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New methods for quantifying macroevolutionary
patterns and processes

John Alroy

Abstract.—This paper documents a series of methodological innovations that are relevant to mac-
roevolutionary studies. The new methods are applied to updated faunal and body mass data sets
for North American fossil mammals, documenting several key trends across the late Cretaceous
and Cenozoic. The methods are (1) A maximum likelihood formulation of appearance event or-
dination. The reformulated criterion involves generating a maximally likely hypothesized relative
ordering of first and last appearances (i.e., an age range chart). The criterion takes faunal occur-
rences, stratigraphic relationships, and the sampling probability of individual genera and species
into account. (2) A nonparametric temporal interpolation method called ‘‘shrink-wrapping’’ that
makes it possible to employ the greatest possible number of tie points without violating monoto-
nicity or allowing abrupt changes in slopes. The new calibration method is used in computing pro-
visional definitions of boundaries among North American land mammal ages. (3) Additional meth-
ods for randomized subsampling of faunal lists, one weighting the number of lists that have been
drawn by the sum of the square of the number of occurrences in each list, and one further modi-
fying this approach to account for long-term changes in average local species richness. (4) Foote’s
new equations for instantaneous speciation and extinction rates. The equations are rederived and
used to generate time series, confirm that logistic dynamics result from the diversity dependence
of speciation but not extinction, and define the median duration of species (i.e., 2.6 m.y. for Eocene–
Pleistocene mammals). (5) A method employing the G likelihood ratio statistic that is used to quan-
tify the volatility of changes in the relative proportion of species falling in each of several major
taxonomic groups. (6) Univariate measures of body mass distributions based on ordinary moment
statistics (mean, standard deviation, skewness, kurtosis). These measures are favored over the
method of cenogram analysis. Data are presented showing that even diverse individual fossil col-
lections merely yield a noisy version of the same pattern seen in the overall continental data set.
Peaks in speciation rates, extinction rates, proportional volatility, and shifts in body mass distri-
butions occur at different times, suggesting that environmental perturbations do not have simple
effects on the biota.
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Introduction

The study of large-scale patterns in the evo-
lution of biodiversity has been the domain of
paleontology for two centuries. Over the past
three decades, however, this research pro-
gram has expanded and strengthened dra-
matically with the introduction of quantitative
methodologies. For example, well-established
quantitative topics such as linear equilibrial
models of taxonomic diversity dynamics (Sep-
koski 1978), secular trends in turnover rates
(Raup and Sepkoski 1982, 1984), nonlinear dy-
namics (Carr and Kitchell 1980), and scale-de-
pendence of diversity patterns (Sepkoski
1988) all continue to attract attention.

However, basic issues concerning the prep-
aration of the data used in these studies still
remain. This paper, a companion to Alroy et

al. 2000, builds on earlier ones (Alroy 1996,
1998d) in highlighting two major methodo-
logical themes. First, defining the temporal
ranges of fossil taxa—a necessary prerequisite
to any paleobiological analysis—is a serious,
difficult problem of quantitative inference,
and not just a matter of tradition and expert
opinion. Despite steady progress in this area,
and despite the growing use of maximum
likelihood areas in cognate subdisciplines
such as phylogenetic theory (Felsenstein
1981), this paper is the first to introduce a
proper maximum likelihood method of infer-
ring global taxonomic age ranges from faunal
and stratigraphic data. Furthermore, it intro-
duces a new, nonparametric method for cali-
brating age ranges to numerical time, one that
is intended to satisfy workers who wish to see
calibrations employ as much data as possible.
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Second, although paleobiologists have long
seen simple summations of age ranges as di-
rect depictions of historically meaningful di-
versity patterns, these raw data are better seen
as nonrandom statistical subsamples that
might or might not carry a reliable signal
(Raup 1976). Thus, in order to make them
meaningful representations of historical
trends, we must correct them somehow to ren-
der the sampling less idiosyncratic. Much
work on this topic remains to be done. This
paper discusses two new variations on a
method of randomly drawing sets of fossil lo-
cality-based taxonomic lists within temporal
intervals (Alroy 1996). The new algorithms are
intended to deal with two problems: variation
among localities in the number of individual
fossils they represent, and variation through
time in species richness at the locality level
(i.e., alpha diversity).

Three other issues not directly related to the
estimation of diversity per se also are ad-
dressed. First, computing taxonomic turnover
rates turns out to be a difficult problem, with
many diffferent indices having been proposed
over the years (Foote 2000). Here I advocate
the new equations of Foote (1999), explaining
how these equations can be derived from com-
mon-sense assumptions. The new equations
are favored not just because they avoid com-
putational problems such as the existence of
arbitrary upper bounds, but because they are
the best possible estimates of instantaneous
turnover rates—the true focus of interest in
the study of diversity dynamics.

Second, patterns of replacement among ma-
jor taxonomic groups are a long-standing top-
ic of interest. To date, paleobiologists have
mostly taken a somewhat typological ap-
proach to this problem, using quantiative
methods to categorize groups into still larger
categories such as ‘‘evolutionary faunas’’
(Flessa and Imbrie 1973; Sepkoski 1981). How-
ever, taxonomic replacement is really a matter
of dynamics, not categorization, as recognized
by Sepkoski (1978). Thus, on the one hand we
might ask whether diversification patterns in
sets of individual groups or evolutionary fau-
nas can be modeled with dynamic equations
(Sepkoski 1984; Miller and Sepkoski 1988). On
the other, we might ask whether the overall

tempo of taxonomic replacement—not just
taxonomic turnover—is steady through time,
or perhaps instead spurred by environmental
or intrinsic perturbations. Remarkably, this
simple question of quantification has not been
addressed in the literature. Here I define two
simple statistics that summarize the tempo of
replacement in different time intervals, show-
ing how these indices can be applied to arbi-
trarily large numbers of taxonomic groups.

Finally, perhaps the most notable develop-
ment in paleobiology over the past decade has
been the explosion of interest in quantitatively
defined morphospaces (Raup 1966; Foote
1991). Morphospaces describing marine inver-
tebrates have not always made use of paleoe-
cologically significant measurements, but this
is a common approach in the literature on fos-
sil mammals (Van Valkenburgh 1985, 1988;
Janis and Wilhem 1993; Hunter and Jernvall
1995; Jernvall et al. 1996). This paper grapples
with a relatively minor debate in mammalian
paleoecology concerning the study of body
mass distributions. Although mostly confined
to that body of literature, the discussion is im-
portant because the resulting statistical time
series represents not just abstract morpho-
metric statistics, but evolving community
properties of real paleoecological interest.
Furthermore, body mass distributions are one
of just a few key variables studied by macroe-
cologists (Brown 1995). Thus, more intense fo-
cus on variables like this one will foster syn-
ergy between macroecology and macroevo-
lution.

Raw Data

The methods described here all are dem-
onstrated using mammalian fossil data com-
piled from a set of 2828 publications. Most of
the analyses hinge on the latest version of the
North American Mammalian Paleofaunal
Database (http://www.nceas.ucsb.edu/;
alroy/nampfd.html). Currently, the data set
includes 4978 faunal lists that total 30,951 tax-
onomic occurrences and include 1241 differ-
ent genera and 3243 different species. Because
1089 of the 4484 taxa are singletons (i.e., are
found only in one fossil collection) and 315
other taxa continue into the latest Pleistocene,
6475 first and last appearance events of genera
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and species need to be arranged into a single
best sequence. The ordination analysis of the
next section is based on 217,673 demonstrated
temporal overlaps of pairs of taxa (conjunc-
tions [Alroy 1992]) and 289,141 additional
first-appearance-before-last-appearance (F/
L) statements (Alroy 1994).

The paper’s next section deals with cali-
brating the event sequence to numerical time.
This analysis involves a set of 186 geochro-
nological age estimates for 434 fossil assem-
blages (9% of the total), many of which are
tied to the same estimate because they are
stratigraphically and geographically proxi-
mate (supplementary material, Table 1 avail-
able at http://www.psjournals.org). Two K-
Ar estimates pertain to assemblages with no
taxa determinate at the genus or species level;
four Ur series estimates and one fission track
estimate include only latest Pleistocene and
Recent taxa; and two 40Ar/39Ar estimates,
three paleomagnetic estimates, and one Ur se-
ries estimate are for small assemblages that
are fully duplicated by other assemblages tied
to different age estimates. These 13 dates are
discarded because they provide no unique in-
formation on the numerical age of events prior
to the very end of the sequence. Additionally,
in contrast to earlier analyses the set of cali-
bration points is restricted to the remaining 95
high-precision estimates (64 40Ar/39Ar, four
Ur series, and 27 paleomagnetic). The addi-
tional, excluded estimates are based on low-
precision methods (63 K-Ar, 11 fission-track,
and four Sr isotope). The usable data points
are augmented by a 0-Ma tie point at the end
of the sequence. The use of high-precision age
estimates makes a small but consistent differ-
ence in terms of improving the variance ex-
plained by the calibration.

The section on body mass distributions re-
lies upon a set of 23,125 published lower first-
molar measurements classed into 3398 popu-
lation samples of 1969 species. The measure-
ments are transformed into mass estimates us-
ing standard equations for each major
mammalian order (Alroy 1998b). The use of
such measurements in this context is common
in the paleoecological literature because (1)
nearly all mammals with teeth do have lower
first molars (e.g., carnivoran carnassials), (2)

population-level variability in lower first-mo-
lar measurements is small (Gingerich 1974),
and (3) published regression equations are
easily available and relatively robust (e.g., Da-
muth and MacFadden 1990). The current data
set includes 51% more measurements and 28%
more species than the one used by Alroy
(1998b).

Maximum Likelihood Appearance Event
Ordination

Basic Concepts. The new method described
here is an extension of appearance event or-
dination (AEO) (Alroy 1992, 1994, 1996,
1998a,c,d; Wing et al. 1995), an algorithm that
infers age-ranges by quantitatively analyzing
locality-specific faunal lists. AEO avoids the
traditional system of North American land
mammal ages, a series of qualitatively defined
temporal bins of uneven duration that are
loosely tied to first appearances of individual
immigrant genera (Woodburne and Swisher
1995). First appearances of mammalian gen-
era are extremely diachronous (Alroy 1998a),
and independent geochronologic data show
that correlations based on the traditional scale
are three times less precise than those based
on the AEO-derived age ranges (Alroy 1998c).
The AEO method’s basic steps have been re-
viewed previously (Alroy 1996, 1998d), and
are summarized as follows:

1. Singleton taxa are excluded from the data
set.

2. F/L statements are computed for all re-
maining pairs of taxa (species or genera). If
two taxa i and j are found in the same faunal
list, they are ‘‘conjunct’’: the statement ‘‘Fi
comes before [,] Lj’’ is true and vice versa. If
an occurrence of i is found below one of j in
any stratigraphic section, Fi , Lj but the con-
verse is not necessarily true. Li , Fj is tenta-
tively assumed if no list includes both taxa
and no section shows i occurring below j. Fi ,
Lj statements are assumed to be known with
certainty, but Li , Fj statements are treated as
hypotheses to be tested against candidate age
ranges. Fi , Lj statements are generated au-
tomatically for all pairs of taxa for which ei-
ther (a) i 5 j, because a taxon’s first appearance
must come before its own last appearance; or
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(b) j is a living taxon (in this paper extinct lat-
est Pleistocene taxa are treated as ‘‘living’’).

3. The square, pairwise F/L matrix is aug-
mented by adding ‘‘virtual’’ conjunctions us-
ing the square graph algorithm (Alroy 1998d),
which compensates for biogeographic effects
that keep coeval taxa from ever being found in
the same locality or section. The virtual con-
junctions are used in the next step and then
discarded.

4. As a starting point, a candidate linear se-
quence of F/L statements is computed by (a)
using a variant of reciprocal averaging to de-
rive scores for taxa from the F/L matrix, (b)
using these scores to compute mean scores for
faunal lists, (c) ordering the lists by their
scores, and (d) computing first and last ap-
pearances by scanning across the sequence of
lists. The event sequence is identical to an age
range chart in which each taxon is represented
by one F statement and one L statement oc-
curring later on.

5. The initial appearance event sequence is
optimized by a swapping algorithm. Earlier
papers used a simple parsimony criterion to
perform this optimization; a maximum likeli-
hood approach to the problem is discussed be-
low.

6. The appearance event sequence is num-
bered from oldest to youngest, and event po-
sitions are computed for the faunal lists. An
event position is a minimal span of events go-
ing across the sequence that includes all of the
taxa in a list; so if a list’s position is 222–224,
then all first appearances of the taxa occur by
event 222 and all last appearances by event
224. In contrast to earlier studies, here the
numbering is based on consecutive runs of
like events (e.g., first appearances) instead of
simple counts of events. For example, a stretch
of seven events like F-F-F-L-F-L-L would count
as just four runs. The new practice of counting
event runs instead of events makes only a tiny
difference to the calibration. However, by re-
moving some small-scale distortions in the
calibration the new numbering scheme de-
creases apparent variation among sampling
bins in counts of lists and taxonomic occur-
rences.

7. Geochronologic age estimates are
matched to the event positions using a new

linear interpolation algorithm detailed in a
later section. The algorithm seeks to find the
largest set of ‘‘hinge’’ calibration points that
implies a monotonic and reasonably steady
relationship between time and the event se-
quence. In contrast, earlier studies used inter-
polation methods that employed small sets of
statistically significant hinge points (Alroy
1996, 1998d).

8. The interpolation is used to estimate the
age of each event in Ma, and these estimates
in turn define numerical values for the age
ranges of each taxon and the maximum/min-
imum ages of each list.

Justification. The optimization algorithm
has been improved by employing an explicitly
formulated maximum likelihood criterion in
deciding amongst alternative event sequences.
Likelihood criteria are widely used in phylo-
genetics (Felsenstein 1981; Huelsenbeck and
Crandall 1997; Wagner 1998) and ecology
(Hilborn and Mangel 1997), but apparently
have not been used in quantitative biochron-
ology, even though there are some probabilis-
tic biochronological methods that are related
to graphic correlation (Agterberg and Grad-
stein 1999). Although maximum likelihood
methods are often disputed on philosophical
grounds, detailed expositions and defenses of
the basic logic of likelihood already are avail-
able elsewhere (e.g., Hilborn and Mangel
1997).

The new algorithm is called maximum like-
lihood appearance event ordination (ML-
AEO). The basic idea is to compute the prob-
ability of obtaining the observed F/L data giv-
en a candidate event sequence, a probabilistic
model of sampling, and some set of nuisance
parameters. Swaps of the event sequence and
recalculations of the nuisance parameters are
alternated until a stable solution (meaning a
local optimum) is found. The maximum like-
lihood criterion of ML-AEO is justified by the
following considerations:

1. The individual probabilities of observing
each cell of the F/L matrix are what need to
be explained by an event sequence. The overall
log likelihood is just the natural log of the
product of these cell-by-cell likelihoods, i.e.,
the sum of the logs of the likelihoods. As else-
where in the scientific literature, likelihoods
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are logged for computational reasons and for
ease of representation; untransformed num-
bers may be so small as to cause memory-han-
dling problems.

2. If two taxa have disjunct (nonoverlap-
ping) age ranges in the event sequence (i.e., ei-
ther Fi , Lj and Li , Fj, or Fj , Li and Lj ,
Fi), the likelihood is 1.0 because any reason-
able sampling model should imply that when
taxa are disjunct, they cannot be found to-
gether. The log of 1.0 being zero, these cases
can be ignored in computing the overall log
likelihood.

3. Cases of apparent overlap (hypothesized
Fi , Lj and Fj , Li) are more complicated. The
original AEO parsimony criterion (Alroy
1992, 1994) concerned itself only with mini-
mizing cases where overlap is implied but the
raw data do not demonstrate that an overlap
must occur. However, demonstrated overlap is
a probabilistic outcome that may or may not
follow from overlap of age ranges in the real
world. Therefore, likelihoods of matrix cell
values have to be computed if the data either
show that Fi , Lj and Fj , Li (matching the
hypothesis) or fail to show this (implying age
range disjunction).

4. The probability model should take three
factors into account: (a) the amount of hypoth-
esized overlap between pairs of taxa, measured
in appearance events; (b) a ‘‘nuisance’’ param-
eter specifying the relative sampling probabil-
ity of each taxon; and (c) the fact that demon-
strating conjunction of a pair of taxa is much
more likely if at some point one end of each tax-
on’s age range overlaps with one end of the
other taxon’s age range, because each taxon
then must appear in at least one faunal list that
equates with such a dual range-ending event.

5. It is reasonable to think of the sampling
process as involving a single, discrete sam-
pling opportunity occurring at each appear-
ance event. Of course, sampling opportunities
correspond with collections of specimens,
which constitute faunal lists; and not only
may multiple fossil lists correlate with a single
appearance event, but many lists will have
broad event positions including multiple
events. Therefore, the model assumption that
one appearance event 5 one sampling event is
a simplification.

Algorithm. The likelihood expression can
be formulated as follows: Assume that the
probability of a taxon not being sampled at an
event is k (‘‘crypsis’’), and that of being sam-
pled is 1 2 k. The probability that two of N
taxa, i and j, will both be found at an event is
therefore (1 2 ki)(1 2 kj) 5 1 2 ki 2 kj 1 kikj.
The probability that this will not happen, so
that no conjunction will be demonstrated, is ki

1 kj 2 kikj. If the probability of never dem-
onstrating a conjunction is Pdisj(i,j), then

d d d d eP 5 (k 1 k 2 k k ) ,disj(i,j) i j i j (1)

where e 5 the number of events by which i and
j overlap, i.e., the minimum of Li 2 Fi, Lj 2 Fj,
Lj 2 Fi, and Li 2 Fj; and d 5 1 at most events,
but some other real number at dual range-
ending events (i.e., events that equal both Fi
and Lj, or Fj and Li, or Fi and Fj, or Li and Lj).
Note that this additional nuisance parameter
d is held constant across all such cases. If the
overall log likelihood of the matrix is L(M z E,
K, d), where M 5 the matrix, E 5 the event
sequence, K 5 the vector of crypsis parame-
ters, and d 5 the dual-event parameter, then

N N
d d d d eL(M z E, K, d) 5 log(k 1 k 2 k k ) ,OO i j i j

i51 j51 (2)

where the summation is computed only over
cases in which Fi , Lj and Fj , Li and the two
taxa are disjunct in the raw data set. An anal-
ogous summation is computed over cases
where the taxa are conjunct and have overlap-
ping hypothesized age ranges.

Before proceeding, it should be noted that
the likelihood model ignores certain factors.
(1) Relative time (counted in events) is em-
ployed instead of numerical time (counted in
years) because the geochronological calibra-
tion is computed after the event sequence. It is
conceivable that both things could be com-
puted at once, but this would require some ex-
tremely intensive and complex computations.
(2) As in earlier work on AEO, thicknesses of
stratigraphic sections are ignored in all com-
putations. No straightforward method of in-
corporating this information is apparent. (3)
The model includes no information that re-
lates directly to individual fossil localities
(e.g., taphonomic regimes, sizes of fossil col-



712 JOHN ALROY

lections, and biogeography). The effects of
such attributes are not easily modeled because
the likelihood model is expressed entirely as a
relationship between a taxon-by-taxon hy-
pothesis (the event sequence) and a taxon-by-
taxon data set (the F/L matrix). Incorporating
most of these locality-specific factors would
require fundamentally reformulating the like-
lihood model, and it is not clear that such an
approach would either be tractable or make
much of a difference to the likelihood scores.

However, at least the biogeographic patterns
could be dealt with by modeling the geograph-
ic range of each taxon with four parameters to
encode the latitudinal and longitudinal range
limits. Taxa with nonoverlapping geographic
ranges would always be predicted to be dis-
junct. This method would require seven pa-
rameters per taxon instead of the three used in
the current model (ki, Fi, and Li), so it might
not significantly improve the results.

The general algorithmic problem is to find
a combination of one event sequence, a vector
of k values, and one d value that maximizes
the log likelihood. The appropriate algorithm
therefore involves three alternating steps: (1)
the event sequence is swapped using the cur-
rent k and d values; (2) the d parameter is re-
computed using observed overlaps of age
ranges and counts of conjunctions and dis-
junctions (but ignoring the K vector); and (3)
the K vector is recomputed using the new
event sequence and d value. On the first pass
no k and d values are available, so swapping
is based on the parsimony criterion.

Swapping the event sequence involves con-
siderable bookkeeping and is computationally
intensive, but these inevitable programming
details are of little interest. Obtaining nui-
sance parameters is a more general method-
ological problem. The computation of d in-
volves a recursive equation. Deriving the
equation requires first making the assumption
that on average, most pairs of taxa have iden-
tical k values equal to some overall mean .(k̄)
Furthermore, let the average number of events
showing overlap between any pair of taxa (ē)
equal E/O, where E 5 the sum of overlaps
across all pairs and O is the number of over-
lapping pairs. For cases where d 5 1 (i.e., any-

where but at dual range-ending events), this
allows simplying equation (1) to yield

2 E/OP 5 (2k̄ 2 k̄ ) .disj(i,j) (3)

The summation of this average value over
all of the O cases in which pairs of taxa over-
lap must equal the number of disjunct over-
lapping pairs (D), so Pdisj(i,j) 5 D/O. It follows
that

2 O/E2k̄ 2 k̄ 5 (D/O) . (4)

An estimate of can be obtained recursive-k̄
ly by taking advantage of two facts: (1) k̄ 5

1, and 2)/(D/O)O/E. There-k̄ (2) 1 5 (2k̄ 2 k̄
fore:

2 O/E([2k̄ 2 k̄ ]/[D/O] )k̄ 5 k̄ . (5)

The exact value is obtained by first replac-
ing on the right-hand side of the equationk̄
with (D/O)O/E and then iterating. Next, one re-
computes D, O, and E for cases of dual range-
ending events (i.e., where d is not equal to 1)
and uses these numbers to recursively com-
pute a second, independent estimate of
the average k value (k̄9). By definition, k̄9 5

d, so:k̄

d 5 ln k̄9/ln k̄. (6)

A different recursive computation is used to
obtain the k values. For each taxon i, one sums
the observed number of conjunctions, ci, then
sums the probabilities of conjunction across
all pairs that overlap with i in the hypothe-
sized event sequence to obtain a predicted
number of conjunctions, ĉi:

N

ĉ 5 1 2 POi disj(i, j)
j51

N
d d d d e5 1 2 (k 1 k 2 k k ) . (7)O i j i j

j51

If this is a good estimate, then ĉi 5 ci, so to
make the estimate precise one can recursively
compute:

c /ĉi ik 5 k .i (8)

Performance. Interestingly, the ML-AEO
analysis produces an event sequence that dif-
fers only in detail from sequences produced
by parsimony swapping. The unswapped
AEO sequence implies 580,205 conjunctions,
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the sequence based on parsimony swapping
implies 509,359 (12.2% fewer), and the ML se-
quence implies 514,088 (11.4% fewer); the
overall log likelihood scores are 274,322.0 (un-
swapped), 256,202.6 (parsimony swapping:
6.6% less), and 248,250.5 (ML swapping: 9.5%
less). In other words, both swapping algo-
rithms produce sequences that are much bet-
ter than the raw sequence, regardless of how
fit is measured. Although the two yield se-
quences that are very similar, the ML-AEO se-
quence is far more impressive in terms of its
log likelihood score (3.1% better) than is the
parsimony sequence in terms of parsimony
(0.9% fewer implied conjunctions).

The two units may seem to be incommen-
surate, but in fact a crude interconversion is
possible. Assume for a moment that there are
no differences between taxa in sampling prob-
abilities, so actual conjunction and disjunction
between temporally overlapping pairs is pre-
dicted randomly by the parsimony method.
Then the prediction probabilities to be used in
equation (2) are just the proportion of demon-
strably conjunct or disjunct pairs across all
overlapping pairs. If this proportion is roughly
50%, then each implied conjunction has a like-
lihood ‘‘cost’’ (see eq. 2) of about 2log(0.5) 5
0.69. Thus, on this maximally simplistic model
one would expect the parsimony sequence,
which implies 509,359 conjunctions, to equate
roughly with a likelihood score of 351,458.

If one instead improves the estimate by
using the observed proportion of demonstrat-
ed conjunctions (43%) instead of 50%, one ob-
tains 217,673[2log(217,673/509,359)] 1 291,686
[2log(291,686/509,359)] ù 347,665. Of course,
the value reported above is 256,202.6—much
lower because the prediction makes use of
thousands of k parameters. The important
point is that the two kinds of scores are fun-
damentally interrelated even if they are not
exactly interconvertible; one could use similar
logic to make a rough estimate of the parsi-
mony score from the likelihood score. Thus,
the parsimony method is nothing more or less
than a maximum likelihood method employ-
ing a very simplistic probability model.

One side benefit of ML-AEO is the k or
‘‘taxonomic crypsis’’ values it generates for
each taxon. These values, which indicate how

likely it is that taxa with overlapping age
ranges will fail to have demonstrated con-
junctions, are remarkably intuitive. The worst
k value is 0.99653 for Osbornoceros osborni, an
artiodactyl found at just two Miocene locali-
ties of substantially different ages: Gabaldon
Badlands Level B (12 Ma) and Osbornoceros
Quarry (10 Ma). Other species with very poor
scores also tend to be found in two or three
lists that are widely separated in time and
span a well-sampled part of the timescale.
Several taxa have scores of almost zero, indi-
cating great abundance. An example is the
common Late Cretaceous multituberculate
Meniscoessus, which is found in 92 faunal
lists—57% of all the lists that fall within its
age range (this latter statistic is the list-wise
sampling probability [Alroy 1998a]).

The k scores are in general inversely related
to the list-wise sampling probabilities, with
the rank-order correlation being 20.737 for
the 958 genera that occur in at least three lists.
The rank-order correlation between the k
score and the number of lists including each
genus (the abundance measure suggested by
Walsh [1998]) is only 20.306, which makes
sense because very long-ranging but rare gen-
era may occur in many lists. For example, the
Eocene insectivoran genus Batodonoides in-
cludes the smallest known mammal species
(Bloch et al. 1998) and is very rare throughout
its 11-m.y.-long range, so it has a high k score
of 0.97804 even though it occurs in 26 lists.

Calibration of the Event Sequence

Alroy (1996, 1998d) described a ‘‘hinge’’ in-
terpolation method that fits a series of abutting
lines to a plot of numeric time against num-
bered event runs for a set of faunal assemblag-
es that have been tied to geochronological age
estimates. This algorithm has much to recom-
mend it; for example, it avoids assuming that
transitions in the underlying ‘‘faunal turnover
clock’’ follow some smooth, gradual function,
and it generates only as many interpolation
lines as are justified by a standard F-test. How-
ever, that second strength is also its greatest
weakness: the original hinge interpolation
method discards an enormous number of data
points because it always errs on the side of ac-
cepting fewer rather than more. By doing this,
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FIGURE 1. Shrink-wrap calibration of the appearance
event ordination. Data points are based on concurrent
range zones of faunal assemblages tied to geochrono-
logical age estimates (see supplementary material, Table
1). Gray lines show upper and lower boundaries pro-
duced by shrink-wrapping, as well as the midpoint line
between them that is used in the calibration. A few
points that would introduce abrupt shifts in the slopes
of the boundary lines are left outside of the polygon they
define.

it implicitly assumes that the faunal turnover
clock is constant until proven otherwise.

It might seem more intuitive to impose as
many hinge points as one can, subject to the
relationship must always be monotonic. In
practice, however, doing so creates two major
problems, both of which are attacked with the
new ‘‘shrink-wrap’’ algorithm described here.
First, it is difficult to find a large set of hinge
points that both explains much of the variance
and maintains monotonicity. The new algo-
rithm attempts to do this by finding not one,
but two monotonic lines that bracket the data,
and then interpolating between them.

Second, solutions with many hinge points
tend to posit many abrupt and dramatic shifts
in the turnover clock, with slopes of neigh-
boring line segments often differing by two
orders of magnitude or more. These enormous
shifts relate only to small analytical errors
concerning faunas with very similar age esti-
mates and event run numbers. Such errors
may lead to fortuitously tied or nearly tied
values for either variable. The new algorithm
systematically rejects hinge points by exam-
ining the distribution of changes in the rate of
the clock across the interpolation, discarding
points that create unusually abrupt rate shifts.
The exact algorithm is as follows:

1. Starting from the oldest data point to the
lower left side of the event sequence (Fig. 1), a
lower boundary line is drawn to connect a se-
ries of younger points in such a way that all
other data points are younger than (above) the
line. At each step, monotonicity is imposed by
searching for the next data point to the right
in the event sequence, making sure this data
point actually is paired to a younger age es-
timate. The algorithm also pays attention to
the stratigraphic relationship between the dat-
ed and fossiliferous horizons. If a dated hori-
zon underlies a faunal locality, then it is a
maximum estimate, so it is ignored in
‘‘shrinking up’’ the lower boundary line. Ig-
noring these points causes them to fall below
the line, which is acceptable because maxima
always may be older than the actual age of the
fossil assemblage.

2. Starting from the youngest point, a
monotonic upper boundary line is drawn so
that all points either are on the line or are old-

er. Again, all that is required is to add points
in the order of the event sequence (now being
read right to left). Minimum estimates (as de-
termined by stratigraphy, see preceding step)
are ignored.

3. The slope of each line segment (i.e., line
connecting consecutive data points) in each
boundary line is computed.

4. Logs of ratios of slopes of adjacent line
segments (i.e., rate changes) are found.

5. For each line, differences of adjacent rate
changes (not rates) are found. The resulting
values describe changes across three consec-
utive segments, say, segments i, i 1 1, and i 1
2. High values often mean that there is a large
change in slope followed by another large
change in the opposite direction; i and i 1 2
may be shallow while i 1 1 is steep.

6. The mean and standard deviation of this
double-difference distribution are computed.

7. The most extreme value in the double-dif-
ference distribution is found. If it is more than
1.96 standard deviations away from the mean,
the original data point creating the larger of
the two slope differences (not double differ-
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TABLE 1. Age estimates for Cenozoic North American land mammal ages (NALMAs). Locations of boundaries be-
tween NALMAs are set using the break algorithm (Alroy 1992), which iteratively splits up the appearance event se-
quence in a way that separates as many pairs of age ranges as possible with the addition of each boundary. Two-
standard-deviation analytical errors in age estimates are about 1.35 m.y. (see text). Cretaceous NALMAs are omitted.
Age estimate for base of Puercan is set at the date of the Cretaceous/Tertiary boundary given by Berggren et al. (1995).
Geringian, Monroecreekian, and Harrisonian are lumped by many authors as the ‘‘Arikareean,’’ but unlike any other
NALMA this unit would encompass 10.2 m.y., an epoch boundary (Oligocene/Miocene), and an extraordinary amount
of faunal turnover. Base (Ma) 5 age estimate for base of NALMA in Ma; Event run 5 identity of run beginning the
NALMA (which is always a run of FAEs); Rank 5 order in which boundary was selected by the break algorithm (lower-
ranked boundaries have weaker support); Reference locality 5 name-bearing faunal assemblage of biochron, i.e., as-
semblage whose placement defines the location of the land mammal age in the event sequence.

NALMA Base (Ma) Event run Rank Reference locality

Irvingtonian
Blancan
Hemphillian
Clarendonian

1.8
4.9

10.3
13.6

1463
1357
1253
1159

10
7
3

12

Irvington
Red Quarry
Coffee Ranch
MacAdams Quarry

Barstovian
Hemingfordian
Harrisonian
Monroecreekian
Geringian
Whitneyan

16.3
20.6
24.8
26.3
30.8
33.3

1049
937
861
839
777
739

28
21
40
22

1
27

Hemicyon Quarry
Thomson Quarry
Pine Ridge Escarpment
Monroe Creek (SDSM V-6229)
Durnal Ranch Quarry
Indian Stronghold (Protoceras Channel)

Orellan
Chadronian
Duchesnean
Uintan
Bridgerian

33.9
38.0
42.0
46.2
50.3

717
651
591
525
453

39
26
32
11

2

Sage Creek Basin (West)
Chadronia Pocket
Titanothere Quarry
Myton Pocket
Grizzly Buttes

Wasatchian
Clarkforkian
Tiffanian
Torrejonian

55.4
56.8
60.2
63.3

275
235
171
115

19
4

16
8

Reservoir Creek Bonanza
Holly’s Microsite
Mason Pocket
West Flank Torreon Wash (Pantolambda Zone)

Puercan (65.0) 61 15 Mammalon Hill

ences) is discarded. If not, the pruning algo-
rithm (steps 3–7) halts.

8. A midpoint line between the two bound-
aries is computed by (a) finding the set of data
points that are included in one or both bound-
ary lines, (b) computing the value predicted
by each boundary line at each of these points,
and (c) averaging the two values to create a
hinge point.

Because the algorithm is strictly heuristic, a
shrink-wrap interpolation line is not guaran-
teed to explain more of the variance, or in-
clude more data points, than any other mono-
tonic solution seeking to include a large num-
ber of data points. The method seems to per-
form well with the data set at hand, however,
explaining 99.856% of the variance in the age
estimates. The variance explained increases to
99.912% if one excludes estimates that are
maxima falling below the interpolation line, or
minima falling above it (see steps 1 and 2
above). This performance would be hard to
match. Nonetheless, still more sophisticated
approaches should be explored in the future.

The large number of interpolation segments
produced by this algorithm makes it impos-
sible to compute error terms for each and ev-
ery segment. However, a rough idea of the er-
ror in the entire analysis can be determined by
noting that the sum of squares of the age es-
timates is 54,819.3; if 99.912% of this variance
is explained, then the expected departure of
any one data point from the interpolation line
is [54,819.3/107 3 (1 2 0.99912)]0.5 5 0.674
m.y. This value represents only one standard
deviation, so a general error estimate of 1.35
m.y. is preferable. In contrast, Alroy (1998d)
employed a calibration that explained 99.70%
of the variance. A similar calculation implies a
two-standard-deviation error of 2.17 m.y. The
difference is partially due to improvements in
the data set and ordination algorithm, but
mostly attributable to the use of higher-pre-
cision radioisotopic dates. Including low-pre-
cision dates would increase the error from 1.35
to 2.04 m.y.

To facilitate evaluation of the hypothesized
appearance event sequence by other workers,
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Table 1 gives estimated boundaries among the
conventionally recognized North American
land mammal ages (NALMAs) (Woodburne
and Swisher 1995). The boundaries were de-
termined by using the break algorithm (Alroy
1992) to find 50 points that split the event se-
quence in a way that summarizes as many ob-
served taxonomic disjunctions as possible.
Matches between the breaks and conventional
NALMAs then were determined by examin-
ing the positions of classic faunal assemblages
(i.e., reference localities) in the event sequence.
Further details of a revised North American
land mammal timescale will be given in a later
paper.

Randomized Subsampling of Faunal Lists

In this section I discuss three distinct meth-
ods for correcting diversity curves by basing
the age ranges used to construct them on ran-
domly drawn faunal lists (Alroy 1996). Previ-
ously just one algorithm has been employed
for this purpose; the two new, more complex
algorithms introduced here involve more re-
alistic assumptions about the nature of species
richness versus sampling relationships within
individual faunal assemblages. A comparison
of the diversity curves generated by these
three methods shows consistent but small dif-
ferences, with the third and most realistic
method generating almost exactly the same
result as the original algorithm. Therefore, I
conclude that although sampling effects are
important, the exact choice of a subsampling
method is not a major problem for the North
American mammal data set.

Basic Procedure. The temporally calibrated
sequence of first and last appearance events
produced by the ML-AEO method could be
used directly to infer a diversity curve and
turnover rate data, because diversity is just the
sum of overlapping age ranges at any one
point in time. However, sampling intensity is
known to vary by an order of magnitude
through the Cenozoic (Alroy 1996, 1998d), so
the total diversity curve presents a mixed sig-
nal of sampling artifacts and real trends.
Therefore, this study follows earlier ones (Al-
roy 1996, 1998d, 1999a,b) by using random-
ized subsampling of entire faunal lists to gen-
erate sampling-standardized diversity data.

The procedure, termed here by-list occurrenc-
es-weighted subsampling, is as follows:

1. The 191 lists from eastern North America
(less than 4% of the total) are discarded to
minimize the biogeographic spread of sam-
pling through time.

2. The event sequence is broken up into uni-
formly spaced, 1.0-m.y.-long sampling bins
(the bin length is conservative relative to the
best possible trade-off of precision and accu-
racy in correlation [Alroy 1996]).

3. Faunal lists are assigned to bins, and
within each bin entire faunal lists are drawn
at random until a uniform quota is met. The
quota can be expressed as a count of lists, but
instead it is set to a count of taxonomic occur-
rences (called ‘‘records’’ by Alroy [1996,
1998d]) across all lists. So if three lists respec-
tively include 5, 8, and 12 distinct taxa, the to-
tal is 25 occurrences. Distinct taxa in each list
include (a) all identifiable species, plus (b) all
genera that include no determinate species. In
an important departure from earlier studies,
here 2090 additional lists (42%) are excluded
from the analysis because they do not fit in a
single interval. This is done because of the
combinatory difficulty of guaranteeing that
all intervals will closely approach the correct
quota when many individual lists (typically
very short ones) fit into multiple intervals. An-
other approach, which has not yet been im-
plemented, would be to randomly assign each
of these lists to one of the several bins that
could include it during each iteration of the
subsampling algorithm.

4. After obtaining the full quota once for
each bin, the age range of each taxon is com-
puted across all the bins. So if a species was
found in bins 10, 13, 15, 16, and 17 in the raw
data but only occurs in lists that are sampled
in bins 13 and 15 in a subsampling trial, then
its range is considered to span only bins 13,
14, and 15 for the purposes of that trial.

5. Counts of species that cross the boundary
between each neighboring pair of bins are
computed; the series of counts defines a di-
versity curve. To prevent cases where genera
are implied to be polyphyletic, diversity
counts are incremented by one for each genus
that occurs before and after a boundary even
though no named species in that genus crosses
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the boundary (hence the counts are actually of
‘‘species lineages,’’ and the pseudoextinction
of the last species before such a gap and pseu-
do-origination of the first species after such a
gap are discounted in the following step).

6. Counts of originations and extinctions
within each bin also are totaled, but taxa oc-
curring only in one bin (‘‘singletons’’) are dis-
carded because these taxa create artifactual
patterns in the turnover rate data (Alroy
1998d). The species in the previous example
would be considered (a) present at the bound-
aries between bins 13 and 14, and 14 and 15;
(b) to appear in bin 13; and (c) to disappear in
bin 15.

7. Steps 3 through 6 are iterated (here 200
times), and the resulting boundary-crossing
diversity counts and within-bin turnover rates
are averaged.

A somewhat similar procedure was em-
ployed by Miller and Foote (1996) and Mark-
wick (1998). However, these authors used a
variant of the classical method of rarefaction
(Sanders 1968; Raup 1975; Tipper 1979) in
which individual taxonomic occurrences are
drawn independently regardless of the com-
position of faunal lists. Additionally, they
computed total levels of sampled diversity
within bins, instead of ranging the data
through and averaging counts of taxa that
crossed boundaries between bins. These dis-
tinctions are important because (a) unlike
drawing faunal lists, independently drawing
taxonomic occurrences does not mimic any
real-world sampling process (although the
two methods should converge on the same re-
sult with large sample sizes [Smith et al.
1985]); (b) failing to range through the data
yields diversity curves that are not compara-
ble to the traditional, ranged-through diver-
sity curves employed elsewhere in the paleo-
biological literature; (c) counting all taxa that
range into a bin can lead to difficulties with
timescale effects that relate to variation in the
scale of time-averaging (Foote 1994)—in con-
trast, all of the species that cross a boundary
must have been coeval at that time, so there is
effectively no time-averaging; and (d) failing
to compute age ranges for species across in-
dividual trials makes it impossible to identify
and remove singletons, which can create ad-

ditional statistical artifacts that even subsam-
pling cannot remove (Alroy 1998d).

Randomized subsampling of entire lists
was first employed by Shinozaki (1963), and
some of the method’s statistical properties
were explored by Smith et al. (1985). However,
the algorithm discussed by these authors dif-
fers crucially from the one introduced by Al-
roy (1996) in the way that the lists are weight-
ed. Shinozaki’s method simpy tallies the num-
ber of lists drawn, whereas occurrences-
weighted subsampling targets a quota of
taxonomic occurrences, not lists, and therefore
keeps track of the number of occurrences en-
countered as lists are drawn.

Assumptions. Unfortunately, each of the
preceding subsampling methods makes un-
realistic assumptions about the nature of sam-
pling and species richness within collection
localities. Shinozaki’s unweighted by-list
method assumes that lists are taphonomically
comparable in different time intervals, so any
systematic variation in the average species
richness of lists reflects real biological pat-
terns. The by-list occurrences-weighted meth-
od (Alroy 1996, 1998d) assumes instead that
trends through time in average species rich-
ness are partially artifactual, and the artifacts
can be ameliorated if one weights lists by oc-
currence counts.

Effectively, this assumption makes sense
only if there is a roughly linear relationship
between the number of specimens sampled
and number of species found at a locality—
i.e., if there is a linear collection curve. How-
ever, subsampling methods like rarefaction
were justified in the first place in ecology by
the observation that collection curves are non-
linear, and specifically asymptotic (Sanders
1968).

There are two cases in which the linearity
assumption might make sense. First, most col-
lections might represent comparable numbers
of specimens. If so, then the lists all would fall
in the same short segment of the collection
curve, and short segments of such curves are
indeed reasonably linear. However, if individ-
ual fossil collections really didn’t vary much in
size, then it would make even more sense to
use Shinozaki’s method, tallying the lists
themselves and not the taxonomic occurrenc-
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es. Furthermore, mean species richness of fos-
sil localities in the raw data does vary greatly
through time (Alroy 1998d), suggesting that
some intervals are represented on average by
much larger modal collections of fossils, and
therefore that there must be considerable var-
iation even within temporal bins.

A second possibility is that occurrence
counts represent a composite signal of varia-
tion among fossil collections in specimen
counts and true species richnesses. Although
that alone would not justify assuming a linear
relationship between occurrence and speci-
men counts, as discussed below it seems to be
a fair compromise between more extreme as-
sumptions.

The implicit assumptions of the classical
rarefaction method (Miller and Foote 1996)
with respect to alpha diversity and collection
size are not obvious in this context. However,
they may prove similar to the assumptions
made by occurrences-weighted subsampling
of lists.

Occurrences-Squared Weighted Method. One
way to improve the realism of subsampling
methods is to assume a more realistic rela-
tionship between sample size and richness.
Many collecting curves are approximately lin-
ear in a log-log space (May 1975). However,
even if this is true the slope and intercept
of the relationship may vary substantially
among localities. The occurrences-tallied
method implicitly assumes that the slope is
one and the intercept is zero, but this is the
maximum possible value for the slope, and the
mathematical minimum is some small num-
ber just greater than zero—so real collecting
curves most likely do not look anything like
this.

Fortunately, it seems that most mammalian
fossil assemblages can be characterized by a
slope of about 0.5. This claim needs to be doc-
umented in detail, but the data on hand seem
to support it. For example, a slope of just about
0.5 is seen for four very different samples of
widely different ages (Fig. 2). Big Multi Quar-
ry (late Paleocene of Wyoming [Wilf et al.
1998]) and Swift Current Creek (late Eocene of
Saskatchewan [Storer 1984]) both have reason-
able sampling across the body mass spectrum
and large numbers of specimens (1665 and

997), but they differ in the proportion of spe-
cies (2/37 and 9/41) that are each represented
only by one specimen (i.e., unique species
[Colwell and Coddington 1994]). Additional-
ly, Big Multi Quarry displays the unimodal
body mass distribution characteristic of early
Tertiary assemblages, whereas Swift Current
Creek has a markedly bimodal distribution.
The remarkably small number of unique spe-
cies at Big Multi suggests that very few species
remain to be collected (Colwell and Codding-
ton 1994). A rarefaction analysis demonstrates
an asympotic relationship between sampling
and richness in both cases, but flattening of
the curve is more pronounced for Big Multi
Quarry (Fig. 2A).

The two younger faunas are quite different
(SDSM V-6229, late Oligocene of South Dakota
[Macdonald 1972]; Achilles Quarry, middle
Miocene of Nebraska [Voorhies 1990]). Like
most middle and late Cenozoic assemblages,
both of them suffer from profound size bias:
respectively, just 30 of 712 and 18 of 816 of
their generically identifiable specimens rep-
resent ungulates and carnivorans. Both faunas
also include moderate numbers of unique spe-
cies (3/25 and 6/28). The rarefaction curves,
particularly for Achilles Quarry (Fig. 2D), are
closer to linear in a log-log space for these fau-
nas than for the others.

A slope of 0.5 describes all of these relation-
ships fairly well despite the great differences
among the assemblages in geological age,
body mass distribution, and completeness of
sampling. Reduced major-axis regression
yields slopes of 0.534, 0.590, 0.525, and 0.512
for the four quarries, with r2 values of 0.965,
0.977, 0.980, and 0.998. Similar observations
were made by Gunnell (1998) in a study of
mid-Eocene faunas.

Obviously, the estimated slope for asymp-
totic curves will be too low close to the origin
and too high close to the asymptote. For ex-
ample, a quadratic fit for the Big Multi data
implies that the slope begins at around 1.02,
but falls to 0.68 when there are 100 specimens
and to 0.51 when there are 1000. Hence, if this
kind of a relationship is typical for the early
Paleogene, then assuming a slope of 0.5–0.7
makes sense for the kind of sample sizes typ-
ically encountered in ‘‘good’’ to ‘‘excellent’’
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FIGURE 2. Rarefaction curves for selected mammalian faunas. Axes are log-transformed; points fall at 1, 2, 5, 10,
20, 50, 100, 200, 500, and 1000 specimens. Lines are not regression lines but instead have a slope of 0.5 and an
intercept of one specimen and one species, showing the relationship assumed by the occurrences-squared subsam-
pling method. A, Big Multi Quarry (Clarkforkian or late Paleocene, 56 Ma). B, Swift Current Creek (Uintan or late
Eocene, 43 Ma). C, SDSM V-6229 (Monroecreekian or late Oligocene, 25 Ma). D, Achilles Quarry (Barstovian or
middle Miocene, 14 Ma).

assemblages. Analyses of additional assem-
blages to be detailed elsewhere show similar
patterns.

The important point is not whether a linear
regression is appropriate, because the rela-
tionships are clearly not exactly linear; in-
stead, the point of the exercise is to show that
a simple linear approximation is operationally
useful. In fact, using a ‘‘square root rule’’ to

estimate the richness/sampling relationship
for fossil mammals does work well. Given the
linear log-log scaling, the expected number of
species in a sample of N specimens can be ap-
proximated as the square root of N. For the
four quarries, this rule predicts 41, 32, 27, and
29 species when there are 37, 41, 25, and 28.
Only the low estimate for Swift Current Creek
is off by more than 10%. Conversely, the num-
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FIGURE 3. Comparison of sampling-standardized di-
versity curves based on occurrences weighted and oc-
currences-squared weighted sampling. Methods as-
sume no change through time in alpha diversity. Thin
black line: curve based on randomly subsampling lists
that total 100 taxonomic occurrences per 1.0-m.y. tem-
poral interval. Thick gray line: curve based on randomly
subsampling lists that total 1800 occurrences-squared
per interval.

FIGURE 4. Mean number of occurrences-squared per
faunal list. Thin black line: means for individual 1.0-
m.y.-long bins. Thick gray line: smoothed means based
on a 25-m.y.-long moving window.

ber of specimens for the vast majority of as-
semblages that have no known specimen
counts can be estimated as the number of tax-
onomic occurrences squared.

The occurrences-squared rule of thumb im-
plies that subsampling of lists should employ
quotas based on sums of occurrences-squared
instead of sums of occurrences. Fig. 3 con-
trasts an occurrences-tallied analysis using a
quota of 100 occurrences per 1.0-m.y.-long
temporal bin with an analysis using a quota
of 1800 occurrences-squared per bin. Both
quotas are set at the lowest point that is prac-
tical; any lower quota would cause a large
number of bins to fall far short. The first anal-
ysis employs the same occurrences-per-bin
quota as in Alroy 1998d; with a smaller data
set Alroy (1996) employed a quota of 85 oc-
currences per bin. Both of the earlier analyses
yielded curves that closely resemble this new
occurrences-tallied curve.

The occurrences-squared weighted curve is
substantially different (Fig. 3). The occurrenc-
es-weighted curve often has higher or lower
peaks, but during intervals of rapid change
the curves overlap closely. Because of this oc-
casional close tracking, the differences seem to
be fundamental and not merely attributable to
difficulties in equating sampling quotas that

have different units. In particular, one pattern
seems to be important: the occurrences-
squared weighted curve is consistently low
during the Paleocene and Eocene and high
afterwards.

Smoothing Method. The lack of variation in
the occurrences-squared weighted curve may
reflect better responsiveness of the method to
artifactual variation through time in the per-
bin ratio of occurrences to lists. However, the
low Paleocene–Eocene values seem to reflect
failure to account for bona fide variation
through time in alpha diversity. This inference
is suggested by long-term trends in the occur-
rences/lists ratio (Fig. 4): despite considerable
short-term variation, it does seem that Paleo-
cene and Eocene lists are consistently longer
than Oligocene and Neogene lists. Work in
progress on the relationship between ob-
served richness, total counts of specimens,
and body mass distributions supports earlier
evidence (Stucky 1990) that alpha diversity
falls through the Cenozoic.

The simplest way to deal with this effect
would be to ignore counts of occurrences or
occurrences-squared per list and peg subsam-
pling quotas to counts of lists—in other
words, to fall back on the assumption that all
variation in apparent richness is real. A more
reasonable approach is to assume that short-
term variation is in fact controlled by local
sampling artifacts (e.g., strong size bias or
small average counts of specimens in lists in a
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FIGURE 5. Occurrences-squared totals for 1.0-m.y. bins.
Thin black line: total occurrences-squared counts across
all faunal lists. Thick gray line: average number of oc-
currences-squared drawn in each of 200 randomized
subsampling trials.

FIGURE 6. Comparison of sampling-standardized di-
versity curves based on occurrences weighted and
smoothed occurrences-squared weighted sampling.
Thin black line: curve based on 100 taxonomic occur-
rences per interval. Thick gray line: curve based on ran-
domly subsampling lists that total occurrences-squared
quotas shown in Figure 5. First method assumes no
change through time in alpha diversity, second method
assumes a gradual, long-term secular trend in alpha di-
versity like the one shown in Figure 4.

particular interval), but that long-term varia-
tion reflects biological trends.

A straightforward algorithm is as follows.
First, one computes a running average of the
ratio of occurrences-squared tallies to list tal-
lies across a moving window of 25 bins:

Lt112 t112i
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where Li 5 the number of lists in the ith in-
terval, oj 5 the number of occurrences in the
jth list falling within the ith interval, and ōt

2 5
the mean occurrences-squared count for some
interval t. The 25-bin width of the moving
window is used to guarantee that the
smoothed curve will reflect genuine trends on
the scale of geological epochs. When the win-
dow falls partially outside of the range of the
data, the summation is carried out over fewer
intervals and the values in both the numerator
and the denominator fall proportionately. The
next step is to assume a list-based sampling
quota (in this case nine lists per interval). Fi-
nally, for each interval the list quota is multi-
plied by ōt

2 to obtain a tailor-made quota for
each sampling bin that is expressed in units of
occurrences-squared.

The resulting curve of sampled occurrenc-
es-squared (Fig. 5) is generally high in the Pa-
leocene–Eocene and low thereafter. More oc-
currences-squared are sampled in the early
Tertiary because the method assumes that the

same number of specimens will yield more oc-
currences, or in other words that the slope of
richness/sampling curves like those in Figure
2 should be slightly steeper in the early Ter-
tiary (as suggested by Figure 4).

Because the artifactual Paleocene–Eocene
low is now removed, the diversity curve pro-
duced by this smoothing algorithm is even
more similar to the one originally obtained
just by the simple occurrences-weighted
method (Fig. 6). The two curves often overlap
completely, and for the entire Cenozoic the
curves have comparable geometric means
(62.5 smoothed, 61.9 occurrences-weighted),
standard deviations (14.0, 12.7), and most im-
portantly serial correlations (10.840, 10.808).
By contrast, the original occurrences-squared
weighted curve has a stronger serial correlation
of 10.858 and also shows a stronger temporal
trend (time vs. diversity: r 5 20.680, vs. 20.545
[smoothed, occurrences-squared weighted] and
20.604 [occurrences-weighted]). As a result,
the points in this curve fall into clusters that
are strongly separated along the time axis.

In summary, there are substantial concerns
about underlying assumptions in the original
by-lists occurrences-weighted subsampling
method—but these concerns turn out to be
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misplaced. Almost exactly the same results
are obtained using a much more sophisticated
algorithm that is based on more concrete and
well-justified assumptions, that varies sam-
pling using a direct proxy for specimen
counts, and that makes allowances for long-
term secular trends in alpha diversity. How-
ever, this fortunate outcome may not hold for
all paleontological data sets, so the more de-
tailed smoothing algorithms are recommend-
ed for general use. In addition, varying the ex-
ponent used to translate counts of occurrences
in lists into weights is recommended. For ex-
ample, if richness scales roughly as the cube
(not square) root of specimen counts in a par-
ticular data set, then occurrence counts should
be raised to the third (not second) power to
generate weights.

Speciation and Extinction Rates

The ordination and faunal subsampling
methods provide three raw variables that de-
scribe the basic pattern of diversification: spe-
cies richness values for boundaries between
sampling bins (D), and counts of originations
(O) and extinctions (E) of boundary-crossing
taxa within each bin (which means that sin-
gletons are excluded). However, the raw orig-
ination and extinction data need to be trans-
formed into rates before they can be employed
in time series analyses. Raup (1985) and Foote
(1994, 2000) surveyed some of the many equa-
tions that are normally used for this purpose
in paleobiology. Alroy (1996, 1998d) advocat-
ed using per-taxon turnover rates in the form
O/D and E/D. Although some authors also
employed boundary-crosser counts in their
denominators (e.g., Carr and Kitchell 1980),
and others employed boundary crossers in
their numerators (e.g., Harper 1996), none pre-
viously had combined the two.

However, Foote (1999, 2000) has shown that
the use of raw per-taxon rates presents certain
difficulties even if the rates only pertain to
boundary crossers. Here I outline a slightly
different argument intended to justify the use
of the new turnover rate equations presented
by Foote (1999). To begin with, I note that
much of the modeling literature on diversity
dynamics is premised on continuous-time ex-
ponential decay and growth equations (Raup

1985). Alternative models such as those as-
suming discrete ‘‘generations’’ (Gilinsky and
Good 1991) have not received wide support.
Raup’s exponential equations take the form

(l2m)tD 5 D e ,t 0 (10)

where t 5 the number of time intervals, l 5
the per-taxon instantaneous rate of origina-
tion, and m 5 the per-taxon instantaneous rate
of extinction; also, let the intrinsic rate of in-
crease r 5 l 2 m.

If turnover is truly exponential then direct
ratios of counts and diversity levels will be in-
accurate estimates of these instantaneous
rates. For example, suppose that D0 5 100, t 5
1, O 5 20, and E 5 10. If one assumes that l
5 O/D 5 0.2 and m 5 E/D 5 0.1, then by
equation (10) one actually expects O to be
20.03 (not 20) and E to be 9.52 (not 10) after
one time interval. The discrepancies could be
extreme: if O 5 100 and E 5 50, then using this
to infer that l 5 1.0 and m 5 0.5 leads us to
back-predict O and E counts of 104.2 and 39.3.

The reason for discrepancies between true
and back-predicted counts is compounding.
Origination probabilities are not imposed just
once at the end of an interval but continuously
during an interval, so new species may them-
selves give rise to other new species before an
interval ends. Likewise, extinction probabili-
ties are not imposed suddenly, so even if ex-
tinction is initially rapid enough to imply an
ultimate rate of 0.5 over one full interval,
enough species are soon lost and therefore be-
come ‘‘immune’’ to further extinction that the
actualized rate is far lower.

Thus, analyzing simple ratios like O/D is
just not consistent with modeling diversity
dynamics in continuous time. Instead, one
must determine the underlying, instanta-
neous rates by solving directly for r, l, and m.
For net diversification one obtains

r 5 ln(D /D )/t,t 0 (11)

which was erroneously called an ‘‘origina-
tion’’ rate by Stucky (1990) (the statistic im-
plicitly incorporates both origination and ex-
tinction counts, so the term is a misnomer).
Now because
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FIGURE 7. Cenozoic trends in taxonomic turnover sta-
tistics. All rates are instantaneous and apply to a single
1.0-m.y.-long sampling interval. Thin dark lines: instan-
taneous rates based on equations of Foote (1999). Thick
gray lines: per-taxon rates based on equations of Alroy
(1996, 1998d). A, Per-lineage origination rates. B, Per-
lineage extinction rates.

mtE 5 D 2 D e ,0 0 (12)

the instantaneous extinction rate is

m 5 2ln[(D 2 E)/D ]/t,0 0 (13)

which is just the natural log of the fraction of
species in the original cohort at time 0 that still
survive to time t. The resulting expression for
the instantaneous origination rate is not so in-
tuitive. Because r 5 l 2 m, l 5 r 1 m, so one
can combine equations (11) and (13) to yield

l 5 ln[D /(D 2 E)]/t.t 0 (14)

In other words, the origination rate is just
the natural log of the number of species at the
end of an interval divided by the number at
the start minus the number in this cohort that
went extinct. If there is no origination, then
these numbers are equal and l is zero; if there
is no extinction, then equations (11) and (14)
are equivalent, so l 5 r.

It is important to repeat that the counts O
and E must exclude singletons; otherwise the
equations would not be valid. The equations
are easily derived from those involved in co-
hort analysis (Raup 1978), which is such a
well-established method that the failure of any
author to employ these equations prior to
Foote (1999) may come as a surprise. Indeed,
there seems to be no earlier case in which in-
stantaneous rate equations were used to study
diversity dynamics in the fossil record. Like-
wise, it appears that none of the standard
equations used by population ecologists (Mur-
ray 1997) correspond directly to equations
(11) or (14).

In practice, the newly defined instantaneous
rates yield virtually the same values as the sin-
gletons-excluded per-taxon rates of Alroy
(1996, 1998d). The parametric correlation be-
tween the new l and the old O/D is 10.983 (n
5 70; Fig. 7A); for m and E/D, it is 10.982 (Fig.
7B). Visually, the rates compare very closely,
the only consistent difference being higher
values yielded by the new equations during
times of intense turnover (e.g., around the
Cretaceous/Tertiary boundary at 65 Ma).
Thus, the earlier equations turn out to have
been excellent approximations of instanta-
neous rates. This result is predictable given
that the bin lengths in this study are uniform

and short relative to average turnover rates
(Foote 2000).

Another minor note is that whereas divid-
ing the rates by the amount of time within a
bin may be necessary in some studies, here the
use of uniform-length 1.0-m.y. bins renders
any such correction superfluous.

A point of some empirical interest is the im-
plied median duration of mammals implied
by these data. The average m value for the
whole Cenozoic is 0.2672; for the 55 post-Pa-
leocene data points, it is 0.2326. These figures
respectively imply median durations of 2.14
and 2.62 m.y., both being much greater than
(for example) an estimate of 1.7 m.y. based on
a very different analysis of an earlier version
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of this data set (Foote and Raup 1996). The dif-
ference has to do with the use in this study of
species-lineage computations (Alroy 1996,
1998d), a heuristic method for removing the
effects of pseudoextinction from the data.

In a companion study, Alroy et al. (2000)
compare the instantaneous rates with marine
oxygen isotope data for the last 60 m.y. This
would be dangerous if both time series
showed strong trends, because pairs of auto-
correlated time series typically show correla-
tions even when there are no causal relation-
ships between them. However, the fact that Al-
roy et al. (2000) did not examine the first five
of the ten highly volatile Paleocene data points
means that the turnover rate data do not show
strong trends or autocorrelation (Fig. 7A,B).
For example, for l plotted against time over
the last 55 m.y., r 5 10.178 (n.s.); for m vs.
time, r 5 10.152 (n.s.).

This lack of correlation is unexpected, be-
cause mammalian origination rates are known
to be negatively correlated with standing di-
versity levels (Alroy 1996, 1998d). Thus, one
would expect to see origination rates fall not
just slightly through time but dramatically as
diversity increased. The fact that they do not
makes it clear that the origination/diversity
correlation is really not some side effect of sec-
ular trends in both variables.

Indeed, one does find a very strong corre-
lation between l and log standing species
richness regardless of whether one examines
the last 65, 60, or 55 m.y. of the Cenozoic (r 5
20.809, 20.602, 20.456; p , 0.001). In con-
trast, m seems to bear a relationship to diver-
sity only if one includes Paleocene data points
in the regression (same temporal intervals: r 5
20.570, 20.224, 10.075; p , 0.001, n.s., n.s.).
Thus, the new data confirm earlier findings
(Alroy 1996, 1998d) that logistic growth in
North American mammals is governed by the
diversity dependence of origination rates, but
not of extinction rates, which are essentially
stochastic in the post-Paleocene interval.

The surprising thing about this result is that
all other things being equal, a simple logistic
curve should correlate with time, and hence
time should correlate with origination—but in
this case the time/diversity correlation quick-
ly breaks down. The reason is that the first few

data points include the initial climb; after that,
diversity merely fluctuates around an equilib-
rium (Fig. 6).

The important thing to keep in mind is that
before we even look to extrinsic variables like
climate to explain trends in turnover (e.g., Al-
roy et al. 2000), we already have a powerful
explanation for up to 65% of the variation in
origination rates that is related entirely to in-
trinsic factors—i.e., biotic interactions like
competition. Biotic interactions must be in-
voked here because no abiotic mechanism
could predict a strong correlation between
standing species richness and an origination-
rate time series with low autocorrelation and
no net temporal trend. By contrast, biotic in-
teraction models that make just such a predic-
tion are numerous (Rosenzweig 1975; Sepko-
ski 1978; Walker and Valentine 1984; Maurer
1989; Nee et al. 1992).

In addition to the l and m values (Fig. 7A,B;
supplementary material, Table 2), Alroy et al.
(2000) analyze three combined versions of
these two statistics that represent different as-
pects of turnover: net diversification, here
based on the difference of the instantaneous
rates; diversification volatility, which is the ab-
solute value of net diversification and repre-
sents the degree of net change in diversity in
an interval regardless of its direction; and to-
tal turnover, which is the sum of the instan-
taneous l and m values and represents the
amount of turnover in an interval regardless
of how much this turnover causes diversity to
change. None of these variables show strong
temporal trends or autocorrelation.

Relative Diversity of Major Taxonomic
Groups

Regional taxonomic richness is far from the
only relevant indicator of evolutionary trends.
It seems intuitive that ecological aspects of bi-
otas such as alpha diversity and trophic di-
versity should be influenced by climate
change, and much of the earlier literature on
fossil mammals reflects this assumption (e.g.,
Webb 1977; Stucky 1990; Janis 1993, 1997;
Gunnell et al. 1995; Morgan et al. 1995; Clyde
and Gingerich 1998). Quantifying these fea-
tures is far from easy. The most impressive
study regarding alpha diversity was that of
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FIGURE 8. Proportionate diversity histories of twelve major taxonomic groups. All orders with at least 20 known
genera are included, plus the paraphyletic stem group of ‘‘condylarths’’ that encompasses primitive ungulates.
Abbreviations: ‘‘Creo.’’ 5 Creodonta; ‘‘Lag.’’ 5 Lagomorpha; ‘‘Ples.’’ 5 Plesiadapiformes.

Stucky (1990), who nonetheless only was able
to compare the entire Paleocene–Eocene to the
entire Oligocene–Neogene. Based on the dif-
ficulties he encountered, working out a full
time series of alpha diversity values at 1.0-
m.y. resolution would probably take years of
effort. Likewise, earlier authors like Gunnell et
al. (1995) used categorical data in studying
trophic levels. Unfortunately, categorical data
are not amenable to time series analysis, and
obtaining good quantitative proxies of trophic
data might require assembling a very large
morphometric data set of the kind that Van
Valkenburgh (1988) assembled for carnivores
in selected faunas.

Because of these difficulties, here I will fo-
cus on two proxies of ecological disparity: the
relative taxonomic diversity of major, ecolog-
ically distinct orders, and the general shape of
the among-species body mass distribution.
Both of these indicators have been used by
other authors for similar purposes (e.g., Gun-
nell et al. 1995; Morgan et al. 1995).

At least in the North American Cenozoic

fossil record, only a handful of orders have
been relatively diverse at any one time (Alroy
1996). Most of these orders can easily be
equated with one of four important trophic
strategies distinguished by size (small vs.
large) and diet (faunivorous vs. herbivorous).
For example, mid- and late Cenozoic faunas
are dominated by the small-sized and fauni-
vorous Insectivora; the large and mostly fau-
nivorous Carnivora; the small and mostly her-
bivorous Rodentia; the slightly larger and her-
bivorous Lagomorpha; and the large and her-
bivorous Artiodactyla and Perissodactyla. The
situation is not so simple in the Cretaceous
and Paleocene, with a larger number of orders
each having moderate diversity levels (Fig. 8).
Most of these groups had evolved only inter-
mediate body sizes and do not show the ex-
treme adaptations for specialized diets of Re-
cent taxa. Because of the difficulty of assign-
ing members of these primitive groups to
ecological categories, and because of the like-
lihood that ecological roles evolved very
quickly in the early Tertiary, it is presumably
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FIGURE 9. Two measures of the proportional volatility
of ordinal diversity. A, Proportional volatility index:
sum of changes in proportional diversity of major
groups. B, Proportional volatility G-statistic: summary
of goodness-of-fit between observed and expected
counts of orginations and extinction within each time
interval and major group.

conservative to treat each of the major extinct
orders as a separate ecomorphologic entity.

Following an earlier study (Alroy 1996), this
analysis will focus on orders including at least
20 genera. The ordinal-level taxonomy of mar-
supials and primitive ungulates (‘‘condy-
larths’’) is in flux, so each of these superordi-
nal categories is treated as a unit. In practice,
lumping the condylarth groups has little ef-
fect because only one of the potential orders
(the Arctocyonia sensu McKenna and Bell
1997) would qualify as a ‘‘major’’ order by it-
self. The 12 major groups include four that are
entirely extinct (Multituberculata, Creodonta,
Plesiadapiformes, ‘‘condylarths’’), two that
went extinct in North America before the Ho-
locene (Metatheria exclusive of the late-Pleis-
tocene immigrant Didelphis, Primates), and six
that were extant throughout most of the Ce-
nozoic (Carnivora, Insectivora, Rodentia, La-
gomorpha, Artiodactyla, Perissodactyla).

Because absolute taxonomic richness is not
of concern here, the analysis focuses on pro-
portionate diversity curves for each of the
groups (Fig. 8). These are computed by divid-
ing the standing number of lineages in each
order at the beginning of each 1.0-m.y. time
interval by the total number of all mammalian
lineages at that time. To avoid sampling arti-
facts, the same randomly subsampled data are
used here as in the analysis of overall diversity
and turnover.

Two methods are proposed for collapsing
these relative diversity data. First, the data can
be reduced to a single variable here termed
the ‘‘proportional volatility index.’’ This is
simply the sum of the absolute values of the
differences between time slices in proportion-
ate diversity for each order. For example, if the
proportionate diversity of three groups is 0.1,
0.3, and 0.5 at time T and 0.1, 0.1, and 0.8 at
time T 1 1, then proportional volatility is 0 1
0.2 1 0.3 5 0.5. The index ranges between 0.0
and 1.0.

The resulting time series is shown in Fig. 9A
and in the supplementary material, Table 2.
The main point established by this statistic is
that large changes in relative taxonomic com-
position strongly track overall species-level
turnover rates; periods of rapid extinction
and/or speciation often witness certain

groups prospering at the expense of others. So
virtually every peak in this time series can be
matched with one in the origination and/or
extinction curves (Fig. 7A,B): its rank-order
cross-correlation with either variable over the
last 65 m.y. is significant and fairly strong (l:
r 5 10.425; t 5 3.729; p , 0.001; m: r 5 10.351;
t 5 2.975; p , 0.01).

A second way to summarize the data re-
moves any built-in correlation with turnover
rates. This involves computing a ‘‘proportion-
al volatility G statistic’’ that summarizes de-
partures of observed extinction and origina-
tion rates within groups from expected values
given random turnover. Expected values are
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based on observed average turnover rates
within groups:

T

ē 5 e T and (15)Oj i, j1 2@i51

T

ō 5 o T, (16)Oj i, j1 2@i51

where e 5 the per-species extinction rate, o 5
the per-species origination rate, i 5 the index
variable for the T time intervals, and j 5 the
index for the N orders. Assuming as a null hy-
pothesis that underlying turnover rates are rel-
atively constant among groups but vary among
time intervals, the expected values are

N

e RO i, k i,k
k51

Ê 5 ē R (17)i, j j i, jN

ē RO k i,k
k51

N

o RO i, k i,k
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Ô 5 ō R , (18)i, j j i, jN

ō RO k i,k
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where R 5 species richness of the jth order at
the beginning of the ith time interval (set to
one instead of zero if the order first appears
during this interval). The next step is to com-
pute the G statistic for the goodness-of-fit be-
tween observed and expected absolute fre-
quencies within each time interval:

N Ne R o Ri, j i, j i, j i, j
G 52 e R ln 1 o R ln .O Oi i, j i, j i, j i, jˆ ˆ1 2E Oj51 j51i, j i, j

(19)

The statistic is modified by Yates’s correc-
tion for continuity (Sokal and Rohlf 1995: p.
730), both for the sake of conservativeness and
in order to increase the likelihood that each
computed value of G will have a similar num-
ber of degrees of freedom. The correction in-
volves adjusting the expected values upwards
or downwards by 0.5 depending on whether
they fall short of or exceed the observed val-
ues. The resulting G values are shown in Fig-
ure 9B and in the supplementary material, Ta-
ble 2. High values indicate that the propor-
tional richness of the orders has shifted more

quickly than expected at random; values close
to zero indicate that random turnover can ex-
plain these proportional shifts. Unlike the
simpler proportional volatility index, the
rank-order correlation between the G statistic
and extinction is near zero (n 5 65; r 5
20.191; t 5 1.083; n.s.), although there is still
a residual correlation with origination (r 5
10.272; t 5 2.241; p , 0.05). Although the
asymmetry here is not overwhelming, it sug-
gests that major replacements among orders
may be mediated by bursts of speciation in
‘‘winning’’ groups, not bursts of extinction in
‘‘losing’’ groups.

As discussed by Alroy et al. (2000), the
dominant feature of the G value time series is
a major biotic transition at the Paleocene/Eo-
cene boundary (55.5-Ma bin), although three
additional peaks have biological significance
(earliest Paleocene, 64.5 Ma; mid-Eocene, 46.5
Ma; mid-Oligocene, 28.5 Ma). Although the
earliest Paleocene and Paleocene/Eocene
events are associated with major spikes in
origination rates, the other two are not, as one
might expect from the essential independence
of the new statistic from underlying turnover
rates. In fact, some dramatic turnover events
including an extinction pulse in the 57.5-Ma
bin are barely reflected by the G statistic.

Body Mass Distributions

General Patterns. Among-species body mass
distributions have been the subject of consid-
erable study in both the paleobiological and
macroecological literature (e.g., Alroy 1998b;
Clyde and Gingerich 1998; Brown and Nico-
letto 1991). Here I argue for summarizing
these distributions using four simple univar-
iate statistics: the mean, standard deviation,
skewness, and kurtosis (Fig. 10; supplemen-
tary material, Table 3). Earlier studies employ-
ing these data focused just on the mean and
standard deviation (Alroy 1999a,b). Values are
presented here for individual distributions
within each 1.0-m.y. sampling bin (Fig. 10).
All species ranging into each bin were includ-
ed in the calculations, so unlike the boundary-
crossing diversity counts (see above) these
statistics describe a time-averaged population
and do not control for sampling intensity.
Time-averaging may introduce perceptible
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FIGURE 10. Univariate statistics describing body mass distributions. Line shows statistics describing the distri-
bution of body mass estimates across all species ranging into each 1.0-m.y.-long sampling bin; points show same
statistics for 133 local faunal assemblages from a narrow geographic area within the Western Interior. Each assem-
blage includes at least 25 species. A, Mean. B, Standard deviation. C, Skewness. D, Kurtosis.

distortions, but this step was made unavoid-
able by the need to guarantee reasonable sam-
ple sizes. The median Cenozoic bin includes
83 species, and the range is 30 (31–30 Ma) to
174 (15–14 Ma). Also, sampling intensity is
unlikely to be important because statistics like
the mean and standard deviation are designed
to show no systematic relationship to sample
size (even though the random error in these
statistics does decrease as more data are ac-
quired).

The generally monotonic trend throughout
the Tertiary toward a higher mean and a larg-
er standard deviation has been discussed else-
where (Alroy 1998b, 1999a,b). The new data
confirm the earlier results and do not need to
be discussed in detail. However, the data for
skewness and kurtosis (Fig. 10C,D) are both of
note. The skewness data suggest a long-term

drift toward negative values, meaning that the
distribution’s mode has shifted from being rel-
atively low to being relatively high. The pat-
tern is consistent with the nonlinear within-
lineage evolutionary dynamic documented by
Alroy (1998b), which predicts that lineages
will actively evolve upwards from the middle
size range and therefore shift the overall mode
upwards. However, the trend reverses abrupt-
ly toward the very end of the Miocene (i.e.,
around 6 Ma), which may be explained by a
shift in proportional diversity away from un-
gulates and toward rodents (Fig. 8) (see also
Alroy 1996; Fig. 8). Notably, no extraordinary
patterns are seen either in turnover rates or in
proportional volatility statistics at this time.

Meanwhile, the kurtosis data suggest a sud-
den shift toward negative (platykurtic) values
during the mid-Eocene. This pattern involves
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the opening up of the middle size range,
which creates a bimodal distribution (also vis-
ible in the raw data of Alroy 1998b). The shift
may be attributable to environmental pertur-
bations such as increased seasonality; further
details including a possible connection to
global climate changes are discussed by Alroy
et al. (2000).

Local-Scale Data. An issue of concern is the
fact that the per-bin values used to construct
these curves are based on lumped, time-av-
eraged data for the entire continent. Therefore,
the sets of species that are examined in each
bin do not constitute actual ecological assem-
blages pertaining to individual habitats. This
is worrisome because very different body
mass distributions have been observed at lo-
cal, regional, and continental scales in Recent
North American mammals (Brown and Ni-
coletto 1991).

Can similar differences be demonstrated
using paleontological data? Unfortunately, the
answer appears to be no at this time. In ad-
dition to overall continental values, Figure 10
also presents univariate statistics for 133 di-
verse fossil assemblages that span the Ceno-
zoic. Each assemblage includes at least 25 spe-
cies. For this analysis, body masses of species
lacking direct estimates and masses of specif-
ically indeterminate but generically determi-
nate taxa were estimated on the basis of
among-species generic means. Figure 10 illus-
trates only assemblages that fall within a geo-
graphic rectangle spanning 35–468N and 98–
1128W (essentially Kansas, Nebraska, South
Dakota, Colorado, Wyoming, and parts of ad-
jacent states to the south and west); another 33
equally diverse assemblages were excluded.
The region spans less than 6% of the area of
North America, includes 2966 (60%) of the
4978 lists, and is roughly comparable to a sin-
gle biome (see Brown and Nicoletto 1991).

The scatter of the points representing these
local assemblages suggests three general con-
clusions: (1) Data are not completely adequate
to establish a reliable time series of local-scale
data points for the entire Cenozoic, with sig-
nificant gaps in the mid-Tertiary. (2) Even
within a relatively narrow time slice, the scat-
ter of points for any variable may be extreme
(e.g., data falling at about 15 Ma). (3) Relative

to continental data, local data consistently un-
derestimate the standard deviation and over-
estimate kurtosis, for which a minority of as-
semblages exhibit extraordinarily high values.
Mean and skewness values show less system-
atic departures, although the amount of scat-
ter seems to increase through time.

The highly variable local-scale mean, stan-
dard deviation, and skewness values all sug-
gest taphonomic effects. Faunal assemblages
that are largely restricted to large mammals
exhibit high means and low skewness; small-
mammal assemblages exhibit opposite pat-
terns; and both types of size-biased assem-
blages exhibit low standard deviations. The
number of size-biased assemblages seems to
increase going into the Neogene. As for kur-
tosis, this statistic seems vulnerable to clumps
of tied or nearly tied values in distributions
with relatively small numbers of species like
those seen in the local-scale data. Thus, the
differences between local- and continental-
scale data for these variables have no neces-
sary biological basis. In general, the scatter is
not attributable to biogeographic or climatic
signals because the localities are restricted to
a geographic area that is simply too small to
pick up such signals.

Given the present evidence, local-scale data
are simply not complete or reliable enough to
be interpreted biologically. Thus, it seems that
no meaningful paleoecological conclusions
can be drawn on the basis of local assemblages
including just 20 or 30 species. Some of the
small-scale variation in the continental data
also may relate to taphonomic effects. How-
ever, given the wide variation among samples
that is suggested by Figure 10, the relatively
steady, long-term trends seen in all four con-
tinental-scale curves are likely to reflect bio-
logical signals. Indeed, the continental data
appear to benefit by sampling rare species and
canceling out opposed biases in local assem-
blages. The asymptotic approach of continen-
tal data to underlying values is suggested by
the very fact that departures of individual
samples from the overall trend are so easily at-
tributed to taphonomic effects.

Use of Cenograms. At least for continental
or regional data sets, univariate moment sta-
tistics may capture meaningful biological sig-
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nals. Nonetheless, these statistics are not nor-
mally used by paleobiologists to describe
mammalian body mass distributions (but see
Clyde and Gingerich 1998). Instead, a large
body of literature has emphasized mostly
qualitative interpretations of log mass versus
rank of mass plots called ‘‘cenograms’’ (Le-
gendre 1989). In addition to the fact that local
body mass distributions appear to be extraor-
dinarily variable for reasons of sampling,
there are at least five strong reasons to reject
this method in favor of moment statistics.

First, most quantitative methods related to
cenogram analysis (e.g., computation of slopes
across parts of cenogram plots, or counts of
species in particular body mass categories) re-
quire defining arbitrary splits of the body
mass spectrum (e.g., Gingerich 1989; Wilf et
al. 1998). Moment statistics require no arbi-
trary assumptions: the data are not binned
into size categories. Furthermore, these statis-
tics are universally employed in scientific
analyses of frequency distributions.

Second, much of the key information rep-
resented by cenograms is captured by mo-
ment statistics: skewness indicates higher spe-
cies richness in either small or large body
mass categories, and negative kurtosis indi-
cates the presence of a gap in the medium size
range.

Third, the key information not captured by
moment statistics is species richness, which
partially determines the slopes of cenogram
plots. Richness is notoriously hard to estimate
in mammalian fossil assemblages. Of the 4978
faunal lists currently in the database, only 690
(13.9%) include at least 10 identified species,
212 (4.3%) at least 20, and just 54 (1.1%) at
least 30—but Recent mammalian assemblages
almost always include more than 20 terrestrial
species. Temperate North American assem-
blages have been severely disturbed by the an-
thropogenic extinction of dozens of geograph-
ically wide-ranging large mammals (Alroy
1999b), and yet Brown and Nicoletto (1991)
still found an average of 28 species in 24 North
American habitats, with a minimum of 18.
Tropical richness is still higher: Patton et al.
(2000) found an average of 42 species (range
37–49) in seven habitats scattered across the
western Amazon.

The possibility that many cenograms have
been misinterpreted because of failure to rec-
ognize undersampling has been raised by oth-
er authors (e.g., Morgan et al. 1995; Wilf et al.
1998). In any event, the cenogram method
conflates richness and the range of body mass
in the form of a single statistic (the slope),
which is a needless waste of information.

Fourth, empirically speaking there is no ev-
idence that cenograms bear a strong and sys-
tematic relationship to independent measures
of climate and habitat. In an exhaustive study,
Rodriguez (1999) found few strong rank-or-
der correlations between 16 different quanti-
tative body mass measures based on ceno-
gram analysis and eight important measures
of climate and vegetation. Furthermore, rela-
tionships that were specifically predicted by
earlier authors were not found.

Fifth and last, it is clear that the mammalian
body mass spectrum was not nearly filled
during the early, and arguably even middle,
Tertiary. The main reason for this fundamen-
tal difference was an evolutionary lag follow-
ing the opening of the high end of the body
mass spectrum in the wake of the Cretaceous/
Tertiary mass extinction (Wing and Tiffney
1987; Alroy 1998b, 1999a). Therefore, strictly
ecological interpretations that hinge on ob-
serving low species richness among medium-
or large-sized mammals are meaningless in
the Paleogene. This issue has been raised but
not explored in detail by earlier authors (e.g.,
Morgan et al. 1995).

Conclusions

Over the last few years, much ink has been
spilt over methodological issues related to the
preparation of macroevolutionary time se-
ries—and I am among the culprits. Indeed,
this paper argues for modifying almost every
step of the analysis that I outlined in an even
more lengthy paper just two years ago (Alroy
1998d). These seemingly endless methodolog-
ical revisions beg the question of whether the
additional effort really matters.

The answer is both yes and no, depending
on the biological signal at hand. The complex
new methods for maximimum likelihood ap-
pearance event ordination, calibration of the
appearance event sequence, and randomized
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subsampling of faunal lists all seem to gen-
erate much the same patterns. Likewise, turn-
over rates computed with either the new equa-
tions of Foote (1999, 2000) or the older equa-
tions of Alroy (1996, 1998d) yield almost iden-
tical values, at least for this particular data set.

Each of these methods, however, has a very
firm conceptual justification. For example, the
maximum likelihood approach makes it pos-
sible to explicitly test for the importance of
differences among taxa in sampling probabil-
ities; the new calibration method makes use of
as much information as possible; variations on
subsampling methods bring assumptions
about alpha diversity to the foreground; and
Foote’s equations directly capture the instan-
taneous turnover rates that are of fundamental
concern in macroevolution.

Much more importantly, though, this study
again highlights the importance of not pre-
paring diversity data using traditional ap-
proaches. The level of precision in the under-
lying age ranges could not have been obtained
using the conventional mammalian timescale
(Alroy 1998c), correcting for variation in sam-
pling intensity has an enormous impact (Al-
roy 1998d), and both Foote’s equations and the
older ones used by this author have robust
properties (Foote 2000).

Of possibly greater interest are this paper’s
new, simple approaches for quantifying body
mass distributions and changes in the propor-
tional diversity of major groups. These meth-
ods could be applied easily to many different
data sets, and paleobiologists should consider
adding them to the roster of fundamental
macroevolutionary variables. Examining these
new variables is important because they cap-
ture distinct patterns of undoubted biological
interest. Body mass and proportional diver-
sity data not only emphasize the importance
of the well-known Cretaceous/Tertiary and
Paleocene/Eocene transitions, but point to ad-
ditional shifts that otherwise might have been
overlooked because they are not marked by
extraordinarily high origination and extinc-
tion rates (e.g., mid-Eocene, mid-Oligocene).

The fact that major biotic transitions some-
times register in such different ways suggests
that simple models of biotic change may be
too limiting—no model of diversity dynamics

could have predicted a second major ecomor-
phological transition just a few million years
after the Paleocene/Eocene event. This study’s
discovery of such unexpected patterns high-
lights the importance of exploring new mac-
roevolutionary methods.
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gène (Éocène supérieur et Oligocène) d’Europe occidentale:
structures, milieux et évolution. Münchner Geowissenschaf-
tliche Abhandlungen, Reihe A, Geologie und Paläontologie
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