus for
the overall system. This provides a means for asociative leaning and metaaognitive

functions to take place This dissertation gives an in depth dscusson d the spedfic

Vi

functions of the global workspace in ConAg. It is hoped that the software
implementation advantages gained when using a global workspace are evident.
As a seoond motivation, this reseach hopes to provide new hypaheses abou
human consciousnessfor cogntive scientists and reuroscientists. As a cognitive science
theory, Baas theory does not contain many o the low-level design spedficdions
necessary for a omputer scientist’s implementation d the theory. To implement the
theory, these design dedsions had to be made. Many o these dedsions can be
considered hypdheses on human consciousness It is hoped that the members of the
abowve disciplines will view these implementation dedsions as ringbards for the

further study of consciousness.

vii

TABLE OF CONTENTS

An Introduction To A Software
Implementation of
“Conscioushess”

Motivations

What Are Frameworks?

Conclusions

Setting The Stage

Introduction

VMattie

VMattie As An Autonomous Agent
VMattie’'s Architecture
Drives

iX

23

25

25

26

27

28

28

28

28

29

30

30

31

32

33

33

34

35

35

36

36

Mail Input and Output

Results and Limitations

Global Workspace Theory

Introduction

Consciousness

“Conscious” Software Agent’s Architectural Style
Action Selection Paradigm of Mind
Global Workspace Theory Recap

Pandemonium Theory

The Architectural Style

36

37

38

38

39

39

40

41

42

42

43

44

46

47

49

49

50

50

50

51

51

The General Architecture

A Brief Overview Of Codelets Reaching “Consciousness”

“Conscious” Mattie

Mail Input and Output
Perception
Associative and Episodic Memories
“Consciousness” Codelets

“Consciousness”

Behavior Network

Emotions

The Intelligent Distribution Agent (IDA)
IDA’s Architecture As An Extension Of

IDA’s Natural Language Generation Scripts

Conclusions

CMattie’s

53

53

55

55

56

59

59

60

60

61

61

62

63

64

65

65

66

67

68

69

71

Introduction 72
Base Codelet 72
The Focus 75
Playing Field 79
Coalition Manager . . 80
Spotlight Controller . . 81
Broadcast Manager 82
Chunks and the Chunking Manager 83
Short-Term Memory 84
“Consciousness” Codelets 85
Fromthe Focus 85
From the Composition Working Memory 87
An Example “Consciousness” Codelet ...~ 87
Conclusions 90

The “Conscious” Agent Framework 91
Why Java? e, 92
JavaBeans L, 93
The Framework’s Primary Goals 94

Xii

ConAg's structure 94

ConAg's Domain Independent Portions L 96
Codelet Definitions 96
Attention e, 98
Compilation Hooks 98
Graphical User Interface 100
ErrorHandling 101
Other Cognitive Module Stubs 101
Domain Dependant Portions, .. 103
ConAg's Design Patterns L 103
How Other Cognitive Modules Integrate With ConAg 105
ConAg’s Graphical User Interface Revisited 106
Testing Results . . 115
TestOne 116
TestTWO 117
TestThree 118
TestFour 119
TestFive 120
TSt SIX 121
TestSeven 121
TestEight 122

Conclusions 122

Are Baars’ Nine Functions of Consciousness

Implemented In- ConAg? 126
Hypotheses 130
The Future 134

Xiv

LIST OF FIGURES

Figure 3.1:VMattie’s Architecture i 31
Figure 3.2: Global Workspace Theory. 45
Figure 4.1: Architectural Style For “Conscious” Software Agents. 52
Figure 4.2: An Architecture For “Conscious” Software Agents. 53
Figure 4.3:CMattie’'sArchitecture it v 58
Figure 6.1: “Conscious” Software Agent Directory. 95
Figure 6.2: “Consciousness” Package. vt e 97
Figure 6.3: Compilation Hooks Package.................... 98
Figure 6.4: Display Package. it 100
Figure 6.5: “Consciousnes€odeletPackage 102
Figure 6.6:ConAg’'sStartup Screen.ttt 112
Figure 6.7:ConAg’'sFile Menu it 113
Figure 6.8:ConAg’'sAttention Menu it 114
Figure 6.9:ConAg’sBroadcast Recipients View. 115
Figure 6.10:ConAg’'s“ConsciousnessCodeletdMenu 117
Figure 6.11: “Consciousnes€bdeletView 118
Figure 6.12:ConAg’'sFocUsS Menu. i 119
Figure 6.13: Current Perception Registers Snapshot 120
Figure 6.14:ConAg’'s“Unconscious” Menu.ot o 122

XV

Chapter 1

An Introduction To A Software
Implementation of “Consciousness”

Motivations

This work describes a software design and implementation d global workspacetheory, a
cognitive sciencetheory of consciousness(Baas, 1997). This implementation focuses on
the theory’s consciousness portion. The theory extends to cover other cognitive
medanisms such as leaning and metaaognition. Global workspace theory postulates
that in humans, consciousness provides for numerous functionalities. These include
adaptation, leaning, and prioritization. Thisreseach is motivated, in part, to show that
these ognitive medhanisms, many of which have partly been implemented on machines
previously, can be enhanced through “consciousness” Hopefully, this will lead to
“smarter” software.

Seoond, it is important to stress that global workspace theory is a agnitive
science hypothesis. As such, it is at a much higher conceptual level than necessary for a
software implementation. Therefore, this writer, in consultation with the “conscious”
software reseach group, including both computer and cognitive scientists, made
lower-level design dedsions for the theory's implementation. These design dedsions

can be onsidered hypotheses on hav humans minds work. Hopefully, they will be

analyzed by cognitive scientists, neuroscientists and phlosophers and lea to a further
understanding of mind.

The “conscious’ software reseach group labels oftware ajents (see dapter 2)
which implement global workspace theory as “conscious’ software ggents. As e
throughou this work’s later chapters, these aents are quite @mplex and wery
time-intensive to buld. They are dso closely couged to their domain. Therefore, a
goa for this author’s implementation has been to incorporate arrent software reuse
methoddogies to creae areusable framework. New “conscious’ software ayents, when
incorporating this framework, do nd have to be implemented from scratch. Instea,
large portions of eat new agent need no code modificaion, while other portions need
not be reimplemented from scratch. As discussd later, reuse has siown to significantly
incresse productivity while deaeasing defed density, rework, and development costs
(Basili, Briand, & Melo, 1996).

This framework, named ConAg: The “Conscious’ Agent Framework, is
implemented in Java beans (Eckel, 1999. The use of Java beans increases ConAg's
chances of truly being a reusable framework. As of July 1, 1999,ConAg had been
developed solely by this writer, and consisted of approximately 60,000lines of code and
over 280 Java beans. While other agent frameworks do exist (Reticular Systems, 1999,

this is the first one designed for building “conscious” software agents.

Contents and Author’s Contributions

This work contains sven chapters. Chapter 2 gives a literature seach owerview. It
discusses agents, focusing on software agents (Franklin & Graesser, 1997 and their
relation to “conscious’ software agents. The dapter then describes computational
models, comparing “conscious’ software agents to established ores. The dapter ends
with a discusson d software reuse methoddogy, focusing on its importance and
comporents. ConAg is designed under software reuse methoddogy, and ConAg's heavy
reliance on this methodology will be evident throughout the later chapters.

Chapter 3 sets the stage by describing gobal workspacetheory and Virtual Mattie
(VMattie), the “conscious’ software reseach grougs first projed (Song, 199§.
VMattie is nat a “conscious’ agent, bu contains many of the building blocks for agents
which doimplement global workspacetheory (Zhang, Franklin, Olde, Wan, & Graesser,
1998). The author was actively involvedMMattie’s design.

Chapter 4 dscuses “conscious’ software aents in depth, focusing on
“Conscious’ Mattie (CMattie) and the Intelligent Distribution Agent (IDA) (Bogner,
Ramamurthy, & Franklin, in press1999. Chapter 4 describes the new architedura style
developed by the author for high level “conscious’ software agent description (Bogner,
Maletic, & Franklin, in press1999. Thisauthor has been adively involved in al stages
of the design and implementation d CMattie, and as e in the reference sedion, tes
publicaions based on work relating to the agent. CMattie is the first “conscious’

software agyent. IDA is the “conscious’ software reseach groups proof of concept

projed. IDA isfunded by the Office of Naval Reseach and will, hopefully, turn into a
useful software padkage. The present writer has been adively involved in al stages of
the design and implementation of IDA, including meetings with naval personnel.
For bothCMattieand IDA, this author’'s major contributions have been:
1. The aedion d anew architedura style and general architedure to sucanctly
describe “conscious” software agents.

2. The design from scratch and implementation d these agents’ “consciousness’
medanisms. Since “consciousness’ provides the badkbore in these ggents
structures, many of these aents core @mporents are within this
“consciousness” mechanism.

3. The succesdul implementation and extenson d John Jadkson's
pandemonium theory (Jadkson, 1987%. Extending pandemonium theory’'s
ideas helped provide ameans for implementing doba workspace theory’s
consciousness This is the first known implementation d pandemonium
theory.

4. The design from scratch and implementation o these ayents base padkage of
classes, known as the base codelet padkage. All codeletsin the system utili ze
this package.

5. The aedion d a reusable software framework for utili zation in bah these
agents and in future “conscious’ software agents. This framework follows

software reuse methoddogy to crede atruly “reusable” framework. It

includes a graphicd user interfacefor a view of what is internally occurring

4

within these ajents; in particular, what is occurring within these agents
“consciousness” mechanism.

6. The succesdul provision for eadqy of Baas nine maor functions of
consciousness These ae described in chapter 3, and chapter 9 includes
discusson on how the framework succesully provides for ead o these
functions.

In addition, the present writer has worked ona projed to develop an intelli gent tutoring
system. During that time, he was a primary developer of natura language aurriculum
scripts which are spoken by the tutoring system. Many of these script innowetions are
planned for use in IDA’s natural language generation pation. Chapter 4 gives a brief
tour of these script&Graessert-ranklin, & Wiemer-Hastings1998).

Chapter 5 describes the design of CMattie and IDA’s “consciousness
mechanism. This includes how information is brought to “consciousness” how the
“consciousness’ apparatus functions, how the “conscious’ information is disseminated,
and what “consciousness’ provides to these agents. Chapter 6 delves into depth onthe
structure ofConAg, illustrating how it implements Chapter 5’s design.

To be asuccesdul software framework, it has to be straight forward in its use.
Chapter 6 also describes how different modues, developed by other “conscious’ software
reseach group members, integrate with ConAg and uili ze its fedures. In addition, it
gives testing results. Finally, chapter 7 spedficdly answers the question d how ConAg
provides for Baas nine functions of consciousness In addition, it draws conclusions,

hypotheses, and future speculations.

Chapter 2

Agents, Models, & Reuse

Introduction

This chapter gives overviews of reseach relevant to this disertation’s focus. It begins
with a discusson d agents, focusing on software aents. “Conscious’ software ajents
are cognitive software agents. It then gives an overview of three @mputational models.
Described in this chapter and further beginning in chapter 4, “conscious’ software agents
are different than these models as they follow the adion seledion paradigm of mind
(Franklin, 1995 and focus on consciousness diredly in their implementation global
workspacetheory (Baas, 1997. Finaly, this chapter describes current software reuse
methoddogy. The “Conscious’ Agent Framework (ConAg) draws heavily on this

practice to create a reusable framework.

Agents

On the software agents mailing list (http://www.cseeumbc.edu/agentslist/),
frequently asked questions include: what is an agent; why are agents nealed; can | cdl
this an agent; is there adummy agent avail able on the web; what makes an agent distinct
from other software; what are the differences between multi-agent and single-agent
systems; what are the differences between agent architedures, cognitive achitedures,

and software achitedures; can agents be used in the medicd areg and many more dong
6

the same lines. A main reason for these questions is the increased interest in agents as
they continue to rapidly grow in popuarity. Also, there ae many varied definitions of
what an agent even is. In addition, agents are now classfied: artificia life agents,
autonamous agents, cognitive agents, goal-based agents, irrational agents, mobile ayents,
multi-agents, rational agents, reflex agents, robaic agents, utility-based agents, and
viruses are all examples.

Rus=ll and Norvig have ahighly regarded definition o an agent: it is anything
that can be viewed as having sensors through which it percaves its environment and
having effedors with which it ads uponthis environment (1995. Under this definition,
humans are agents with sensors such as eyes and eas and effedors including hands and
fed. Described in later chapters, “conscious’ software agents sense through their
perception modues and ad upontheir environment in numerous ways sich as snding
out email messages through mail output modules.

However, by this definition, a refrigerator’ s thermostat is an agent. It senses its
environment, the ar temperature, and it ads uponits environment by causing the waling
of therefrigerator. Obviously, more is needed to identify agents with “intelligence” One
way to dothisisto classfy agents asirrational or rational. Rational agents are said to do
the right thing, meaning that they will take adions which alow them to adiieve the
gredest success CMattieis arational agent, and, presumably, thisis the goa of rational
humans aswell. Rational agents can be dasdfied asided rational agents. These perform

adions which are expeded to maximize the agents success These adions are taken

based onthe ayents built-in knovledge and what they have perceived upto this paint.
Notice, thermostats are ideal rational agents.

Numerous reseachers have defined autonamous agents (Franklin & Graesser,
1997. Franklin and Graessr provide a now prominent definition, stating that an
autonamous agent is a system situated in, and part of, an environment, which senses that
environment, and ads onit, over time, in pusuit of its own agenda. It ads in such away
as to passhbly influence what it senses at a later time. In ather words, it is gructurally
couded to its environment (Maturana 1975 Maturana and Varela 1980. Biologicd
examples of autonamous agents include humans and most animals. Non-biologicd
examples include some mobile robas, and various computational agents, including
artificia life agents, software agents and computer viruses. “Conscious’ software agents
are designed to be autonamous agents under this definition. It so happens that the
thermostat is one also.

The thermostat is lost, howvever, when classfying agents as cognitive aents
(Franklin, 1997%. Both humans and “conscious’ software ajents can also be @nsidered
cognitive agents. These ae aitonamous Ddftware ayents that are egquipped with cognitive
(interpreted broadly) feaures chosen from among attention, concept formation, cedsion
making, emotions, leaning, long and short-term memory, multiple senses, perception,
problem-solving, etc. While this definition is not crisp, cognitive aents can pay a
synergistic role in the study of human cognition, including consciousness (Bogner,
Ramamurthy, & Franklin, in press1999. This dissertation uses cognitive fegures such

as attention both in the folk-psychological and technical senses.

8

Due to their cognitive nature, “conscious’ software ayents are aurrently relatively
unique; this can be seen through CMattie. CMattie is designed to fully function as a
“human” seminar annource. She ammmunicaes entirely via the natural |anguage found
in email messages. Her architedure combines numerous artificial intelli gencetechniques
to model the human mind. While CMattie’'s role will nat fully be discussed urtil chapter
4, it isbeneficial to pant out that there aein fad other email and scheduling agents. For
example, the Calendar Agent automates a user’'s sheduling process by observing the
person's adions and recaving dired feedbadk (Kozierok, 1993. The Maxims g/stem is
an email filtering agent which leans to process a user’s incoming mail messages
(Lashkari, 1999. These two systems employ other agents that collaborate to overcome
the problem of leaning from scratch. Re:Agent is an email management system (Boore,
1998. This agent routes email to handers that delete, dowvnload, sort, and store these
messages on palmtop computers and pegers. Re:Agent leans the emails fedures in
order to lean how to appropriately classfy the messages. The Visitor-Hoster system is
amed at helping a human seaetary organize avisit to an acalemic department (Sycara,
1994. The seaetary is presented with a user interface where she inpus relevant
information to the agent about the incoming visitor. The agent then plans the visit, and
returns to the seaetary for confirmation. In addition to dfferences in tasks, CMattie's
architedure, method d communicaion, degree of autonamy, and emphasis on
“consciousness’ make her relatively unique anong these types of agents. IDA continues

the trend.

Probably the types of agents gaining the most prominence ae internet agents,
often knavn as mohile ggents. These agents are beginning to be mmmonly found onthe
internet, performing tasks such as information retrieval (Menczer, Belew, & Willuhn,
1995, network routing (Bonabeau, Henaux, Guérin, Snyers, Kuntz, & Theraulaz, 1998,
and seaurity (Crosbhie & Spafford, 1995. At times these aents may neeal to
communicae (http://wwwfipa.ag) and even barter with ore aother (Wurman,

Wellman,& Walsh,1998).

Computational Models

Severa reseachers have aeded computational models which attempt to model human
intelligence Often these models try to depict a spedfic asped of cognition, such as the
leaning performed by conredionist systems (Haykin, 1994. Some dtempt to approac
complete mgnitive achitedures. This ®dion touches on threethat begin to: Soar
(Laird & Rosenbloom, 1996, CAPS (Just, Carpenter, & Hemphill, 1996, and Paaat
(Johrson & Scanlon, 1987. There ae others, including the well known ACT*
(Anderson, 199), OSCAR (Pollock, 1995, and “conscious’ software aents. This
sedion also touches on why “conscious’ software agents do nd utili ze Soar and CAPS

the two most prominent cognitive architectures.

Soar

Soar is a mgnitive achitedure designed for genera intelligence (Laird & Rosenbloom,
1996. It provides the means to study general properties of intelligence In thisway, Soar

goes beyond many systems which solely deliver the aility to analyze speafic dgorithms
10

modeling spedfic problems. This design is motivated by cognitive issues sich as
humans having a variety of behaviors. Soar’s underlying structure is built so that a full
range of cognitive tasks are available (Franklin, 1995. Soar’s credors dedared spedfic
measures in arder to monitor the progress of how close Soar is to genera intelligence
(Rosenbloom, Newell, & Laird, 1991). These include the aility to work onafull range
of tasks, to be ale to use the full range of problem-solving methods and varieties of
knowledge, to be ale to interad with the outside world in red time, and to lean abou
the world and the system’s own performance Soar has adchieved significant progressin
numerous areas such as learning, outside interaction, problem solving, and range of tasks.
Soar's hypothesis is that general intelligence systems must be redized by
symbalic systems, which may be implemented ona lower-level architedure. Therefore,
Soar relies on production systems (Russll & Norvig, 1999 in its quest to perform a full
range of tasks from routine to extremely difficult. Soar has very littl e built in default
knowledge; most of the knowledge is domain-specific knowledge provided by the user.
Soar is often analyzed along four levels. The knowledge level isthe most abstrad
level andis used to charaderize the system’s behavior. When Soar aqquires knowledge,
it is available for all future goals. There is no cgpadty limitations on the anourt of
knowledge that can be available, or on Soar’s ability to uilize it in the seledion o
adions that achieveits goals. The esentia feadure of the knowledge level is that Soar’'s
behavior is determined by the content of its knowledge, na by aspeds of its internal
structure. Soar’s intelligence can be measured by how well the system applies its

knowledge to its tasks. The problem spacelevel is concerned with the dharaderization o

11

problem spaces, operators, relationships between goals and subgoals, and states. The
problem space determines the set of operators and states that can be used duing the
processng for goa attainment. One of Soar’s unique properties is that it is quite
entrenched in the problem spacelevel as it determines how tasks are formulated. The
symbadlic level contains the detail s of control flow and memories. More spedaficdly, it
provides the basic control structure, memory organization, and processng structure for
suppating the knowledge level. The implementation level is the underlying techndogy
on which the symbdic achitedure is built. The implementation cetails are largely
irrelevant to the Soar architedure. However, this level does diow boundedness
corredness for the exeaution d the symbadlic level’s processes, and efficiency. In
addition to these knowledge levels, Soar contains dedarative, episodic, and pocedural
knowledge, and its primary task is to perform procedural knowledge.

One of Soar’s most natable feauresisits ability to subgoa. When goals canna be
readed, dwe to aladk of knowledge or atie in the dedsion procedure, it is known as an
impase and subgoals are aedaed. Soar’s subgoaling is known as automatic subgoaling
as the achitedure automaticadly generates subgoals based on an inability to make
progressonthetask. Soar also daes universal subgoaling asit creaes any and all types of
goalsincluding metagoals (goals for deading what operator to seled), goals for achieving
operator precondtions, and goals for performing cetain operators. Soar can crede
subgoals of subgoals, creaing a hierarchy of goals, in arder to help achieve the overall
goa. To get through the aeded subgoals, Soar uses wed&k methods. These types of

methods are heuristic seaches (Russll & Norvig, 1995 which control the seach through

12

the problem spaces. Wed& methods do nd require significant built-in knovledge and
include common artificial intelligence seach tedniques sich as generate and test,
hill -climbing, and means-ends analysis. The Soar architedure aittomaticdly terminates
thesubgoalsvhen the impasse is resolved.

When a subgodl is redized, Soars coll apses the subgoal into a chunk. Thisis a
method d one shat leaning known as chunking. Chunking credes a production that
contains both the @ndtion, describing the situation leading up to the impas<, and the
wegk methods, utili zed to resolve the impasse. In ather words, chunking summarizes the
problem solving of the subgoals, so that in the future, chunks fire in situations which
would have previously led to subgoals. Chunking is a badkground pocess which is
invoked automaticaly whenever a subgoal result is produced. Leaned chunks are usable
throughou the entire system. Described in later chapters, “conscious’ software ayents
also uilize achunking tedhnique, bu its form is different largely due to architecural
differences.

Out of Soar’s goas and subgoals come two hypatheses about the relationships
among goals in intelligent systems. First, subgoals are aeded to oltain knowledge so
that the pursuing of agoal can continue. Seand, the functions for creding and seleding
goals are anbedded into these systems architedures. This impasse-driven medhanism
has the unique property of eliminating the need for deliberate goas. “Conscious’
software agents’ goals are built in or learned.

Soar has been used in numerous succesdul applicaions including expert systems,

natural language parsing, resolution theorem proving, and robaic arms. In addition, Soar

13

has used in applicaions such as algorithm design, red-time wntrol of simulated aircraft
(Tambe, Johnson, Jones, Koss Laird, Rosenbloom, & Schwamb, 1995, medicd
diagnosis, blood analysis, productionline scheduling, chemicd process modeling, and
intelli gent tutoring. Soar has been used to model humans including concept aayuisition,
immediate reasoning tasks, instruction taking, natural language understanding, number
conservation, poblem solving, syllogisms, verbal ressoning, and Msual attention.
However, Soar is dill i ncomplete in resped to being a full unified theory of cognitionin

some ways, such as having unbounded working memory.

CAPS

CAPS has been used to model problem solving, spatial reasoning, and text
comprehension. Like Soar, CAPSis a production system. CAPS however, differs from
classcd production systems in several ways. CAPSis adualy a hybrid as it combines a
production system with an adivation-based conredionist (Haykin, 1999 system. Unlike
traditional production systems, ead element in CAPS has an asociated adivation level.
This alows elements, which can represent grammaticd structures, thematic structures,
and words, to have varying degrees of adivation. The production’'s condtion pation
spedfies nat only the presence of an element but aso the minimum adivation level (a
threshold) at which the dement satisfies the @ndtion. In addition, the precondtion
elements are weighted, so that al precondtions do nd need to be met for a production to

fire. If an element’s adivation level is abowve threshadld, it is considered to be in working

14

memory and avail able to initiate other computational proceses. These can either be
actions or influence mental parameters (the contents of working memory).

Productions in CAPS change an element’s adivation level by passng the source
element’s adivation level, with some degradation, to this output element. In addition, a
reiterative adion allows for symbalic manipulation. More spedficdly, productions fire
reiteratively over successve gycles, allowing for the output elements’ adivation levels to
be gradualy incremented urtil a threshold is readed. CAPS aso allows multiple
productions with fulfilled preconditions to fire in parallel on a given cycle.

CAPS leaning adjusts bath productions’ condtion weights and their firing
threshalds. This method d leaning ceptures adaptation, as over time, weights and
thresholds can be lowered all owing frequent adions to accur more readily. Unlike Soar,

new productions are not learned via chunking.

Why “Conscious” Software Agents Do Not Use Soar or CAPS

Soar and CAPShave relatively long traditions of being comprehensive cognitive models.
Even so, in the aedion d the “conscious’ software aent architedure, the “Conscious’
Software Reseach Group is developing a quite detaled computational model of
cognition. This model has svera distinctions when compared to Soar and CAPS As
previously described, bdh Soar and CAPS are heavily engrained in adion seledion.
Eadch o these models most likely could have been the adion seledion mechanism for
“conscious’ software instead of behavior networks (Maes, 1989. Certainly, there would

have been advantages and dsadvantages to their use, different integration problems

15

would have aose, and dfferent extensions would be necessary. Behavior networks
simply work well in this context as they provide an appropriate level of abstradion and
relatively easy tuning once the behavior streans are in pace For the “conscious’
software achitedure, the most important feaure of the behavior network is its ability to
be extended to provide for global workspacetheory’s goa contexts (see dapter 4). As
comprehensive gnitive models, Soar and CAPS do nd provide the focus on
consciousness for which the “conscious’ software agent architedure strives. The
“conscious’ software aent architedure has been developed under the premise that
cognition is nat unified. Insteal, the “conscious’ software agyent model asumes that
humans are an evolutionary kludge. The “Conscious’ Software Reseach Group da@s not

believe that a single mechanism can cover all of cognition.

Pacrat

Pacaat’s designers hoped to dupicae the functions of the “mammalian brain” by
designing and bulding “feding-thinking” macdines. These designers hoped to produce
the functions of the brain in eledronic drcuitry. In addition, they hoped to provide
insight into how the brain pdentially works. In fad, the aithors explicitly state that a
distant goal is to create a machine that acts and thinks like a person.

Pacat is an artificia life agent creaed to be afeding-thinking maciine. Pacaat
feds, leans, and thinks abou what it has leaned. Paaat’s adions are driven by eight
brain centers. amygdala, cingulate gyrus, hippacampus, hypathalamus, isocortex, medial

forebrain bunde, reticular ascending substance, and the thalamus. These brain centers

16

model the functional relationships between mammalian centers, bu not the spedfic
eledricd adivity. Thebrain centers' interadion givesriseto a sophisticated structure. In
Pacaat, individual neurons are not simulated, bu codors, the adivities of assemblages of
neurons, are.

Paaat’s universe can be represented by a grid. Paaat has the aility to move
around this universe through four motor neurons driven by the isocortex’s motor area
Paaat’s moves are based onthe sensory inpu and the prevailing emotion. In addition,
Paaat feds hurger. The adivity of the hunger center is tied to the cmntradions and
expansions of the stomadh. As the stomadh empties, the hypothalamus hurger center
bemmes more adive. Paaat aso feds anger and frustration, which are inhibited by
eating.

Paaat experiences agoraphoba, the fea of open places, when his bak is
uncovered. Thisfea is determined by the level of adivity in the cingulate gyrus. Paaat
has curiosity, which arises when codors in the isocortex that have nat previously been
excited become adivated. Paaat has habituation, as curiosity fades due to continuows
excitement of codorsin the isocortex. Paaat contains locaion sense & ead locdion hes
a different sensory neuron which beames adive in that locaion. When Paaat is first
started, he does not know where one location is in relation to another. He does know
where he is, and he has an aversion to returning to where he’s already been.

Paaat can move dl four cardinal diredions within the boundiries of his universe.
Paaat is motivated by fea and hurger. Foodis placal randamly in Pagat’s universe in

three locaions. Paaat gets angry when food is not where it is expeded. Paaat also

17

deegs, dueto his reticular ascending substance becoming lessadive, and awakens when
hungry enough. Pacaat also contains a reward-punshment medhanism. When food is
found, this reward medanism drives the leaning of preferred dredion d movement
when similar codors are adive in the future. Paaat’s fea is masked by hunger, and,
therefore, drives Paaat when hurger is satisfied. Fea drives Paaat badk to his burrow.
When Paagat’s burow is readed, hs badk is covered, and orce aan the reward
mechanism is activated to drive learnirRacrat’searning is for survival.

Randamness forces Paaat out of obsessve behavior patterns. His amygdaa
mediates anger. Paaat performs three forms of thinking. First, he evaluates the
consequences of his last moves. Sewnd, Paaat performs recognition when he moves to
an areaof interest. Finally, Paaat hasinsight, “the basic medanism of rationa thought,”

(Johnson &Scanlon,1987) when he finds more efficient paths to food.

Software Reuse

What Is Software Reuse?

Software reuse is the use of existing software to creae new software instead of building
the new system from scratch (Krueger, 1992. Reuse invaves using both previously
defined higher-level concepts such as ideas and knawledge and lower-level spedfic
comporents such as objeds in new situations. The software reuse processis commonly

thought to involve three stefBrieto-Dias& Freeman, 1987):

18

1. Accessing and choosing a reusable artifact.

2. Understanding and adapting the artifact to the application’s purpose.

3. Integrating the artifact into the product currently being developed.

Portions which can be reused include design structures, documentation such as
manuals and spedficaions, and source @de. Reuse invalves both badk-box techniques,
utilizing a comporent as is, and white box tedhniques or code scavenging. White box
reuse occurs when existing componrents are modified to fit the needs of a new system.
Adaptation is much more common than straight reuse & avail able cmmporents usualy do

not match the desired functionality.

Reuse Is Often Not Standard Practice

Software reuse is often na standard pradice in software development organizations.
Reuse is difficult as abstradions for large and complex systems are typicaly compli cated.
It is often difficult for developers to lean these dstradions. Reseach has shown that a
reuser’s skill i simportant in determining their levels of reuse. Many developers are not
trained in reuse, and thase with training are often na pressed to pradiceit. Thisis often
the cae in the profit-driven corporate setting, where implementing an effedive reuse
mechanism has a high initial investment (Kaspersen, 1994. This investment takes
several forms including new training for existing personnel, the establishment of reuse
repasitories and hring of maintainers for them, and an incentive program for establi shing
reuse. In addition, an organizational-wide dasgficaion scheme is often needed. For

reuse to be dtradive, the dfort to use existing code must be lessthan the dfort needed to

19

write new code, which is often na the cae. For example, withou an adequate
clasgficaion scheme, reuse becomes less attradive & it is difficult to dstinguish

between similar items.

The Motivations for Software Reuse

Reuse techniques have been gaining momentum as they have patential to significantly
reduce development costs, maintenance ®sts, and urredi zable schedules. Software reuse
has repeaedly been suggested as a means for successully combating the software aisis:
the problem of building reasonably costing but large and reliable software systems
(Méllor & Johrson, 1997. Reusability is widely believed to be akey to improving
software development quality (Biggerstaff & Richter, 1987. Reuse results in a
completed systems containing fewer total symbads with lesstime having been spent on
the symbads organization. Therefore, in a sense, reuse enhances ftware developers
cgpabiliti es, and most devel opers prefer to reuse than write @wde from scratch when given
the option(Frakes& Fox, 1995).

According to Biggerstaff and Richter, a good reuse system addresses four
problems:

1. The aility for developersto be ale to find recessary comporents, bah exad

and similar matching ones.
2. A means for easily understanding the comporents. This is particularly key

when components need modification.

20

3. A method ky which comporents can be modified in order to apply them to
new domains.

4. A way to appropriately document newly composed comporents. This
representation shoud ill ustrate the compaosed comporents bath as independent
entities as well as showing how they can be modified to fit new domains.

Using common oljed-oriented development with standard todls, reuse has been

found to significantly reduce both defed density and rework while significantly
increasing productivity (Basili, Briand, & Melo, 1996. This ill ustrates the patentia to
deaease software development costs and cycle time & human time and eff ort are reduced
in software wnstruction. For bladk-box modifications, there gopeasto be no olservable
difference between verbatim used and dlightly-modified code. For white-box reuse
tecdhniques, reuse has been shown to deaease rework, espedaly for experienced

developers, even when extensive code madification is required.

How Does Reuse Work?

Software reuse involves four dimensions:

1. Abstradion is the central feaure of software reuse. Abstradion alows for a
sucanct description d an item, highlighting the important information while
leaving out what is unimportant. A common example of an abstradion
technique ae objed-oriented languages class definitions. These languages
provision for inheritance dso allow for areuse dasshierarchy. These subtype

hierarchies are helpful in finding reusable items.

21

2. Seledion provides clasgficaion schemes for organization and the finding of
reusable atifads. Seledion works well when the representation is clea on
what the atifad does. To be dfedive, the dassficaion schemes must alow
developers to find components faster than write them.

3. Spedadlization alows developers to modify general comporents to fit ther
specific needs.

4. Integration alows developers to combine their spedalized comporents into a
new software system.

There ae many techniques which when utili zed help foster software reuse. Some

of the main techniques are the use of architectural styles, design patterns, and objects.

What are Architectural Styles?

Reseach has ill ustrated that design reuse does have several advantages over smple code
reuse (Johrnson, 1997. Design reuse is common as it can be gplied to many contexts. In
addition, as has been the cae in the development of “conscious’ software agents, the
design processcan be gplied ealier in the development process and, thereby having a
larger impad on the projed. Also, true to form with “conscious’ software agent
development, most design reuse is informal and heppens with experienced developers.
Design reuse dlows for open systems, and it allows the “Conscious’ Software Research
Group’s developers to share a common vision.

Architedural styles are aform of design reuse. Architedural styles provide a

colledion d constraints, bulding-block design elements, and rules for composing a

22

system (Monroe, Kompanek, Méelton, & Garlan, 1997. There ae severa benefits to
architedural style usage. For example, routine solutions with well-understood pgoperties
can be regoplied to new problems with confidence, paentialy leading to significant code
reuse. In addition, architedural styles can be gplied to a broad range of problems, such
as the different domains for “conscious” software agents.

Ead architedura style has its own ndation, a spedalized design language,
describing:

* The structural and semantic properties of systems falling within the style.

* A common vacabulary such as “blackboard system,” “client-server system,”
and “database.” A semantic interpretation is also provided so that the
composition design elements have well defined meanings.

» The patterns of interadion d systems built within the style. These design
rules (constraints) determine which design element compasitions are
permitted. For example, al “conscious’ software agents proceses have

access to a single blackboard.

* Analyses that can be performed on systems built in the style.

What Are Frameworks?

Frameworks are often na well understood and misused ouside the objed-oriented
community. Frameworks are reusable designs of al or part of systems. They are
commonly represented by a set of abstrad classes and the way these dasss' instances

interad. A framework’s purpose is to provide an applicaion skeleton that can be

23

customized by developers. Framework’s are powerful asthey can significantly reducethe
amourt of effort necessary to develop customized applicaions, thereby saving
organizations time and money.

Frameworks are aform of design reuse & they expressreusable designs. They are
at alower level than architedura styles as they are more wncrete. In fad, frameworks
are ac¢ual programs, and, therefore, users of frameworks are often tied to a programming
language. Because of this, frameworks are more dosely tied to their domain than
architedural styles. Therefore, succesdul frameworks must be @nsistent throughou
more so than architedural styles. Since frameworks are programs, they are often easier
for programmers to lean and apply than architedural styles. This occurs partialy
becaise only a compiler is needed, nd speda design ndation a software tools often
utilized when creating architectural styles.

When using frameworks, developers often think they are just using an
objed-oriented language's classlibrary. However, frameworks are different than class
libraries as frameworks reuse high-level design. With frameworks, there is more to lean
before dasses can be reused. For example, a set of classes must typicdly be leaned at
once, and classs are not reused in isolation. A framework can usually be distinguished
from a dasslibrary if there ae dependencies among comporents and developers leaning
the library comment on its complexity. Because of this complexity, frameworks require
quality documentation. Even with the difficulty which comes in leaning a framework,
expert developers normally prefer frameworks over spedal-purpose languages as they are

easier to extend.

24

What Are Components?

Comporents are adual working code portions and are designed for reuse. Idedly,
comporents oud be eay to lean. Often, with bladk-box reuse, developers do nd nedd
to lean honv comporents are implemented. Comporents are smply conneded to crede a
new system. By using existing comporents, more reliable systems are usually creaed
and are, therefore, easier to maintain. As comporents increase in generdity, the payoff
for use in narrow focused damains diminishes. On the fli pside, with comporent growth,
the payoff when reusing the comporent incresses more than linealy due to the
complexity costs. Larger comporents, however, often become more spedfic which

increases the costs when modification is required.

Frameworks and Components

Frameworks are intertwined with comporents, and they are @operating tedhndogies.
Frameworks make it easier to develop rew comporents. For example, frameworks
provide astandard way for comporents to do data exchange, error handing, and invoke
operations on aher comporents. In aher words, frameworks alow comporents to make
asumptions abou their environment, making comporent integration easier. Frameworks
provide spedficaions and templates for new comporents and alow new componrents to
be built out of smaller comporents. Frameworks can adually be viewed as comporents
in the sense that applications might use several comporents, and vendas sl them as
prodwts. As a whde, frameworks are more austomizable than comporents and have

more complex interfaces, again highlighting the difficulty of learning a framework.

25

What Are Design Patterns?

Frameworks are composed of micro-architedural elements cdled design patterns. Design
patterns describe solutions to reaurring problems and a cntext for which the solution
works. They include the solution's costs and kenefits. Design patterns represent the
common idioms foundrepeaedly in software designs and makes them codified, explicit,
and applicable to similar problems. Patterns emphasis is placal on d@umentation and
literary style rather than code generation a tools. Design patterns are useful as a
documentation tod for classficaion d design fragments, making it easier for a
development tean to add rew members (Cline, 19969. Design patterns provide a
standard vocabulary for developers. They communicate information between designers,
programmers, and maintenance programmers at a significantly higher level than
individual clases. They provide alist of items to look for in a design review.
Maintenance programmers are lesslikely to bre&k existing code when they understand
and work to preserve the integrity of design petterns during maintenance danges.
Patterns are particularly useful for building robust designs in situations where the
trade-offs are well understood. When spedfying and reusing design patterns, there ae
three fundamenta requirements to be followed. First, the design damain must be well
understood. Semnd, the patterns must suppat the encapsulation d design elements.
Finaly, the design patterns must be resporsible for a @lledion d well-known and

proven design idioms.

26

Conclusions

This chapter described agents, computational models, and software reuse. Software reuse
isrelied uponheavily to crede ConAg as a reusable framework based onan architecural
style for “conscious’ software agents. “Conscious’ software ajents are @gnitive aents
that implement Bernard Baas global workspacetheory. This theory’s description is a

major portion of chapter 3.

27

Chapter 3

Setting The Stage

Introduction

This chapter discusses Virtual Mattie (VMattie) (Song, 1998 Zhang, Franklin, Olde,
Wan, & Graessr, 1998 and global workspace theory (Baas, 1997). VMattie is a
software agent containing many of the buil ding blocks necessary for agents implementing
global workspace theory. While VMattie is not a “conscious’ agent, she diredly
precaled CMattie, the first “conscious’ software agent. “Conscious’ software agents
significantly extend VMattie' s design and, they implement global workspacetheory. This

chapter, therefore, sets the stage for a description of “conscious” software agents.

VMattie

Introduction

VMattieis an intelli gent autonamous agent. She functionsin a dericd role. Spedficdly,
she mordinates departmental seminar information, carying out a role originaly
performed by the department’s former seaetary, Mattie. The aent was developed by
Stan Franklin and the “conscious’ software reseach group and programmed by Honjung
Song,ZhaohuaZzhang,andAregahegrNegatu. She is implemented in Java.

28

This sdion first discuses VMattie's job description. Next, the reasons why
VMattie can be mnsidered an autonamous agent are aldresed. The ayent’s architedure
is then presented. Finadly, testing results are given, and conclusions are drawn with

mention of how this agent can be improved.

VMattie’s Job Description

VMattie is an ursupervised agent. She functions to annource the University of
Memphis Department of Mathematicd Sciences weekly seminars. VMattie
communicaes completely via email. Below is a discusson d the different tasks
performed by the agent.

VMattie gathers seminar information from seminar organizers. She accets emalil
from organizers abou their upcoming seminars. Sincethere is no predetermined format
which the organizer’ s email messages must take, VMattie has natural |anguage processng
ability (Zhang, Franklin, Olde, Wan, & Graessr, 1998. The agent generates and sends
acknowledgments temailersfor every incoming message.

VMattie compaoses the upcoming week’s minar annourcement. She @mpaoses
messages dating she has incomplete information. She dso writes messages sying a
received message was not understood.

VMattie emailsthe composed seminar announcements to a recipient’s list at a
specified time. To do this, the agent maintains a list of people who receive the weekly
seminar announcements. Theref&fllattie accepts incoming email for requests to

join and leave the seminar list.

29

VMattie As An Autonomous Agent

Based onFranklin and Graesser’ s definition d an autonamous agent (1997, described in

chapter 2VMattie has many properties which enable her to be an autonomous agent.

Her environment is the UNIX operating system.
The agent’s niche is the maintenance of seminar announcements.
VMattie can sense incoming email. The degree to which she adively understands

these messages corresponds to different perceptual levels. She also is aware of dates.

The agent’s multiple drives are diverse and explicitly represented.
VMattie has a distinctive adion seledion medanism, knovn as the behavior

network, which is not controlled by a central executive.

VMattie’s Architecture

Figure 3.1 ill ustrates VMattie's architedural comporents. VMattie's architedure is an

original high-level agent architedure. The achitedure is largely based on the behavior

networks developed by Pattie Maes (Maes, 1990 and the model of perception foundin

Hofstadter and Mitchell’s Copyca projed (Hofstadter & Mitchell, 1994. Both

architectures have been modified and significantly extendedMatttie.

30

Input

Perception
Registers

_ Input)
el Processing Processing
Input Knowledge Wotkspace
Chatput (Slipnet) {Worlang
IMemary)
1]]
r i r
_ Behawior Network
Drives (compozed of codelets)
L 3
r 1
Cotnposition _
Workspace Tracking
(Working Memory
Iemory)

Figure 3.1:VMattie’s Architecture
(Bogner, 1998)

Drives

The drives portion d the achitedure is based on Maes' goals. The aent’s drives
correspondto her tasks foundin the @owve Job Description sedion. All of VMattie's
drives are built i nto the agent. These drives can operate in paralel. Some drives vary in
urgency. For example, the urgency level for sending out a seminar annourcement may be
higher as it gets closer to the time to send the aanourcement. Thisvarying in the level of

urgency is an addition to Maes' origina work. Ead drive adivates behaviors which

work to fulfill the drive.

31

Behavior Network

The behavior network is compaosed of behaviors whaose role is to fulfill the drives.
Behaviors in VMattie' s architedure @rrespondto Maes' competencies. Behaviors have
an adivation level. In general, this adivation level is affeded by the drives, the agent’s
internal condtions, and the perception registers. The perception registers srve & the
behavior network’s environmental inpus. Behaviors have precmondtions that must be
met. For example, a behavior’'s precondtions might be fulfill ed if an organizer’s emall
message @ntains gedfic items of information. A behavior's adivation level increases
as more of its preconditions are met.

A behavior’'s adivation level is gread to aher behaviors. Broadly spe&ing, its
adivation spreads to threelocaions. A behavior's adivationis gread to those behaviors
which can fulfill this behavior’'s unmet precmndtions. Also, the behavior's adivation is
spread to the behaviors whase precondtions can be filled by this behavior. Third, the
spedfic behavior sends inhibition, causing areduction in adivation level, to al behaviors
which can remove one of its currently met precondtions. Due to the way behaviors
spread forward and badkward adivation, ead behavior can be thought to be apart of a
behavior stream. If a behavior has a high enough adivation level and all of its
precondtions are met, it has the potential to become adive. Only one behavior in a
behavior stream can be adive & atime. The adive behavior is determined by choasing

the exeautable behavior in the behavior strean with the highest adivation level above a

32

threshold level. Ead behavior strean can aso be thouwght of as a plan, creaed and
executed without the building of a search tree.

As a behavior's adivation spreals, it diminishes in strength. Also, adivation
level continually decgys at a slow rate. Once abehavior performs its function, its
adivation level returns to zero. The behavior network is tunable through global

parameters.

Perception

VMattie's sensory data ae the incoming email messages serecaves. Perception for the
agent ocaurs by her comprehending these amall messges. VMattie contains three
perceptual comporents. the inpu processng knowledge, the input processng workspace

and the perception registers.

Input Processing Knowledge (Slipnet)

VMattie's inpu processng knowledge, also known as the dlipnet as it is based on
Copyca’s dlipnet, contains the knowledge needed to understand incoming email
messages. Two yeas worth o email messages to the department seaetary were studied
in order to generate the knowledge utilized by VMattie's slipnet. Items in the inpu
processng knowledge include the message type, ways to identify the diff erent portions of
emall messages such as the name of the seminar and speder, and the dbreviation o
words. A common case of abbreviation found in departmental email is e in the

writing of building names, such as Dunn Hall being abbreviated DH, D.H., or D. Hall.

33

Another common exampleis in the days of the week, where Thursday can be abreviated
Thu, Thurs,Th, etc.

VMattie' sinpu processng knowledge contains knowledge of nine message types.
Examples of message types include messages dedaring the establishment of a new
seminar and messages gating the upcoming spedker and topic for a seminar. VMattie
uses surfacelevel natura language processng in conjunction with a feed-forward neurd
network to determine an email’s message type. The highest output value from the neurd
network is taken to be the candidate message type. If the output of the neural network is
inconclusive, VMattie sends bak an adknowledgment saying the message was not

understood.

Input Processing Workspace (A Working Memory)

Sometime dter a candidate message type is determined, a message template of thistypeis
placal in the input processng workspace Codelets, described below, work to fill the
template’'s fields. Similar to Copyca, as mandatory fields in the template ae fill ed, the
temperature, representing the proximity to completeness fals. If the temperature fals
low enough a message is considered understood. However, if a cetain number of
mandatory fields remain empty after the codelets have completed their tasks, the next
highest output of the neural network is tried as the gpropriate message type. For safety
in the event a message is classfied incorredly, VMattie acknowledges every message. |If
the aknowledgment conwveys an incorred understanding of the message, the seminar

organizer can send a reworded message.

34

Perception Registers

Once amessge template has been filled, its contents are moved to the perception
registers, and the perception modue can begin working to understand another message.
The perception registers are similar to a bladkboard. Information which is placed in the
perception registers is available for utili zation by VMattie's other modues such as the

message composition component described below.

Codelets

Ead codelet can be thought of as asmall distinct agent designed to perform one task. The
term codelet originated with Copyca. VMattie's codelets correspond to global
workspace theory’s processes, described later in this chapter. VMattie's behavior
network and perceptual modue, bah described above, are largely implemented via
codelets. For example, ore codelet’s task in the dlipnet is to fill a message template's
speaker name fieldCodeletgperform the vast majority afMattie’s actions.

Most codelets serve to implement a behavior or a portion d the Slipnet.
However, primitive codelets also exist. A primitive codelet does not serve the behavior
network or dlipnet. Instead, it functions independently to perform housekeeing
functions. For example, a primitive codelet might pall for an incoming email message

addressed toMattie.

35

Tracking Memory

Traking memory contains the information uilized in composing outgoing emalil
messges. Tradking memory contains the default information onseminars, such as the
day of the week ead ore occurs. It saves the arrent seminar annourcement maili ng li st.
Both the seminar and mailing list information are updeted via codelets attached to
behaviors. Tradking memory also stores the templates for different types of outgoing
messages. The arpus of email messages colleded for two yeas contributed to the

building of tracking memory.

Composition Workspace (A Working Memory)

All outgoing messages are omposed in the mpaosition workspace Message
compasition consists of filling the fields of an ougoing messge template. The
information wsed to fill the template fields comes from the tradking memory and the
perception registers. There is aways a opy of the arrent seminar annourcement being
generated in the composition workspace As new information arrives in the perception
registers and traking memory, the template fields are filled. When a seminar is
annourcement is mailed, a new default annourcement template is placed in the

composition workspace.

Mail Input and Output

VMattie's mail inpu and ouput portion deds with the adual recept of incoming email

messages and the sending of outgoing ones. Incoming email messages are first receved

36

by the mail inpu portion. Messages are moved from here to the perception modue.
Once an ougoing message is fully composed, it can be moved to the mail output portion.

Mail output hands off the outgoing message to the operating system.

Results and Limitations

VMattie is able to acarately perform her duties. She was tested over a period d four
weeks, with tests designed to simulate red world settings. During testing, she receved
55 messages comprised of 10 message types. The mgjority of messages receved fell into
the cdegories of add to mailing list, seminar conclusion, seminar initiation, and a
spedker’s presentation d a topic (speker-topic). She recaved 5 messages which were
irrelevant to her domain.

VMattie was able to corredly fill al of the perception registers for 96.4% of the
messages derecaved. She dhose the date of seminar andtitle of talk incorredly for only
two spedker-topic messages as two words were @ll apsed together withou a spacein the
incoming mMessages. Even with this misperception, she rredly composed
acknowledgment messages and sent them to the senders of each received message.

The behavior network used this perceived information to generate seminar
annourcements. VMattie was 100 acairate in generating and sending out the seminar
annourcements. This included corredly recovering missng information from her
tradking memory for default values with full acaragy. VMattie was able to corredly
change her mailing list uponreceapt of add to mailing list and remove from mailing list

messages.

37

VMattie sent 7 reminder messages to seminar organizers on time during this testing.
She receved 5 replies to her reminders before the seminar annourcement distribution
date. She orredly inserted “TBA” for the remaining 2 instances in the seminar
announcements.

To effedively coordinate departmental seminars, VMattie' s job description reeds
expansion. The aent canna acarately hande an incoming message wntaining two
message types. She caina ded with ore time events sich as a olloquum. VMattie
does nat perform any leaning. Leaning is very useful in several areas, such as leaning

new message types and new behaviors.

Global Workspace Theory

Introduction

This dion describes Bernard Baas' global workspacetheory. Global workspacetheory
IS a aognitive science model of human consciousness It also discusses other cognitive
processes uch as adion seledion and leaning. This chapter focuses on consciousness
It first gives the operational definition o consciousnessand cdescribes its functions. The
comporents of global workspacetheory are discussd, followed by a presentation on hav
the theory works. Finally, a detailed example is used to trace through the theory.
Global workspacetheory is a significant step towards a concrete description o
human consciousness Its computer scienceimplicaions will be examined throughou the

remainder of this work.

38

Consciousness

Baas states that throughou human history, consciousnesshas been extremely difficult to
define. He states, “Even today, more aad more norsense is goken of consciousness
probably, than of any other asped of human functioning” (Baas, 1988 p. 4). According
to Baas, consciousness while it can be inferred from reliable evidence is a theoreticd
construct. Consciousness therefore, is defined in terms of what makes up the human
conscious experience. A two-part definition is necessary to define what it means to be
conscious of an event. The first part states that a person is defined to be @nscious of an
event if the person states that they were wnscious of it immediately after the event
occurs. Events may be conscious for only hundeds of milliseoonds. The second pation
says that thexperiencer'seport must be able to be independently verified.

The reader may now be wondering how this psychologicd definition ties into a
software aent implementation. As e in later chapters, it contains two main
implicdions. First, “consciousness’ will contain elements which relate to events.

Second, elements may be “conscious” in the agent for an extremely short period of time.

Functions of Consciousness

Baas states that consciousnesshas nine mgjor functions. The reader will encourter these
functions again in chapter 7 when it is down hav ConAg's implementation d
“‘consciousness’ fulfills these functions. The first function is Definition and
Context-setting. An example of this occurs when ore focuses on a distant treein aforest.

While multiple visual stimuli are present, a wherent image is able to be retrieved. The

39

secondfunctionis Adaptation and Leaning. For example, extremely difficult materia is
often poncered for a gred ded of time when attempting to lean it. The third functionis
Editing, Flagging, and Debugging. Thisisevident in biofeedbadk training, where persons
use flagging in order to gain conscious voluntary control over usually unconscious
systems. Fourth is the Reauiting and Control function. An example of this function's
use occurs when attempting to answer a question. While one is conscious of a question,
the candidate awswers to that question are reauited urconsciously and lrought to
consciousness The fifth function is Prioritizing and Accesscontrol. This occurs when
leaning a foreign language. One may wish to prioritize words which are difficult to
pronource The Dedasionrmaking or Exeautive function is useful in controlli ng thought
and adion. A dedsion-making questionis “Shoud | go to the mall or to the park?” The
Anaogy-forming function occurs when people make analogies to compare a novel
experienceto knowvn ores. An example of thisis“Hate isthe wrong road to travel.” The
eighth function is the Metacognitive or Self-monitoring function. One example of thisis
humans ability to pinpant and express their current fedings. The fina function is
Autoprogramming and Self-maintenance. This can be seen in the desire to exercise and

eat properly in order to keep the body healthy.

The Components of Global Workspace Theory

Globa workspacetheory is an attempt to integrate the large anourt of information abou
consciousness into ore model. To comprehend the theory, its underlying comporents

must first be understood.

40

Processes and Coalitions

Global workspace theory states as a premise that the nervous g/stem is composed of
proceses. Ead processis autonamous and hes a narrow focus. It is very efficient,
works at high speeds, and makes very few errors. Eadh process can ad in paralé to
others. This allows for the aedion d a high cgpadty system such as the central nervous
system. In “conscious’ software ayents, as in VMattie, processes are cdled codelets,
taken from the Copyca architedure (Hofstadter & Mitchell, 1994 which inspires much
of these agents perception apparatuses (Bogner, Ramamurthy, & Franklin, in press
1999).

A codlition is a set of processes which work together to perform a spedfic task.
For example, it takes numerous processes for breahing to take place Coadlitions are
reaursive in nature. For example, a aalition may be composed o severa codlitions. A
process may be amember of more than ore aalition. Coadlitions normally perform
routine adions. However, coalitions may also perform duties relating to ambiguous,
conflicting, or novel events for the system. These walitions have the potential for
entering consciousness Baas states that coalitions may have an adivation level. When
performing routine adions, a wadlition's adivation level is low. Coalitions performing
more uncommon tasks have ahigher adivation level. A higher adivation level gives a
codliti on a greder chanceto enter consciousness Baasis careful to pant out that ahigh
adivation level may be anecessary but passbly not a sufficient condtion for a aalition

to enter consciousness. As seen lat€anAg,this holds true.

41

Contexts

Contexts are relatively stable aalitions of processes which affed consciousness
Contexts are normally unconscious. Therefore, contexts are not usualy experienced
diredly. Contextsinterad rapidly with what is occurring in consciousness One example
of a ontext is foundin a wllegiate dassoom. Both students and faalty know that a
cetain clasgoom behavior is expeded in an engineaing class while not aways being
conscious of it. This example ill ustrates cultural context, a main context acwrding to
Baas. Perceptual, conceptual, and goal contexts are the three other main contexts. In
“conscious’ software agents, the aurrent goal context corresponds to the agents’ current
behavior. Contexts provide an uncerlying level of stability. In the d&owve dassoom
example, if the professor began singing during class the students would quickly become
conscious of the faa that the professor was exhibiting abnamal behavior. The
professor’s behavior went against the prevailing cultural context. In this snse, contexts
allow for novel events to become cnscious. New contexts can be leaned, alowing for

reality to be perceived in a further enhanced way.

The Global Workspace

The aux of the theory's architedure is the global workspace The global workspaceis
intended to implement consciousness The global workspaceis aworking memory which
gives a ceitral locaion for one @alition to interad with the system’s other processes.
Therefore, the global workspace ca be considered analogous to a dassoom bladkboard.

The next sedion dscuses how this information exchange works and what information

42

this exchange provides. As s later, ConAg's attention padkage implements the global

workspace.

How Global Workspace Theory Works

Globa workspacetheory can be mmpared to atheder’s sage. In atheder, a spatlight is
often used to focus the audienc€s attention. The spatlight roams aroundthe stage, and
there is normally only one person in the spatlight at atime. A personis usualy in the
spatlight when they are performing new adions. More is usualy occurring in the
production than what is currently in the spatlight. This global workspacetheory theder is
an interadive one. When members of the audience see something in the spatlight they
can relate to, they begin ading. These members may join the adors in the spatlight, or
they may begin acting outside the audience’s main focus.

In global workspacetheory, consciousnessis the spatlight which roams over the
adive unconscious processes. This goatlight shines on codliti ons attempting to solve
difficult problems. It shines on coalitions performing tasks relating to ambiguous and
conflicting items. It aso focuses on codlitions deding with nowl situations. Many
unconscious coalitions and rocesses are working even while aparticular codlitionisin
consciousness In ConAg, the spatlight controller serves as this attentional focus
mechanism.

The audience is the unconscious processes not on the stage. When coadliti ons
enter consciousness they broadcast information to all processes. Some audience

members which understand this information become adive and perform their spedfic

43

functions. These processes, therefore, paentialy contribute to the work of the wnscious
coalition.

The spatlight can shine on orly one adlition at atime. Baas states that humans
must think of two alternatives one dter the other; they canna be aldressd at the same
time. Dueto its sria nature, consciousnessis a much smaller cgpadty system compared
to the large cagadty system creaed by the numerous unconscious processes ading in

parallel.

Overall Steps In Global Workspace Theory

Figure 3.2 shows an ill ustration d global workspacetheory (Baas, 1988. It isimportant
for the computer scientist to remember that globa workspace theory is a high level
model. To understand the theory, it is helpful to think of processes going through five
stages. These are:

1. Unconscious processes, eadr working towards achieving a portion d an
overal goal, form a aalition. Unconscious processes working on ambiguos,
conflicting, or nowel information have a greder chance of entering
consciousness.

2. Coalitions compete for access into the global workspace.

3. The adlition which enters consciousness broadcasts information to all
unconscious processes. This broadcast alows the @nscious codlition to

recruit other processes which can contribute to the conscious coalition’s tasks.

44

4. All unconscious processes will recave the broadcast message. However, only
certain ones will be able to understand its contents.

5. The processes which understand the message and which neel to take adion do
So.

This five step process is implementedCionAg.

Competing Coalitjons of
Unconzpious Progeszors

3 ¥

Global Workspace
(conscious)

Ungonscious Broadcast Recipient
Cﬁ @

Figure 3.2: Global Workspace Theory
(Bogner, 1998)

45

An Example To lllustrate Global Workspace Theory

Traang through an example helpsin understanding gobal workspacetheory. Patriciaisa
fourth yea piano mgjor who kegan paying the instrument her first collegiate yea. At
this point Patricia is well accomplished, bu does not yet have amaestro’s «ill. Sheis
currently performing the fifth pleceof her memorized ten pieceredtal, and hes © far
faced no problems in her performance.

By this paint in the reatal, Patriciais relatively relaxed. Sheis playing habitually.

While she is conscious of what she is heaing, she basicdly is letting her hands move
themselves through this piecés long runs. Suddenly, however, in the quiet auditorium,
Patricia heas the loud, sharp bark of adog. This causes her to dlightly lose mncentration
and ht two wrong nates. Patricia, with norewlledion d where her fingers are to go
next, jumps to a later portion d the piecewhere she @ntinuesto pay. Only the keenest
audience members know there was something in her playing out of place.

This example illustrates numerous aspects of global workspace theory:

* With her long hous of pradicing, Patricia’s ability to pay her current piece
has become habitual. Unconscious processes are @ntrolling her finger and
pedal movement. Patriciais mainly focusing on ead nde she heas. In this
case, the cmporents invalved in listening to the piano ndes form one or
more conscious coalitions.

« Thedog'sloud kerk introduces a new, unexpeded, and pdentialy dangerous

event. A codition d processes involved in determining the presence of

46

danger forms. This coalition may have aprocessto determine asounds
volume, ancther to determine a sounds pitch, ancther to determine the
diredion a soundis coming from, ancther which deteds novel sounds, etc.
This coalition, having a very high adivation level relative to the piano ndes,
gains access to consciousness It then broadcasts information. This
information is recaeved by the unconscious processes. Visua and auditory
processes which can help determine if there is any immediate danger respond.

o Patricia, however, rapidly redizes that there is noimmediate risk and sheisin
front of an audience In this case, a new coaliti on arises into consciousness
This one's god is to get her badk on tradk in her piece To do this, this
codlition kroadcasts asking for help. Processes in auditory, memory, and
visual retrieval respond. Thaose processes containing the solution gain a high
enough activation to reach consciousness.

* Whilein the short term thoughts of the dog and the cowd’s response mwmein
and ou of consciousnessdue to their remaining high adivation level, as their

activation fallsPatriciarelaxes into her practiced habitual playing mode.

Conclusions

Humans utilize @nsciousness extensively. Global workspace theory provides a
high-level model describing human consciousness It provides a means of cooperation

for coalitions. This fosters conflict resolution, learning, and perceptual clarification.

47

VMattie's modues provide an agent implemented by combining and extending
several recent artificial intelli gent mechanisms. The agent implements svera portions of
Baas' global workspacetheory. This correspondencewill be discussed in chapter 7. The
next chapter includes a presentation d CMattie, the succesor to VMattie which is

designed under the framework of global workspace theory.

48

Chapter 4

“Conscious” Software Agents

Introduction

For the past severa yeas, the “conscious’ software research group hes been developing
“conscious’ software aents. “Conscious’ software agents are gnitive agents (see
chapter 2) that integrate numerous artificia intelli gence medanisms to implement global
workspace theory (see tapter 3). “Conscious’ software aents are designed to be
“smarter” software. These gents can range in functionality, from acalemic seminar
organizers (Bogner, Ramamurthy, and Franklin, in press 1999, to navy detailers
resporsible for naval personnel placenent (Franklin, Kelemen, & McCauley, 1998, to
personal travel agents. From the onset, and continually more so as development
progresses, it is clea that these aents are extremely complex and time-consuming to
develop and implement. This chapter first describes “conscious’ software agents
architedural style and a general architedure for them (Bogner, Maletic, & Franklin, in
press 1999. “Conscious’ Mattie (CMattie), the first “conscious’ software ajent, is
described in depth (Franklin, submitted). IDA, the “conscious’ software reseach group s
proof of concept projed, is then presented (Franklin, Kelemen, & McCauley, 1998. Left

for the next chapter is a description of these agents’ “consciousness” mechanism.

49

“Conscious” Software Agent’s Architectural Style

Action Selection Paradigm of Mind

As described in chapter 2, reseach has diown that design reuse has many advantages
(Johrson, 1997. *“Conscious’ software aents are designed following the adion
seledion paradigm of mind, a design phlosophy providing principles for cognitive ayent
architedures (Franklin, 19%; Franklin, 19%). The adion seledion paradigm states that
minds are aitonamous agents' control structures. Minds' task is to produce the next
adion. Minds doud be viewed as continuous instead of bodean. Sensations, such as
perception, are operated on ky mindsto crede information for their own use. A multitude
of disparate medhanisms enable minds, and there is little mmmunicaion between them.
Minds and adion seledion are limited to autonamous agents. Agents are situated in
environments, and agents' adions are seleded in the service of drives. Prior information
(memories) are re-creded to help produce ations. Cognitive functions such as
caegorizing, inferencing, planning, recdling, reagnizing, and sensing all serve to help

determine what to do next.

Global Workspace Theory Recap

“Conscious’ software ayents also fall under Baas global workspacetheory (see dapter
3). Particularly important from the theory is that the system is comprised of numerous
small processs, knowvn as codelets (Hofstadter & Mitchell, 1999 in “conscious’

software agents. Some of these codelets form coaliti ons and compete for consciousness

50

When a @aliti on reades consciousness its informationis broadcast to the entire system.
Bewming conscious is sufficient for leaning. Proceses ad under the auspices of
contexts: conceptual contexts, cultural contexts, goal contexts, and perceptual contexts.

Each context is a coalition of processes.

Pandemonium Theory

Also key to these ggents’ design is Jadkson's (1987 pandemonium theory, which extends
Selfridge’ s (1959 original work. Pandemonium theory’s componrents interad like people
in a sports arena. Both the fans and dayers are known as demons. Demons can cause
external adions, they can ad on aher internal demons, and they are invaved in
perception. The vast majority of demons are the audience in the stands. There ae a
small number of demons on the playing field. These demons are atempting to excite the
fans. Audience members respondin varying degrees to these atempts to excite them,
with the more excited fans yelli ng louder. The loudest fan goes down onthe playing field
and joins the players, perhaps causing one of the players to return to the stands. The
louder fans are thase who are most closealy linked to the players. There aeinitial linksin
the system. Links are aeded and strengthened by the amount of time demons gend

together on the playing field and by the system’s overall motivational level at the time.

The Architectural Style

As described in chapter 2, architedura styles provide a olledion d building-block
design elements that can be gplied over a broad range of problems. A common example

of an architedura style is a bladkboard system. Figure 4.1 illustrates “conscious’
51

software agents' high level architedural style, comprised of many cognitive feaures from
the action selection paradigm.

Beginning at the bottom, figure 4.1 depicts “conscious’ software agents
numerous cognitive medhanisms, such as behaviors and perception. These medhanisms
are in redity driven by the small single-task codelets correspondng to global workspace
theory’s processes and pandemonium theory’s demons. The dtention manager gathers
the necessry information from the codelets and chooses the gpropriate ones for
“consciousness” It updates the short-term memory bladkboard with the “conscious’
codelets' information and sends these codelets information to all of the aognitive

modules.

Attentjon | update info Memory

gather broadcast
info info

Cogritive Mechanizms (Codeleiz)

EBehaviors Consciousness Emotions

Learning Metacognition Perception

Figure 4.1: Architectural Style For “Conscious” Software Agents
(Bogner,Maletic, & Franklin, In Press 1999)

52

Conecimisress Medmum]

Lesming

Dletacogmitioen

/\/

\

Behanriors [Drriwres

Copscimstess Cnd.elets]

Cognitive Process Codelets

I

Creterator Codelets

Figure 4.2: An Architecture For “Conscious” Software Agents

(Bogner,Maletic, & Franklin, In Press 1999)

The General Architecture

High Level Cognitive Modules

By extrapdating this architedura style & a lower level, figure 4.2 illustrates the
particular architedure that is used in “conscious’ software agents. Described in chapter
6, this architedure forms the basis for the ConAg framework. Items gedficdly deding
with “conscious” software agents

In this architedure, codelets comprise anotions (McCauley & Franklin, 1999,

behaviors (Maes, 1990 Song, 1998, metacognition (Zhang & Franklin, 199§,

53

consciousness” are circled.

perception (Ramamurthy, Bogner, & Franklin, 1998 Zhang, Franklin, Olde, Wan, &
Graesser, 1999, and pations of “consciousness (Bogner, Ramamurthy, & Franklin,
1999. Emotion codelets are dispersed throughou “conscious’ software ayents, looking
for situations which will influence the systems overal emotiona state. Systems
emotional states are a @mpaosite of several emotions, such as happiness sadness anger,
andfea. Behaviors srveto perform the systems magjor adions. For example, for agents
which communicae via amail, a behavior might be to compose areply to an email.
Drives are built into “conscious’ software agents, and they operate in paralel. Drives
adivate behaviors, and behaviors work to fulfill them. Perception varies depending on
the domain; it can range from receving voice in tutoring systems to netural language
email messages in department seminar organizers.

The focus is the locaion where perceptual information is creaed for the agents
own use. Here this perceptua information is asciated with emotions and memories.
“Conscious’ software agents contain numerous memories, including asociative
(Kanerva, 1989, episodic (Kolodrer, 1993, short-term memory associated with what has
beamme “conscious,” and numerous working memories. Metaognition keeps tradk of
agents internal condtions. If necessary, it can influence the behaviors, perception,
learning, and where the spatlight of “consciousness’ shines. For example, metacognition
can make the agent more goal-oriented ar oppatunistic, and cause voluntary attention by
influencing the dhances that a walition d codelets will make it to “consciousness”
Leaning takes many forms in these agents auch as the aility to lean new behaviors.

The primary resporsibility of “consciousness’ codelets are to bring novel or conflicting

54

information to “consciousness’ (Bogner, Ramamurthy, & Franklin, 1999. Thisincludes
new perceptua information. It also includes conflicts between what is percaved and

what is remembered, and conflicts in the potential communication output of the agents.

Low Level Codelets

All codelets have adivation levels correspondng to how important they perceive
their adion to currently be. When appropriate, these adivation levels are dso dredly
asciated with the higher level concept the codelet serves, such as a behavior currently
being exeauted. Codelets also contain associations with ather codelets, correspondng to
the links of pandemonium theory’s demons. They aso cary information such that, if the
codelet were to beacome “conscious,” this information would be broadcast to the entire
system.

In some caes, there must be multiple, concurrent instances of the same kind o
codelet based on what is “conscious.” Generator codelets, ead correspondng to a
spedfic kind d codelet, are used in these situations. Generator codelets receve the
“conscious’ broadcast and instantiate copies of themselves with the corred information.

Chapter 5 describeodeletan much more detail.

A Brief Overview Of Codelets Reaching “Consciousness”

All codelets which are adively performing their tasks join the playing field, also
inspired from pandemonium theory. The playing field isa portion d the “consciousness’
mecdhanism. This medianism also contains a way to form codlitions of codelets.

Spedficdly, a aalition manager works to group codelets into coaliti ons based ontheir

55

associations to ather codelets. A coalition must be seleded for “consciousness from
among the formed coalitions. The “consciousness medanism also contains a spatlight
controller that chooses the next coadliti on for the spatlight of “consciousness’ based on
coalitions' adivation levels. Once the “conscious’ coalition hes been seleded, this
medhanism'’ s broadcast manger sends out the aodliti on'sinformation. Thisinformationis
aso paceal in the modue's dort-term memory as it is known that approximately seven
recently “conscious’ items remain in short-term memory. It is also pased to the
“consciousness’ modue’ s chunkng manager. The chunking manager forms chunks out
of the different “conscious’ codlitions. The dunks are later broadcast as potential items
to be leaned. All codelets in the system are ale to receve dl of the “conscious’
broadcast.

“Conscious’ software ayents are extremely domain-spedfic entities. Following
the adion seledion paradigm, what an agents perceves, its drives and correspondng
behaviors, etc. are muped to its environment (Maturana, 1975 Maturana & Varela,
198Q Varela, Thompson, & Rosch, 1991). One of the few relatively domain-independent
portions is these gents “consciousness” Thisis ConAg's main focus, and is described

throughout the later chapters.

“Conscious” Mattie

“Conscious’ software agents genera architedure is more realily understandable through
concrete examples. CMattie is the first software agent intended as an implementation d

global workspacetheory. As such, she is “conscious,” and socialy situated (Bogrer,

56

Ramamurthy, & Franklin, in press1999. CMattieis ableto interad, lean, and adapt in a
socia environment comprised of human agents. CMattie “lives’ in a red world
computing system, a Unix-based system. No clams are made that CMattie is
“conscious’ in the sense of being sentient. As described in chapter 1, this author has
contributed to several portions of CMattie, with the focus being the agent's
“consciousness” The other contributors are Stan Franklin as projed leader, Art Graesser
as testing leader, Lee McCauley for emotion, Aregahegn Negatu for adion seledion,
UmaRamamurthyfor perception, andhaohuazhangfor metacognition.

CMattie is designed for a spedfic, narrow domain. She functions in an acalemic
setting, gathering information from humans regarding seminars and seminar-like events
such as colloqua, defenses of theses, etc. Using this information, she composes an
annourcement of the next week’s sminars, and mails this annourcement weekly to
members of a mailing list that she maintains, again by email interactions with humans.

CMattie's implementation follows *“conscious’ software aents genera
architedure. Her moduar architedure, as illustrated in Figure 4.3, caries over and
significantly extends sveral portions of VMattie (see dapter 3). These include behavior
networks (Maes, 1990 for adion seledion, the Copyca architedure (Hofstadter &
Mitchell, 1994 Mitchell, 1993 and ratural language understanding (Allen, 1995 for
email comprehension, and tracking memory. In addition, CMattie contains a sparse
distributed memory (Kanerva, 1988 for longterm, asociative memory, pandemonium

theory (Jackson, 1987) for agent grouping, and case-based m@utmgner,1993) for

57

p| SUOLEST B ELashat laly) . UTSTUE 23] wﬁ__wﬂ.mmq -
[eadLamyEg 4/ T Bl - waryouryg FEdaotag
o ~
F ,
-~ .
¥
Aonars Aroars
Arora]y Il Arorapy Ao I
SRATY = 2uriio 2uTao
] Ayl E.#..ﬂmnawu BATIRIDOEEY arpostdy Hﬂmﬁﬁm
¥ ! *H\.l\\.l\.]
nd - 1003 - - rud
H.H.nmm_n__H_O - MD.WMM@M Mmoo [peudgg yﬁ—.mm__n_m
[
- L4 . ¥ ¥ ¥ L] ¥ p .
WOTIETPTE AT hn__..._..n__.wu_ﬂﬂ_ huwhh.ﬂhﬂ_ RPN WOTIE[IDS0)
) e | || |] s || oo |[RS
UOTITERoy HUWEE@M Af RFIPI) <af qaFpan) A RAIPR] weTpoury yedry MOmIEo T
B i :) FROTSHE RO SRTEUT) | S))
[
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
A riad Sunlopg
S
b1 i
\ £
\ '
Wk
¥ i b
_.\H.MMM\._MMME ” wfrumpy g foumy | adppeauen | <eEouTyy
wiiaf poys HTIPTOLT SRy wRpeds HoRyDe)

Figure 4.3: CMattie’s Architecture

58

intermediate term, episodic memory. Ead o these medchanisms has been significantly
extended in order to merge with the others, and to meet the needs of this domain.

As edfied in the achitedura style, the red work of amost al of CMattie’'s
moduesis performed by codelets. Codelets lie underneah CMattie’'s modues including
her behavior network, emotion, metaamgnition, perception, and pations of
“consciousness” CMattie’'s codelets coalesce into coadlitions, beame “conscious,”
broadcast their information to al other codelets in the system, and receve the
“conscious’ broadcast. CMattie, follows a tenet of the adion seledion paradigm by

being amulti-agentsystem.

Roles of CMattie’s Modules

Mail Input and Output

CMattie' s sensory data ae, for the most part, the incoming email messages e recaves.
Mail inpu and ouput provides CMattie's interfaceto her domain. Using this unit, she
recaves and sends out email messages related to seminars, seminar-like events such as
collogua, and maintenance of the redpient mailing list. Mail inpu and ouput can
process more than ore emall message & a time, enabling the perception modue to
perceve and undbrstand emergency events in CMattie’s world. This aids in maintaining
her sense of self-preservation as e proadively reads to her changing resource neels.

She immediately reacts to the status ofuinéx-hostsystem wherein she “lives.”

59

Perception

Perception for CMattie occurs when she “comprehends’ an email message. As in
VMaittie, incoming email messages, receved by the mail inpu portion, are moved to the
perception modue. The perception modue was inspired by the Copyca architedure
(Hofstadter & Mitchell, 1999, and CMattie's perception follows Copyca more dosely
than VMattie's. (Ramamurthy, Bogner, & Franklin, 199§. When an incoming message
isunderstood, every significant word or phrase has been classfied, and the emaill message
has a whale has been caegorized into a “message type,” such as “add me to your seminar

announcement mailing list” and “I'm initiating a new seminar.”

Focus

The focus is a portion d the “consciousness’ mechanism and is described in gred detall
in the next chapter. It serves as an interadion pant for several of CMattie’'s modues,
spedficdly associative memory (sparse distributed memory), “consciousness” episodic
memory (case-based memory), emotions, and perception. The focus includes four
vedors: the perception registers, the output of asociative memory, the output of episodic
memory, and the inpu to bah these memories. First, the perception modue places the
comporents of the understood emal message into the perception registers. Next,
asciative memory is read with the airrent percept as the aldress Also, episodic
memory is read with the same aldress These reals are designed to gather the
information most relevant to what was just perceved. At this point, the contents of the

Focus constitute the aurrent percept. After the aurrent percept has become “conscious,”

60

the behavior network and emotions potentially choose new states based ontheir recept of
this “conscious’ broadcast. These modues then write their current states to the focus.

This along with the curremtercept;js written to both memories.

Associative and Episodic Memories

Sparse distributed memory is a @ntent addressable memory that serves as long-term,
asciative memory for CMattie (Anwar & Franklin, forthcoming). This memory stores
the @ntents of the perception registers as well as her adions and emotions. Default
information, such as room and time can often be recvered, contributing to the
understanding of incoming messages. Rewvering remembered adions and emotions
helps with action selection in the new situation.

Case-based memory is used as CMattie's episodic memory. In it she stores the
sequences of email messages that form episodes. This memory ads as an intermediate
term memory, and the information stored there is used to lean damain knowvledge. This
allows her to relate new events to similar past events. She understands these past events
using her built-in damain knowvledge. Case-based memory aids her in leaning new
perceptual concepts through case-based reasoning. Also, it aids in leaning the new

action sequences necessary when new perceptual concepts leaDhditog.

“Consciousness” Codelets

A “consciousness’ codelet is one whase function is to bring spedfic information to
“consciousness’ (Bogner, 1999. They are described in greder depth in subsequent

chapters. After the memory reads, perceptual “consciousness’ codelets bring information

61

from the focus to “consciousness” One such “consciousness’ codelet is associated with
ead o the perception registers and caries the spedfic pieceof perceved information
from that register. For example, ore codelet caries the spe&ker’s name, and another
carries the seminar’s time.

Spedfic “consciousness’ codelets spring into adion when the information in the
perception registersis relevant to them. For example, if what is perceved is arequest to
be removed from the seminar annourcement mailing list, the “consciousness’ codelet
which caries a person’'s email addressbeammes adive. It then joins the playing field on
its quest for “consciousness.”

In addition, some “consciousness’ codelets chedk for conflicts amongst the
relevant items returned from the percept and the memory reals. For example, a nflict
ocaurs if the percaved date, room, and time for the Cognitive Science Seminar are the
same & case-based memory’s output of these same feaures for the Graph Theory
Seminar. The “consciousness’ codelet reagnizing the anflict joins the playing field and
raisesits adivationlevel. Sinceit isassciated with the other perceptual “consciousness’
coddlets, the “consciousness’ medianism groups them together to form a aoadlition.
“Consciousness’ codelets also chedk for corflicts in the seminar annourcement template

being generated by the behavior network.

“Consciousness”

CMattie contains a global workspacebased onBaas' theory of consciousness Chapter 5

describes this “consciousness’ mecdianism in depth. The aent’s “consciousness

62

mechanism serves to gather the adive codelets into coaliti ons, choose the “conscious’
codlition, and lroadcast this coalition's information to all codelet’s in the system.
CMattie's global workspacegives the agent several important performance fedures. It
alows for codliti ons of codelets to gain attention and have their information lroadcast to
al of the ggent’s other codelets. Redpients of this broadcast become adive themselves if
enowgh of the informationis understood,andif it is applicable. In thisway, the broadcast
redpients have the patential to contribute towards lving the problem raised by the
“conscious’ codltion. This broadcast also allows metacognition a view of the events
taking placein the system. Leaning also uses the information in “consciousness’ to

learn to associateodeletsas a coalition.

Behavior Network

Like VMattie, CMattie has svera drives, some rrespondng to her tasks (sending
seminar annourcements, reminding organizers to send information, and acknowledging
messages). As edfied in the “conscious’ software agent general architedure, these
drives adivate behaviors that work to fulfill them, are explicitly built into the agent, and
operate in parallel.

Behaviors in CMattie correspond to global workspace theory’s goal contexts.
Eacdh behavior has an adivation level affeded by drives, other behaviors adjacent to it in
the behavior net, internal condtions, and environmental inpus (incoming emall
messages). Only one behavior can be adive & atime. A behavior's adivationis rea

to those behaviors that can fulfill its unmet precndtions and to behaviors whaose

63

precondtions can be satisfied by this behavior. Thus, eah behavior can thus be
considered part of a behavior strean. For example, there's a behavior strean that
compaoses the seminar annourcement. One behavior in that strean might fill the
Cognitive Science Seminar’s portion of the seminar announcement.

The behavior network uses tradking memory to store templates used in composing
outgoing email messages of different types. It also keeos track of the aurrent seminar
annourcement mailing list. Tradking memory is external to CMattie, ading as a
cognitive prosthesis for the agent. As of now, this memory aso stores default
information onseminars, such as the day of the week eat ore occurs. This function may
be subsumed by associative memory.

All outgoing messages are amposed in the composition workspace Message
compasition consists of filling the fields of an ougoing message template. The
information wsed to fill these fields comes from the perception registers and any of
asciative, case-based, a tracking memories. A current seminar annourcement template
is always being generated in the compasition workspace As the behavior network
recaves new perceptual information from “consciousness” the aanourcement template
fields are filled. When a seminar annourcement is moved to mail output and mailed, a

new announcement template is placed in the composition workspace.

Emotions

CMattie's emotions play two roles (McCauley & Franklin, 1998. First, emotions

indiredly affed a behavior strean’s adivation level by affeding the strength of drives.

64

Emotions allow CMattie to be pleased abou sending out a seminar annourcement on
time and to be axious abou an impending system shutdown. In these caes, emotion
might increase a behavior stream’s adivation level sinceit is pleasing for CMattie to
complete these streans promptly. Semnd, metacognition uses emotions to help
determine its course of adion. For example, if CMattie is “happy,” metacognition makes

her more reactive. [EMattieis “sad,”’metacognitiormakes her more thoughtful.

Metacognition

By monitoring what is in “consciousness” the adivation d drives, emotiona states,
parameters in the behavior network, and the perception modue, metacognition keeps
tradk of CMattie's internal condtions (Zhang, Franklin, & Dasgupta, 1998. Using a
clasgfier system (Holland, 1986, metacognition makes inferences abou CMattie's state.
If necessary, it can influence the behavior network, “consciousness” leaning, and
perception. For example, metacognition can change the behavior network’s adivation
level threshald to make the agent more goal-oriented or more oppatunistic. It can cause
voluntary attention by influencing the adivation levels of certain coaliti ons of processes.
It kegos the perception modue from oscill ating indefinitely when dedding on a message
type. Metaoognition plays the role of an owersee, trying to kegp CMattie's adion

selections on a productive track.

Learning

Leaning via severa types of mechanisms allows CMattie to become more dosely

couded to her environment. She can lean new behaviors, for example, a new step in

65

preparing for a system shutdown. She might also lean a new strategy for sending out
reminders to seminar organizers. Much of her leaning uses case-based reasoning. She
leans new concepts in her dlipnet allowing her to better understand incoming messages.
Described in the final chapter, “consciousness’ is esential for this form of leaning.
CMattie credes (leans) new codelets by modifying existing codelets enabling her to
perform newly leaned behaviors and perceptual techniques. As described in the next
chapter, coaliti ons of codelets are leaned via asciation ala pandemonium theory. This
alowsthe ggent’s codelets greder ease in communicaing and reauiti ng other codelets to
help in performing tasks. Associative leaning aso occurs in sparse distributed memory
as adions, emotions, and events are associated with ore ancther when pacel in this

memory.

CMattie’s Performance

Design and development of CMattie has been orgoing for severa yeas. As of this
writing, the framework used for bulding CMattie's “consciousness medhanism is
“complete.” Chapter 6 describes this framework’s gructure and gives testing results. In
addition, all of the different modues communicaion protocols have been agreed upon
and have been integrated. However, several of these modues are still adively being
implemented. Therefore, overall test results for CMattie are not expeded urtil Spring,
2000. Rigorous testing @Mattieis planned.

If VMattie is a guide, CMattie's performance shoud be very satisfadory.

CMattie’'s implementation o global workspacetheory makes her an agent significantly

66

more wmplex than VMattie. At the moment, even withou the test results, CMattie's
role @ an implementation d global workspacetheory makes her valuable & a conceptud

model of mind.

The Intelligent Distribution Agent (IDA)

IDA is an intelligent distribution agent being designed and prototyped for the United
States' navy (Franklin, Kelemen, & McCauley, 1998. IDA isdesigned to perform as one
navy detailer. At the end d sallors' tour of duties (approximately 3-6 yeas), salors are
assgned to new bhillets (job paitions). This job assgnment process is known as
distribution. These new assgnments are made by approximately 200 full-time navy
personrel, known as detailers. Currently, employing these detail ers costs approximately
$20,000,000 annually.

IDA is the “conscious’ software reseach group's proof of concept projed, and
much of her is dill i nthe design phase. IDA utili zes CMattie’'s modues and significantly
extends them. Like CMattie, IDA must communicae, this time to sailors, in natural
language. In addition, she must access and undrstand the ntent of several naval
databases. In addition, IDA has constraint satisfadion isaues in satisfying the Navy’s
needs. For example, she must make sure that a destroyer has the required number of
sonar technicians and al have the gpropriate training. She must kegy down the wsts
asciated with moving sailors. Also, she must caer to the desires and reeals of sail ors as

much as possible.

67

IDA’s Architecture As An Extension Of CMattie’'s
Like CMattie's isto VMattie, IDA’s architedure is a significant extension d CMattie's.
Specifically, enhancements include:

 IDA’s coddets in her adion sdedion medanism access and perceve
external, naval databases.

» |IDA uses alinea functiond as the first line of assessment when asdgning a
sailor to abillet. Thislinea functional encodes the mmmon issues a detail er
considers. It includes concerns such as: are there women’'s quarters on the
ship, daes the sailor need training for the new position, daes the sail or need to
change wasts for the new position, is the gpropriate hedth care avail able for
the sailor’s family, is the st of moving within the budget, the sail or’s home
port preference, etc.

» There ae caes where the linea functiona will not be @le to encode dl the
potential situations a saillor might face when switching positions. For
example, a sail or may desire to move his base locaion from the United States
east coast to the west coast due to his marrying a Californian. In such cases,

IDA will deliberate on the different scenarios possible in the billet assignment.

» IDA utilizes a naval order generation program in her creation of assignments.

e IDA’semail communicaionwith sailorsis over a much wider range of topics

than CMattie's. Therefore, IDA uses <ripts to help her generate natural

language.

68

IDA’s Natural Language Generation Scripts

IDA’s <ripts are in the ealy design stage. However, they are largely inspired by
AutoTutor’s (Graesser, Franklin, & Wiemer-Hastings, 1998 curriculum scripts (Hadker,
Bogner, Yetman, & Klettke, 1999. AutoTutor is an intelligent tutoring system that
contains a talking heal and currently tutors gudents in computer literacy. Curriculum
scripts are used to present the students with questions and provide them hints and
promptsin helping guide them towards the gpropriate answers. While IDA does nat ask
students about computer literagy, she does interad with sailors in a similar manner abou
billet assgnment. The remaining portion d this subsedion describes AutoTutor’s
scripts.

Acoording to Putnam, a airriculum script is “a loosely ordered bu well-defined
set of skills and concepts gudents are expeded to lean, along with the adivities and
strategies for teading this material” (1987, p.17). AutoTutor’s curriculum scripts are
based on reseach indicating that tutors appea to follow a predetermined script, with
greder attention given orly to those dements of the script the student has missed
(Graessr & Person, 1994 Graessr, Person, & Magliano, 1995. In fad, this reseach
indicates that adherenceto atutor-driven script may be nealy absolute. Contained within
the arriculum script are predetermined sequences of examples, lesons, questions,
problem types, and subtopics that are used to instruct a discrete topic aea Within the
curriculum script maaostructure is the agenda, or microstructure, that is to be foll owed

during a tutoring sesson. The microstructure is the set of desired goals for a particular

69

lesson. In addition, the microstructure ntains palicies and microplans that may be used
when dfficulties or misconceptions arise (McArthur, Stasz, & Zmuidzinas, 1990. These
padlicies and microplans can serve & procedures that determine when a spedfic line of
guestioning is to be terminated, what new subtopic is to be presented, and the number of
examples to be presented.

AutoTutor’s curriculum script’s are aranged hierarchicdly. At the broadest level
is the knowledge domain, which is a global body of knowledge that the tutoring
addresses. AutoTutor’'s knowledge domain is currently computer literagy. Within the
knowledge domain are topics, natural chunks of knowledge dcharaderized by common
themes. At the next level are subtopics, which are subchunks of knowledge dharaderized
by more discrete themes within ead topic. Each subtopic is a structured database that is
further divided into smaller levels, or fields, ead focused ona spedfic comporent of the
tutor-student dialogue.

Eadh subtopic field contains a list of one or more English words, sentences, or
paragraphs, most in conversational form. The fields include the focd question, which is
the main question keing asked in the subtopic. The ided answer is the desired resporse
to the posed focd question. The subtopic also includes lists of good answers containing
relevant information, lists of different bad answers and misconceptions, lists of hints to
help the student, lists of prompts to try and get the student to divulge more information, a
sucanct summary of ided answer, alist of anticipated student questions and answers to
these questions, and lists of goodand bad keywords which help in the assessment of how

the student is doing.

70

Conclusions

“Conscious’ software aents are unique largely because they implement a gnitive
theory of consciousness In addition, they integrate and extend numerous mecdhanisms
from the “new ai.” This chapter described “conscious’ software agents architedural
style, general architedure, and two example aents. Not discussed, howvever, is how

these agents’ “consciousness” actually works. This is chapter 5’s topic.

71

Chapter 5

Realizing “Consciousness”

Introduction

“Conscious’ software ayents are unique in part because they implement global workspace
theory. This chapter discusses these ayents' “consciousness’ at the procedural level. A
description d the “consciousness’ medhanisms' locations and wse in ConAg is left for
chapter 6. “Consciousness’ in these ggents includes the base codelet, broadcast manager,
chunking manager, coalition manager, “consciousness codelets for conflict detedion,
“consciousness’ codelets for perceptua information, focus, playing field, short-term
memory, and spatlight controller. Each of these mmponrents has been ariginally designed
and implemented by this author in consultation with the “conscious’ software reseach

group. Throughout this chapter, it is helpful to revisit figure 4.3.

Base Codelet

All codelets in “conscious’ software agents utili ze the base codelet through inheritance
(Eckel, 1998. The base codelet is a dass (Eckel, 1998 containing the variables and
methods common to all codelets in “conscious’ software aents. Action seledion
codelets, “consciousness’ codelets, emotion codelets, metacognition codelets, and
perceptual codelets all extend the base codelet for their neads. This gructure contains all

of the information recessary for the “consciousness’ mecdhanism to access and
72

manipulate the codelets with which it isworking. All codelets extend the base codelet as
“consciousness’ provides the badkbore for communicaion amongst these codelets.
Below is a description d the base codelet’s properties, and, therefore, the properties
common to altodeletan “conscious” software agents.

Thread. All codelets are threads (Eckel, 1998. This means that ead codelet
runs in at least simulated parallelism to one another on a single processor machine.

Broadcast Listener. All codelets, when they become instantiated, are broadcast
listeners. This meens that all *“alive” codelets receve the broadcast from
“consciousness” This follows global workspace theory’s premise that all processes
recave the broadcast. Just asin Baas' theory, whil e codelets receve the broadcast, they
do not necessarily act upon it. They do so only if they understand it and it is applicable.

Serializable. All codelets are serializable (Eckel, 1998. Seridization is a Java
construct. It provides for objeds to be turned into a sequence of bytes. Later, these bytes
can be restored to the original objed. Seridizationis commonly used in sending objeds
over a network. “Conscious’ software aents use serialization for self-preservation.
Spedficdly, codelets states are saved in the event of a system shutdown. Upon system
startup, they can be returned to their last running state.

Name. Eachcodelethas a name providing for description throughout the system.

Unique ID. For help in keguing track of the codelets in the system, they eat
have aunique id. By default, thisid is a randamly seleded number. This unique id is
quite important for generator codelets. Generator codelets are like dl codelets in that

they listen for the “conscious’ broadcast. However, generator codelets do nat diredly
73

spring into adion uponreceaving arelevant broadcast. Instead, they instantiate copies of
themselves with the gpropriate information. This unique id helps in identifying these
instantiatectodelets.

Activation Levd. Ead codelet has an adivation level. The adivation level is a
fuzzy variable; codelets can set it to nore, low, medium low, medium, medium high,
high, and max. They also can cdl methods to increase or deaease their adivation level
to the next closest value. All adivation values fall between zero and ore. A codelet’s
activation level is tied to how important it perceives its current task to be.

Asgciations. Codelets have asciations to ore ancther, correspondng to
pandemonium theory’s links (see tapter 4). It is these asciations which determine if
codelets are placel together in codlitions. Ead association consists of a hande (Eckel,
1998, or painter in C/Pascd terminodogy (Kernighan & Ritchie, 1989, to the asciated
codelet along with an association strength, kept between zero and ore. Physicd memory
is the only limitation on the number of associations eacteletmay have.

Codelets also have an association decay rate, and al contain a standard method
for decaying assciations. Codelets independently chocse how frequently to decey their
asgciations. Both the aalition manager and spatlight controller form new associations
and strengthen existing ones.

Consciousness Indicator. The spatlight controller sets this flag to signify that a
codelet has beaome “conscious.” Currently, the flag’'s two ogtions are that the codelet has
not yet beaome “conscious’ and that the codelet can leave the playing field. Thisflagis

used by the “consciousness’ codelets to knav when their job is complete (they have made

74

it to “consciousness’). In addition, it is useful in tradking codelets’ states. In the future,
for medchanisms such as deliberation, a third ogion, that the codelet must stay on the
playing field, may be used. This would be set by the spatlight controller to force a
codeletto remain on the playing field, even if it perceived its task to be complete.

Broadcast I nformation. The broadcast from “consciousness’ takes the form of a
hashtable (Aho & Ullman, 1992. Codelets receving the broadcast seach for relevant
keys. If one is found, they view the correspondng message. With this g/stem, all
codelets cary broadcast information in the event they read “consciousness” This
information includes their key and message. Individual codelets determine their own key
and message. An interesting future study might be an analysis of the “language” creded
by “conscious” software agents’ keys and messages.

AccessTo The Playing Field. Codelets contain the means to join and leave the
playing field. The playing field gives codelets paentia access to “consciousness”
Codelets join the playing field just before they perform their adions, and they leave once

their actions are complete.

The Focus

As mentioned in chapter 4, the focus is a main interadion pant for perception, emotions,
“consciousness” asciative memory, and episodic memory. The spedfic properties of
the focus are now described.

Perception Registers. The perception registers are set by the perception modue.

These registers are afixed size aray of strings. Fixing the size of these arays is

75

necessary largely due to the interadions with the asciative and episodic memories.
IDA, while they are nat yet fully determined, has sgnificantly more perception registers
than CMattie. CMattie's perception registers, listed below, are the ones currently

contained iConAg.

1. Seminar Name 10. Message Type

2. Seminar Organizer 11 Email address

3. Speaker’'s Name 12. Emergency Indication

4. Speaker’s Affiliation 13. Unrecognized word one
5. Talk Title 14. Unrecognized word two
6. Day 15. Unrecognized word three
7. Date 16. Unrecognized word four
8. Time 17. Unrecognized word five
9. Location

“Conscious’ software agent’s perception is largely driven by percaved events. In IDA,
these events include leaving a aurrent bill et, training, arriving a a new bill et, etc. For
CMattie,the events are the different message types. These are:

1. Add person to seminar announcement mailing list

2. Answer toCMattie

3. Change of seminar’s location

4. Change of seminar’s time

5. Change of seminar’s topic

76

6. CMattie copy message to herself

7. Remove person from seminar announcement mailing list

8. Incoming message contains multiple message types

9. Negative message in respons€idattie’saction

10. Initiate a new seminar

11. No seminar at the specific time

12. CMattie sees message as nonsense

13. Question message f@Mattie

14. Seminar has a speaker discussing a certain topic

15. Seminar is permanently ending

16. Message from the system administrator

Asgciative Memory Output Registers. After the perception registers are set, a
real from asociative memory occurs. The result of thisread is placel in the associative
memory output registers. These registers are the same set as the perception registers. In
addition, they contain the remembered emotion and bkehavior assciated with the
remembered perception. In CMattie, these registers, na including the perception

registers, are:

17. Happy emotion 20. Fear emotion
18. Sad emotion 21. Behavior's name
19. Anger emotion 22. Behavior’s activation

77

Episodic Memory Output Registers. In addition to a read from assciative
memory, a read from episodic memory occurs. The gisodic memory output registers are
in the same format as associative memory’s.

Memories' Input Registers. Once the perceptua information hes readed
“consciousness’ and hes been broadcast, a new emotional state and behavior are
potentially chosen. After this assesanent, the arrent emotional state and behavior are
written to the focus into the memories’ inpu registers. The memories inpu registers
have the same format as the aciative and episodic output registers. Once bath the
emotion modue and behavior network have written to the focus, the focus writes the
memories’ input registers to both the associative and episodic memories.

Cannot_Fill_Registers Counter and Registers Can_Be Filled Indicator. A
significant design dedsion made for CMattie and IDA is that all of the perception
registers must become “conscious’ before the perception registers can be filled again.
The canna_fill _registers_courter is initially set to two. When the perception registers
are newly fill ed, “consciousness’ codelets ched to seeif there isinformation for them to
cary to “consciousness” If so, ead codelet increments the canna_fill registers courter
and pcks up thisinformation. Oncethey’ ve been “conscious,” these codelets deaement
this courter. In addition, the murter is deaemented twice more: once with eah
memory write.

At this paint, the canna_fill _registers _courter is reset to two, and the registers
can_be filled_indicaor is st to true. The perception modue uses this bodean indicaor

to determine if the next perception can be placeal into the registers. This g/stem ensures

78

that al “consciousness’ codelets and memory accesses occur before the next percaved
email message is placed in the focus.

Perception Register, Associative Memory Output, and Episodic Memory Output
Broadcaster. Certain “consciousness’ codelets and emotion codelets spring into adion
immediately after the perception registers are fill ed. Upon system startup, these codelets
register to recaeve the focus perception register broadcast. When the perception registers
are newly fill ed, the focus broadcasts to all desired redpients, letting them know the
perception registers have been filled. This same processis used for the “consciousness’
and emotion codelets desiring to knav when the assciative memory real has been
completed, and those wanting episodic menmeag’scompletion.

Asciative and Episodic Convergence Indicators. At times, “consciousness
codelets and emotion codelets need to knowv whether or not associative and episodic

memory have converged. The focus stores this information.

Playing Field

The playing field, inspired from pandemonium theory, provides codelets access to
“consciousness” Ead codelet joins the playing field immediately before it begins to
perform its task. Ead codelet currently leaves the playing field immediately after it has

completed its task. The playing field stores handles to @adieton the playing field.

79

Coalition Manager

The aalition manager traverses the codelets on the playing field, forming them into

codliti ons based ontheir associations. The @alition manager is athreal. It slegps for a

short period d time & it must ke its codlition table aurrent. Spedficdly, the aalition

manager performs the following loop:

1.

2.

It sleeps for a short period of time

It creates a new, temporary, coalition table

It traverses the playing field’'s codelets. Each codelet encourtered is initialy
placed in its own coalition. This provides for singleton coalitions.

It looks at eah of the aodlition's associations as a whole. In ather words,
what is being viewed are the composite asciations from eah o the
codlition's codelets. For ead of these ssociations, the walition manager
seaches for the asciated codelet on the playing field that is nat aready in
the coalition. If the searched foodeletis found, it is added to the coalition.
It overwrites the coalition table with its new temporary coalition table.

It updates al of playing field codelets associations to ore ancther.
Spedficdly, if acodelet is onthe playing field and is not associated to another
codelet onthe playing field, an asociationis made. If asociations exist, they
are strengthened by a small amount, assuming they are not at the maximum

value. Updating codelets associations on the playing field is inspired by

80

pandemonium theory and, pdentially, allows the system’s behavior to evolve

over time.

Spotlight Controller

The spatlight controller determines the antents of “consciousness” Spedficdly, as
spedfied by global workspacetheory, it is the spatlight of “consciousness’ shining down
on a mdition d codeets. The spatlight controller is its own thread, loopng and
performing the following steps:

1. Itsleeps.

2. It cdculatesthe average adivation level of the codeletsin eat of the aoalition
manager’ s codlitions. Average adivationis used as oppased to total adivation
to ensure that larger coalitions do not have an advantage for “consciousness.”

3. For the “codition” with the highest average adivation level, it sees if this
coalition is above the threshold for entering “consciousness.”

1. If so, it selects this coalition as the “conscious” coalition.

2. If nat, it drops the threshaold for “consciousness’ by a percentage (currently
ten percent), and starts again. This threshdd droppng is inspired by
Maes’(1990)behavior networks.

4. It updates the codelets associations to ore aother as codelets are now in
“consciousness’ together. This asociation level increase is sgnificantly
greder than the assciation increase gained when codelets are on the playing

field together. In the rare event some of “conscious’ codelets have not been

81

yet been associated by the alition manager (as they're dso till on the
playing field together), the spatlight controller sets up rew asciations as
well.

5. It passes the “conscious” coalition to the broadcast manager.

6. It passes the “conscious” coalition to the chunking manager.

7. It sets ead coddet’s consciousH ag to indicate that they have previously been
in “consciousness” Even with this flag set, there is no limit to the number of
times a codelet can be dhosen for “consciousness” as long as it is on the
playing field.

8. ltresets “conscious” coalition to indicate the lack of a “conscious” coalition.

Broadcast Manager

The broadcast manager diseminates the “conscious’ information to al those listening.
Specifically:

1. It traverses the “conscious’ codliti on, taking from ead codelet its information

to be broadcast. Alodelets’information is placed in a singhashtable.

2. Itinserts a time-stamp into tihashtable.

3. It sends out the broadcast to all listeners.

4. It passes the broadcdstshtabldo short-term memory.
Described below, the chunking manager also sends out information via the “conscious’

broadcast, and it uses the broadcast manager to do so. In these cases, step 1 is bypassed.

82

Chunks and the Chunking Manager

Currently, a chunk consists of three items:

Chunks' Current Strength. This value determines how close apatential chunkis
to becoming a chunk.

Is Chunk Indicator. Thisflagisfalseif the chunkis only a potentia chunk and
true otherwise.

Chunk’s Codelet Names. A chunk contains the names of all codelets in the
chunk, sorted and delimited by colons.

The dhunking manager recaves the latest “conscious’ coalition from the spatli ght
controller. The chunking manager’s role is determine new chunks out of the potential
chunks. Ead “conscious’ codlition is a potential chunk. Chunks are used by the
behavioral and perceptual leaning medhanisms to help determine new concepts to lean.
They are inspired by pandemonium theory’s asociations which develop owr time into
concept demons.

The chunking manager:

1. Gathers the codelets names from “conscious’ coaliti on, sorts these names,

delimits them, and places them into a single string.

2. Checks if this string is already in the list of chunks.

1. Ifitis not, the string is added to the list of chunks as a potential chunk.

83

2. Ifitis, the patential chunKs drength isincreased. If this potential chunk
is now abowve threshald, it is considered a cdhunk. In this case, it is passed
to the broadcast manager and sent out.

3. Decas al of the chunks and pdential chunks. Chunks do nd regressto
potential chunks, even though their adivation level might dean it one.

Therefore, chunks are broadcast only once The aitire dunk list can be

retrieved from the chunking manager by the learning mechanisms.

Short-Term Memory

Short-term memory serves to hdd the last several coalitions broadcast from
“consciousness” CMattie'sis currently a maximum of seven. It provides ameans for the
systems modues, including codelets, to look at the recent contents of “consciousness”
Thisis particularly important for codelets which sleep for arelatively long period d time.
In these caes, the codelets still do receve dl broadcasts as gedfied by Baas' theory.
However, they patentially were aleg@ as recaved broadcasts overwrote eab aher.
When the codelets awaken, they have missed some broadcasts. Codelets can use the
broadcast’s time-stamp to determine which ores in short-term memory are relevant. In
addition, short-term memory provides an additional data-analysis urce for the leaning

mechanisms.

84

“Consciousness” Codelets

“Consciousness’ codelets are base codelets with additional functionality. Foll owing
Baas theory on consciousness role, “consciousness codelets primary role ae to
bring novel and conflicting information to “consciousness” In CMattie and so far in
IDA, these codelets work in two areas: the focus and the behavior network’s compasition
working memory. “Consciousness’ codelets bring to “consciousness’ both nowel and
conflicting information from the focus and kring conflicting information from the

compositional working memory.

From the Focus

When the focus perception registers are fill ed, the focus natifies the “consciousness
codelets listening for this. For eat dof the perception registers excluding the message
type register, there is one “consciousness’ codelet per register. These codelets are
daemon coddlets, listening for the perception registers to be filled and ading if their
spedfic register isin fad filled. Initialy, these codelets have no associations with ather
codeletsassociations are simply allowed to develop over time.

Watching the message type register is one “consciousness’ codeet for eath
message type. When the gpropriate message type is encourtered, the arrespondng
codelet springs into adion. It picks up the message type from the perception register in
order to kring it to “consciousness” Ead message type codelet is initialy strongly
asciated with the perception register’s nonmessage type “consciousness’ codelets that

cary theinformation describing the message. In this way, when the message type codel et
85

isonthe playing field, it will be grouped with the relevant “consciousness’ codelets such
as the one carying the date, sped&er’s name, time, etc. assuming they are on the playing
field. In CMattie, the message type codelets are initially associated with all of these
nornrmessage type “consciousness’ codelets as al are patentialy relevant. In IDA, this
will most likely not be the cae becaise of the greader number of perception registers.
CMattie' s message type “consciousness’ codelets correspondto those which cary IDA’s
different events such as leaving the current billet.

After the assciative memory real is complete, if there is convergence
“consciousness’ codelets listening for the read’s completion spring into adion. Some of
these codelets work to bring the remembered register contents to “consciousness” These
go into effed if the correspondng perception register is empty. For example, for a
message from a seminar organizer abou an upcoming spegker and topic for a seminar but
not containing the time of the seminar, the remembered time is caried to
“consciousness” There ae dso “consciousness codelets which listen for episodic
memory convergence Some of these codelets work to cary episodic memory
information to “consciousness if both the @rrespondng perception register and
asciative memory register are anpty. Like the “consciousness’ codelets which bring
the remembered associative memory information to “consciousness” these only bring the
appropriate remembered information such as the time of the seminar. Items such as a
seminar’s speaker are not brought to “consciousness” as those change weekly.

“Consciousness’ codelets also chedk for conflicts amongst the perception registers

and memory registers if either of the memories have conwverged. Currently in CMattie,

86

one arflict is eached for in the focus. an owerlap in the room, time, and cate of the
remembered seminar and the seminar in the perception registers. Corflict
“consciousness’ codelets work differently than thase which simply cary information to
“consciousness” The codelet which is adually seaching for the nflict is a daemon
codelet. Inthe event a cnflict is found,this codelet instantiates codelets asociated to it
that pick up the information in bah the memory and perception registers. This gems
from the fad that conflicts tend to be temporary in nature. The conflict codelet and these
new codelets carying the information abou the corflict then join the playing field in
their quest for “consciousness” After the temporary “consciousness codelets reah

consciousness, they die and are garbage collected.

From the Composition Working Memory

As the seminar annourcement is being generated in the compaosition working memory by
the behavior network, “consciousness’ codelets searched for conflicts in this template.
These onflict deteding codelets function in the same way as those in the focus. In
CMattie, two conflicts are deteded. One is the same & deteded in the focus: two
seminars overlapping on the same day at the same time in the same room. In addition, a
conflict is deteded if the same spedker is edking in two seminars smultaneously.

Unlike CMattie, IDA will most likely check for conflicts in all outgoing messages.

An Example “Consciousness” Codelet

This subsedion ill ustrates a representative example of a “consciousness’ codelet named

NewSeminarMessageTypeCarrier. This codelet waits until the perception registers are
87

filled with the message type signifying that a new seminar is being initiated.
NewSeminarMessageTypeCarrier inherits the properties of a percept register carier
codelet. Thesecodeletshave the following properties.

Codedlet. All percept register carier codelets extend the base codelet class and,
therefore, have dl the properties of the base codelet. These codelets do nd override ay
of the baseodelet’'sdefaults.

Percept Registers Listener. These codelets listen for natificaion from the focus
that the perception registers have been filled.

Chedk All Other Perceptual “Consciousness Codelets Are Alive For
Asgciation Setup. Many of the perceptua “consciousness’ codelets are those which
cary the different message types to “consciousness” So that these message type carying
codelets have ahigh likelihood d being associated with the codelets carrying information
such as the time, they are initially associated with ead o the other nonmessage type
perceptual information carying codelets. Before these assciations can be asgned,
however, it must be ensured that the codelets to which the asciations are being made
have actually been initialized.

Refresh Codelet. Upon reading “consciousness” all of the “consciousness
coddlets carying the perception registers information reset the their variables.
Specifically, they:

1. Leave the playing field.

2. Set their activation back to low.

3. Set their “conscious” indicator to not yet “conscious.”

88

4. Reset their broadcast information.

5. Decrement the focus’ cannot fill the perception registers counter.

NewSeminarMessageTypeCarrpgrforms the following algorithm.

1. Once all perceptuaodelet’sare alive:

1.

2.

Setup the initial codelet’s information such as the codelet’s name and
initial activation level.

Setup the initiatodelet'sassociations.

2. Loop forever:

1.

2.

Sleep.

Decay associations.

If on the playing field:

1. If the “consciousness’ indicaor states the codelet can leave the playing
field, refresh theodelet.

2. Else, decay the activation level.

3. Return to the start of loop.

If the perception registers are not newly fill ed, return to the start of the

loop.

If the perception register’'s message type is not of type initiate a new

seminar, return to the start of the loop.

Increment the focugannot_fill_registers_counter.

Placethe gpropriate key and message into the codelet’ s information to be

broadcast.
89

8. Join the playing field.

9. Increase activation to high.

Conclusions

This chapter describes how “consciousness’ is redized in “conscious’ software agents.
“Consciousness’ codelets, extensions of the base codelet, bring novel and conflicting
information from the focus and the behavior network’s composition workspace These
codelets compete for “consciousness’ along with al other codelet’s in the system. The
playing field, coalition manager, spatlight controller, chunking manager, and short-term
memory al serve to complete the implementation d globa workspace theory's
“consciousness” Not described in this chapter, however, is how “consciousness ”
different comporents are aranged in the mwde and hav others modues interfacewith it.

This is the subject of chapter 6.

90

Chapter 6

ConAg

The “Conscious” Agent Framework

The “Conscious’ Agent Framework (ConAg) is a software framework for implementing
“consciousness’ in software agents. ConAg is intended to implement “consciousness’
acording to global workspace theory (Baas, 1997, and its algorithms are those
described in chapter 5. ConAg is designed to caefully follow software reuse
methoddogy, discussed in chapter 2. ConAg is designed under the achitedural style for
“conscious’ software aents, detailed in chapter 4. This chapter first discusses the
rational for implementing ConAg in Java. This includes giving an owerview of Java
beans snce dl of ConAg's classes which can be beans are. ConAg's primary goals are
then detailed. The framework’s padkage structure is described. For unfamiliar topicsin
this ®dion, dease refer chapter 5. Next, the well known design petterns which ConAg
incorporates are presented. The techniques that other modues use to integrate with
ConAg is then described. ConAg's current graphica user interfaceis presented to help
ground the framework and ill ustrate how portions of the testing results are gathered.

Finally, testing results are presented.

91

Why Java?

Java was introduwced in late 1995 ly Sun Microsystems with a large marketing blitz.
Opening any Java booKs introdwction a visiting http://java.suncom ill ustrates this
fanfare. After caeful consideration amongst the “conscious’ software reseach group
including this author, the group dedded to use Java for several reasons. First, Java
programs run ona virtua macdine. Therefore, they run onal operating systems for
which a Java virtual madine has been developed. This macdine provides a layer of
abstradion owr the operating system so that, to Java programs, all operating systems are
the same. In particular, this is helpful in the development of user interfaces and in
multi-threading programming; both are often operating system dependent. At dedsion
time, the operating systems of choice anong the reseach groups developers were
Windows 95, Windows NT for Intel, Solaris for Sparc, Linux for Intel, and Mac OS.
Java has relatively strong virtual madine suppat for ead o these platforms, making it a
quite portable language.

Java has lid multi-threading suppat. Ead thread works in paralée, or in a
single-processenvironment, in simulated parall elism to al other threads. In Java, threals
are eay to crede. This helps in modeling both global workspace theory and
pandemonium theory, as both describe numerous processes being in adion
smultaneously. Java is aso highly obed-oriented. Objeds help provide for
encgpsulation, allowing for bath a structure’s data and methods to exist within the same

class In addition, it provides for inheritance. Inheritance helps fadlit ate the sharing of

92

properties among a group clases. Objed-oriented programming helps foster the
independent development of different modues by different reseach group members as
there is minimal interadion reeded among developers. Simultaneously, inheritance helps

in providing a common interface across modules for all of the agmuslets.

Java Beans

ConAg is implemented following the Java bean convention. Beans are simply classs,
with spedfic naming conventions for events, methods, and variables. By making eath
class a bean, it can be opened and modified by any Java development environment
suppating beans such as Sun's Java Workshop. This is possble & ead bean's
properties and events follow the same wnvention and, therefore, they can be eaily
exposed. A simple example of this convention is the naming of variables. Variable
names begin with a lower case letter, such as adivationLevel. Two methods, a get and
set method, then foll ow a standard naming convention to provide accesto this variable.
In this case, the get method is named getActivationLevel and the set method is named
setActivationLevel.

A jar file is creded when the mmpiled class files are placel into a single
compressd file. After ConAg's source files are compiled, they are placed into jar files.
Jar files can be read by any bean-development todl, such as Sun's free Bean Box. The
Bean Box is a simple tod intended to fadlitate ashared vision for bean developers.

ConAg'sjar files can be loaded into the Bean Box, and its events and variable names are

93

visible. With this, other modue developers utilizing ConAg can see the framework’s

properties without having to dive into the code.

The Framework’s Primary Goals

As a frameworkConAgserves four primary goals:
1. To fit within the boundxries of the achitedura style for “conscious’ software
agents (described in chapter 4).
2. To provide adrop-in implementation for the domain-independent portions of

these agents’ “consciousness” mechanism.

3. To povide working, easly customizable, and poperly documented
domain-spedfic portions of the *“consciousness medanism, such as
“consciousnesstodeletsvhich look for a specific conflict.

4. To provide quality, working stubs for the aognitive medianisms sich as
behaviors and emotions found in “conscious’ software aents. These

ill ustrate how these modues houd work with the “consciousness’ modue

and provide a starting point for the mechanisms’ development.

ConAg’s structure

Explicit cae has been taken to ensure ConAg follows good coding pradice ConAg's
source ®de is 100% pure Java, and it utilizes Java's beans framework as well as the
AWT and Swing frameworks (Eckel, 1998 for its graphicd user interface All possble

classes are Java beans, helping contribute to bah blad-box reuse, and when necessary,

94

easy modificaion for white box reuse (see dapter 2). Ead source file has detailed
header comments, and amost every line of code is commented. All comments are
catered for Javadoc use. Javadoc comes with Sun's gandard Java distribution, and it
allows for comments to contaimml code and be turned into readalbiml files.

ConAg has a detail ed padkage structure dlowing for its comporents to be eaily
foundand identified. The next several figures and subsedions describe these padkages at
ahigh level. At theroat isthe “conscious’ software agent diredory, shown in figure 6.1.
This diredory is not adualy a padkage within ConAg. It is smply the locaion where
eadh o the different modues jar files are placal. For example, besides ConAg, this
diredory contains emotion and perception, ceveloped independently. In redity, these jar
files could be placed anywhere on the disk, as long as the Java virtual macine is told
where to find them. ConAg's padkage branches off into two main groups, the base

codeletand “consciousness” packages. Each are described below.

Conscious
Software
Agent
. " . Dirives & :
Perception Ietacognition Conbg Emotion Behariors Learning
Baze Codelet Consciousness

Figure 6.1: “Conscious” Software Agent Directory
(Bogner,Maletic, & Franklin, In Press 1999)

95

ConAg’s Domain Independent Portions

ConAg can be viewed partially as a “generic” framework similar to frameworks for
building gaphicd user interfaces. It implements portions of the “consciousness
mechanism intended to work aaoss domains. In ather words, many portions of the
framework can be dropped in an agent being developed such as a distribution agent or

travel agent.

Codelet Definitions

Conscious ftware agents base codelet resides in ConAg's base codelet padage.
Similar to all of ConAg's padages, the base codelet padkage mntains sveral classs.
Sincethe base codelet padkage is crucial to “conscious’ software ajents, it is worthwhile
to mention the dasses within this padage. The codelet classinherits or instantiates all of
the other classes in the package.

ActivationLevds.class This bean contains all the information reeded for ead
codeletto set its activation level.

AsociationElement.class This bean stores all i nformation abou eat codelet’s
associations.

BroadcastElement.class This bean contains the key and message the codelet
carries in the event it becomes “conscious.”

BroadcastEvent.class This is the objed that is adualy “thrown” by the

Broadcast Manager when it sends out a broadcast. It contains the hashtable that codelets

96

query as they look for relevant messages. All codelets know how to listen for and work
with this object.

BroadcastListener.class This is an interface ¢ass meaning that it contains
empty methods that must be dedared by all classesthat extend it. This classcontains the
method necessary to receive the broadcast from the broadcast manager.

BroadcastListener.class is extended by Codelet.class which implements the
appropriate method for broadcast recept. In this way, al codelets in the system receve
the “conscious” broadcast.

Coddet.class Described in the previous chapter, this bean contains the base
information common to al codeets in “conscious’ software aents, including
“consciousness” and generatadelets.

As ®ain figure 6.2, ConAg aso includes a padkage mntaining classes common
to “consciousness’ codelets. This padkage highlights that “consciousness’ codelets cary
information, whether it be a onflict or nove information. Further spedficity for
“consciousness’ codelets is included in ConAg, and this is discussed in the Domain

Dependent Portions section below.

Conzciousness

e | TV

, Compilation ;
Attention Haoles for Consciousness

Other Modules Codelets

GUI Display Error Handling Focus Stubs

Figure 6.2: “Consciousness” Package
(Bogner,Maletic, & Franklin, In Press 1999)

97

Attention

Figure 6.2 dso shows where dtention is locaed. The atention padckage includes the
broadcast manager, chunking manager, codlition manager, playing field, short-term
memory, and spatlight controller. It also contains the definition d a chunk. These ae
domain independent, and eat of these mecdhanisms can be modified to the developer’'s
satisfadion. For example, a new agorithm for forming coalitions can be aeaed based

on the one included in the framework.

Compilation Hooks

Figure 6.3 shows the padkages in the compilation hools padkage. ConAg's compilation
hooks alow the framework to be compiled withou reliance on the other modue's jar
files. They are neaded as ConAg currently has eleven locaions where method cdls are
made to cognitive modues built by other “conscious’ software reseach group
developers. These are:

* The read and write calls to associative memory by the focus.

* The read and write calls to episodic memory by the focus.

Compilation
Haoks
Associative Dirives & : Epizadic) N .
Wemory Behaviors Emotion Memory Learning Metacagnition Perception

Figure 6.3: Compilation Hooks Package
98

e A rea d the behavior network’s compasition working memory by
“consciousness’ codelets working to deted corflicts in the outgoing
announcement.

* The aility to query, from ConAg's graphicd user interface methods from
other cognitive modues dgating the last items they passed to the focus.
Spedficdly, the modues are the asciative memory, behavior network,
emotion, episodic memory, and perception. This g/stem is used to help ensure
that the focus is correctly integrated with the corresponding modules.

» “Conscious’ software agents main method, starting up these ayents, is found

in the ConAg padckage, ill ustrated in figure 6.1. Different classes within this
padkage and instantiated by the main method alow for different startup
scenarios. These dasses make cdls to the other cognitive modues to start
them up.
The compil ation hools padkage amntainsits own padkages, ore for eat of the moduesto
which ConAg makes method cdls. For ead cognitive modue, only the dasses that
ConAg imports are included. For ead included class only the methods ConAg accesses
are included, and these methods are normally empty or contain oy bare functionality.
These compilation hools are intended to be written and maintained by the developer(s) of
ConAg, nat of the other cognitive modues. They can only be written, hovever, after
agreament is readied with ConAg's developer(s) and the other cognitive modue

developers on how the integration takes place.

99

Graphical User Interface

GUI Display
. Consciousness GUI Error
Aftention Codelets Components Handling Focus Stubs

Figure 6.4: Display Package
(Bogner,Maletic, & Franklin, In Press 1999)
ConAg's graphicd user interface written using Java's AWT and Swing frameworks,
serves two roles. First, if desired, it alows different ways for starting up ConAg. For
example, ConAg can be started using all of CMattie’s other cognitive modues or just its
own stubs (described below). Of nate, it also alows the “consciousness’ modue to be
started independently of the other modues. While yet unproven, this may provide a
testing gound to compare how these ajents run “consciously” versus entirely
“unconsciously.” Sewnd, the gui provides a window into the inner workings of the
system. Screenshats of portions of this are seen later in the chapter, as ill ustrations on
how testing information is gathered. Currently, the gui is caered to developers use @&
what is displayed is fine-grained. Figure 6.4ill ustrates the gui padkage structure. Notice
that it isa dose mirror to the “consciousness’ padkage shown in figure 6.2. This allows
developersto easily find its comporents. The diff erences to the “consciousness’ padkage
include acomporents padkage, where beans used throughou the display modue reside.

All of the gui is domain-independent, except in the cae of “consciousness’ codelets as

100

these ae domain dependent. In cases where “consciousness codelets are alded (or
removed) for a new domain, the gui can be eaily modified to view these new codelets.
More importantly, ConAg does nat depend on a gui to run; the pakage could be
completely removed. This provides a means for a user-interface based on a different

toolkit to be provided.

Error Handling

As = in figure 6.2, ConAg provides a common mecdanism for handing errors
throughou the system. To help foster ConAg's independence from the need for the
user-interface the provided GUI contains its own error handing mechanism. It currently
uses identicd tedhniques as the framework’s main ore. This technique dlows the
developer a single point in which to code for handing additional errors while dso

providing consistent debugging methods throughout the framework.

Other Cognitive Module Stubs

ConAg provides its own stubs for the other cognitive modues sich as the behavior
network. These stubs smulate the basic functiondity of the adual modues. For
example, the behavior network stub listens for an appropriate broadcast from
“consciousness’ and sets the focus with a behavior. On startup, all or some of these stubs
can beruninstead of the other cognitive modues. These stubs get their data from text
files, making them ideal for testing.

It isimportant to redize the rational for separating the compil ation hools from the

stubs. The compilation hools are aeded orly after discussonwith aher developers, and
101

they are subjed to the thanges the other developers make in terms of class names and
method cdls. On the flipside, ConAg(s) developers control the murse of the stubs, and
they provide functiondlity even if the other cognitive modues are not realy for
integration. These stubs often do nd share method rames with the red cognitive
modues. In addition, many of “conscious’ software aents modues are domain
spedfic, such as perception. These stubs, however, are domain independent. Within
ConAg s modues sich as the focus, chedks are dore to seeif the atual cognitive modue
or the correspondng ConAg stub hes been started. The gpropriate method cdl s are then

made.

"Conscionshess"
Codelets

Perceptual Syatern
Input Cratpat

Conflict Irformation Conflict
Dietection Carrying Dietection

Figure 6.5: “Consciousnes€odeletPackage
(Bogner,Maletic, & Franklin, In Press 1999)

102

Domain Dependant Portions

ConAg's padcages for “consciousness codelets and the focus are domain-dependent,
with the exception keing the “consciousness’ codelet comporents common to all of these
codelets. As e in figure 6.5, ConAg provides “consciousness codelets to deted
conflicting and nowel information for perceptual inpu and conflict detedion for the
systems output. “Consciousness’ codelets are domain spedfic. Currently, ConAg's
“consciousness’ codelets are tailored for use in CMattie. These provide a basis for
white-box reuse in order to apply these comporentsto new domains. As “consciousness’
codelets are Java beans, often times code danges to the graphicd interface ae not
needed when “consciousnessideletsare applied to new domains.

As previously described, the focus is the location where perceptual information is
creaed for the agents own use. This perceptual information is associated with the
agents memories, and “consciousness codelets bring this new and pdentialy
conflicting information to “consciousness” Perceptual informationis domain spedfic as
are systems' memories abou their taken adions in relation to what has been perceved.
Therefore, the focus, while a1 integral part of “conscious’ software ajents, is
domain-dependent. Even so, ConAg provides common methods for a focus' use acoss

domains.

ConAg’'s Design Patterns

Design petterns, an important asped of software reuse methoddogy and described in

chapter 2, are heavily utilized throughou ConAg. lllustrated here is ConAg's use of
103

several patterns, all described in Design Patterns (Gamma, Helm, Johnson, & VIissdes,
1995. The astrad fadory pattern provides an interfacefor creding families of related
or dependent objeds withou their concrete dasses neealing spedficaion. Abstrad
fadory patterns are used throughou ConAg. Examples are seen in the base codelet and
base perceptual “consciousnesstieletdefinitions.

The singleton pettern ensures that thereis only oneinstanceof a dassandthat it is
accessble globally. ConAg relies onthis pattern for ead of the comporents that start up
its different modues. For example, the atention startup bean provides sngle accssto
the dtention componrents for the other cognitive modues, namely those that accessthe
playing field and the broadcast. “Consciousness’ codelet startup provides accessto al of
the “consciousness codelets. Focus dartup povides a single paint of accessto the
perceived information and the memories associated with it.

Used throughou ConAg is the fagale pattern, which defines a higher-level unified
interface to a subsystem, making these subsystems easier to use. In ConAg, adive
coddetsjoin the playing field. The playing field’s gructure is hidden from them; thereis
smply a @mmonway to exit and join the field. Completed perceptual informationis st
in the focus for use by the etire system; the adual process of perceving is hidden.
Codelets receave the broadcast information; hidden from them is how this information is
collected and arranged for broadcast.

The strategy pattern defines a family of algorithms, encgosulating ead ore ad
making them interchangeable. This all ows algorithms to vary withou diredly affeding

those which utili ze it. Throughou ConAg's attention padkage, grea care has been taken

104

to follow this pattern. For example, a different algorithm for forming coaliti ons can be
used in the aoalition manager; the same halds true for the spatlight controller’s choasing
a “conscious’ codlition. The methods for gathering the information to be broadcast and
the adual manner with which it is broadcast is also interchangeable. The same halds true
for the representation of short-term memory.

The observer pattern defines a one-to-many dependency between ojeds < that
when ore objed changes date, al of its dependencies are natified and automaticdly
upceted. A prime example of this in ConAg occurs with the “conscious’ broadcast,
where one broadcast isreceaved by all codelets in the system. In addition, when the focus
recaves a new percept, one ainourcement of this fad is ent out to al of the system’s
perceptual “consciousnessddeletsand certain emotiocodelets.

The memento pattern provides a way to cgpture and externdize an oljed’s
internal state, withou violating encgpsulation, so that the objed can be restored to this
same state later. “Conscious’ software agents often have aself-preservation medhanism.
For agents with this medanism and written in Java, the base codelet classhas the option
to utili ze Java' s sridizationtechniques. Seriali zation achieves the memento pettern, and
since dl codelets inherit the base codelet comporent, all codelets' states can be catured

and restored. In this future, this may apply to the system’s short-term memory as well.

How Other Cognitive Modules Integrate With ConAg

Currently, seven cognitive modues developed by other conscious Dftware reseach

group members integrate with ConAg. Five of these modues, the behavior network,

105

emotion, leaning, metacognition, and perception, extend the base codelet class They do
this by importing ConAg.BaseCodelet.Codelet. Most developers choose for ther
codelets to access $ort-term memory as well. In this case they import
ConAg.ConsciousnessAttention AttentionStartup and access $iort-term memory, for
example, vidAttentionStartup.shortTermMemory.getMemory().

The behavior network, emotion, and perception modues al i ntegrate with ConAg
to access the focus. To do this, they import ConAg.ConsciousnessFocusPadkage.
FocusStartup. They can then access the focus, for example, via FocusStartupfocus.
setBehaviorRegisters (String[] behavior), FocusStartup focus.setEmotionRegisters
(String[] emotions) FocusStartup.focus.getRegistersCanBeFillext(),

Associative and episodic memories integrate with ConAg. Spedficdly, they
import the MemoryReadReturn classin ConAg.ConsciousnessFocusPadkage. This class
contains a bodean value spedfying whether or nat associative memory converges. It also
contains the returned memory registers which are set if there is convergence Both
asciative and episodic memory return a MemoryRealReturn classwhen areal is made

from the focus to either memory.

ConAg’'s Graphical User Interface Revisited

Currently, two methods are available to get information onwhat is occurring inside the
system: alog file and ConAg's gui display. Below is a small excerpt from the log file
when ConAg is running with its gubs. When ConAg is runnng with the red cognitive

modues, the log file is more difficult to follow as ead modue independently writes to

106

the file. The illustration below takes up after “consciousness’ codelets have picked up
their respedive information from the focus; aso, the reads from associative and episodic

memories have already occurred.

» The spatlight controller has determined that no coalition hes a high enough average

activation for “consciousness.”

A NEW COALITION WAS NOT CHOSEN FOR CONSCIOUSNESS. THRESHOLD FOR
CONSCIOUSNESS: 0.47829682

* The adlition manager has rapidly traversed the playing field, forming coalitions

(twice)

Coalition Manager states playing field's size is: 10
Coalition Manager states playing field's size is: 10

» The spotlight controller once again traverses the coalition manager’s coalitions.

The Spotlight Controller's coalitions:
Coalition:0
Name: SpeakerTopicMessageTypeCarrier
Id: 0.9185863266452637
Act Lvl: 0.7

Name: DateCarrier
Id: 0.3318647383472735
Act Lvl: 0.45

Name: DayCarrier
Id: 0.6290151970713053
Act Lvl: 0.45

Name: EmailAddressCarrier
Id: 0.9806771259346015
Act Lvl: 0.45

Name: PlaceCarrier
Id: 0.4155485895454599
Act Lvl: 0.45

Name: SeminarNameCarrier

Id: 0.3213166329772882
Act Lvl: 0.45

107

Name: SeminarOrganizerCarrier
Id: 0.2814919677465175
Act Lvl: 0.45

Name: SpeakerNameCarrier
Id: 0.044040281456874886
Act Lvl: 0.45

Name: TalkTitleCarrier
Id: 0.5934670356478824
Act Lvl: 0.45

Name: TimeCarrier
Id: 0.4145744269360071
Act Lvl: 0.45

Coalition:1

Name: TalkTitleCarrier
Id: 0.5934670356478824
Act Lvl: 0.45

Coalition:2

Name: EmailAddressCarrier
Id: 0.9806771259346015

Act Lvl: 0.45

* |n this case, while not listed, there are a total of ten coalitions.

* The spatlight controller now computes ead coalition’'s average adivation level. The

first three log entries for this are shown.

Coalition 0 average activation level: 0.475
Threshold for consciousness: 0.43046713
Coalition 1 average activation level: 0.45
Threshold for consciousness: 0.43046713
Coalition 2 average activation level: 0.45
Threshold for consciousness: 0.43046713

* The spotlight controller selects a “conscious” coalition.
The conscious coalition's average activation level: 0.475

THE CONSCIOUS COALITION:
SpeakerTopicMessageTypeCarrier 0.9185863266452637
DateCarrier ~ 0.3318647383472735
DayCarrier 0.6290151970713053
EmailAddressCarrier 0.9806771259346015
PlaceCarrier 0.4155485895454599
SeminarNameCarrier 0.3213166329772882
SeminarOrganizerCarrier 0.2814919677465175
SpeakerNameCarrier 0.044040281456874886
TalkTitleCarrier 0.5934670356478824
TimeCarrier 0.4145744269360071

108

* The broadcast manager receves the “conscious’ coadliti on, and seleds ead codelet’s

key and message.

In Broadcast Manager, information about to be broadcast:
Codelet: SpeakerTopicMessageTypeCarrier 0.9185863266452637
Key: speakerTopicMessageType
Message: SpeakerTopicMessageTypeCarrier
Codelet: DateCarrier 0.3318647383472735
Key: prDate

Message: DateCarrier:8th January '99
Codelet: DayCarrier 0.6290151970713053
Key: prDay

Message: DayCarrier:Friday

Codelet: EmailAddressCarrier 0.9806771259346015
Key: prEmailAddress

Message: EmailAddressCarrier:linki@msci.memphis.edu
Codelet: PlaceCarrier 0.4155485895454599

Key: prPlace

Message: PlaceCarrier:Dunn Hall 351

Codelet: SeminarNameCarrier 0.3213166329772882

Key: prSeminarName

Message: SeminarNameCarrier:Computer Science seminar
Codelet: SeminarOrganizerCarrier 0.2814919677465175
Key: prSeminarOrganizer

Message: SeminarOrganizerCarrier:David Lin

Codelet: SpeakerNameCarrier 0.044040281456874886
Key: prSpeakerName

Message: SpeakerNameCarrier:Sudipkumar P. Karnavat
Codelet: TalkTitleCarrier 0.5934670356478824

Key: prTalkTitle

Message: TalkTitleCarrier:Knowledge Discovery for Time Series

(Master Thesis defense)
Codelet: TimeCarrier 0.4145744269360071
Key: prTime
Message: TimeCarrier:2:00 pm

* The broadcast manager sends the “conscious” informationdodslets.

Broadcast Manager sending broadcast at: 5/2/99 4:44 PM

* ConAg's behavior network and emotion stubs determine a message type was

broadcast. This sgnifies a new perception hes been receved. The aurrent behavior

and emotion are then written to the focus.

ConAg stub detected a message type was just broadcast:
speakerTopicMessageType

ConAg's emotion stub detects a broadcast message type, setting the
Focus.

Focus reports that the current emotions have been set.

109

ConAg stub detected a message type was just broadcast:
speakerTopicMessageType

ConAg's Behavior Network stub detects a broadcast message type, setting
the Focus.

* The focus determines that bath the behavior network and emotion modues have

written to it. The focus now writes to associative memory.

Focus reports the current behavior has been set.
Focus reports it has just written to associative memory.
Focus reports it has just written to case based memory.

* Even while ConAg's stubs had receved the broadcast and performed their adions,
others gill had nd. Here, the broadcast manager has completed sending the
“conscious’ information to al listeners. Left out is the printout of the hashtable

actually broadcast.
Broadcast Manager has completed sending broadcast to all listeners.

* Short-term memory receives the “conscious” contents. Heleagtgableeceived is

printed.
Short term memory received from broadcastManager:
{prPlace=PlaceCarrier:-Dunn Hall 351, prDay=DayCarrier:Friday,
prDate=DateCarrier:8th January '99,
prSeminarName=SeminarNameCarrier:Computer Science seminar,
prSpeakerName=SpeakerNameCarrier:Sudipkumar P. Karnavat,
prTalkTitle=TalkTitleCarrier:Knowledge Discovery for Time Series (Master
Thesis defense), broadcastTime=5/2/99 4:44 PM, prTime=TimeCarrier:2:00

pm, prEmailAddress=EmailAddressCarrier:linki@msci.memphis.edu,
speakerTopicMessageType=SpeakerTopicMessageTypeCarrier,
prSeminarOrganizer=SeminarOrganizerCarrier:David Lin}

* The dunkng manager recaves the codelets, sorts them, and determines if a new

potential chunk is necessary.

Chunking Manager received these codelets:
DateCarrier:DayCarrier:EmailAddressCarrier:PlaceCarrier:SeminarNameCarri
er:SeminarOrganizerCarrier:SpeakerNameCarrier:SpeakerTopicMessageTypeCar
rier:TalkTitleCarrier:TimeCarrier

Chunking Manager reports conscious coalition has not been in

consciousness before, creating new chunk.

110

* The spatlight controller natifies the “conscious’ codelets that they have been

“conscious.” For “consciousness’ codelets, which are dl of the codelets currently in

“consciousness,” this signifies they can leave the playing field.

Spotlight Controller has set the conscious codelets'
canlLeavePlayingField flag to true.

DateCarrier just left the playing field.

DayCarrier just left the playing field.

Coalition Manager states playing field's size is: 8
EmailAddressCarrier just left the playing field.

PlaceCarrier just left the playing field.

SeminarNameCarrier just left the playing field.
SeminarOrganizerCarrier just left the playing field.
SpeakerNameCarrier just left the playing field.
SpeakerTopicMessageTypeCarrier just left the playing field.
TalkTitleCarrier just left the playing field.

TimeCarrier just left the playing field.

* All of the perceptua information has made it to “consciousness” and the focus now

awaits for a nevpercept.

The Focus is now ready to receive a new percept.

ConAg'sgraphicd user interfaceprovides aview into the internal workings of the
system. Figure 6.6 ill ustrates the aurrent startup screen with its menu-bar resembling
today’ s common applications. Figure 6.7 shows ConAg's File menu. If ConAg's display
is garted as part of a runnng “consciousness’ modue, the Start Consciousness Modue
menu item’s choices are disabled. However, if only ConAg's display is garted, it can be

used to start “conscious” software agents in four ways:

111

EE%WEI[:DmE to Confug!

File Attention Consciousness Codelets Focus Unconscious
WHelcome To ConAg!

The Conscious Agent Framework

by Myles Bogher

Conscious Software Research Group

The University of Memphis

Version 1.0
Released April 14, 19%99%

Figure 6.6: ConAg’s Startup Screen

1. “Consciousness’ as well as al the other cognitive modues and their user
interfaces.

2. “Consciousness’ as well as all the other cognitive modues withou their user
interfaces.

3. “Consciousness” witlconAg’s stubs serving as the other cognitive modules.

4. Withou starting ConAg or its gubs. This can be used to start “consciousness’
after al other cognitive modues are running. This can pdentialy be used to
test the agent running with or without “consciousness.”

Different startup ogions can easlly be integrated into the framework based on the

provided ones.

112

[E3 welcome to ConAg! Ed
File | Attention Consciousness Codelets Focus Unconscious

Start Consciousness Module » | with Integrated Cognitive Modules & their GUIs Gtk K
Quit Ctrl+0 With Integrated Cognitive Modules without their GUIs Ctrl+ U
With Stubs Ctrl+ L
With No Integrated Modules or Stubs Cirl+,

Conscious Software Research Group
The University of Memphis

Version 1.0
Released April 14, 1959

Figure 6.7: ConAg’s File Menu

Figure 6.8 shows ConAg's Attention menu. This menu allows for viewing eat
of the portions of the Attention padkage. Currently, throughou ConAg's menus,
seleding a menu item, brings the screen shown in figure 6.9. The top pation d the
screen gives instructions. Pressng the button on the left updates the information
immediately. Entering anumber in secnds at the bottom and pressng return dsplays the
desired information at the seleded interval. Pressng the Reset button stops this interval
display. While displaying the information at intervals, the Update Now button can be
presed at any time. Figure 6.9 shows the codelet’s listening for the “conscious’
broadcast. Listed are the codelets names and unque ids. Figure 6.10 ill ustrates the

framework’s “consciousnesgbdeletanenu. Submenusnd menu items can be easily

113

E"Eﬁ\l-felcume to ConAgl!

Attention | Consciousness Codelets

Focus Unconscious

Broadcast Last Sent =M onAg !
Broadcast Recipients NI + Framework
Chunking Manager Ctrl+0
Coalition Manager Cirl+C
Playing Field Ry dner
Short-Term Memory Crl+w

Spotlight Controller

Rt esearch Group
The University of Memphis

Version 1.0
Released April 14, 1999

Figure 6.8: ConAg’s Attention Menu

added for the aldition d new “consciousness’ codelets. Figure 6.11 shows a portion d
the information seen when looking at a “consciousnesdélet.

Figure 6.12 shows the Focus menu. This menu alows the viewing of the focus
memory and perception registers. Figure 6.13 ill ustrates a perception register output.
Figure 6.14 shows the “Unconscious’” menu. This menu alows the viewing of the
“unconscious” modues developed by the other “conscious’ software reseach group
members. By viewing this information, the last information asciative memory,
behavior network, emotion modue, etc. intended to set to the focus is viewable. This
information can be cmpared to that adual focd contents to determine if these modues

are communicating appropriately.

114

E%%Eunent Broadcast Recipients

15/23/99 7:33 PM.
0. AddToListMessageTypeCarrier 0.8951178000318689
. AnswerhMessageType Carrier 0.26 703030881201013
. ChangeRoomMessageType Carrier 0.331512031 7816673
. ChangeTimeMessage TypeCarrier 0.9350921 289301266
. ChangeTopicMessage Type Carrier 0. 7930209621242 705
. Cop¥ToSelfMessage TypeCarrier 0.46944 7829706951
. Date Carrier 0.143592700148487
. DayCarrier 0.7348556854134072
. DeleteFromListhessage TypeCarrier 0.27655 74467 780619
. EmailAddress Carrier 0.16640001 7244 71598
. EmergencyFlagCarrier 0.07573988031312195
. MultipleMessage Type Carrier 0.329 7235263663877
. NegativeMessageType Carrier 0. 750669986 7126604
. NewSeminarhblessageType Carrier 0.04260351 721317912
. NewWordOmne Carrier 0.41735 704570496346
. NewWordTwoCarrier 0.5195309411979577
. NewWordThree Carrier 0.5246 768414336768
. NewWordFourCarrier 0.6681960863757289 =
| r

(U
(!
1|2
i3
1|4
s
16
1|7

8

éUpdate Nuwg

Figure 6.9: ConAg’s Broadcast Recipients View

Testing Results

In paralld to its continual development, ConAg is being thoroughly tested. As dated
previoudly, at this time afully redized “conscious’ software aent is not available.
Therefore, the testing on ConAg has been fine-grained in nature, making sure the

framework does what it is suppcsed to do. As an example of the tests performed, this

115

sedion presents eight tests performed. All tests had very solid results. Ead test

performed was fo€ConAg’'s use inCMattie.

Test One

This test asked threequestions. First, dothe focus perception registers receve the data
corredly from the perception modue? If so, do al the gpropriate “consciousness
codelets pick up the information? If this occurs, daes al the information get chosen for
“consciousness?”’

To perform this test, ten dfferent messge types were dosen from emall
messages previously sent to the departmental seaetaries. As currently there is nat a
completed perception modue, these messages were placel in ConAg's perception
modue stub file. They were placal in the stub file in such as way as to mimic how
CMattie’'s perception modue shoud idedly perform. ConAg was run with these ten
messages as inpu and then stopped. Upon completion, the log file was analyzed to
ensure dl of the perception registers were fill ed corredly for ead message. Also, it was
chedked to make sure dl of the “consciousness’ codelets which were suppased to pick up
the information dd in fad spring into adion. Finally, it was chedk that the “conscious”
broadcast contained the same information as the initial stub file.

Testing reveded that the perception registers were ale to be set corredly 100%
of thetime. The “consciousness’ codelets picked uptheir information 10®% of the time.
The data broadcast from “consciousness’ matched the initially perceived information

100% of the time.

116

Egﬁ‘w’elcume to ConAg!

File Attention Consciousness Codelets | Focus Unconscious

Input Conflicts k(33900
Input Events ¥ Add To Mailing List
Input Information * | answer Message

Output Conflicts »| Change Room
MY Uy les DU

Change Time
Change Topic
Conscious Software RSN
i NN CEER ATANLY Delete From Mailing List
Multiple Message Types
Negative Message

Version 1)
Hew Seminar

Released Ap:l‘:i 1 Nonsense Message
No Seminar
Question

Speaker Topic

Stop Seminar

System Administrator

Figure 6.10:ConAg’s“ConsciousnessCodeletdMenu

Test Two

This test made sure that in all cases after recaving the perception registers, the focus
performed aread from asociative memory. This test also made sure that in ead of these
cases, the focus performed a read from episodic memory.

To perform these tests, test one's sample of diff erent ten message types was used,
as well as ConAg's asciative and episodic memory stubs. For al ten messages, after
the perception registers recaved a new perception, 1006 of the time areal from

associative memory and episodic memory occurred.
117

E\EﬁDelete From Seminar Mailing List Carrier’s Current Status

Association: PlaceCarrier
Strength: 0.59994
Association: SeminarNameCarrier
Sirength: 0.59994

Association: SeminarOrganizerCarrier
Strength: 0.59994

Association: SpeakerAffiliationCarrier
Strength: 0.50004

Association: SpealkerNameCarrier
Strength: 0.59994

Association: TalkTitleCarrier
Sirength: 0.59994

Association: TimeCarrier

| Strength: 0.59904

3. Activation Level: 0125

4. Codelet is not on the playing field.

5. Codelet has not yet become conscious.

Figure 6.11: “Consciousnes€bdeletView

Test Three

This test asked if al codelets in the system are in fad registered to listen for the
broadcast. To perform this test, test one's inpu was used. At three five minutes
intervals, it was chedked to seeif al codelets runnng in the system were broadcast
listeners. This test was then repeded in its entirety. At ead o the six chedk paints,

100% of thecodeletsalive in the system were listening for the broadcast.

118

E\Eﬁﬂelete From Seminar Mailing List Camier's Current Status

Association: PlaceCarrier
Strength: 0.59994
Association: SeminarNameCarrier
Strength: 0.59994

Association: SeminarOrganizerCarrier
Sirength: 0.50094

Association: SpeakerAffiliationCarrier
Strength: 059994

Association: SpeakerNameCarrier
Strength: 0.59994

Association: TalkTitleCarrier
Sirength: 0.59994

Association: TimeCarrier

| Strength: 0.59904

3. Activation Level: 0.125

4. Codelet is not on the playing field.

1|5. Codelet has not yet become conscious.

Figure 6.12:ConAg’sFocus Menu

Test Four

This test asked if al codelets, when onthe playing field, were grouped into coadliti ons.
Test one’sinpu data was used. For ead inpu message, the system’s subsequent playing
field codelets were logged. These were mmpared to the codelets in the alition
manager’s codlitions. For ead o the inpu messages, 100% of the time the codelets on

the playing field were in fact in the coalition manager’s coalitions. Do note that in

119

E%’,%Eunent Perception Registers

5i23/09 3:12 PM.
. Colloguium on Thurs
. Anthony Quas

.2:30
. room 245

. changeRoomMessage
. quasa@iroy.msci.memphis.edu

0
1
P
3.
4.
3.
a.
2
5

Update Now

Figure 6.13: Current Perception Registers Snapshot
generd, this is nat always the expeded case, espedaly if a working codelet joins and

leaves the playing field while the coalition manager’s thread is asleep.

Test Five

Test five made sure that the adliti on with the highest average adivation level is always

the one dhaosen for “consciousness” This test used test one's inpu data. The list of

120

coaliti ons were viewed. For thefirst ten “conscious’ coaliti ons, this data was analyzed to
chedk if the highest average adivation codlition kecane the “conscious’ one. This

occurred 100% of the time.

Test Six

This test chedked to make sure that the broadcast is always prepared corredly. Question
one's inpu data was used. By analyzing the output log, the “conscious’ coalition was
compared to the broadcast. Chedked was whether or nat al of the “conscious’ codelets
information was picked up by the broadcast manager. For ead codelet’s information, it
was made sure that this data was formatted correctly by the broadcast manager.
The results found that 100% of the time, the “conscious’ codelets were the
codelets broadcast. 100% of the time this broadcast information was formatted corredly

by the broadcast manager.

Test Seven

Question seven asked if short-term memory receved the items from “consciousness’
corredly. If so, it then asked if short-term memory contained a maximum of the last
seven items in “consciousness” This test used question ore's inpu. For eat o the
inpu messages, the data was analyzed to ensure the short-term memory items were
corred. 100% of the time short-term memory corredly receved the “conscious’
codlition's information. 10046 of the time short-term memory had a maximum of seven

items.

121

E"g’,a\l!elcume to ConAgl | x|
File Attention Consciousness Codelets Focus Unconscious |

Welcome To CondAg! Associative Memory Read
Behavior Network

Emotions
Episodic Memory Read

The Conscious Agent Frameworl

by Myles Bognher

Perception

Conscious Software Research Group
The University of Memphis

Version 1.0
Released April 14, 1999

Figure 6.14:ConAg’s“Unconscious” Menu

Test Eight
This test analyzed whether or nat the chunkng manager receved the broadcast corredly
and appropriately prepared the (potential) chunk. The test data was eah o test one's

input messages. The chunking manager performed appropriately 100% of the time.

Conclusions

This chapter describes the framework’s dructure. This framework is designed to be
easily extended for the many “conscious’ software ayent environments. Examples of the
fine-grained testing results, hopefully, ill ustrate to the reader that the framework as a

program does appea to function corredly. The red underlying question, havever, is

122

does ConAg implement Baas global workspace theory’s consciousness This is a

subject of the final chapter.

123

Chapter 7

Computational “Consciousness”

Conclusions

This work gives overviews of software agents, cognitive models, and software reuse.
Global workspacetheory is detailed. VMattie, a predecessor to “conscious’ software
agents, is described. “Conscious’ software agents architedural styles and genera
architedure ae then dscussed. This includes an illustration d CMattie, the first
“conscious’ software agent, and a description d IDA, the “conscious’ software reseach
groups proof of concept projed. “Conscious’ software aents “consciousness
medhanism is then detalled. ConAg, the “Conscious’ Agent Framework, a software
framework for implementing these agents’ “consciousness,” is described.

ConAg serves as the badbore for “conscious’ software agents, providing for
these gents base codelet class “consciousness codelets, a focus where incoming
perception is associated with remembered information, an attention mechanism which
includes dhort-term memory and chunking for leaning, and corflict resolution. It is the
first framework to implement pandemonium theory in its redization d global workspace
theory’s “consciousness.”

The reseach leading to this dissertation concentrates on hav to implement global

workspacetheory, with a focus on the theory’s consciousness This work is necessary as

124

global workspacetheory describes when and why consciousness ocaurs. It leares out
how the ansciousness mechanism adually works, such as a @aliti on manager groupng
processes for consciousness This reseach hopes to shed light on these medhanisms and,
therefore, to further extrapolate global workspace theory. Therefore, ConAg, as a
redization d globa workspace theory’s consciousness na only extends global
workspace theory conceptualy, bu aso provides a grounds for the theory’s further
development and testing. Described below, eat design dedsion made in ConAg's
implementation can be onsidered a hypothesis abou the @rrespondng human
mechanism.

This reseach contributes to artificial intelligence cognitive science, and
philosophy. For artificial intelligence this reseach creaes an agent architedure that
intends to be more flexible for agent deasion making. It does this by producing
human-like thinking. While this architedure needs to be proven in more complex
domains, it lends itself to agents that are ale to find intricate solutions to problems, lean
in multiple ways, and perform deliberation and synthesis. This architedure fosters the
credion d complex autonamous agents. It is a new tedindogy that shoud allow
software agents to replacedeasion-making human information agents. For example, ore
“conscious’ software aent could be intended to replace ahuman help-desk customer
support representative.

For cognitive science and phlosophy, an expandable @gnitive achitedure has
been developed aroundthe “consciousness’ modue by this reseach group. The resulting

comprehensive model all ows for cognitionto be analyzed as awhale, and also for eat of

125

the agnitive medhanisms to be studied individualy. Currently, few comprehensive
cognitive models exist. In addition, this reseach further helps in studying what macdines
can adualy experience “Conscious’ software agents have the right mecdhanisms for
“consciousness” It is currently unclea on hav to determine if these agents are acdually
experiencing.

Conclusions can be drawn from this reseach. The functions of consciousnessas
spedfied by globa workspacetheory can be modeled computationally. A comprehensive
cognitive achitedure can be integrated around this mode of consciousness This
comprehensive agnitive achitedure can be implemented computationally. Many new
artificia intelli gence medchanisms can be used to crede such a mmprehensive gnitive
architedure. Testable hypotheses concerning human cognition can result from such a

comprehensive model.

Are Baars’ Nine Functions of Consciousness Implemented In
ConAg?

Chapter 3 discusses Baas' nine functions of consciousness To some extent, ead of
these functions are implemented by ConAg. This is illustrated below through CMattie
and IDA.

1. Definition andcontext-setting. This function accurs when ore focuses on a
distant treein aforest. While multiple stimuli are present, a wherent context
isableto beretrieved. In “conscious’ software agents, the aurrently exeauting
behavior corresponds to global workspace theory’s goa context. In these

126

agents, the adion seledion mecdhanism ultimately deddes the next behavior.
This dedsionis gredly influenced by the contents of “consciousness” More
spedficdly, “consciousness codelets bring the newly percaved information
to “consciousness” After the broadcast occurs, the behavior network may
instantiate a new behavior stream in respornse to “consciousness ” contents.
“Consciousness’ ” influence is evident if this behavior stream executes.
Global workspacetheory aso describes perceptual and cultural contexts.
In “conscious’ software ajents, the perception modue's understanding
portion sets the perceptual context. This can be influenced by
“consciousness” “ Consciousness' shines on the perception modue' s codelets.
At times, the “conscious’ broadcast reauits additional perceptual codelets that
help to determine the perceptual context. In CMattie, “consciousness’ does
not influence the cultural context. This has yet to be explored in IDA.
. Adaptation andlearning. This function is evident when extremely difficult
material is poncered for a grea ded of time while dtempting to lean it.
ConAg's implementation d “consciousness’ provides for severa forms of
leaning. Codelets associations are establi shed and strengthened when onthe
playing field together, and even more so when in “consciousness’ together.
The dwunking manager broadcasts new chunks, paential items to be leaned
by the behavioral and perceptua leaning medianisms. After the “conscious’

broadcast, the aurrent behavior and emotions are written aong with the

127

current perception registers into associative and episodic memory, used by the
systems’ learning mechanism.

Editing, flaggng, and @buggng. A tennis player's conscious concern owver
the technicd detail s of his srve dter several doule faults is an example of
debugging. Both in the behavior network’s compasition working memory and
in the focus, “consciousness codelets flag conflicts for debugging. Upon
finding a onflict, these codelets work to hring the information to
“consciousness” Once this information is broadcast, the different cognitive
modues such as leaning and metacognition can respond, adjusting their
parameters acordingly. IDA’s deliberation processinvaves the aedion d
scenarios. It is currently planned that “conscious’ dedsions are necessary for
deciding the fitness of scenarios and for editing them.

Reauiting and control. An example of this function's use occurs when
attempting to answer a question. While one is conscious of a question, the
candidate answers to that question are reauited urconsciously and lrought to
consciousness By viewing the information kroadcast from “consciousness”
other codelets spring into adion if they understand the message and it is
applicable. This is sen throughou conscious ftware aents. New
behaviors are begun besed onthe cntents of “consciousness” metaagnition
begins new system evaluations, and learning takes place.

Prioritizing and a&cesscontrol. This occurs when leaning a foreign

language. One may wish to prioriti ze words which are difficult to pronource,

128

7.

giving them greaer accessto consciousness When ConAg’'s “consciousness’
medchanism broadcasts, other codelets in the system respond,increasing their
adivation level. This higher adivation level gives them greder access to
“consciousness.”

ConAg's “consciousness’ medhanism causes codelets to lean new
asciations. Over time, these aciations may beawme strong enough for a
codelet to be place into a adlition which frequently comes to
“consciousness” Therefore, this new codelet now has greder access to
“consciousness” It is planned that IDA’s “conscious’ deliberation prioriti zes
scenarios before one is presented to a sailor.

Dedsionmaking a exeative This function is useful in controlli ng thought
and adion, such as “Shoud | go to the mall or to the park?’ As described in
number 1, “consciousness is a main bu indired reason for behaviors,
correspondng to global workspacetheory’s goal contexts, to be dhosen. It is
planned that “conscious’ dedasions are made in IDA’s deliberation. Also, in
both CMattie and IDA, metacognition performs tuning based in part on
“consciousness’ ” contents.

Anaogy-forming. This function accurs when people make analogies to
compare anowvel experienceto knavn ores, as e with “Hate is the wrong
road to travel.” “ Consciousness' plays an indired role in bah the behaviord
and perceptua leaning medianisms' analogy forming. The focus perception

registers contain slots for novel words, and there ae message types for both

129

norsense messages and regative messages in resporse to CMattie’'s adions.
After this perceptual information reades “consciousness” behavioral and
perceptual leaning creae new concepts, along with their underlying codelets,
based on existing concepts arudlelets.
8. & 9. Metacogntive or self-monitoring, autoprogramming and
self-maintenance The metacognitive function is evident in humans ability to
expresstheir current fedings, and self-maintenance is e in the desire to kee
the body hedthy. Both in the compositional working memory and in the focus,
“consciousness’ codelets work to deted interna conflicts. In addition, besed in
part on the mntents of “consciousness” metacognition is able to monitor the
system. When applicable, metacognition can then perform self-maintenance by
adjusting the system’s parameters. A planned self-maintenance is to regularly

backup the agents’ information to disk.

Hypotheses

Many design and implementation dedsions are made in ConAg in ader to crede
computational “consciousness” Ead of these dedsions gives rise to a hypothesis abou
human cognition. Given a particular dedsion abou a portion d the agents mecdhanisms,
the hypothesis asserts that human cognition works in the same way (Franklin, 1997.
Hopefully, these hypotheses will be confirmed or laid to rest by researchers in cognitive
science and reuroscience. Twenty such hypotheses are listed below. As a reminder to

readers, ConAg's codelets are intended to implement Baas proceses. As this

130

discusson is cognitive in reture, the term processis used ower codelet. Eadh of these

hypotheses is generated by repladng “codelet” with “process’ in a true statement abou

codeletsn “conscious” software agents.

1. There are common properties which all processes share. Five main ones are:

2.

4.

A.

Eadh processreceaves the “conscious’ broadcast as postulated by global
workspace theory.

Eadch process caries adivation level. This adivation level alows
processes to compete with one another for access to “consciousness.”
Eadh processcaries asociations with ather processes. These asociations

are used to determine a process’ coalitions.

. Each process caries information pertinent to its current situation. If a

process becomes conscious, this information is broadcast to all processes.
Eadch process caries identifying information. If a process bemmes

conscious, this information is broadcast to all processes.

All proceses such as the walition manager and those working to bring

corflicting information to consciousness have periods in which they are not

active.

Perceived sensory data is redized by a well-defined structure in a focd

locaion. For thisdicusson, this gructure will be referred to as the perception

registers. These are located in the focus.

This focus contains a flag, letting the perception modue know that a new

perception can now be placed in the perception registers.

131

. A new percept can be placal in the focus only after the former percept has
become conscious.

. Uponrecept of a new perception, pocesses work to bring this information to
consciousness.

. While number 6 is occurring, reads from a long-term asociative memory and
from an intermediate-term episodic memory are performed. Processes work to
bring this information to consciousness.

. There is a single playing field where adive processes are accesble by
consciousness (Recdl that, in the @mnscious oftware agent architedure, the
playing field contains al of the ajents adive codelets). In humans, this
playing field is most likely distributed broadly within the nervous g/stem.
Consciousness can pdentialy gather any adive process identifying
information and its information pertinent to the current situation.

. The nervous g/stem has a @aliti on manager which groups the playing field's

processes together.

10. This coalition manager makes its dedsions based onthe level of association

between processes.

11 The wadlition manager creaes and updites asociations for the processes on

the playing field, each by a relatively small amount.

12. A spatlight controller chooses which coadlition is conscious, based on the

coalition’s average activation level.

132

13. Short-term memory holds only previously conscious items, and stores a
maximum of some seven items.

14. A chunking manager glues processes together in order to buld new potential
concepts. These dhunks are based onassociations between the processes and
on which processes have previously been conscious simultaneously.

15. When a new chunk is redized, it comes to consciousness via the diunking
manager. This chunkis broadcast to the entire system just as the aadlitions
handled by the spotlight controller are.

16. A broadcast manager picks up the information from the conscious processes,
prepares it for broadcast, and sends it out to all processes in the system.

17. An adion seledion mecdhanism, after recept of a new percept, writes the
current behavior and its activation level back to the focus.

18 The eamotion modue, after recapt of a new percept, writes the arrent
emotions back to the focus.

19. Uponrecapt of the behavior and the enotions, the focus records both of them
aong with the perception registers to the long-term associative and to the
intermediate-term episodic memories.

20. Spedalized processes chedk for conflicts as the system prepares an ougoing
communicaion. If conflicts are found, these processes work to bring this

information to consciousness.

133

The Future

Thiswork presents aredization d global workspacetheory’s “consciousness” It isonly
a dtart. Further integration followed by testing is necessary. Refinement of the
techniques will no doulb occur. Even so, this reseach has culminated in a solid
foundition for “consciousness’ in software aggents. ConAg is used in CMattie and in
IDA, aprojed which if succesul, will have amaor impad on the United States' Naval
personrel assgnment. Whilethisis svera yeas off, alrealy this projed has proven very
enjoyable and served as a significant leaning experience for this author. Hopefully, this

will continue for me and future participants.

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

Aho, Alfred V. & Ulman, Jeffrey D. (1992). Foundations of Computer Science. New
York: Computer Science Press.

Anderson, John R. (1991). The place of cognitive architectures in a rational analysis.
VanLehn,Kurt (Ed.). Architectures for Intelligencéillsdale,NJ: Lawrence
ErlbaumAssociates, 1-24.

Baars,Bernard. (1988). A cognitive theory of consciousness. New York:
Cambridge University Press.

Baars,Bernard. (1997). In the theater of consciousness. New York: Oxford
University Press.

BarsalouLawrence W. (1999). Perceptual symbol systems. Behavioral and Brain
Sciences. New York: Cambridge University Press.

Basili, V., Briand,L., & Melo, W. (1996). How reuse influences productivity in
object-oriented systems. Communications of the ACM, 39 (10), 104-116.

Biggerstaff,T. & Richter, C. (1987). Reusability framework, assessment, and
directions. IEEE Software, 4 (2), 41-49.

Bogner, Myles. (1998). Creating a “conscious” agent. Memphis: Master’s thesis,

The University of Memphis.

136

Bogner, MylesMaletic, Jonathan, & Franklin, Stan. (1999). Building “consciousness”
into software. Department of Mathematical Sciences Technical Report
CS-99-02. The University of Memphis.

Bogner, MylesMaletic, Jonathan, & Franklin, Stan (In Press 1999hnAg: a reusable
framework for developing “conscious” software agents. The International Journal
on Artificial Intelligence Tools. River Edge, NJ: World Scientific Publishing
Company.

Bogner, MylesRamamurthylUma, & Franklin, Stan. (In Press 1999). “Consciousness”
and conceptual learning in a socially situated agbPatitenhahnkKerstin
(Ed.). Human Cognition and Social Agent Technology. Amsterdam: John
BenjaminsPublishing Company.

BonabeauEric, Henaux Florian,Guérin,Sylvain, Snyers Dominique Kuntz,

Pascale& TheraulazGuy. (1998). Routing in telecommunications networks
with “smart” ant-like agents. Santa Fe Institute Publications & Intelligent
Agents for Telecommunications Applications ‘98.

Boone,Gary. (1998). Concept featuresHe:Agent,an intelligent email agent.
Proceedings of the Second International Conference on Autonomous Agents.
New York: ACM Press, 141-148.

Cline, Marshall P. (1996). The pros and cons of adopting and applying design

patterns in the real world. Communications of the ACM, 39 (10), 47-49.

137

Crosbie Mark & Spafford,Gene (1995). Proceedings of the 18th National
Information Systems Security Conferené&rdueUniversity Technical
Report 95-008.

Eckel,Bruce. (1998). Thinking in Java. Upper Saddle River, Rt&nticeHall Inc.

Etzkorn,LethaH. & Davis,Carl G. (1997). Automatically identifying reusa®©
legacy code. IEEE Computer, 30 (10), 66-71.

Foundation for Intelligent Physical Agents. (1996-Presdritp://www.fipa.org
Retrieved April 1, 1999.

FrakesWilliam B. & Fox, Christopher, J. (1995). Sixteen questions about software
reuse. Communications of the ACM, 38 (6), 75-87.

Franklin, Stan. (1995). Artificial Minds. Cambridge, MA: The MIT Press.

Franklin, Stan. (1997). Autonomous agents as embadiedybernetics and
Systems, 28 (6), 499-517.

Franklin, Stan. (Submitted). Conscious software: a computational view of mind.

Franklin, Stan ancraesserArt. (1997). Is it an agent, or just a program?: A
taxonomy for autonomous agents. Intelligent Agents Ill. Befipringer-
Verlag,21-35.

Franklin, StanKelemen Arpad,andMcCauley,Lee. (1998). IDA: a cognitive agent
architecture. Proceedings of the IEEE Conference on Systems, Man and
Cybernetics, 2646-2651.

Gammagrich, Helm, Richard, Johnson, Ralph\dissides,John. (1995). Design

Patterns. Reading, MAAddison-Wesley.
138

GraesserArthur, Franklin, Stan, &/iemer-HastingsPeter. (1998). Simulating
smooth tutorial dialog with pedagogical value. Proceedings of the American
Association for Artificial Intelligence Menlo Park, CA: AAAI Press, 163-

167.

GraesserA.C., & PersonN.K. (1994). Question asking during tutoring. American
Educational Research Journal, 31, 104-137.

GraesserA.C., PersonN.K., & Magliano,J.P.(1995). Collaborative dialogue
patterns in naturalistic one-on-one tutoring. Applied Cognitive Psychology, 9,
359-387.

Hacker, Douglas, Bogner, Mylegetman,Holly, & Klettke, Bianca. (1998). The
curriculum script. Curriculum Script Subgroup Progress Report, Spring 1998.
The University of Memphis,
http://www.psyc.memphis.edu/trg/cur_script/Summary_4-1-1998.Retlieved
April 1, 1999.

Haykin, Simon. (1994). Neural Networks. Upper Saddle River, Rdentice-Hall.

Hofstadter Douglas & Mitchell Melanie. (1994). The copycat project: A model of
mental fluidity and analogy-makingdolyoak,K. & BardenJ. (Eds.).
Advances IrConnectioniseand Neural Computation Theory, Rorwood,NJ:
Ablex.

Holland, J. H. (1986). A mathematical framework for studying learning in classifier
systems. Farmer, D., et al. (Eds.). Evolution, games and learning: Models

for adaptionin machine and nature. Amsterdam: North-Holland.

139

Jackson, John. (1987). Idea for a mi®’IGGART Newsletter, 101, 23-26.

Johnson, Ralph. (1997). Frameworks = (components + patterns). Communications of
the ACM, 40 (10), 39-42.

Just,M.A., & Carpenter, P.A. (1987). The Psychology of Reading and Language
Comprehension. BostorAllyn and Bacon.

Just,Marcel Adam, CarpenteRatriciaA., & Hemphill, DaroldD. (1996).
Constraints on processing capacity: architecturahptementational?Steier,
David & Mitchell, Tom (Ed.). Mind Matters: A Tribute to Allen Newell.
Mahwah,NJ: LawrencérlbaumAssociates, 141-178.

KanervaPentti. (1988). Sparse distributed memory. Cambridge, MA: The MIT
Press.

Kaspersenponna. (1994). For reuse, process and product both count. IEEE
Software 11 (5), 12.

Kernighan,Brian W. & Ritchie,DennisM. (1988). The C Programming Language,
Second Edition.EnglewoodCliffs, NJ: PrenticeHall.

Kolodner,Janet. (1993). Case-based reasoning. MdfgafmannPublishers.

Kozierok,Robyn& Maes,Pattie. (1993). A learning interface agent for scheduling
meetings. Proceedings of the 1993 International Workshop on Intelligent User
Interfaces. Orlando, FL, 81-88.

Krueger,Charles. (1992). Software reuse. ACM Computing Surveys, 24 (2), 131-

183.

140

Laird, John E. &RosenbloomPaul S. (1996). The evolution of the soar cognitive
architecture.Steier,David & Mitchell, Tom (Ed.). Mind Matters: A Tribute
to Allen Newell. Mahwah,NJ: LawrencérlbaumAssociates, 1-50.

Lashkari, Yezdi, Metral, Max, & Mases, Pattie. (1994). Collaborative interface gents.

Proceedings cAAAI ‘94 ConferenceMenlo Park, CA: AAAI Press.

Maes,Pattie. (1989). How to do the right thing. Connection Science Journal, 1 (3).

McArthur, D., StaszC., & ZmuidzinasM. (1990). Tutoring techniques in algebra.
Cognition and Instruction, 7, 197-244.

MaturanaH. R. (1975). The organization of the living: A theory of the living
organization. International Journal of Man-Machine Studies, 7, 313-32.

MaturanaH. R. & Varela,F. (1980).Autopoiesisand cognition: The realization of
the living. Dordrecht,NetherlandsReidel.

McCauley,Thomas L. & Franklin, Stan. (1998). An architecturesimtion. AAAI
Fall Symposium “Emotional and Intelligent: The Tangled Knot of
Cognition.”

Mellor, Stephen & Johnson, Ralph. (1997). Why explore object methods, patterns,
and architectures. IEEE Software, 14 (1), 27-30.

Menczer Filippo, Belew, Richard K., and Wolframilluhn. (1995). Artificial Life
Applied To Adaptive Information AgentsAAAI Spring Symposium Series:
Information gathering from heterogeneous, distributed environments.

Monroe,Robert T. Kompanek Andrew,Melton, Ralph, &Garlan,David. (1997).

Architectural styles, design patterns, and objects. IEEE Software, 14 (1), 43-52.
141

Prieto-DiasRubén,& Freeman, Peter. (1987). Classifying software for reusability.
IEEE Software, 4 (1), 6-16.

PutnamR. T. (1987). Structuring and adjusting content for students: A study of live
and simulated tutoring of addition. American Educational Research Journal,
24, 13-48.

RamamurthylUma, Bogner, Myles, & Franklin, Stan. (1998). “Conscious” learning
in an adaptive software agent. Proceedings of The Second Asia Pacific
Conference on Simulated Evolution and Learning (SEAL 98). Canberra,
Australia.

Reticular Systems, Inc. (1999). Agent construction tools,
http://lwww.agentbuilder.com/AgentTools/index.htiRetrieved April 1, 1999.

RosenbloomPaul S., Newell, Allen, &aird, John E. (1991). Toward the
knowledge level in Soar: the role of the architecture in the use of knowledge.
VanLehn,Kurt (Ed.). Architectures for Intelligencéillsdale,NJ: Lawrence
ErlbaumAssociates, 75-111.

Russel Stuart& Norvig, Peter. (1995). Artificial Intelligence: A Modern Approach.
Upper Saddle River, NPrentice-HallInc.

Selfridge,O. G. (1959). Pandemonium: a paradigm for learning. Proceedings of the
Symposium oMechanisatiorof Thought Process. National Physics

Laboratory.

142

Software Agents Mailing List. (1994-Present). Baltimore: Laboratory for Advanced
Information Technology, The University of Maryland Baltimore County,
http://www.csee.umbc.edu/agentslidRetrieved April 1, 1999.

Song,Hongjun. (1998). Control structures for autonomous agents. Memphis:
Doctoral dissertation, The University of Memphis.

SycaraKatia, & Zeng,D. (1994).Visitor-hoster: Towards an intelligent electronic
secretary.CIKM94 Workshop on Intelligent Information Agents.
http://lwww.cs.cmu.edu/afs/cs/user/katia/www/visit-host.hiettrieved April 1,
1999.

Tambe Milind, Johnson, WLewis, JonesRandolphM., Koss,Frank,Laird, John E.,
RosenbloompPaul S., &SchwambKarl. (1995) Intelligent agents for
interactive simulation environments. Al Magazine, 16 (1), 15-39.

Varela,F. J.,ThompsonE., & Rosch,E. (1991). The Embodied Mind. Cambridge,
MA: MIT Press.

Wurman,PR,Wellman,MP, & Walsh,WE. (1998). The Michigan Internet
AuctionBot: A configurable auction server for human and software agents.
Proceedings of the Second International Conference on Autonomous Agents.
New York: Association of Computing Machinery, 301-308

Zhang,ZhaohuaFranklin, Stan, 8DasguptaPipankar. (1998). Metacognitionin

software agents using classifier systems. ProceedinysAif 98, 82-88.

143

Zhang,ZhaohuaFranklin, StanQlde,Brent,Wan,Yun, & GraesserArthur. (1998).
Natural language sensing for autonomous agents. Proceedings of the IEEE

Joint Symposia on Intelligence and SystemRsckville, Maryland, 374-81.

144

VITA

Myles Brandon Bogrer was born in New York City on April 14, 1974. His
schoding rior to high schod wasin Austin, TX. He atended The Westminster Schods
in Atlanta, GA for high schod, where he graduated Cum Laude in May, 1992. He
entered Rhodes College in Memphis, TN the following August. He graduated Cum
Laude from Rhodes in May, 1996with a Badhelor of Sciencein Computer Science and a
minor in Business Administration.

In August, 1996 Myles entered The University of Memphis, Memphis, TN as a
doctorate student in Computer Science He was a teading assstant for Computer
Literacy his first yea. His mnd yea, Myles was a reseach asgstant working ona
National Science Foundition gant to develop an intelligent tutoring system. Myles
receved his M.S. in May, 1998. At present Myles is at the University of Memphis,
working ona Naval grant to develop an Intelli gent Distribution Agent. He is a member
of the University of Memphis Ingtitute for Intelligent Systems and the “Conscious”

Software Research Group.

145

