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PERSPECTIVES

Why Market-Valuation-Indifferent
Indexing Works

Jack Treynor

y the end of the 20th century, even casual
investors had become comfortable with
the idea of index funds. The idea of a better
index fund (see Arnott, Hsu, and Moore

2005), however, is mind-boggling. This article
offers one man’s view of why it will actually work.
He defines market-valuation-indifferent (MVI)
indexing to be indexing in which the index is built
on any weights that avoid the problem with mar-
ket capitalization.

The bad news about stock markets is that they
price stocks imperfectly. The good news is that the
mispricings are always relative. Not only will over-
priced stocks be counterbalanced by underpriced
stocks, but the distribution of error at any point in
time will be symmetrical. We can picture this dis-
tribution as a bell-shaped curve with “error” on the
horizontal axis and some measure of “frequency”
on the vertical axis. Because it reflects both the
number of companies and their size, aggregate
value is the appropriate measure of frequency.

But which measure of aggregate value—true
value or market value? If we use market value,
then, alas, it will make bigger bets on overpriced
stocks and smaller bets on underpriced stocks.

To get a handle on how much error, we begin
by defining

u = relative error (expressed as a fraction of
true value) and

v(u) = amount of true value with error.
When we consider the thousands of stocks in the
market, the randomness of particular stocks is sub-
merged in a density function that associates a rel-
atively stable amount of density function v(u) with
relative error u to satisfy 

(1)
But 1 + u is the market value of $1.00 of true value
with relative error u. So the amount of market

value with error u is (1 + u)v (u); then, the error
distribution satisfies

(2)

Unlike the distribution of the pricing error that
uses true value, the error distribution for market
values is skewed to the right. This lack of symmetry
is the problem with capitalization weighting: By
using market values to determine its weights, a
cap-weighted index fund will invest more money
in overpriced stocks than in underpriced stocks.

Consider a symmetrical distribution of market
errors u around a mean error . For each stock
whose error exceeds the mean by , there will
tend to be a stock whose error falls short of the
mean by . Expressed in terms of a frequency
function v( ) of true values, the original symmetry
condition is obviously satisfied by

(3)

because the second argument is indeed minus the
first, as we specified. On the other hand, if we
expect market errors to be symmetrical around a
mean error of zero, we need to add the following
condition: weighted by the true values, the mean
of the errors in market price is zero. In terms of our
symbols, we can express the new condition:

(4)

Obviously, the sum over all stocks—underpriced
and overpriced—is zero.

The Basic Equation
How does MVI indexing avoid cap-weighted
indexing’s problem? The key is a simple equation
linking the covariances of portfolio weights with
• market price per share,
• true value per share, and
• errors in market price per share. 
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If, as before, u is the relative error, then 1 + u is the
ratio of market to true value v and

(5)

is market price. So, to a common divisor equal to
the number of stocks, the covariance of portfolio
weights w with share prices is 

(6)

The expression in brackets is the covariance of port-
folio weights with the true share values. Now, con-
sider the covariance of portfolio weights with
dollar errors in share price,

(7)

We see that the expression  equals this cova-
riance plus the product . But under our
expanded symmetry condition, we have

(8)

So the first of the three covariances equals the alge-
braic sum of the second and third. The second is the
covariance of portfolio weights with true values,
and the third is the covariance of the weights with
the dollar errors in prices.

Implications for MVI Indexing
One application of MVI indexing is weighting
schemes in which the covariance of weights with
market values is zero. In this case, to satisfy Equa-
tion 6, either the other two covariances must offset
exactly—which is highly improbable—or both
must be zero.

An extreme example is a portfolio with equal
weights. On average, the number of overpriced
stocks will be the same as the number of under-
priced stocks. But if all the stocks are assigned the
same weight, the investment in the overpriced seg-
ment will depend only on that number and the
investment in the underpriced segment will
depend only on that same number. So the two
investments will tend to be equal—in contrast to
the cap-weighted index fund, which pays more for
the overpriced segment and less for the under-
priced segment. Alas, a scheme that weights large-
cap and small-cap stocks the same is going to have
small-cap market bias, however, relative to many

benchmark portfolios, hence more sensitivity to
any systematic small-cap factor (as discussed in, for
example, Fama and French 1973).

The equation relating the three covariances can
be applied in other ways. For example, instead of
demonstrating empirically that a given set of
weights has zero covariance with market prices, we
can appeal to a priori reasons why certain sets of
weights will have a zero covariance with the errors.
We have seen that if the portfolio gives the same
weight to underpricing errors it gives to overpric-
ing errors, the third covariance vanishes.

But then the other two covariances in the equa-
tion must be equal. So we can use market values,
which are observable, rather than true values,
which are not, to estimate the small-cap bias in such
sets of weights.

Eliminating Small-Cap Bias
Is the constant-weight portfolio the best MVI index-
ing can do? Does it have the smallest tracking error
versus a conventional cap-weighted index? Some
weighting schemes will have less small-cap bias
than others. Examples include weighting by num-
ber of employees, number of customers, or sales.
And some schemes may actually weight large caps
more heavily than the market indexes do. Suppose
we used the number of corporate jets or corporate
limousines. Readers are encouraged to give free
rein to their imagination.

A different approach is to rank stocks by capi-
talization. Form cap-weighted portfolios that start
with the biggest single stock, the biggest 2 stocks,
etc., up to 500 stocks. Every one of these portfolios
except the last will have a large-cap bias relative to
the S&P 500 Index. But each MVI portfolio will have
a small-cap bias relative to its corresponding cap-
weighted counterpart. Thus there will always be a
unique number of stocks for which the MVI port-
folio has the same small-cap bias as the cap-
weighted S&P 500. If this breakeven portfolio
includes enough stocks, it can still be satisfactorily
diversified.

We have still other ways to remove small-cap
bias. Consider a cap-weighted portfolio of the 100
smallest companies in the Wilshire 5000 Index. It
will have
• no alpha resulting from MVI indexing and
• lots of small-cap bias.
A short position in this portfolio will offset a lot of
small-cap bias without reducing the MVI alpha.
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An appropriate blend of any two schemes
with opposite biases will always eliminate bias
relative to any given benchmark. And if different
clients have different benchmarks, the blend can
be tailored to their benchmarks.

The Source of MVI’s Advantage
Stocks in the MVI portfolio with a given true value
may get a large weight or a small weight. Because
they are as likely to be underpriced as overpriced,
however, whatever weight the method assigns is as
likely to contribute to the underpriced stock as to
the overpriced stock. Averaged across all the stocks
in the MVI portfolio, the aggregate dollar invest-
ments will tend to be the same.

Of course, at a point in time, real stocks won’t
oblige the author by falling into exactly counterbal-
ancing pairs. But the easiest way to explain how
MVI capitalizes on the tendency for pricing errors
to be symmetric is to focus on such an idealized pair.

Because of the errors in market price, the cor-
responding underpriced or overpriced stocks in a
cap-weighted portfolio will have different market
values even if they have the same true values. Let
the true values of those stocks be v, and let the
aggregate pricing errors be +e and –e.

If cap-weighted investors spend v + e dollars
on the former and v – e dollars on the latter, they
will spend a total of

(9)

dollars and get

(10)

worth of true value.
On the other hand, the MVI investors spend

the same number of dollars on the underpriced as
they spend on the overpriced stocks. But a dollar
spent on overpriced securities buys less true value
than a dollar spent on underpriced securities. For
example, a dollar spent on a stock with true value
v and market price v + e buys v/(v + e) of the true
value; a dollar spent on a stock with true value v
and market price v – e buys v/(v – e) of the true
value. If the MVI investors spend v dollars on each
stock, they make the same total investment as the
cap-weighted investors and get

worth of true value, or 

(11)

where the expression in brackets is always greater
than zero. (The expression e/ν  is what we previ-
ously called u—price error relative to true value.)

Thus for the same total investment, the MVI
investors own more true value than the cap-
weighted investors, with a difference that depends
only on the relative size of the aggregate pricing
error. The gain for the whole market sums across
errors occurring with a wide range of frequencies.
If the frequency function is  f(e/ν), then the gain can
be expressed as

(12)

For small errors, we can approximate this integral by

(13)

The value of the first integral is 1. If, as we have
assumed for the frequency distribution of true val-
ues, the mean of the errors is 0, then the second
integral is the variance of the errors.

When stocks are accurately priced, the MVI
portfolio realizes no gain relative to the price-
weighted portfolio. But when the error in market
prices is expressed as a fraction of the true value,
then the gain from MVI is the square of the stan-
dard error, σ. Table 1 displays a range of possible
values of σ, σ2, 1 + σ2, and (for reasons to be
explained) 1/(1 – σ2). MVI investors realize this
benefit even if mispriced stocks never revert to their
true values. If reversion occurs, it offers an addi-
tional benefit (see Appendix A).

To be sure, the correct integral is not as simply
related to the standard error of stock prices as our
crude approximation is. But in the event, small
pricing errors will be much more frequent than
large pricing errors. The reader can get some sense
of how bad our approximation is by imagining that,
instead of being sample averages, the numbers in
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the “σ” column are price errors on a specific stock,
in which that stock’s contribution to the approxi-
mation error is the difference between the right-
hand columns. It takes a 31 percent pricing error to
produce a 1 percent error in such a stock’s contri-
bution to the integral. And all individual stock
errors, small or large, positive or negative, cause
the author’s approximation to understate the true
gain from MVI. But that’s the only purpose in
including the right-hand column. The author trusts
nobody will think it is an estimate of the true value
of the integral for the indicated variance. 

Because we can’t observe the market’s pricing
errors, we can’t readily resolve debates about their
magnitude. Eugene Fama has one view; Fischer
Black had another. A 1 percent standard error in
stock prices produces a gain relative to cap weight-
ing of 0.0001—surely too small to warrant interest
in MVI weighting. But the gain increases rapidly as
the standard error increases, being 400 times as big
for a 20 percent standard error. Can we afford to be
wrong about our preconceptions?

Trading Costs
MVI portfolio managers trade more than managers
of cap-weighted portfolios, although how much
more depends on the price discrepancies the MVI
managers choose to tolerate before trading back to
the prescribed weights. The trade size will increase
with , so volume will be proportional to

(14)

The cost of increasing the trigger size is departure
from the portfolio proportions prescribed by MVI.
Trading lags bring MVI closer to the cap-weighted
result.

When all prices rise or fall in proportion to the
MVI portfolio manager’s weights, however, no
trading is needed.

Conclusion
The author has argued that one doesn’t need to
know true values in order to avoid the problem with
cap-weighted index funds. One can still enjoy all the
benefits of an index fund—a high level of diversifi-
cation and low trading costs—by investing ran-
domly with respect to the market’s pricing errors. 

Appendix A: Reversion to 
True Value
The rate of return from the reversion of market
value to true value depends on the reversion rate. Is
the average time to reversion 1 year or 10 years? We
do not know. 

Presumably, resulting rates of return are also
proportional to the initial pricing error. Assume
over- and underpriced stocks have the same abso-
lute error e; then, for an overpriced stock with true
value v1 and market price p1, the rate of return is
proportional to

(A1)

and for an underpriced stock with true value v2 and
market price p2, the rate of return is proportional to

(A2)

Table 1. MVI’s Advantage for Indicated 
Standard Errors in Market Price 

σ σ2 1 + σ2

0.01 0.0001 1.0001 1.0001
0.02 0.0004 1.0004 1.0004
0.04 0.0016 1.0016 1.0016
0.08 0.0064 1.0064 1.0064
0.12 0.0144 1.0144 1.0146
0.14 0.0196 1.0196 1.0200
0.16 0.0256 1.0256 1.0263
0.18 0.0324 1.0324 1.0335
0.20 0.0400 1.0400 1.0417
0.22 0.0484 1.0484 1.0509
0.24 0.0576 1.0576 1.0611
0.26 0.0676 1.0676 1.0725
0.28 0.0784 1.0784 1.0851
0.30 0.0900 1.0900 1.0989
0.32 0.1024 1.1024 1.1141
0.34 0.1156 1.1156 1.1307
0.36 0.1296 1.1296 1.1489
0.38 0.1444 1.1444 1.1688
0.40 0.1600 1.1600 1.1905
0.42 0.1764 1.1764 1.2142
0.44 0.1936 1.1936 1.2401
0.46 0.2116 1.2116 1.2684
0.48 0.2304 1.2304 1.2994
0.50 0.2500 1.2500 1.3333
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For the MVI investor with equal positions in the
two stocks, the average return is

(A3)

before dividing by the effective reversion time.
For the whole portfolio, the return is 

(A4)

again assuming a mean of zero. 
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