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Functional Classification
Using Phylogenomic Inference
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P hylogenomic inference of protein (or gene) function
attempts to address the question, ‘‘What function does
this protein perform?’’ in an evolutionary context. As

originally outlined by Jonathan Eisen [1–3], phylogenomic
inference of protein function is a multistep process involving
selection of homologs, multiple sequence alignment (MSA),
and phylogenetic tree construction; overlaying annotations
on the tree topology; discriminating between orthologs and
paralogs; and—finally—inferring the function of a protein
based on the orthologs identified by this process and the
annotations retrieved. Figure 1 shows an example of using
annotated subfamily groupings to infer function, in a manner
similar to [1]. One of us, while at Celera Genomics, separately
came up with a similar approach for the functional
classification of the human genome [4], based on the
automated identification of functional subfamilies using the
SCI-PHY algorithm and the use of subfamily hidden Markov
models (HMMs) to classify novel sequences [5,6]. Our
experiences over the past several years in developing
computational pipelines for automating phylogenomic
inference at the genome scale [7]—and the challenges we have
faced in this effort—motivate this paper.

In practice, phylogenomic inference of gene function is not
often used. Far from it. The majority of novel sequences are
assigned a putative function through the use of annotation
transfer from the top hits in a database search. In our analysis
of over 300,000 proteins in the UniProt database, only 3% of
proteins with informative annotations (i.e., those not labelled
as ‘‘hypothetical’’ or ‘‘unknown’’) had experimental support
for their annotations; 97% were annotated using electronic
evidence alone. These annotations are uploaded to GenBank,
where they persist even if they are eventually determined to
be in error.

The systematic errors associated with this annotation
protocol have been pointed out by numerous investigators
over the years [8–10]. The root causes of these errors are
these:

Gene duplication. This enables protein superfamilies to
innovate novel functions on the same structural template, so
that the top database hit may have a function distinct from
the query.

Domain shuffling. Domain fusion and fission events add an
additional layer of complexity, as a query and database hit
may share only a local region of homology and thus have
entirely different molecular functions and structures.

Propagation of existing errors in database annotations. This is
particularly pernicious, as existing annotation errors are
seldom detected and, even if detected, are not necessarily
corrected.

Evolutionary distance. Two proteins can share a common
ancestor and domain structure, yet have very different

functions simply due to their presence in very divergently
related species.
Phylogenomic analysis, properly applied, avoids these

errors and provides a mechanism for detecting existing
database annotation errors [3,7]. Why then is phylogenomic
inference not used more widely? We believe this is due to four
reasons. First, the actual frequency of annotation error is not
known, so the gravity of the situation is not recognized.
Second, phylogenomic inference is a much more complicated
endeavor than a simple database search and requires
significantly more expertise and computing resources. It is
therefore not easily applied at the genome scale. Third,
millions of dollars and years of effort have been poured into
developing computational annotation systems that depend
on annotation transfer from top database hits, perhaps
overlaid with domain prediction methods such as PFAM or
the NCBI CDD [11,12]. Fourth, phylogenomic approaches to
protein function prediction have arisen only in the last few
years, while database search methods have been available for
much longer. Revolutions do not normally take place
overnight. These four reasons result in phylogenomic
inference being applied on a one-off basis, for a few protein
superfamilies here and there.
This may be about to change. A variety of software tools

and algorithms enabling phylogenomic inference have been
developed in recent years (see Table 1). Some of these
methods have based annotation transfer on the identification
of orthologs [13–15] or of functional subfamilies [6,16–21].
Other groups have used whole-tree analyses [22–24]. Still
other groups employ expert knowledge to define functional
subtypes and then develop statistical models to allow users to
classify novel sequences [25,26]; these expert system-based
approaches are unfortunately limited by the scarcity of
experimental data for most protein families.
It is worth examining the assumptions underlying these

phylogenomic resources, and phylogenomic inference as a
whole.
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Tree Topology Accuracy

Phylogenomic inference is based on a fundamental
assumption: the phylogenetic tree topology used as the basis
of functional inference is correct. This assumption must be
questioned, particularly when highly divergent sequences
(e.g., with pairwise identities less than 25%) are included in a
tree.

Protein superfamilies provide distinct challenges to
phylogenetic reconstruction. Following gene duplication,
proteins can undergo significant structural and functional
changes associated with neofunctionalization, resulting in
loop regions and other parts of protein structures not being
strictly homologous across all members of a multigene family
(see Figure 2). Even among orthologs, evolutionary rates can
vary greatly within different lineages [27,28]. This degree of
extreme structural and sequence diversity clearly violates the
assumptions of most simple (and therefore computationally
tractable) models of evolution.

Assessing the expected accuracy of phylogenetic methods
for protein superfamily reconstruction is a challenge in itself.
Unlike phylogenetic reconstruction of species trees, where
fossil evidence exists to help investigators assess tree
accuracy, we have no fossil record for protein superfamilies.
Simulation studies have tended to assume models of
molecular evolution that are appropriate to single
orthologous DNA sequences [29], but do not normally address
many of the complexities of protein multigene family
evolution. This has begun to change; models have been
introduced that incorporate a wider range of information,
such as indel evolution and structural constraints [30–33].
Still, we believe there is a long way to go in this regard before
simulation studies can effectively assess the expected
accuracy of phylogenetic inference in protein superfamilies.
An additional complication in phylogenetic reconstruction

of protein families is the almost universal dependence on an
accurate MSA as input. Studies of alignment accuracy for
pairs of proteins at different levels of evolutionary and
structural divergence show dramatic increases in alignment
errors with sequence divergence [34]. Several recent methods
have bypassed this issue by concurrent estimation of a
phylogeny and an MSA from unaligned sequences [35–37]; we
look forward to future developments in this area.
Another barrier to the use of phylogenomic inference

methods is their computational complexity. Owing to the
large size of protein superfamilies (with hundreds or
thousands of taxa), many applications of phylogenomic
inference employ fast distance-based methods instead of
character-based approaches or forego even simple models of
evolution in favor of faster hierarchical clustering algorithms
(e.g., the Panther system [38]). Without an objective
understanding of the expected accuracy of individual
phylogenetic tree estimation methods under different
conditions, we cannot know whether functional inferences
based on these analyses are accurate.
In practice, assessing the likely accuracy of a particular tree

is typically accomplished through bootstrap analysis or
comparison of trees constructed using different phylogenetic
reconstruction methods. Analysis of multiple trees for a given
family often shows regions of agreement as well as significant
differences of opinion: closely related subtrees are often
found consistently across different methods, with primary
differences between trees being at the coarse branching order
between these conserved subtrees. Functional inferences can
then be based on subtrees with high bootstrap support or on
those subtrees that are found in the strict or majority
consensus of several tree methods. However, these methods of
analysis are quite time consuming and impractical for large
datasets or for high-throughput application.

The Reliability and Source of Existing Database
Annotations

Any system of functional inference depends on the accuracy
of the characterized members. The Gene Ontology Consortium
has provided a mechanism whereby sequence annotations have
associated evidence codes, documenting the origin of the
annotation (e.g., by electronic means, by direct assay, or by a
traceable author statement) [39]. We believe that annotation
transfer, even in a phylogenomic context, should only be
performed when solid experimental support is available. Our

DOI: 10.1371/journal.pcbi.0020077.g001

Figure 1. Phylogenomic Analysis of Protein Function Using Subfamily

Annotation

In the example shown above, a phylogenetic tree has been constructed
for a set of G protein–coupled receptors. The molecular function of some
of the members of the family has been determined experimentally and is
used to annotate individual subfamilies, similar to [1]. Sequences without
known function can be assigned a predicted molecular function using
the tree topology to identify orthologs. When no experimental evidence
is available for a subtree’s molecular function (e.g., the Unknown Subtype
subtree at top), the annotation would be left at a general level (e.g.,
‘‘GPCR of unknown specificity, related to opioid, galanin, and
somatostatin receptors’’). By contrast, if the Unknown Subtype subtree
were nested within a subtree whose members were consistently
characterized, such as opioid receptors, a ‘‘subtree neighbors’’ approach
could be used to assign the annotation ‘‘Putative opioid receptor’’ to
that group [14]. The use of subfamilies as the basis of phylogenomic
inference is only one approach; as noted in the text, the general
methodology does not rely on subfamily groupings and would ideally
use the entire tree topology.
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analysis of more than 300,000 proteins in the UniProt database
shows only 3% of proteins with functional annotations have
experimental support. We suspect that many more proteins
than these have been experimentally pursued, but that the
results of these experiments are not being propagated
efficiently (or at all) to the sequence databases or to the GO
Annotation project [40]. One reason for this is the lack of
proper usage of standard sequence identifiers in the biological
literature, and we applaud the efforts at various journals to
improve this status quo (see, e.g., Genome Research and the PLoS
journals). We would go further and recommend that sequence
databases specifically encourage ontology annotation during
sequence submission. We expect that advances in text-mining
software will also help correct the imbalance, although the field
is not yet at a point to contribute on a large scale [41]. Finally,
we believe that mechanisms must be put into place to enable
annotation errors to be more easily corrected. The UniProt
database responds to community requests for annotation error
correction; other sequence databases might do well to follow
their lead.

Functional Inference Based on Assumed Orthology

Orthologs—genes or proteins related by speciation—are
generally assumed to have greater functional similarity than

paralogs, which are related by gene duplication. However,
inference accuracy also depends on evolutionary distance
and the particular functional attribute under consideration.
Some attributes of protein families, such as the three-
dimensional structure, persist across large evolutionary
distances. Other attributes, such as substrate specificity, can
be modified based on a handful of amino acid substitutions in
critical positions. The persistence of certain traits may be
more limited in some families and more expansive in others.
The assumption that orthology implies a functional similarity
must therefore be tempered by an assessment of evolutionary
distance [42,43].
Moreover, determining orthology is not always

straightforward. RIO and Orthostrapper take the approach of
using phylogenetic trees to assess orthology between
homologs [14,15]. This is clearly the most accurate method,
although accuracy will depend on the estimated phylogeny.
However, these methods require estimation of a new tree for
each family of interest, and trees must be recomputed
whenever novel sequences are added to the family. This limits
their application in large-scale endeavors. The COG database
makes the simplifying assumption that proteins are orthologs
if they are reciprocal top BLAST hits [13], but this limits the
resulting relationships, and domain-shuffling, high sequence

Table 1. Resources for Phylogenomic Analysis

Database URL Description

Astral http://astral.berkeley.edu Provides subsets of SCOP domains filtered to reduce redundancy at various levels

of percent identity. Used to evaluate protein structure prediction methods.

COG http://www.ncbi.nlm.nih.gov/COG Abbreviation for Clusters of Orthologous Groups. Clusters genes into orthologous

groups based on reciprocal BLAST analysis.

GO http://www.geneontology.org Abbreviation for Gene Ontology. Presents hierarchical graph of terms describing

gene molecular function in three areas: molecular function, biological process,

and cellular localization.

GOA http://www.ebi.ac.uk/GOA Abbreviation for GO Annotation project. Annotates genes and protein sequences

with GO terms.

NCBI CDD http://www.ncbi.nlm.nih.gov/cdd/cdd.shtml Abbreviation for Conserved Domain Database. Profiles modeling protein

domains; the CDD can be searched automatically during BLAST submission.

Orthostrapper http://orthostrapper.cgb.ki.se Assesses orthology between sequences of interest using a confidence value

based on bootstrap tree resampling.

Panther http://www.pantherdb.org Classifies proteins using HMMs into curated functional families and subfamilies.

PFAM http://pfam.wustl.edu Abbreviation for Protein Family Database. Uses HMMs representing conserved

functional and structural domains.

PhyloFacts http://phylogenomics.berkeley.edu/UniversalProteome Provides structural and phylogenomic analysis of over 7,000 domains and full-

length protein superfamilies. Includes GO terms and evidence codes, searchable

HMMs for subfamilies and families, and a variety of bioinformatics analyses.

RIO http://www.rio.wustl.edu Abbreviation for Resampled Inference of Orthologs. Provides estimates of the

reliability of orthology assignments using bootstrap trees.

SCOP http://scop.berkeley.edu Abbreviation for Structural Classification of Proteins. Places structural domains

into a hierarchical classification based on structural topology and evolutionary

history.

SFLD http://sfld.rbvi.ucsf.edu Abbreviation for Structure–Function Linkage Database. Classifies diverse protein

superfamilies by conserved chemical reaction mechanism.

SIFTER http://sifter.berkeley.edu Abbreviation for Statistical Inference of Function Through Evolutionary

Relationships. Propagates functional annotations across a tree topology using a

noisy-or model of functional evolution.

TREEFAM http://www.treefam.org Abbreviation for Tree Families Database. Provides phylogenetic trees and

orthology predictions for animal gene families.

UniProt http://www.pir.uniprot.org Is a high-quality repository of protein sequence information, including external

links to, e.g., references, Protein Database structures, GO terms, and predicted

domains.

DOI: 10.1371/journal.pcbi.0020077.t001
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diversity within the family, and incomplete genome
sequencing can all contribute to error.

Finally, the dearth of experimental evidence supporting
functional annotations, together with ambiguous tree
topology reconstruction, often limits the number of proteins
that can be annotated effectively based strictly on orthology.
Because of the limitations in restricting functional
annotations to orthologs, methods have been developed to
allow functional inference to extend beyond the strict
confines of orthology. The SIFTER algorithm enables
annotations to be propagated over a phylogenetic tree, using
GO annotations and priors over existing annotations [22]. We
believe this Bayesian approach shows great promise in
automating the functional annotation of novel sequences.

The Future of Phylogenomic Inference

We have focused in this paper on the use of phylogenomic
inference of protein function. However, phylogenomic
inference can be applied to a wide array of protein family
attributes. Selection of templates for comparative model
construction can be performed in a phylogenomic context,
e.g., picking the template that has the smallest tree distance to
a target of unknown structure. Phylogenomic inference of
pathway involvement may also be possible under some
circumstances, for instance, in cases in which a subtree
contains orthologs in closely related species.

Looking to the future of phylogenomic analysis, we believe
that the greatest improvement to this field will take place
when investigators have access to rigorously validated
biological data through which phylogenomic methods can be
assessed for accuracy. The Structure Function Linkage
Database [44], which links protein structures with detailed
information on partial chemical reactions, is an important
contribution in this regard. Carefully designed benchmark
datasets, such as those developed by the protein structure
prediction community (e.g., the Astral datasets [45] and SCOP
[46]), as well as the international biennial CASP experiment

[47], have the potential to transform the field. The protein
structure prediction field is one of the most mature in all of
computational biology, and we believe this is due (at least in
part) to the availability of challenging benchmark datasets
and international experiments. The phylogenomic
community needs analogous datasets appropriate for our
own development and maturation. The natural
competitiveness of computational biologists is used to good
measure when we can push our methods to ever-increasing
levels of accuracy. &
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