
Learnability of Probabilistic Automata via
Oracles

Omri Guttman, S.V.N. Vishwanathan, and Robert C. Williamson

Statistical Machine Learning Program
National ICT Australia

RSISE, Australian National University
Canberra, ACT, Australia.

{Omri.Guttman,SVN.Vishwanathan,Bob.Williamson}@nicta.com.au

Abstract. Efficient learnability using the state merging algorithm is
known for a subclass of probabilistic automata termed µ-distinguishable.
In this paper, we prove that state merging algorithms can be extended
to efficiently learn a larger class of automata. In particular, we show
learnability of a subclass which we call µ2-distinguishable. Using an ana-
log of the Myhill-Nerode theorem for probabilistic automata, we analyze
µ-distinguishability and generalize it to µp-distinguishability. By combin-
ing new results from property testing with the state merging algorithm
we obtain KL-PAC learnability of the new automata class.

1 Introduction

In this paper we investigate the following question: given a finite set of samples
drawn from a target distribution1 generated by a probabilistic automaton such
that the suffix distribution from any two states of the automata can be distin-
guished efficiently by an oracle; can we learn this distribution efficiently? The
definition of an oracle as well as our notion of efficiency is defined rigorously in
the following sections.

Probabilistic deterministic finite automata (or PDFA) are stochastic exten-
sions of deterministic finite automata (DFA), a well studied class of formal mod-
els (see e.g. Hopcroft and Ullman, 1979). The PDFA class finds uses in a variety
of areas in pattern recognition and machine learning including computational
linguistics, time series analysis, computational biology, speech recognition, and
network intrusion detection (see e.g. Vidal et al., 2005a,b). The problem of learn-
ing PDFA efficiently from sample data is therefore of significant practical im-
portance.

Many researchers have investigated the KL-PAC learnability of PDFA. There
are indications that the general problem of PDFA learning is hard. For instance,
Kearns et al. (1994) showed that KL-PAC learnability of PDFA implies the

1 Note that we assume the samples are drawn from the target distribution, and there-
fore our framework differs from the distribution-free setting.

computability of the noisy parity function, thus violating the noisy parity as-
sumption, widely believed to be true in the cryptography community (see e.g.
Kearns, 1993). This is demonstrated by showing how by KL-PAC learning a
specific family of (acyclic) PDFA, one can evaluate the noisy parity function2.

On the other hand, Ron et al. (1995) showed that a subclass of acyclic PDFA,
which they call µ-distinguishable, can be efficiently learned using the state merg-
ing algorithm. Clark and Thollard (2004) extended this result to PDFA with
bounded expected suffix length from every state. Roughly speaking, for an au-
tomaton in this subclass, given any two states there exists at least one string
whose suffix probability from the two states differs by at least µ. In other words,
the suffix distribution of any two states of the PDFA are at least µ apart in the
L∞ distance. The state merging algorithm uses an efficient test to distinguish
between suffix distributions.

However, the L∞ distance between two distributions can often be misleading.
Consider two extreme cases: let, D1 and D2 be distributions over {1, . . . , 2n}.
Furthermore, let D1(i) = 1/n for i = 1 . . . n and 0 otherwise, while D2(i) = 1/n
for i = n + 1 . . . 2n and 0 otherwise. Clearly, D1 and D2 have disjoint support,
but ||D1 −D2||∞ is only 1/n. On the other hand, even if D1 and D2 agree on
all but two elements, ||D1 − D2||∞ could potentially be large. The class of µ-
distinguishable automata may therefore be unsatisfactory, and we would like to
guarantee learnability of a more general family.

In Carrasco and Oncina (1999) it was shown that corresponding to every dis-
tribution induced by a PDFA there exists a canonical PDFA with the minimal
number of states which induces the same distribution. Furthermore, the suffix
distributions of the states of the canonical PDFA are unique. Therefore, if we
are given an oracle which can distinguish between two suffix distributions, we
can learn the PDFA. In this paper we show how the state merging algorithm
can use an oracle to learn µp-distinguishable PDFA. Our definition of µp distin-
guishability is a generalization of µ-distinguishability. The suffix distributions
of any two states of a µp-distinguishable PDFA are at least µ apart in the Lp

distance for some 1 ≤ p ≤ ∞.
In order to distinguish between suffix distributions we use property testing

algorithms. Given the ability to perform local queries, property testing algo-
rithms aim to determine if an object satisfies a particular property or is far from
satisfying it. These algorithms are typically sub-linear because they perform the
task by inspecting only a fraction of samples drawn from the global object, and
typically provide bounds on the probability of failure (see e.g. Ron, 2001).

For our purposes, property testing algorithms act as an oracle in the following
sense: Given a norm ||·|| and two distributions D1 and D2 over Σ∗, the algorithm
outputs ACCEPT with probability at least 1− δ whenever ||D1 −D2|| < ε and
it outputs REJECT with probability at least 1 − δ whenever ||D1 − D2|| >

2 We mention in passing that even in the weaker, L1-PAC learning model, we have
shown, and will publish elsewhere, that general PDFA learnability still violates the
noisy parity assumption. This implies that the difficulty is inherent to PDFA learn-
ing, and not merely an artifact of the KL-divergence.

2

ε′, (ε′ > ε). In particular, using a property testing algorithm described in Batu
et al. (2000) we present a modified state merging algorithm for learning µ2-
distinguishable PDFA efficiently.

Characterization of the family of PDFA which can be learned efficiently is
a deep question for which only partial answers are known so far. For instance,
it is well known that the noisy parity counterexample construction of Kearns
et al. (1994) is not µ-distinguishable. In fact, for every p > 1, the automaton’s
µp-distinguishability decays exponentially with the number of states. Yet it is
readily shown (Murphy, 1996) that this family of automata is µ1-distinguishable
whilst remaining hard to learn. The lower bounds for L1 distance testing proven
by Batu et al. (2000) also imply that learning µ1-distinguishable PDFA (using
state merging) is hard. We seek to understand the criterion which implies efficient
PDFA learning and this paper is a step in that direction.

We begin by formalizing our notation in Sect. 2 and review the Myhill-Nerode
theorem and its analog for PDFA in Sect. 3. Section 4 is devoted to a descrip-
tion of µp-distinguishability. In Sect. 5 we describe our modified state merging
algorithm. In Sect. 5.1 we demonstrate a particular instance of our algorithm for
learning µ2-distinguishable automata, and establish its polynomial sample and
computational complexity. We conclude with a discussion of possible extensions
and interesting research directions.

2 Notation

For concepts related to PDFA learning, we adopt the notation of Clark and
Thollard (2004) where applicable. We also use the notation of Batu et al. (2000)
when we discuss property testing over distributions.

We use Σ to denote a discrete alphabet consisting of |Σ| elements, and by Σ∗

we denote the set of finite (but unbounded) length sequences over Σ. A subset
L ⊆ Σ∗ is called a formal language. A distribution D over Σ∗ is a function which
assigns a probability D(s) to all sequences s ∈ Σ∗, such that 0 ≤ D(s) ≤ 1, and∑

s∈Σ∗ D(s) = 1. The distribution D is also called a stochastic language.
A PDFA, denoted by A, is a tuple (Q,Σ, q0, qf , ζ, τ, γ), where Q is a finite

set of states, q0 ∈ Q is the initial state, qf /∈ Q is the final state, ζ /∈ Σ is the
termination symbol, τ : Q×Σ ∪ {ζ} → Q ∪ {qf} is the transition function, and
γ : Q × Σ ∪ {ζ} → [0, 1] is the next symbol probability function. γ(q, σ) = 0
for any σ ∈ Σ when τ(q, σ) is not defined. From each state q ∈ Q, the sum of
output probabilities must be one:

∑
σ∈Σ∪{ζ} = 1.

A labelled graph G = (V,E) is defined by a set of nodes V and a set of labelled
edges E ⊆ V × Σ × V . Every PDFA A has an associated underlying labelled
graph GA. When it is clear from context we will use G and GA interchangeably.

All transitions which emit the ζ symbol point to the final state. The functions
γ and τ can be recursively extended to strings: γ(q, σ1σ2 . . . σk) = γ(q, σ1) ·
γ(τ(q, σ1), σ2 . . . σk), and when γ(q, σ1σ2 . . . σk) > 0, we have τ(q, σ1σ2 . . . σk) =
τ(τ(q, σ1), σ2 . . . σk).

3

A PDFA thus induces a distribution, or in other words, a stochastic regular
language over Σ∗, with PA(s) = γ(q0, sζ), the probability of generating the
string s. We define PA

q (s) = γ(q, sζ) to be the suffix distribution of the state q.
Given two distributions D1 and D2 over Σ∗, we will use the following notions

of distance:

– For 1 ≤ p < ∞, the Lp distance between D1 and D2 is defined as:

‖D1 −D2‖p =
∑

s∈Σ∗

[
|D1(s)−D2(s)|p

]1/p

.

– In the p →∞ limit, the resulting L∞ distance, is defined as:

‖D1 −D2‖∞ = max
s∈Σ∗

|D1(s)−D2(s)| .

– The KL-divergence between D1 and D2 is defined as:

KL(D1‖D2) =
∑

s∈Σ∗

D1(s) log
(

D1(s)
D2(s)

)
.

Note that the KL divergence is not a metric. As shown in Cover and Thomas
(1991), for any pair of distributions D1 and D2, it holds that KL(D1‖D2) ≥

1
2 ln 2‖D1 − D2‖21, which in turn upper-bounds all Lp-distances. Where ap-
propriate, we will use the notation KL(A||Â) to denote KL(PA||P bA).

We will use the following notion of learnability, due to Clark and Thollard
(2004):

Definition 1 (KL-PAC). Given a class of distributions D over Σ∗, an algo-
rithm KL-PAC learns D if there is a polynomial q(·) such that for all D ∈ D,
ε > 0 and δ > 0, the algorithm is given a sample S of size m and produces a
hypothesis D̂, such that Pr

[
KL(D ‖ D̂) > ε

]
< δ whenever m > q(1/ε, 1/δ, |D|).

By |D| we denote some measure of the complexity of the target. The algorithm’s
running time is bounded by a polynomial in m plus the total length of the strings
in S.

The definition of Lp-PAC learnability is analogous, with the corresponding
change in distance measure.

3 Characterization Theorem for Suffix Distributions

In the theory of formal languages, the well known Myhill-Nerode theorem pro-
vides a necessary and sufficient condition for a language to be regular, and thus
accepted by a DFA (see e.g. Hopcroft and Ullman, 1979). The theorem states
that a language is regular if and only if it is the union of some equivalence
classes of a right invariant equivalence relation of finite index. Definitions of the
key concepts in the theorem are:

4

– For a given pair of strings x, y ∈ Σ∗ and a formal language L, a right
invariant equivalence relation ”∼” is defined by:

x ∼ y ⇐⇒ (xz ∈ L ⇐⇒ yz ∈ L) ∀z ∈ Σ∗.

– The index of a language is defined as the number of its equivalence classes.

A analogous theorem for PDFA is due to Carrasco and Oncina (1999). The
concept of a right equivalence relation for a stochastic language is as follows:

– For a given pair of strings x, y ∈ Σ∗, and a stochastic language L generated
by a PDFA A, a stochastic right invariant equivalence relation ”∼” is defined
by:

x ∼ y ⇐⇒ PA(xz) = PA(yz) ∀z ∈ Σ∗.

The modified theorem now states that a stochastic language is generated by
a PDFA if and only if it is the union of some equivalence classes of a stochastic
right invariant equivalence relation of finite index.

A canonical generator is defined to be the PDFA with the minimal number of
states generating a given stochastic regular language L (Carrasco and Oncina,
1999). Using the definition of the right invariant equivalence relation and the
minimality of the canonical generator, it can be shown that the suffix distribution
of every state q of the canonical generator is distinct. In other words, given
an oracle which can distinguish between suffix distributions, we can learn the
distribution induced by a PDFA by identifying the right invariant equivalence
classes. In Sect. 4 we show that the state merging algorithm for learning µ-
distinguishable automata implicitly uses such an oracle which exploits the L∞
distance between suffix distributions. We then extend the algorithm to use other
oracles, guaranteeing learnability of a larger class of PDFA.

4 µp-Distinguishability

The general PDFA learning problem is hard, and therefore additional conditions
are required before attempting to provide an efficient learning algorithm. The
concept of µ-distinguishability was first introduced by Ron et al. (1995), where
it was shown to be sufficient for KL-PAC learning of acyclic PDFA.

Definition 2 (µ-distinguishability). Given a PDFA A = (Q,Σ, q0, qf , ζ, τ, γ),
two states q, q′ ∈ Q are µ-distinguishable if there exists a string s ∈ Σ∗ such that
|γ(q, sζ)− γ(q′, sζ)| ≥ µ. A PDFA A is µ-distinguishable if every pair of states
in it are µ-distinguishable.

Recently, Clark and Thollard (2004) extended the result to general PDFA learn-
ing, while imposing an additional condition, namely an upper bound on the
expected suffix length from all states.

We seek to understand which criteria will in fact enable efficient testing for
discrimination between distributions. For instance, µ-distinguishability is equiv-
alent to demanding that ||PA

q − PA
q′ ||∞ ≥ µ for every q, q′ ∈ Q. This provides

5

for an efficient and accurate test for deciding whether or not two distributions
over strings are similar (i.e. drawn from the same suffix distribution). We argue
in Sect. 5 that such efficient and accurate testing can in fact be achieved using
relaxed conditions, which in turn also guarantee KL-PAC learnability.

4.1 Definition of µp-Distinguishability

Definition 3 (µp-distinguishability). Given a PDFA A = (Q,Σ, q0, qf , ζ, τ, γ),
two states q, q′ ∈ Q are termed µp-distinguishable if the Lp distance between their
respective suffix distributions is at least µ. Written out in terms of the individual
suffix probabilities, the condition becomes:

‖PA
q − PA

q′ ‖p ≥ µ.

A PDFA is µp-distinguishable if every pair of states in it are µp-distinguishable.

Note that for p = ∞ we recover the original µ-distinguishability condition.
Moreover, for any distribution D over Σ∗, if 1 ≤ p1 < p2 ≤ ∞ then we have
‖D‖p1 ≥ ‖D‖p2 ; hence the µp1-distinguishable class properly contains the µp2-
distinguishable class.

5 State Merging with Oracles

In order to describe how state merging algorithms can use oracles to learn PDFA
distributions, we first provide a modular analysis of the proof due to Clark and
Thollard (2004), and then extend it to deal with oracles. In particular, we show
that the state merging algorithm may be decoupled into two parts:

– A construction algorithm which iteratively builds the PDFA graph and sets
the transition probabilities.

– An oracle, which enables efficient and accurate testing for whether or not
two sample sets were drawn from two distinct suffix distributions.

Given such an oracle, the state merging algorithm will induce a PDFA such
that with high probability, the KL-divergence between target and induced dis-
tributions can be made arbitrarily small.

The learning algorithm is given the following parameters as input: an alpha-
bet Σ, an upper bound on the expected length of strings generated from any
state of the target L, an upper bound on the number of states of the target n,
a confidence parameter δ and a precision parameter ε. Pseudocode for the state
merging algorithm is given in Algorithm 1 (Appendix A), while a full description
can be found in Sect. 3 of Clark and Thollard (2004).

For our purposes, an oracle is a black-box which can distinguish between
suffix distributions. More formally:

6

Definition 4 (Oracle). Given a class H of PDFA, an oracle OH is said to
(δ,m)-match the class H if for any PDFA A ∈ H and for any pair of states q, q′

in A, given sample sets of at least m samples drawn as suffixes from q and q′,
the oracle can determine with probability at least 1 − δ whether or not the two
sets were drawn from suffix distributions of the same state.

The learning algorithm we use is analogous to the state merging algorithm
described in Clark and Thollard (2004), with the oracle OH testing whether to
merge a hypothesized candidate state (see Definition 5) with an existing one, or
to construct a new state. This leads to our main result:

Theorem 1. Let H be a class of PDFAs over the alphabet Σ, ε > 0, δ > 0, L
and n positive integers, and δ1, δ2, ε1,m2 as defined in (1) and (2) (Appendix B).

Suppose OH is a (δ1,m1)-matching oracle for H. For every n-state PDFA
A ∈ H such that the expected length of the string generated from every state is
less than L, with probability 1− δ over a random draw of max(m1,m2) samples
generated by A, Algorithm 1 produces an hypothesis PDFA Â such that KL(A ‖
Â) < ε.

Our proof closely follows Clark and Thollard (2004), with a number of key
changes:

– In the original proof, distinguishability between two states’ suffix distribu-
tions (with high probability) is inherent to the sample size bounds. In our
case, the oracle provides the distinguishing test, so the size of the multiset
drawn at each step of the algorithm is reformulated to reflect this (see (1),
Appendix A).

– In our case, two sources of randomness are present: the randomly drawn
sample sets and the oracle. To bound the probability of error, both sources
need to be accounted for.

With the exceptions noted above, the original proof is directly transferable
to our setting. The proof sketch can be found in Appendix B.

5.1 Learning µ2 Efficiently

We use a result on testing distribution proximity in L2 due to Batu et al. (2000)
to show learnability of the µ2-distinguishable class. The result applies to distri-
butions over discrete sets, and the computational complexity does not depend
on the size of the set. Specifically, for Algorithm L2-Distance-Test described in
Appendix C the following is proven:

Theorem 2 (Batu et al. (2000)). Given a parameter δ and m = O(1
ε4) sam-

ples drawn from distributions D1 and D2 over a set of n elements, if ‖D1 −
D2‖2 ≤ ε/2, Algorithm L2-Distance-Test will output ACCEPT with probability
at least (1 − δ). If ‖D1 − D2‖2 ≥ ε then the algorithm outputs REJECT with
probability at least 1− δ. The running time of the algorithm is O

(
ε−4 log 1

δ

)
.

7

Note that the running time of the test is independent of n. As a consequence
of Theorem 2, the L2-Distance-Test algorithm can serve as a

(
δ, C2

ε4

)
-matching

oracle for the µ2-distinguishable PDFA class, where C2 is a constant hidden in
the asymptotic notation. Thus, as a direct consequence of Theorem 1 and the
L2 matching oracle, we have the following lemma:

Lemma 1. The µ2-distinguishable class is efficiently learnable.

6 Discussion and Conclusion

We introduced µp-distinguishable automata, which generalize the concept of µ-
distinguishable automata. Using a new modularized analysis we extended the
proof of KL-PAC learnability of µ-distinguishable automata via the state merg-
ing algorithm. This new insight allows us to extend state merging to use oracles.
We use an existing L2 property testing algorithm to learn µ2-distinguishable
automata efficiently via state merging.

In the noisy parity PDFA family, the µ1-distinguishability is a constant, while
the µ2-distinguishability is O(2−n/2) and the µ∞-distinguishability is O(2−n)
(where n denotes the number of states). By setting n = α log t we obtain for
this family a µ2-distinguishability of O(t−α/2), and a µ∞-distinguishability of
O(t−α). Thus, we have exhibited a class for which our modified state merging
algorithm outperforms the original by an arbitrary polynomial factor.

A natural problem for further research regards the efficient learnability of
µp-distinguishable PDFA classes for the different values of p. We conjecture that
for p > 1, these classes are indeed efficiently learnable.

Acknowledgements

We thank Alex Smola for insightful discussions. National ICT Australia is funded
by the Australian Government’s Department of Communications, Information
Technology and the Arts and the Australian Research Council through Backing
Australia’s Ability and the ICT Center of Excellence program.

References

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that
distributions are close. In Proc. 41st Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS), pages 259–269. IEEE Computer Society, 2000.

R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. Theoret. Inform. and Appl., 33(1):
1–20, 1999.

A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5:473–497, 2004.

T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

8

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, Massachusetts, first edition,
1979.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc.
25th Annu. ACM Sympos. Theory Comput. (STOC), pages 392–401. ACM
Press, New York, NY, 1993.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On
the learnability of discrete distributions. In Proc. 26th Annu. ACM Sympos.
Theory Comput. (STOC), pages 273–282, 1994.

K. Murphy. Passively learning finite automata. Technical report, Santa Fe
Institute, 1996.

D. Ron. Property testing. In S. Rajasekaran, P. Pardalos, J. Reif, and
J. Rolim, editors, Handbook of Randomized Computing, volume II, pages 597–
649. Kluwer Academic, 2001.

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. In Proc. 8th Annu. Conf. on Comput. Learning
Theory, pages 31–40. ACM Press, New York, NY, 1995.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines – Part I. IEEE Trans. Pattern Anal. Mach.
Intell., 2005a. URL http://www.dlsi.ua.es/∼carrasco/papers/pami04 1.
pdf. to appear.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines – Part II. IEEE Trans. Pattern Anal. Mach.
Intell., 2005b. URL http://www.dlsi.ua.es/∼carrasco/papers/pami04 2.
pdf. to appear.

A Pseudocode for the State Merging Algorithm

Pseudocode for the state merging algorithm is provided in Algorithm 1 below.
The algorithm is guaranteed to learn (with high probability) a PDFA class H,
for which a matching oracle is provided.

The number of oracle queries performed at each step of the state merging
algorithm is upper bounded by n2|Σ|, as there are at most n nodes in the graph at
any time and at most n|Σ| candidate nodes. When the algorithm runs correctly
there are at most n|Σ|+2 steps. Therefore, over a complete run of the algorithm
the number of oracle calls is at most n2|Σ|(n|Σ|+ 2).

B Proof Sketch of Theorem 1

We present a proof sketch using the notation of Clark and Thollard (2004), and
provide exact references to the original proof where appropriate. We begin by
decomposing our proof into the following modules:

9

Algorithm 1: State merging with oracle

Input: Σ (input alphabet), L (upper bound on the expected length of strings
generated from any state), n (upper bound on the number of states),
OH (a (δ1, m1)-matching oracle for H), δ (confidence parameter), ε
(precision parameter). The algorithm is also supplied with a random
source of strings generated independently by A, the target PDFA.

Output: bA, a hypothesis PDFA such that KL(A|| bA) < ε with probability at
least 1− δ.

Data: The algorithm maintains a graph G = (V, E) with labelled edges (i.e.
E ⊆ V ×Σ × V), which holds the current hypothesis about the structure
of the target automaton.

repeat
Draw N strings from A
foreach u ∈ V and σ ∈ Σ which does not yet label an edge out of u do

Hypothesize a candidate node, referred to as (u, σ)
Compute Su (multiset of suffixes of this node)
if |Su| ≥ m0 then

foreach v ∈ V do
Query OH to compare Su,σ with Sv

if OH returns ACCEPT then
Add arc labelled with σ from u to v.

end

end
if OH returns REJECT on all comparisons then

Create new node to graph G
Add an edge labelled with σ from u to the new node

end

end

end

until no candidate node has a sufficiently large suffix multiset
Complete G by adding a ground node which represents low frequency states
Add a final state q̂f and transitions labelled with ζ from each state to q̂f

10

(i) Given sufficiently many samples, a sample set is likely to be ”good”. Namely,
every string will appear with an empirical probability that is close to its
actual probability.

(ii) Assuming an oracle which matches the PDFA family under consideration,
at each step the hypothesis graph will be isomorphic to a subgraph of the
target with high probability.

(iii) With high probability, when the algorithm stops drawing samples, there will
be in the hypothesis graph a state representing each frequent state in the
target. In addition, all frequent transitions will also have a representative
edge in the graph.

(iv) After the algorithm terminates, (again with high probability) all transition
probability estimates will be close to their correct target values.

(v) A KL-PAC result between target and hypothesis is derived using the previous
modules.

The following definitions in Clark and Thollard (2004) are redefined for the
purpose of our proof:

The definition of a candidate node is replaced (or rather generalized) by the
following:

Definition 5 (Candidate node). A candidate node is a pair (u, σ) where u is
a node in the graph G underlying the current hypothesis PDFA, and σ ∈ Σ where
τ(u, σ) is undefined. It will have an associated suffix multiset Su,σ. A candidate
node (u, σ) and a node v in a hypothesis graph G are similar if and only if the
matching oracle OH returns ACCEPT when queried with Ŝu,σ and Ŝv, where Ŝ
denotes the empirical distribution induced by a multiset S.

Definition 7 of a good multiset is now relaxed, and the original condition
L∞(Ŝ, PA

q) < µ/4 (which guaranteed distinguishability) is now dropped:

Definition 6 (good multiset). A multiset S is ε1-good for a state q iff for
every σ ∈ Σ ∪ {ζ}, | (S(σ)/|S|)− γ(q, σ)| < ε1.

The threshold m0 on the minimal multiset size for testing distribution prox-
imity now becomes m0 = max(m1,m2), where m1 is the number of samples
required by the matching oracle OH to guarantee an error probability of at most
δ1, and m2 is the multiset size shown in Clark and Thollard (2004) to guarantee
a good sample (according to Definition 6 above) with probability at least 1− δ2:

m2 =
1

2ε2
1

log
(

24n|Σ|(|Σ|+ 1)(n|Σ|+ 2)
δ2

)
, with (1)

ε1 =
ε2

16(|Σ|+ 1)(L + 1)2
.

The number of samples drawn at each iteration of the algorithm now be-
comes:

N =
4n|Σ|L2(L + 1)3

ε2
3

max
(

2n|Σ|m0, 4 log
2(n|Σ|+ 2)

δ

)
, with

ε3 =
ε

2(n + 1) log (4(L + 1)(|Σ|+ 1)/ε)
.

11

Rigorous statements and proofs of modules (i), (iii) and (iv) are given in
Clark and Thollard (2004). References to the relevant sections follow.

The “good sample” concept of module (i) is defined in Definitions 7, 8, 10
and 11 of Sect. 4.2. Note that the original definition of a good multiset is now
relaxed to Definition 6 above. The probability of obtaining a good sample is
lower-bounded in Sect(s). 6.1 and 6.2. Specifically, using Chernoff bounds it is
shown that for a sample size of m2 the condition of Definition 6 is assured with
probability of error less than e−2m2ε2

1 , which equals δ2
24n|Σ|(|Σ|+1)(n|Σ|+2) .

Module (iii) is proven in Lemmas 12 and 13 of Sect(s). 4.2 and 4.4 respec-
tively, and our proof requires no changes. Module (iv) is discussed in Sect. 4.3,
where again no changes are necessary. The modifications to module (ii) are ad-
dressed in the following lemma:

Lemma 2. Given a PDFA class H and a (δ1,m1)-matching oracle OH, with
probability at least 1 − δ1n

2|Σ|, at each step of the algorithm the hypothesis
graph will be isomorphic to a subgraph of the target PDFA.

Proof. The algorithm queries OH at most n2|Σ| times at each step. By applying
the union bound and using the definition of a matching oracle we obtain the
lemma. ut

Finally, we prove module (v) and derive a KL-PAC bound. For the original µ-
distinguishable class, a KL-PAC bound is proved by Clark and Thollard (2004).
The authors show that assuming a good sample had been drawn, the KL-PAC
bound follows. In our framework, an additional degree of randomness is present
due to the probabilistic nature of the oracle. However, if this probability of
error is managed, the same KL-divergence bound between target and hypothesis
PDFA (namely ε) follows.

By setting

δ1 =
δ

2n2|Σ|(n|Σ|+ 2)
, (2a)

δ2 = δ/2, (2b)

using multisets of size m0 = max(m1,m2), and applying the union bound, the
probability of error obtained is not greater than δ, and we retain the ε accuracy.
The proof of Theorem 1 follows.

C Pseudocode for the L2 Distance Test

Pseudocode for the L2 distance test is provided in Algorithm 2 below. rD denotes
the number of self-collisions in the set FD, namely the count of i < j such that
the ith sample in FD is same as the jth sample in FD. Similarly, cD1D2 , the
number of collisions between D1 and D2 is the count of (i, j) such that the ith

sample in D1 is same as the jth sample in D2.

12

Algorithm 2: L2-Distance-Test

Input: D1, D2, m, ε, δ
Result: ACCEPT or REJECT
repeat

Let FD1 = a set of m samples from D1

Let FD2 = a set of m samples from D2

Let rD1 = |FD1 ∩ FD1 | (the number of self-collisions in FD1)
Let rD2 = |FD2 ∩ FD2 |
Let QD1 = a set of m samples from D1

Let QD2 = a set of m samples from D2

Let cD1D2 = |QD1 ∩QD2 |
Let r = 2m

m−1
(rD1 + rD2)

Let s = 2cD1D2

if r − s > m2ε2/2 then REJECT else ACCEPT
until O

`
log

`
1
δ

´´
iterations

REJECT if the majority of iterations reject
ACCEPT otherwise

13

